Generating functions' asymptotics' generating functions

Michael Borinsky¹

Humboldt-University Berlin Departments of Physics and Mathematics

Combinatorial Structures in Perturbative Quantum Field Theory, Vancouver 2016

¹borinsky@physik.hu-berlin.de

■ Consider the class of **formal** power series $\mathbb{R}[[x]]^{\alpha}_{\beta} \subset \mathbb{R}[[x]]$ which admit an asymptotic expansion of the form,

$$f_n = \alpha^{n+\beta} \Gamma(n+\beta) \left(c_0 + \frac{c_1}{n} + \frac{c_2}{n(n-1)} + \ldots \right)$$

including power series with

$$\lim_{n \to \infty} \frac{f_n}{\alpha^n \Gamma(n+\beta)} = 0$$

$$\Rightarrow c_k = 0 \text{ for all } k \ge 0.$$

- These power series appear in
 - Graph and permutation counting problems in combinatorics.
 - Perturbation expansions in physics.
- Subclass of *gevrey-1*-power series.

• Consider a power series $f(x) \in \mathbb{R}[[x]]^{\alpha}_{\beta}$:

$$f_n = \alpha^{n+\beta} \Gamma(n+\beta) \left(c_0 + \frac{c_1}{n} + \frac{c_2}{n(n-1)} + \ldots \right)$$

• Idea: Interpret the coefficients c_k of the **asymptotic** expansion as a new power series.

Definition

 ${\cal A}$ maps a power series to its asymptotic expansion:

$$\mathcal{A}$$
 : $\mathbb{R}[[x]]^{\alpha}_{\beta}$ \rightarrow $\mathbb{R}[[x]]$ $f(x)$ \mapsto $\gamma(x) = \sum_{k=0}^{\infty} c_k x^k$

Theorem 1

 \mathcal{A} is a derivation on $\mathbb{R}[[x]]^{\alpha}_{\beta}$:

$$(\mathcal{A}f \cdot g)(x) = f(x)(\mathcal{A}g)(x) + (\mathcal{A}f)(x)g(x)$$

- Follows from the *log-convexity* of Γ .
- $\Rightarrow \mathbb{R}[[x]]^{\alpha}_{\beta}$ is a subring of $\mathbb{R}[[x]]$.

Proof sketch

With h(x) = f(x)g(x),

$$h_n = \underbrace{\sum_{k=0}^{R-1} f_{n-k} g_k + \sum_{k=0}^{R-1} f_k g_{n-k}}_{\text{High order times low order}} + \underbrace{\sum_{k=R}^{n-R} f_k g_{n-k}}_{\mathcal{O}(\alpha^n \Gamma(n+\beta-R))}$$

Example

Set
$$F(x) = \sum_{n=1}^{\infty} n! x^n$$
,
 $F \in \mathbb{R}[[x]]_1^1$ and $(\mathcal{A}F)(x) = 1$
 $\Rightarrow F(x)^2 \in \mathbb{R}[[x]]_1^1$
 $(\mathcal{A}F(x)^2)(x) = F(x)(\mathcal{A}F)(x) + (\mathcal{A}F)(x)F(x) = 2F(x)$

• Asymptotic expansion of $F(x)^2$ given by 2F(x).

■ What happens for **composition** of power series $\in \mathbb{R}[[x]]^{\alpha}_{\beta}$?

Theorem 2 Bender [1975]

If
$$|f_n| \leq C^n$$
 then, for $g \in \mathbb{R}[[x]]^{\alpha}_{\beta}$ with $g_0 = 0$:

$$f \circ g \in \mathbb{R}[[x]]^{\alpha}_{\beta}$$

 $(\mathcal{A}f \circ g)(x) = f'(g(x))(\mathcal{A}g)(x)$

■ Bender considered much more general power series, but this is a direct corollary of his theorem in 1975.

Theorem 3 MB [2016]

More general for $f \in \mathbb{R}\{y_1, \dots, y_L\}$ and $g^1, \dots, g^L \in \mathbb{R}[[x]]^{\alpha}_{\beta}$:

$$(\mathcal{A}(f(g^{1}(x),\ldots,g^{L}(x)))(x) = \sum_{l=1}^{L} \frac{\partial f}{\partial y_{l}}(y_{1},\ldots,y_{L})\Big|_{\substack{y_{m}=g^{m}(x)\\\forall m\in\{1,\ldots,L\}}} (\mathcal{A}_{\beta}^{\alpha}g^{l})(x).$$

Example

 $\blacksquare \text{ Set } F(x) = \sum_{n=1}^{\infty} n! x^n,$

$$F \in \mathbb{R}[[x]]_1^1$$
 and $(\mathcal{A}F)(x) = 1$
 $\Rightarrow \cos(F(x)) \in \mathbb{R}[[x]]_1^1$
 $(\mathcal{A}cos(F(x)))(x) = -\sin(F(x))(\mathcal{A}F)(x) = -\sin(F(x))$

■ Asymptotic expansion of cos(F(x)) given by -sin(F(x)).

