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We study simple integrate-and-fire type models with multiplicative noise and consider the transmission of a
weak and slow signal, i.e. a signal that evokes a small modulation of the instantaneous firing rate on time scales
that are much larger than the membrane time scale and the mean interspike interval. The specific question of
interest is whether and how the state-dependence of the noise can be optimized with respect to information
transmission. First, in a simple model in which the noise intensity varies linearly with the state variable, we show

analytically that multiplicative fluctuations may benefit the signal transfer and we elucidate the mechanism for
this improvement. In a conductance-based integrate-and-fire model with synaptically filtered shot-noise input,
we show by means of extended numerical simulations that also in a biophysically more relevant situation,
multiplicative noise can enhance the signal-to-noise ratio. Our results shed light on a so far unexplored aspect of
stochastic signal transmission in neural systems.

1. Introduction

In nonlinear systems the presence of fluctuations can be advanta-
geous to the transmission of a signal. This effect is best known in the
form of stochastic resonance (sometimes also referred to as stochastic
facilitation) and has been thoroughly studied since the early 1990s (for
reviews, see Anishchenko et al., 1999; Gammaitoni et al., 1998, 2009;
McDonnell and Ward, 2011). The effect has gained some popularity
especially in neuroscience because neurons respond in an inherently
nonlinear all-or-none fashion to external stimuli, they are subject to
several sources of noise, and they are thought of as information-trans-
mission devices — hence, they meet all the requirements for stochastic
resonance.

How can random fluctuations, i.e. noise help to transmit a weak
signal? The basic idea is simple: If the signal is too weak to elicit any
response in the strongly nonlinear system, e.g. it is too weak to evoke an
action potential in an excitable neuron, a little bit of noise can help to
get at least some response that will in general be correlated with the
driving signal. Too much noise may reduce the correlation or it may
induce too much trial-to-trial variability that makes is hard to see the
signal in the output.

In the overwhelming majority of studies, the fluctuations act irre-
spective of the state that the system currently occupies — the noise is
additive. There are many systems, however, including nerve cells for

which fluctuations enter the dynamics with a factor that depends on the
state of the driven system. For neurons, synaptic input from other cells,
for instance, arrives as a change in conductance that enters the voltage
dynamics of the postsynaptic cell via the electromotive force that de-
pends in a linear fashion on the voltage of the neuron. If neurons are
subject to different kinds of synapses (either excitatory or inhibitory or
in general simply differing in their reversal potentials), a more general
voltage dependence of the noise is possible.

From a stochastic-dynamics point of view, it is interesting whether
one could add the noise specifically in places where it is needed to
increase the neuron's firing rate or to reduce it in places where such a
reduction can enhance the sensitivity with respect to a weak signal.
Multiplicative noise can lead to a number of interesting stochastic ef-
fects, e.g. noise-induced transitions in which multiplicative noise leads
to new maxima in the probability density (Horsthemke and Lefever,
1983) or the blowtorch effect for Brownian motion in periodic poten-
tials in which multiplicative noise can induce a drift motion in a system
without macroscopic bias (Biittiker, 1987) to name but two classical
examples.

Some studies have already examined stochastic resonance in the
presence of multiplicative noise. In a bistable potential, the beneficial
effect of additive noise was suppressed for higher noise amplitudes if
additionally, independent multiplicative noise (modulating the anhar-
monic part of the potential) was added to the system (Bulsara et al.,
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1991). This is related to an effective reduction of the potential barrier in
the bistable system if this type of multiplicative noise is present
(Bulsara et al., 1989). It was also shown that a multiplicative noise with
linear dependence of its amplitude on the state variable can lead to
stochastic resonance in bistable systems (Gammaitoni et al., 1994) and,
if it is a temporally correlated noise, even in linear systems (Fulifiski,
1995; Berdichevsky and Gitterman, 1996).

