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Abstract
Information about time-dependent sensory stimuli is encoded in the activity of neural populations; distinct aspects of the
stimulus are read out by different types of neurons: while overall information is perceived by integrator cells, so-called
coincidence detector cells are driven mainly by the synchronous activity in the population that encodes predominantly high-
frequency content of the input signal (high-pass information filtering). Previously, an analytically accessible statistic called
the partial synchronous output was introduced as a proxy for the coincidence detector cell’s output in order to approximate its
information transmission. In the first part of the current paper, we compare the information filtering properties (specifically,
the coherence function) of this proxy to those of a simple coincidence detector neuron. We show that the latter’s coherence
function can indeed be well-approximated by the partial synchronous output with a time scale and threshold criterion that
are related approximately linearly to the membrane time constant and firing threshold of the coincidence detector cell. In
the second part of the paper, we propose an alternative theory for the spectral measures (including the coherence) of the
coincidence detector cell that combines linear-response theory for shot-noise driven integrate-and-fire neurons with a novel
perturbation ansatz for the spectra of spike-trains driven by colored noise. We demonstrate how the variability of the synaptic
weights for connections from the population to the coincidence detector can shape the information transmission of the entire
two-stage system.

Keywords Information coding · Synchronization · Coincidence detection · Neural computation

1 Introduction

How complex, time-dependent signals are encoded in the
stochastic spike trains of sensory neurons is an important
problem in computational neuroscience. Claude Shannon’s
theory of communication (Shannon 1948) offers a mathe-
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matical framework to quantify the amount of information
that a spike train encodes about a sensory stimulus (Rieke
et al. 1996; Borst and Theunissen 1999). With a measure of
encoded information at hand (e.g., the spectral coherence
function (Borst and Theunissen 1999) or the frequency-
resolved mutual information (Bernardi and Lindner 2015))
and specifically for a broadband stimulus, we can further-
more askhowmuch information is transmitted in the different
frequency bands, i.e., how much information about slow,
intermediate or fast stimulus components the spike train con-
tains. This question has been studied for different sensory
modalities, for instance, for vision (Warland et al. 1997;
Reinagel et al. 1999; Passaglia andTroy2004), in the auditory
(Rieke et al. 1995; Marsat and Pollack 2004) and vestibular
(Sadeghi et al. 2007; Massot et al. 2011) systems, and in
the electrosensory systems of weakly electric fish (Chacron
et al. 2003; Oswald et al. 2004; Chacron 2006; Middleton
et al. 2009), and paddle fish (Neiman and Russell 2011).
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The concept of information filtering [see the review by
Lindner (2016)] has been useful to understand the potential
functional role of certain features seen in the spontaneous
firing of neurons. For instance, pronounced negative ISI
correlations in the spontaneous activity of a nerve cell, as
observed in electrosensory cells in weakly electric fish (Rat-
nam and Nelson 2000; Chacron et al. 2000), can drastically
enhance the transmission of low-frequency stimuli relevant
for the animal (Chacron et al. 2001, 2004) [for reviews on ISI
correlations and their role in neural signal transmission, see
Farkhooi et al. (2009), Avila-Akerberg and Chacron (2011)].
Temporally correlated (“colored”) noise, e.g., resulting from
adaptation channels (Fisch et al. 2012), may lead to positive
ISI correlations and thus suppress information transmission
at low frequencies (Blankenburg and Lindner 2016) (band-
pass information filtering). The same band-pass shaping has
been shown by Droste and Lindner (2017c) for signal trans-
mission in the presence of colored two-state fluctuations
(telegraph noise) that result from up-and-down states at the
network level (Steriade et al. 1993; Cowan andWilson 1994).
Subthreshold resonances in neural dynamics, as observed in
the broad class of resonator neurons (Izhikevich 2001;Brunel
et al. 2003; Izhikevich 2007), lead to a band-pass filter cen-
tered around the resonance frequency (Blankenburg et al.
2015). For bursting cells, it has been shown that different
components of the output (single spikes vs bursts of spikes)
can encode information from distinct stimulus frequency
bands (Oswald et al. 2004), a form of parallel processing
that relies on information filtering. Last but not least, synaptic
dynamics such as short-term synaptic depression and facili-
tation may shape the information filter (Lindner et al. 2009;
Merkel and Lindner 2010; Rosenbaum et al. 2012; Droste
et al. 2013).

Most relevant to the subject of this paper is the informa-
tion filtering observed at the population level: If a neural
population of uncoupled cells is driven by a common broad-
band stimulus, their summed output encodes slow stimulus
components best (Middleton et al. 2009; Beiran et al. 2017),
but if we focus on the spikes that are jointly fired in the
population, this synchronous output preferentially encodes
stimulus components from an intermediate frequency band
(Middleton et al. 2009). The latter effect can be understood
by an analysis of the spectral statistics of the so-called partial
synchronous output (Sharafi et al. 2013; Kruscha and Lind-
ner 2016; Kruscha 2017). A recent study has highlighted
the importance of the intrinsic noise level and the strength
of the leak current by comparing two types of sensory cells
that differ considerably in these properties and, consequently,
also differ in the information filtering properties of their syn-
chronous outputs (Grewe et al. 2017).Wemention in passing
that, generally, connection topology also shapes information
filtering at the network level, see, e.g., Åkerberg and Chacron
(2009), Deger et al. (2014).