- What happens if $f \notin \ker A$?
- A fulfills a general 'chain rule':

Theorem 4 MB [2016]

If $f,g\in\mathbb{R}[[x]]^{lpha}_{eta}$ with $g_0=0$ and $g_1=1$:

$$f \circ g \in \mathbb{R}[[x]]^{\alpha}_{\beta}$$
$$(\mathcal{A}f \circ g)(x) = f'(g(x))(\mathcal{A}g)(x) + \left(\frac{x}{g(x)}\right)^{\beta} e^{\frac{g(x)-x}{\alpha \times g(x)}} (\mathcal{A}f)(g(x))$$

- \Rightarrow We can solve for asymptotics of implicitly defined power series.
 - The factor $e^{\frac{g(x)-x}{\alpha \times g(x)}}$ generates typical prefactors of the form

$$e^{\frac{g_2}{\alpha}}$$

in asymptotic expansions.

Example: Chord diagrams

- Let I(x) be the ordinary generating function of all chord diagrams and
- C(x) the ordinary generating function of connected chord diagrams.
- They are related by $I(x) = 1 + C(xI(x)^2)$.

$$I(x) = 1 + C(xI(x)^{2})$$
$$(AI)(x) = (AC(xI(x)^{2}))(x)$$

$$(\mathcal{A}I)(x) = 2xI(x)C'(xI(x)^2)(\mathcal{A}I)(x) + \left(\frac{x}{xI(x)^2}\right)^{\frac{1}{2}} e^{\frac{xI(x)^2 - x}{2x^2I(x)^2}} (\mathcal{A}C)(xI(x)^2)$$

I(x) is given by

$$I(x) = \sum_{n=0}^{\infty} (2n-1)!!x^n$$

$$= \sum_{n=0}^{\infty} \frac{2^{n+\frac{1}{2}}}{\sqrt{2\pi}} \Gamma(n+\frac{1}{2})x^n \in \mathbb{R}[[x]]_{\frac{1}{2}}^2$$

• Using the chain rule for A, we can solve for (AC)(x):

$$(AC)(x) = \frac{1}{\sqrt{2\pi}} \frac{x}{C(x)} e^{-\frac{1}{2x}(2C(x) + C(x)^2)}$$

$$(AC)(x) = \frac{1}{\sqrt{2\pi}} \frac{x}{C(x)} e^{-\frac{1}{2x}(2C(x) + C(x)^2)}$$

⇒ Generating function of the full asymptotic expansion of

$$C_n = (2n-1)!!e^{-1}\left(1-\frac{5}{2}\frac{1}{2n-1}-\frac{43}{8}\frac{1}{(2n-1)(2n-3)}+\dots C_n = \frac{1}{2n-1}\right)$$

Differential equations

■ For a **nonlinear ODE** with $F \in \mathbb{R}\{x, y_0, \dots, y_L\}$ an analytic function and $f \in \mathbb{R}[[x]]^{\alpha}_{\beta}$,

$$0 = F(x, f(x), f'(x), f''(x), \dots, f^{(L)}(x)).$$

Theorem 5 MB [2016]

 $(\mathcal{A}f)(x)$ fulfills the **linear ODE**,

$$0 = \sum_{l=0}^{L} \frac{\partial F}{\partial y_{l}}(x, y_{0}, \dots, y_{L}) \Big|_{\substack{y_{m} = f^{(m)}(x) \\ m \in \{0, \dots, L\}}} (\mathcal{A}f^{(l)})(x),$$

where
$$(\mathcal{A}f^{(I)})(x) = (\frac{1}{\alpha x^2} - \frac{\beta}{x} + \partial_x)^I (\mathcal{A}f)(x)$$
.

Example

■ Let $f \in \mathbb{R}[[x]]^{\alpha}_{\beta}$ fulfill the ODE,

$$x^2 f'(x) = e^{f(x)} - 1 + x$$

then

$$(\alpha^{-1} - x\beta + x^2 \partial_x)(\mathcal{A}f)(x) = e^{f(x)}(\mathcal{A}f)(x).$$

- This only has a non-trivial solution if $\alpha = 1$ and $\beta = 1$.
- We obtain $(\mathcal{A}f)(x)$ up to an overall constant.
- $(\mathcal{A}f)(x)$ will depend on initial data of f(x)!

Conclusions

- $\mathbb{R}[[x]]^{\alpha}_{\beta}$ forms a subring of $\mathbb{R}[[x]]$ closed under mutliplication, composition, differentiation and integration.
- \mathcal{A} is a **derivation** on $\mathbb{R}[[x]]^{\alpha}_{\beta}$ which can be used to obtain asymptotic expansions of **implicitly defined power series**.
- Nice closure properties under asymptotic derivative A.
- Generalizations possible to multiple $\alpha_1, \ldots, \alpha_l \in \mathbb{C}$ with $|\alpha_i| = \alpha$.
- Suitable for resummation of perturbation series ⇒ applications in QFT and QM!
- There are probably many connections to the theory of resurgence.

- Edward A Bender. An asymptotic expansion for the coefficients of some formal power series. *Journal of the London Mathematical Society*, 2(3):451–458, 1975.
- MB. Generating asymptotics for factorially divergent sequences. *arXiv preprint arXiv:1603.01236*, 2016.