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Why position space?



Why position space?

Advantages

e Simpler Feynman rules
e No IBP reduction necessary

e Conceptually interesting viewpoint

Caveats
e Limited applications: only renormalization quantities so far

e New technology needed

Proof of concept:
7-loop B-function in ¢* calculated in 2016 by Oliver Schnetz using

graphical functions.



Loop integral workflow
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Loop integral workflow
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Feynman integral in momentum space
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— Lower dimensional integral

Feynman integral in position space

G(x1,...,%p) = H /dDXV H A(xa — Xxp)

k/ﬁp___/

— Better factorization properties
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Graphical reductions




Graphical reduction rules

1. rule: propogators between external vertices

= edges between external vertices factorize.



Graphical reduction rules

= if split along external vertices. 6



Graphical reduction rules

Intermezzo: amputating a propagator

Recall the definition of the propagator, A, as Green'’s function for
the free field equation

(Ox — m)A(x — y) = 5P (x — y)

We can use this equation to amputate free external edges.



Graphical reduction rules

3. rule: amputating an external edge

(DXa o m2)G(Xa,Xb,XC) — /dDy(DXa o m2)A(Xa — Y)A(Xb — Y)A(XC — )/)

_ / e — A — A — )

= A(xp — xa)A(xc — xa) = H(xa, xp, Xc)

o, - % <

= solve differential equation to add external edge. 3



Differential equations

For rule 3, a differential equation needs to be solved:

0 <
(Ox, — MG (xs,...)=G é)(xa, )

Can be solved systematically if (Schnetz 2013)
e particles are massless, m = 0,
e only 3-point functions are considered

e in D =4 — ¢ Euklidean space.



3-point configuration space is 2-dimensional =

Use complex paramater z such that

2
zZ=—2 and (1-2z)(1-2)=

X3
Xab

10



3-point configuration space is 2-dimensional =

Use complex paramater z such that

- ch =\ _ ch
zz—g and (1—2)(1—2)—g
DXC Gh{'@(xén Xb7 XC) — G ‘G@(Xaa Xb7 XC)
[ R l/
L 5,05(z—2) G“{@(z,z) - G(@(z,i)

Z—Z

The 0, and 05 operators can be inverted in the function space of
generalized single-valued hyperlogarithms (Chavez, Duhr 2012,
Schnetz 2014, Schnetz 2017).
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Graphical functions

e Rules 1,2,3 are part of a larger framework: graphical functions
(Schnetz 2013).

e Graphical functions can also be applied in a broader context,

e.g. to conformal amplitudes (Basso, Dixon 2017).

e Calculation within this framework are extremely efficient, due
to the rapid reductions and small numbers of irreducible

master diagrams.
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Graphical functions for gauge theory




Beyond scalar

Only change: adding an edge

For instance, for abelian gauge theory:

O — @ and n**0O,

13



Beyond scalar

Only change: adding an edge
For instance, for abelian gauge theory:
O — @ and n**0O,
The differential equation for appending an edge,
O, G“‘@(xa, L) = G‘@(Xa, )

becomes a system of differential equations

) Y,
@XaG (Xa,...) =G (Xa,-..)
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Paramatrizing non-scalar graphical functions

2
axc G (Xéh Xbs XC)

2

G (Xa,Xb,Xc)
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Paramatrizing non-scalar graphical functions

@ 2
D, G (Xayxp,Xc) = G (Xa,Xp,Xc)
U A
- P,W/ ~2 — ‘(@ —
()(82+)(82—Z_2(8K—8§)) G (z,z,\,A) = G (z,Z,\,\)

Using light-cone-like parametrization z,z, ¥, \" such that

2 2
27=2% and (1—z)(1-32)= ke
Xab Xab

xt = A 2\ xt =z MWz \ xt = (1—-2)MW+(1-2)\
M, =N, =0

Actual inversion becomes more complicated: D # 4 dimensional

Laplacian has to be inverted.
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e Efficient graphical reduction replaces IBP reduction in x-space.
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e Efficient graphical reduction replaces IBP reduction in x-space.

e Work in progress: extension to gauge theory.
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e Efficient graphical reduction replaces IBP reduction in x-space.
e Work in progress: extension to gauge theory.

e Intermediate step finished: extension to arbitrary even D.
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Example of a , which is irreducible w.r.t. rules 1-3:




