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Quantum Field theory

e Objects of interest: Correlation functions
G(x1,x2,x3)

e Quantifies correlation between points in space.
e G(x1,x2,x3) € R = probability of three ‘scalar’ events.
e G(x1,x2,x3) € V = substructure at each point (e.g. spin).

e Arbitary number of points can be correlated G(x1, x2, X3, .. .).
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Perturbation theory

e No exact formula for correlation functions!

e We need perturbation theory:
G(x1,x2,x3) = Go(x1, %2, x3) + hGi(x1, x2,x3) + h? Ga(x1, X2, X3) + ..

e Each G,(x1, x2,x3) can be written as a sum over graphs:

Gn(X17X27X3) — Z QD(r)
I
x(MN=1—n

The function ¢ associates an integral to each graph.

e The graphs are called Feynman graphs. The integrals are
called Feynman integrals, the function ¢ is called Feynman

rule.
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Algebraic integrals: Periods

e The Feynman integrals are except for the dependence on the
physical input algebraic integrals:

0= [ g (7)

e The renormalization group independent part is purely

df2
UDb/2

e For small graphs this number is mostly a linear combination of

algebraic: The ‘period’

is an interesting number.

multiple zeta values.
e There exists various number theoretic conjectures on the
period: Coaction conjecture, Cosmic galois group, Motives
etc. S



Fourier

Momentum space Position space
Correlation functions are Correlation functions are
parametrized by the momentum parametrized by the position of
of particles particles
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Why position space?

Advantages

e Simpler Feynman rules
e No IBP reduction necessary

e Conceptually interesting viewpoint

Caveats
e Limited applications: only renormalization quantities so far

e New technology needed

Proof of concept:
7-loop B-function in ¢* calculated in 2016 by Oliver Schnetz using

graphical functions.
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Feynman integral in momentum space

E(Pla ey Pn) = ( /deeZ(ke)> 5P) (Z ke)
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Lower dimensional integral

Feynman integral in position space

G(x1,...,%p) = H /dDXV H A(xa — Xxp)

Better factorization properties
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Graphical reductions




Graphical reduction rules

1. rule: propogators between external vertices

= edges between external vertices factorize.



Graphical reduction rules

= if split along external vertices. 10



Graphical reduction rules

Intermezzo: amputating a propagator

Recall the definition of the propagator, A, as Green'’s function for
the free field equation

(Ox — m)A(x — y) = 5P (x — y)

We can use this equation to amputate free external edges.

11



Graphical reduction rules

3. rule: amputating an external edge

(DXa o m2)G(Xa,Xb,XC) — /dDy(DXa o m2)A(Xa — Y)A(Xb — Y)A(XC — )/)

_ / e — A — A — )

= A(xp — xa)A(xc — xa) = H(xa, xp, Xc)

%b %b
m = LM/L) 0—( —
)(0& ch B X
® a
X, NG

= solve differential equation to add external edge. 12



Differential equations

For rule 3, a differential equation needs to be solved:

) <
(Ox, — MG (xs,...)=G @(xa, )

Can be solved systematically if (Schnetz 2013)
e particles are massless, m = 0,
e only 3-point functions are considered

e in D =4 — ¢ Euklidean space.

13



3-point configuration space is 2-dimensional =

Use complex paramater z such that

2
zZ=—2 and (1-2z)(1-2)=

X3
Xab
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3-point configuration space is 2-dimensional =

Use complex paramater z such that

2 2
22:% and (1—2)(1—z)=%
DXC G%’@(Xén Xb7 XC) — G(‘@(Xaa Xb7 XC)
[ ) - l/
L ~0,05(z — 2) G%@(Z,f) — G(@(z,i)

Z—Z

The 0, and 05 operators can be inverted in the function space of
generalized single-valued hyperlogarithms (Chavez, Duhr 2012,
Schnetz 2014, Schnetz 2017).



Graphical functions

e Rules 1,2,3 are part of a larger framework: graphical functions
(Schnetz 2013).

e Graphical functions can also be applied in a broader context,

e.g. to conformal amplitudes (Basso, Dixon 2017).

e Calculation within this framework are extremely efficient, due
to the rapid reductions and small numbers of irreducible

master diagrams.
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Graphical functions for gauge theory




Beyond scalar

Only change: adding an edge

For instance, for abelian gauge theory:

O — @ and n**0O,
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Beyond scalar

Only change: adding an edge
For instance, for abelian gauge theory:
O — @ and n**0O,
The differential equation for appending an edge,
0.¢%0 . =Y )

becomes a system of differential equations

>l Y
@XaG (Xa,...) =G (Xa,-..)
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Paramatrizing non-scalar graphical functions

2
axc G (Xéh Xbs XC)

2

G (Xa,Xb,Xc)
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Paramatrizing non-scalar graphical functions

o2 2
axc G (Xéh Xba XC) — G (Xa7 Xb7 XC)

. v S

/ N
pHv & - 2 =
()( 0, + )( (8)\ 8%)) G (z,z,\,\) = G (z,Z, A\ )\)

Using light-cone-like parametrization z,z, ¥, \" such that

2 2
27=2% and (1—z)(1-32)= ke
Xab Xab

= A+ 2 xt =z MWz \ xt = (1—-2)MW+(1-2)\
M, =N, =0

Actual inversion becomes more complicated: D # 4 dimensional

Laplacian has to be inverted.
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Extension to D £ 4

e For general dimension D we need to solve,

_ 0 2
(1_82(92(2—2)—[) _4((92—82)> G (z,z) = G (z,2).
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Extension to D £ 4

e For general dimension D we need to solve,

_ ) &)
(1_82(92(2—2)—[) _4((92—82)> G (z,z) = G (z,2).

zZ—Z zZ—Z
e This is also possible for arbitrary even D using a non-trivial
linear combination of integration operators.
= Opens the door to calculations in quantum electro dynamics.

= Immediately possible with Oliver's tools: ¢3-theory. With
applications to percolation theory.
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e Efficient graphical reduction replaces IBP reduction in x-space.
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Efficient graphical reduction replaces IBP reduction in x-space.
Work in progress: extension to gauge theory.
Intermediate step finished: extension to arbitrary even D.

Application of ¢3-theory: Critical exponents in percolation

theory.
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Example of a

X

- which is irreducible w.r.t. rules 1-3:

Ke
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