From a neurobiological point of view, it is relevant to learn whether
a certain combination of reversal potentials can optimize the signal
flow simply because it optimizes the distribution of noise amplitudes in
the phase space. Previous experimental work (Marcoux et al., 2016) has
already shown voltage dependent fluctuations and discussed the ques-
tion of its relevance for signal transmission. We will use the concept of
multiplicative noise from stochastic-dynamics theory for addressing the
same question. Our paper is organized as follows. First, we inspect a
simple, analytically tractable linear ramp model (Bulsara et al., 1996),
also known as linear integrate-and-fire model (Fusi and Mattia, 1999)
that we here study in a version with multiplicative noise and a slow
driving signal (slow means that the signal's time scale is large compared
to the time scale of the membrane potential and the mean interspike
interval); in this model we compute the signal-to-noise ratio by means
of first-passage time theory (Section 2). We then turn in Section 3 to the
biophysically more realistic model by Stein (1967) in a version in which
synaptically filtered Poisson spike trains (including both excitatory and
inhibitory synapses) impinge on a conductance-based leaky integrate-
and-fire model (Johannesma, 1968). For this model we discuss how to
define and quantify the multiplicativity of the noise and show that
parameter regimes with stronger multiplicative noise may enable an
improved signal transmission. We conclude in Section 4 with a brief
summary and discussion of our results.

2. Excitable neuron with multiplicative noise and additive signal

The influence of multiplicative noise on the signal transmission is
studied in the simplest integrate-and-fire neuron that shows excit-
ability. Bulsara et al. (1996) and Fusi and Mattia (1999) introduced this
model as so-called linear ramp model or linear integrate-and-fire
neuron, respectively, and studied mean IS, its coefficient of variation
(CV) and the ISI distribution with a pure white noise driving (Fusi and
Mattia, 1999) and some of these statistics under a periodic forcing
(Bulsara et al., 1996). Here we endow the model with a simple multi-
plicative (voltage-dependent) white Gaussian noise and a weak periodic
driving and inspect the transmission of the periodic signal.

The dynamics of the neuron's membrane potential v is given by

V= —a + esin2af,t + ¢) + 2DW)E(),

where time is measured in units of the membrane time constant (a ty-
pical value is 10 ms). The term —a can be regarded as the negative
slope of a simple ramp potential, U(v) = av (see Fig. 1a) that has a
reflecting boundary at vg = 0; furthermore, the dynamics obeys a fire-
and-reset mechanism: whenever the voltage crosses vr, a spike is re-
gistered (the sequence of delta spikes is denoted by x(t) = £8(t — t,))
and the voltage is reset to the reflecting barrier at vg.

The dynamics is equivalent to an overdamped Brownian particle
with position variable v subject to a linear potential U (v) with slope a
(see Fig. 1a), to a signal in the form of a periodic driving s(t) = ¢sin
(2nfit + ¢) (amplitude ¢, frequency f; and a initial phase ¢), and to
position-dependent (multiplicative) temporally uncorrelated (white)
Gaussian fluctuations with <&(t)E(t)> = 8(t — t'). For the noise intensity
we choose a simple linear function (see Fig. 1b)

(€Y
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The first parameter, D, determines the average noise intensity in the
interval, while the latter, m, varies the multiplicativity (the strength of
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Fig. 1. Sketch of the model: Effective potential with a reflecting barrier on the
left and an absorbing barrier on the right (a); the intensity of the driving
fluctuations (b) depends in a linear fashion on the state variable v (three pos-
sible cases are indicated). Absorption of the particle (black circle) is associated
with the generation of a spike (not shown); the temporal sequence of generated
spikes is the (signal-encoding) output of the model (see Fig. 2).

the voltage dependence). Three different settings are shown in Fig. 1b.
For m > 0 (m < 0) the noise increases (decreases) linearly with in-
creasing voltage; with m = 0, additive noise is obtained. For all mul-
tiplicative settings, Eq. (1) is interpreted in the sense of It6 (Gardiner,
1985). We note that the requirement of positive noise intensity leads to
the constraint Iml| < 2D/(vy — vg).

In Fig. 2a, an exemplary trajectory of the model is shown. The
voltage (green) is driven by a slow and weak signal (red) and noise (not
shown); spike times (threshold crossings followed by resets) are in-
dicated by arrows — these spikes encode the signal and how well they do
so can be quantified in terms of the power spectrum, Fig. 2b. The latter
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Fig. 2. Signal, voltage, output, power spectrum, vy =0, vr =1, a =1, ¢ = 0.1,
D =05m=0, At = 10~ * power spectrum: Ty, = 2% At.
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is for a finite simulation (or observation) window Tj;, defined by

!

sy =7

3
where X = fOTS““ dte?"iftx (t) is the Fourier transform, the asterisk de-
notes the complex conjugated, and the angular brackets indicate an
ensemble average over the noise £(t) and the driving's initial phase
(which is drawn from a uniform distribution in [0, 27)).

Under a periodic driving, the power spectrum consists of a broad
background noise floor and a discrete peak at the driving frequency
fs = 0.1. How well the signal is transmitted is quantified by how much
the peak sticks out of the noise floor which on a logarithmic scale is
quantified by the signal-to-noise ratio (SNR) (McNamara and
Wiesenfeld, 1989; Stemmler, 1996; Gammaitoni et al., 1998). The SNR
can be defined as

4 S0
£ Tim Sbg(fs) € Tim

4 S(fy) — Seg(f)
Sbg (f5) C)]

where T, is the length of the observation (or simulation) time, Sps(f;) is
the background power at the signal frequency and S,(f;) the peak
height. With this definition, the SNR quantifies the capability of de-
tecting the weak and slow signal in the output; the chosen prefactor
eliminates the simple dependences on the signal strength ¢ (at least, for
a sufficiently weak signal (Voronenko and Lindner, 2017)) and on the
observation time Tg,,.

Fortunately, the model is so simple that an analytical approximation
of the SNR is feasible. If we assume that the signal is very slow, we can
use linear-response theory and point-process theory to obtain an ex-
pression in terms of the moments of the model's interspike interval:

SNR(f,) =

5

aro an 2
. da da
SNR = lim SNR(f,) = =121
=0 Yoy (XA Q)

Here ry is the spontaneous firing rate (the inverse of the mean ISI,
ro = 1/<D) and C, = /{(AI%) /{I) is the coefficient of variation of the
interspike interval I, both in the absence of the periodic driving (¢ = 0).
The numerator is related to the linear response function (susceptibility)

x(0) = |2
slope of the firing-rate vs. input current curve (Stemmler, 1996;
Lindner, 2002). The denominator expresses the power spectrum of the
unperturbed system's spike train (a so-called renewal point process) by
rate and C,.

Mathematically, the interspike interval corresponds to the first-
passage time from reset point to threshold; its moments can be calcu-
lated by standard quadrature formulas. In general, the n’th moment
T,(x) = (T"(x - vr)) of the first-passage time distribution from any
starting point x to the threshold can be computed in an iterative manner
(Gardiner, 1985):

L =nf"

in the low-frequency limit: this function is given by the

@y
207 Jue

where P(x) = exp(— S ; dx’ D‘Zx,)) and To(x) = 1. Applying these for-
mulas to our simple problem, we can calculate the integrals explicitly
yielding for the mean ISI

[(D_) _ 1} n
DR a (7)

where Dz = D(vg), Dr = D(vr) and Av = vy — vg. We note that the limit
of an additive noise (m = 0) which has been treated in the literature
(Fusi and Mattia, 1999) is not completely trivial: one has to take spe-
cifically

L1 = L+
Dp\m D + mAv/2 \"" m—0 [otAv]
— =l=— —exp| — |-
Dy D — mAv/2 D

T,-1(2)¥ ()
D(z)

s

(6)

_Dr
a(a + m)

(I =

(8)
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If we use this expression in Eq. (7), we obtain for the inverse of the
mean ISI, the firing rate,
a?/D

nm=0)=——, x=

avr
X ’ .
eX—x-—-1

D ©)]
This agrees with the expression by Fusi and Mattia (1999) if we con-
sider in their formula a vanishing absolute refractory period, 74, = 0
(such a period was not included in our model).

Returning to the general case of a multiplicative noise (m = 0), we
obtain by the evaluation of the quadratures for the variance:

2
2 !
(AI%) = _ Dr |(Dr -1
a®(a + m)? | \ Dy
241
. 2k (Dr)" [ 3Dz _&]_AV(DR+DT)
a(a + 2m)\ Dy a? —m? a a?(a — m)
6D}
a(a? — m¥)(a + 2m)’ (10)

Also here, we can perform the limit m — 0, using Eq. (8), leading to

D_Z
2 —_ — = [p2x X — — —
(AI*)(m = 0) = o [e* + 4e*(1 — x) — 2x — 5] an
which, together with Eq. (9), results in the expression for the C, derived
by Fusi and Mattia (1999) (assuming again their absolute refractory
period to be zero).

Finally, the derivative of <I> (given in Eq. (7)) with respect to « is

given by
pr\m
o(IsT) Dr (FR) I Drla m+2a Dr(m + 2a)
da az(oc+m)[n(D_R)E_ a+m ] a?(a + m)?
P
(o + m)? (12)

Inserting all of these expressions into Eq. (5), we obtain an explicit but
not very illuminating formula (not shown, limit cases of this formula
will be however discussed below). In Fig. 3 we compare the analytical
approximation for @ = 1, vg = 0 and vy = 1 to numerical simulations of
the SNR (symbols) with a low but non-vanishing frequency (f; = 0.1)
and small amplitude (¢ = 0.05) of the periodic driving. In the simula-
tions, we used Eq. (4) from N = 500 runs with randomly chosen signal
phase, ¢, (cf. the discussion of these numerical issues in McNamara and
Wiesenfeld, 1989). The comparison reveals the robustness of our
adiabatic linear response result - it is neither very sensitive to the value
of the driving frequency (as long as the driving is sufficiently slow) nor
to the amplitude (as long as it is sufficiently small). For recent studies of
the nonlinear response of IF models, see Voronenko and Lindner (2017)
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Fig. 3. SNR versus slope of noise function m for different D. Theory (line), Eq.
(5), compared to the SNR extracted from simulation results via Eq. (4) (sym-
bols). Inset: SNR versus D, additive case (m = 0), parameters: vg = 0, vy = 1,
a=1,e=0.05 N =500, At = 107*-1075, Ty, = 2*7-At, fye = 0.1.
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and Voronenko and Lindner (2018).
We made sure that the excitable neuron shows classical stochastic
resonance for an additive noise (m = 0). In this case, this function reads

[(x —2)e* + x + 2]/D
(e —=x—1D(e* +4(1 —x)e* —2x + 5)’

SNRyad4 = 13
where we used again x = aAv/D. If we fix the voltage and time scales
such that a = 1 and Av = 1, this SNR becomes a function of D alone that
attains a single maximum of about 0.5064 at D = 0.335 (cf. inset of
Fig. 3) which is the stochastic resonance.

Remarkably, higher SNR values than in the additive case can be
obtained using multiplicative noise settings (m = 0, see Fig. 3).
Choosing five different noise levels (including the optimal noise in-
tensity in the additive case), we vary the value of m. The analytical
approximation of the SNR versus the slope m of the noise function is
shown by solid lines. Their colors reflect the value of D, set equal to the
noise intensity in the additive case shown in the inset (the optimal value
corresponds to the black curve). Note that all results are constrained by
Iml < 2D/(vy — vg) (otherwise the noise intensity would attain un-
physical negative values).

Clearly, the signal transmission is enhanced for negative slope va-
lues of m. For m < 0, the noise is stronger close to the reflecting
boundary on the left hand side and, speaking in terms of the Brownian-
particle analogy, it becomes simpler for the particle to escape from the
vicinity of the potential minimum than in the case of additive noise.
However, once the voltage has reached higher values (the particle
comes close to the absorbing threshold), noise is weaker and the weak
signal is more dominant in determining when the threshold crossing
(and the associated spike) occurs.

From our analytical solution, three different behaviours can be
found in the limit m — —2D/Av (the left side of the SNR curve). The
SNR falls either off to O for sufficiently weak mean noise with
D < aAv/2; it converges against a finite value for sufficiently strong
noise, D > aAv/2, or, in the rather special setting of D = aAv/2, it di-
verges. We note that in all cases, for m — —2D/Av, the noise intensity at
the threshold vanishes. For D > aAv/2, we find a simple expression at
the minimal value of m = m, = —2D/Av that reads

1+ m/a alAv — 4D

SNR, = — = — —.
7 2D + mc/a)  2D[adv — 2D]

14)

From this expression it becomes apparent that in the setting with
multiplicative noise we may achieve an arbitrary high SNR by first
turning the slope of the noise function into a function of D and then
letting D go to the critical value cAv/2. In particular, as also observed in
our numerical simulations with nonvanishing driving frequency and
amplitude, we can reach significantly higher SNR values than for the
additive-noise case, Eq. (13). Of course, we should be aware that the
validity of this result is limited to the linear response and the slow-
signal approximation, i.e. increasing the SNR much more than shown in
our numerical simulations may require to lower the signal amplitude
(and possibly frequency).

In general, this section has demonstrated that voltage-dependent
noise can lead to higher SNR values than are possible in the case of
purely additive noise. This effect will be studied in the next section in a
biophysically more realistic neuron model.

3. Stein's model with synaptically filtered shot noise

We now turn to a model, in which multiplicative noise emerges in
the form of time-dependent changes of the synaptic conductances in the
current balance equation. This is an extended version of the model by
Stein (1967), one of the earliest stochastic neuron models that has been
intensely studied in terms of the diffusion approximation (Hanson and
Tuckwell, 1983; Lansky and Lanska, 1987). We use the model with
synaptically filtered Poisson processes for two types of synapses, ex-
citatory and inhibitory ones (Richardson and Gerstner, 2005), and
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Fig. 4. Stein's model with reversal potentials and low-pass filtered conductance
pulses. Input spikes (red, top) that cause jump-like increases in the conductance
(green, middle) and smooth changes in the voltage (black, bottom). All evoked
activity is subthreshold for this example (no output spikes); a pronounced
multiplicative effect is evident by comparing the effect of the first spike to that
around t= 13ms. Parameters: C = 0.1nF, E;=-70mV, E,=-50mV,
g =9.0nS, ¢, =5nS, ¢; = 0.0nS, 7, = 1.0ms and r, = 500 Hz, At = 10~ 3 ms.

consider as before a weak and slow sinusoidal current stimulus s(t). The
equations read

o = —-gW-E)-gW—-E)—gl-E)+s(), (15)

Tnge,i =

—8; T Ce,iTe,i Z 8t =t j)s
J (16)

where C is the capacitance and g; the leak conductance of the mem-
brane. The parameters E;, E, and E; are the leak, the excitatory and the
inhibitory reversal potentials. The second line represents auxiliary filter
dynamics that implement a low-pass filter of the incoming excitatory
and inhibitory Poissonian spike trains (rates for the latter are denoted
by r. or r; respectively). Each incoming pulse causes a jump-like in-
crease c, or ¢; of the conductance which subsequently decays ex-
ponentially with the time scale 7z, and 7;, respectively. An example of a
stochastic simulation of the model with exclusively excitatory input is
shown in Fig. 4 and reveals the multiplicative character of the noise.

The firing criterion is as in the last subsection a reset-and-fire rule.
Every time the voltage reaches a certain threshold vy, we register a
spike and reset the voltage to vg. For a noise-driven spiking of the
model, it has to be E, > vr for the excitatory reversal potential. Because
all terms in Eq. (15) depend only linearly on the voltage, we can shift
and rescale the voltage and reversal potentials such that we may set
vg = 0 and vr = 1 without loss of generality.

For high input rates (z, . ;> 1) and low amplitudes, the Poissonian
shot noise in the conductance equations can be approximated by a
white Gaussian noise with the same mean value and noise intensity (see
e.g. Lansky, 1984; Richardson and Gerstner, 2005 as well as the text
books (Holden, 1976; Ricciardi, 1977) and references therein). After
this approximation, the dynamics read (Richardson and Gerstner, 2005)

v = —g,(v—Ep) — 8.p(v—E) — gp(v — E) +5,
Te,ig.ef,i;p =—8ir T Cez,ifez,ire,ige,r

Here, go =gy + Cetele + crir;  is the mean conductance and
Eo = (gEL + cetereEe + citiriE)/g. the resting potential which in-
corporate already the average effect of the synaptic conductances.
Fluctuations are described by the two Ornstein—Uhlenbeck processes
which are driven by white Gaussian noise sources with vanishing mean
value <&, :(t)> =0 and a correlation function <&, (t)&. (t)> = 8(t — ). If
the correlation times of the two processes z.; are negligible, the pro-
blem can be further simplified by approximating the conductance

17)
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fluctuations by white noise, g, ~ \/¢/i72;%i&, ;. After rescaling the
whole process in the membrane time scale z,,, the final diffusion ap-
proximation of the dynamics reads

Vv=—v+pu+s@) + Jyla@— B2+ DEQ),

and s(t) = esin(2nfygt + ¢). [It should be mentioned, that in this ap-
proximation voltage values below the inhibitory reversal potential are
possible due to the nature of the Gaussian noise (Lansky and Lanska,
1987). This is not possible in Stein's model, Eq. (15).] The new para-
meters are related to the original model, Eq. (16) via:

18

, = — ¢
m 81 + CeTele + ciTiri”
_ 8LEL + ceTeteEe + ¢iTiliEj
K= 81+ CeTele + CiTili
(Cefe Jre | citiTi )2
——+ —
o« = cjTi JTi CgTZ\JVg ,
(Ee — Ej)
B _ cez‘rezrgEg + cizrizriEi

cFidre+ i
Tm Cez'[ezreciz‘[izri(Ec - E)?

14 € c2idre+ @i

19

The parameter p captures the resting potential of this neuron, vy is
the overall noise intensity. The remaining two parameters describe the
multiplicative contribution: a parabola with prefactor @ and a minimum
at . Conveniently, @ = 0 parametrizes the strength of the ‘multi-
plicativity’; in particular, for @ = 0 we recover the case of an LIF neuron
with additive white Gaussian noise. We note that in the multiplicative
case (@ > 0), the stochastic differential Eq. (18) has to be interpreted
in the Stratonovich sense because of the Wong-Zakai theorem that
states that this is the correct interpretation if the driving white-noise
process can be thought of as the limit of an correlated noise the cor-
relation time of which vanishes (Wong and Zakai, 1965). We emphasize
that the above derivation is far from being novel or original (see the
above references on the diffusion approximation) but was included here
only for completeness.

As demonstrated in Richardson and Gerstner (2005), taking into
account the multiplicative nature of the noise but neglecting the shot-
noise character is not consistent in general. We will nevertheless use the
approximation to study when the multiplicativity of noise alone can
have a beneficial effect on the transmission of the periodic signal. As
mentioned before, in the special case @ = 0, the approximate dynamics
Eq. (18) corresponds to a leaky integrate-and-fire neuron with additive
noise, a model for which it is known that it exhibits the stochastic re-
sonance effect in the slow-signal limit (Stemmler, 1996) but also for
arbitrary high frequencies (Lindner and Schimansky-Geier, 2001).
Hence, our question can be rephrased to whether the SNR can be in-
creased by having a > 0.

In Fig. 5, we present results for the SNR obtained via Eq. (4) from
numerical simulations of Eq. (18). The SNR is displayed as a function of
the noise intensity y for various combinations of the multiplicativity
parameters a and fB. For a comparatively weak multiplicativity,
a = 0.25, the curves for different f§ practically collapse on one line that
is very close to the theoretical curve for the additive-noise case (here we
employed the exact non-adiabatic result from Lindner and Schimansky-
Geier (2001)); we used a small value of a to illustrate that a weakly
multiplicative noise does not lead to significant deviations from the
additive-noise case (in this sense, the latter is robust).

Remarkably, for a large value of a, i.e. a pronounced multi-
plicativity, the SNR deviates strongly from the additive case. If § < p,
the maximal SNR is significantly larger than in the additive case, im-
plying that the increased intensity of the noise between resting poten-
tial and threshold is helpful for the signal transmission. If, on the
contrary, the minimal noise intensity is shifted to the region between
resting potential u and threshold, vr, (8 = 0.95), the multiplicative
character of the noise is detrimental to the signal transmission and the
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Fig. 5. The signal-to-noise ratio for the approximate model (diffusion approx-
imation), Eq. (18), displays stochastic resonance, i.e. a maximum as a function
of the noise intensity y for various combinations of a and f as indicated. Re-
markably, if B < p, the maximum is larger for multiplicative noise (o = 100)
than for the additive case (with a small value a = 0.25); the latter case is also
compared to the exact solution from Lindner and Schimansky-Geier (2001).
Parameters: p=0.8, vg=0, vr=1, fyu=01, £=0.02, At=5-10"7
tam = 2% - At, N = 1000.

SNR suffers an overall reduction.

In the following, we argue that the improved signal transmission
due to multiplicative noise can also be found in Stein's model with re-
versal potentials and low-pass filtered shot-noise conductances. One
complication is that the original model does not contain a ‘multi-
plicativity’ parameter like the parameter a in the approximate dynamics
and that it is not evident how to quantify its ‘multiplicativity’ in a strict
sense if the noise is non-Gaussian and, more importantly in this context,
correlated in time. This also relates to the interesting and data-relevant
problem of how to identify a multiplicative noise in a time series, say a
number of discrete voltage measurements v; = v(t;) (the conductance
dynamics is typically not accessible). If the input fluctuations are a
temporally correlated (’colored’) noise, it turns out that standard ap-
proaches like the first two moments of the trajectory's increment sta-
tistics do not converge but lead to a vanishing noise intensity (Lehle and
Peinke, 2018). More specifically, if we consider the second Kramers-
Moyal coefficient (Risken, 1984):

Dy (¥, At) = 2LAt<((v(t + A0 = v(0) = ((t+ A = v(0) =) Dvy=s>
(20)

i.e. the second moment of the voltage increment v(t + At) — v(t) con-
ditioned on the prescribed initial value of the voltage, v(t) = 7, the
result tends to zero for At— 0
Al}gnODz ¥, At) = 0. 21)
So, in this strict limit, there is no voltage-dependent amplitude of the
noise and hence no ‘multiplicativity’ of the fluctuations.

It is clear, however, that if the multiplicative-white-noise approx-
imation is meaningful, it should be possible to recover the multi-
plicative character of the noise also in the original system. For com-
paratively fast synapses (z. = 7; = 1 ms), we have used the relations Eq.
(19) to find parameters of the original dynamics such that the mem-
brane time constant 7, = 25ms, the mean input y = 0.8, the mini-
mum's position of the noise parabola, f = 0.35, are all fixed to the
specified values but we are able to prescribe a = 0.25 or @ = 7 and to
vary the noise intensity y within a certain range as well (parameters for
a = 7.0 and @ = 0.25 can be found in Tables 1 and 2, respectively). The
main difference between the more additive case (a = 0.25) and the
more multiplicative case (a = 7) is the choice of the reversal potentials
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Table 1

Parameters for the Stein model yielding a = 7, § = 0.35, u = 0.8, 7,, = 25ms.
Remaining parameters: C = 0.4nF, ¢, = 0.8, e, = 1.39, ¢; = 0.21, 7,; = 1.0 ms,
r. = 1500 Hz, r; = 199 Hz. The asterist indicates the parameter values for the
corresponding cross in Fig.7.

Y & [nS] ¢ [nS] ci [nS]
0.0010 10.39 1.87 14.10
0.0014 9.27 2.24 16.91
0.0021 7.93 2.69 20.28
0.0030 6.32 3.23 24.32
0.0043 4.39 3.87 29.17
0.0062* 2.08 4.64 34.99
Table 2

Parameters for the Stein model yielding a = 0.25, f=0.35, p=0.8,
Tm = 25ms. Remaining parameters: C = 0.4nF, e, =0.8, e, = 2.85
e; = —1.25, 7,; = 1.0ms, r, = 1500 Hz, r; = 960 Hz. The asterisk indicates the
parameter values for the corresponding cross in Fig.7.

Y g [nS] ce [nS] ¢; [nS]
0.0010 14.06 0.65 1.01
0.0014 13.68 0.77 1.21
0.0021 13.22 0.93 1.45
0.0030 12.66 1.11 1.74
0.0043 12.00 1.33 2.09
0.0062 11.20 1.60 2.50
0.0089 10.24 1.92 3.00
0.0127 9.09 2.30 3.60
0.0183* 7.71 2.76 4.32
0.0264 6.06 3.31 5.18
0.0379 4.08 3.97 6.21
0.0546 1.70 4.77 7.45

which are both closer to the resting potential in the multiplicative case
(see (Wolff and Lindner, 2008, 2010) for a selection of physiologically
plausible values of synaptic amplitudes and reversal potentials that
yield pronounced multiplicative effects in the voltage dynamics).

We first inspect how the coefficient Eq. (20) depends on the pre-
scribed value of a (cf. Fig. 6). Indeed, for @ = 0.25 the coefficient is
almost flat for most of the relevant voltage range while for a =7 a
pronounced parabola emerges the amplitude of which is maximal for an
intermediate value of the time step At used in the increment analysis.
Consistent with the results in Lehle and Peinke (2018), the coefficient
attains only small values when the time step becomes significantly
smaller than the time scale of the synapses (cf. red lines in Eq. (20) for
At = 0.5 ms). We note that we have excluded from the analysis the time
bins in which a voltage reset takes place; still, the coefficient's voltage
dependence is certainly not a perfect parabola but displays mild
boundary effects close to vg and vr.

After we have verified the stronger multiplicativity of the noise in
the a = 7 case, we can now turn to the question whether this value can
also lead to a higher SNR. In Fig. 7, results for the original Stein model
and for the diffusion approximation are shown for the two values of a.
Clearly, the maximal information transmission is achieved for the more
multiplicative noise. We also note that the agreement between the SNR
curves of the two models is better for a = 0.25; the strong inhibitory
synaptic amplitudes used for @ = 7 (cf. Table 1) lead to stronger de-
viations between the filtered shot-noise case and the multiplicative
white-Gaussian-noise approximation.

4. Summary and discussion

We have studied the role of multiplicative noise for the signal
transmission of a slow and weak periodic signal in different versions of
excitable integrate-and-fire models. In the linear IF model with a ramp
potential and a simple linear variation of the noise intensity with vol-
tage, we could derive an explicit expression for the signal-to-noise ratio
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Fig. 6. The Kramers-Moyal-like coefficient, D,(v, At), defined in Eq. (20) for
different values of the time step as indicated and the parameter sets from
Table 1 (a) and Table 2 (b) for the specific noise values y = 0.0183 and
y = 0.0062, respectively.

30 ——————————

251

20

Ll L L

0.01
Y

Fig. 7. Numerical results for the SNR of the mLIF model and the original (shot
noise) model where it is parameter-wise possible (for higher y values, the
conductivity g attains unphysical negative values); + signs indicate the
parameter sets used in Fig. (6); parameters: 3 = 0.35, ¢ = 0.8, vy =0, vpr = 1,
fig = 0.1, € = 0.02, At = 5-10"°, tyn = 2*7At, n = 750; parameters for Stein
model: see table. Points marked by a cross correspond to the values marked in
table 1 and 2 by asterisks.
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for a weak and slow cosine signal. The result reveals that an improve-
ment of the SNR is possible if the noise is multiplicative, i.e. its intensity
varies with the voltage. Our choice of the neuron model and the noise
modulation was here dictated by the wish to construct an analytically
tractable example that shows the basic beneficial effect of state-de-
pendent fluctuations on signal transmission.

In the second part we turned to a standard point-neuron model in
which a multiplicative noise emerges naturally: if the main source of
noise is the random spike train input from other cells, these spikes affect
the postsynaptic cell in the form of conductance fluctuations that enter
the current balance equation via voltage-dependent prefactors (the
electromotive forces). We considered this kind of input entering
through populations of excitatory and inhibitory neurons and in-
vestigated whether the multiplicative noise can be helpful for the
transmission of a weak and slow cosine signal also in this biophysically
more relevant case. We found that indeed a more multiplicative setting
can lead to higher SNR than a setting in which the fluctuations are
closer to an additive noise provided the minimum of the effective noise
intensity lays below the resting value of the IF neuron (8 < p).

In our model we added the signal as a current in Eq. (15). For
cortical neurons which communicate mainly via synaptic inputs, it
seems more reasonable to consider a signal that modulates one of the
rates of the synaptic inputs, 7, or r;. On the one hand, this leads not only
to a modulation of the mean input but also to a modulation of the noise
intensity, which has been referred to as a noise-coded signal (Lindner
and Schimansky-Geier, 2001) (for more details, see also Lindner, 2002);
the transmission of such a signal was shown to also display stochastic
resonance with respect to the strength of the additive noise (Lindner
and Schimansky-Geier, 2001). On the other hand, a signal that enters
through a rate modulation will naturally also come along with a vol-
tage-dependent amplitude, hence we have to deal not only with a
multiplicative noise but also with a multiplicative signal.

Returning to our models, the results of the two parts may look
contradictory at the first glance. For the simplified noise model, the best
signal transmission was achieved for a low value of the input noise close
to the threshold - in terms of our linear noise function with slope m, the
maximal SNR and even divergences in the SNR could be found for
m < 0. For the LIF neuron with filtered conductance shot noise, the
optimal SNR requires that the multiplicative noise is stronger close to
the threshold. We take this as an indication that the effects of multi-
plicative noise depend a lot on the details: whether the barrier is just a
simple slope or a quadratically increasing function, whether detours to
strongly negative voltage are possible (LIF neuron) or excluded by a
reflecting barrier (linear IF model), whether the noise increases or de-
creases linearly or varies in a nonlinear and even nonmonotonic fashion
can apparently make a big difference for the stochastic dynamics. In
addition, these features influence the signal-to-noise ratio both in its
denominator (the strength of the spike rate modulation) and in the
numerator (the overall variability of the firing). While for the first
system (linear IF model and linear noise modulation) it pays off to re-
duce the noise if the system is close to the threshold, the LIF model with
conductance noise seems to profit from an increase of the noise on its
way from the resting potential (v = u) to the threshold (v = vr). A more
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thorough investigation of the involved mechanisms is desirable but is
beyond the scope of our study. It remains certainly an interesting
subject for future studies to systematically vary the shapes of drift and
diffusion functions and to explore the factors of the shape that de-
termine whether increased or reduced noise close to the threshold of
firing is beneficial for the transmission of a weak signal.

An experimental test of our predictions might be feasible via the
dynamic-clamp techniques (Sharp et al., 1993; Prinz et al., 2004) by
which arbitrary conductances can be mimicked via current injections
into a neuron in vitro. Testing whether an appropriate change in re-
versal potentials can lead to an improved signal transmission would be
similar to our approach and does not seem to be (conceptually!) very
difficult. Whether, for given populations of ion channels with specific
reversal potentials, these potentials and the corresponding synaptic
amplitudes are already optimized to exploit the multiplicative effect of
the noise is another but more complicated question.
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