Fig. 1 Schematic illustration of the model. In the first stage, the presy-
naptic population is driven in part by a weak common stimulus, s(t),
and otherwise by independent intrinsic noise unique to each neuron. In
the second stage, the summed output of the population, y(t), acts as an
input either for the leaky integrate-and-fire model of the coincidence
detector cell (last stage, top) or for the partial synchronous output (last
stage, bottom). The output of the CD is a spike train x(t), whereas the
SO output is a two-state time series Yγ,Δ(t). The parameters of the
presynaptic population remain fixed throughout the paper, unless oth-
erwise noted: N = 100, τPOP = 1, μPOP = 1.2, D = 0.01, c = 0.1

Studying the filtering properties of the synchronous out-
put of a population is certainly interesting in its own right:
the concept of synchrony has been well established through-
out science (Pikovsky et al. 2001) and is especially important
in neuroscience in the contexts of information transmission
(Dan et al. 1998; Reyes 2003), attention (Tiesinga et al.
2004), and the binding hypothesis (Singer 1999; Shadlen
andMovshon 1999). Synchrony can be easily extracted from
multi-electrode recordings (Schneidman et al. 2006; Shlens
et al. 2006; Kreiter and Singer 1996) and is also amenable
to analytical approaches (Sharafi et al. 2013; Kruscha and
Lindner 2016; Kruscha 2017). However, in a real system
synchronous activity has to be read out in some way by neu-
rons at a second stage of processing (König et al. 1996): a
coincidence detector cell that will be activated only by a vol-
ley of spikes, i.e., by synchronous activity of the population.
The extent to which the information transmission by the syn-
chronous output agrees with that of a coincidence detector
cell has not yet been investigated systematically. This prob-
lem is obviously relevant for the question of whether we can
substitute one (the synchronous output) for the other (the
coincidence detector cell’s output), and it is addressed for
the simple model system of Fig. 1 in the first part of our
paper.

Analyzing how population synchrony encodes time-
dependent signals thus gives us an approximate idea how
second-stage neurons in a coincidence detector mode would
encode these signals. There is, however, also a need for alter-
native methods to calculate the information flow over several
stages of neural processing. In the second part of the paper,
we develop an approximation for the spectral measures of the
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simple two-stage system in Fig. 1, in particular the coherence
function which characterizes the information transmission of
the system as a whole. We compare all analytical results to
numerical simulations of the stochastic populationmodel and
show that our approximation works well for physiologically
reasonable parameters. In the context of information filter-
ing, we highlight a source of high-pass filtering that has so
far been overlooked: the unreliability of synaptic amplitudes
that is frequently observed experimentally (Lefort et al. 2009)
may contribute to a suppression of the information flow in the
low-frequency band. As a consequence, even if the postsy-
naptic cell is not in a coincidence-detector mode, it may still
encodemost information about stimulus components froman
intermediate frequency band, the mechanism of which can
be understood in terms of some simple analytical estimates.

Our paper is organized as follows. We present the model
and the measures of interest in the next section. The relation
between the partial synchronous output and the spikes of
the second-stage coincidence detector cell is addressed in
Sect. 3. In Sect. 4,weoutline our analytical approximation for
the spectral coherence function of the second-stage neuron
(further details are given in appendix Sect. 1) and discuss the
role synaptic weights play in information filtering between
the stages. We conclude the paper with a brief summary of
our main results and a discussion of possible extensions of
the theory.

2 Model andmeasures of interest

2.1 Presynaptic population (first stage)

The presynaptic population consists of N uncoupled nerve
cells, which are modeled by leaky integrate-and-fire (LIF)
neurons and driven by broadband Gaussian noise (see Fig. 1,
left). The voltage dynamics of the i-th neuron are governed
by

τPOP v̇i = −vi + μPOP + s(t) + √
2(1 − c)Dξi (t) (1)

in addition to the fire-and-reset rule, which dictates that the
voltage vi , upon reaching the threshold voltage vT ,POP = 1,
is set to the reset voltage vr ,POP = 0. Reaching the threshold
represents a neuronal spike and the times t j of all such events
are recorded and the time series of spikes for the i-th neuron
is then expressed as yi (t) = ∑

j δ(t − ti, j ). In what follows,
we measure time in multiples of the membrane time constant
τPOP (and rates and frequencies in multiples of its inverse)
and thus set τPOP = 1. Each neuron is driven by an intrinsic
noise source

√
2(1 − c)Dξi (t) unique to each cell as well as

by a common stimulus, s(t) = √
2cDξ(t) which is seen by

the whole population. Both the intrinsic noise sources ξi (t)
and the stimulus s(t) have spectra that are flat up to a cutoff

frequency fc = 4

Sξ,ξ ( f ) = Sξi ,ξi ( f ) =
{
1, − fc < f < fc
0, else

(2)

and are thus approximately white Gaussian processes, in the
following also referred to as broadband noise. In Sect. 4, we
use a slightly different version of the intrinsic noise, namely,
an unlimitedwhiteGaussian noise, implemented by the usual
Euler–Maruyama rule (Risken 1984), but checked that the
results show only small quantitative deviations when a band-
limited noise is used. Parameter c can be used to tune how
the effective intensity D is divided between the common
stimulus and the intrinsic noise (Doiron et al. 2004; de la
Rocha et al. 2007). In the case of c = 0, the common stimulus
is absent; the population neurons are driven completely by
their independent intrinsic noise sources and are therefore
independent in their dynamics. Conversely, when c = 1, the
input of an individual neuron consists solely of the common
stimulus and, as a result, all the cells share an identical time
evolution of their voltage variables. We denote the summed
population output with y(t) = ∑N

i yi (t).

2.2 Postsynaptic cell (second stage)

To model the postsynaptic cell (PSC; Fig. 1, upper right cor-
ner), we again employ leaky integrate-and-fire dynamics:

τ v̇ = μ − v + τ
∑

k

akδ(t − tk) (3)

Note that the parameters of the PSC are not indicated with
a subscript (in contrast to the parameters of the population
neurons). The constant current bias μ is set to zero in the
following unless stated otherwise. The third term on the
right-hand side represents the summed output of the presy-
naptic population (the summation k runs over both neurons
i and spike times j of the population model). Each spike is
endowed with an individual weight ak , which is either drawn
from an exponential distribution with 〈ak〉 = 1 to mimic
synaptic unreliability as observed in experiments, or set to
the constant value ak = 1 in favor of simplicity over real-
ism. We note that an exponential function does not provide a
perfect description of all experimentally observed amplitude
distributions (see, e.g., Song et al. (2005), Lefort et al. (2009))
but can serve as a first-order approximation of synaptic vari-
ability and, moreover, represents a case for which analytical
approximations for the driven neuron’s firing rate and spec-
tral measures have been derived (Richardson and Swarbrick
2010) that we will use in the second part of the paper. The
reset voltage is set to vr = 0. The output spike train of the
PSC is denoted by x(t) . Themembrane time constant τ (mea-
sured in multiples of the membrane time constant τPOP) and
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the threshold voltage vT are taken to be the free parameters
of this model that will determine, in particular, whether the
cell is responding only to highly synchronized output of the
population (high threshold, short membrane time constant)
and operates as a coincidence detector (CD). Alternatively, if
many subsequent spikes have an accumulating effect toward
firing (large membrane time constant), the PSC is referred to
as an integrator cell.

2.3 Partial synchronous output

As a proxy to the PSC acting as a CD, we consider the par-
tial synchronous output (SO) (Kruscha and Lindner 2016;
Kruscha 2017), which is a two-state process defined as a
functional of the summed output of the presynaptic popula-
tion:

Yγ,Δ(t) =

⎧
⎪⎨

⎪⎩

1, at least fraction γ of population

fired in [t − Δ, t]
0, otherwise

(4)

The parameter Δ defines the time window in which spik-
ing events of individual presynaptic neurons have to occur
in order to be considered synchronous. Its value should be
small relative to the size of the mean interspike-interval of
a single presynaptic neuron (Δ � 1/rPOP0 ), to decrease the
probability of a single neuron firingmultiple times within the
window. Parameter γ , the synchrony threshold, specifies the
minimal fraction of the population that needs to spike within
Δ in order to register a synchronous event.

The partial synchronous output distinguishes itself from a
purely synchronous coding scheme in that, unlike the latter
for which an event results from the simultaneous firing of
the whole population (γ = 1), the demand of unanimity is
relaxed (γ < 1) and an event can be triggered by a portion of
the population. Although the neurons of the population share
a common signal, they are also subject to a large amount of
individual noise, causing their responses to vary. The mar-
gin of error provided by a lower threshold γ < 1 allows
the population to encode and convey information contained
in the signal even if some members do not participate, as
long as the number of those that do is large enough to drive
the postsynaptic receiver. Even without a signal, the indi-
vidual presynaptic neurons exhibit spontaneous activity and
the intrinsic noise that prevents perfect synchrony can also
cause occasional synchrony by chance. Therefore, in order
to selectively detect only the stimulus-induced synchronous
spiking, the synchrony threshold has to be set higher than
the probability of a single neuron firing within the window
(γ > rPOP0 Δ); see also the discussion by Kruscha and Lind-
ner (2016).

2.4 Spectral measures

The power spectrum of the stochastic process X(t) is defined
as:

SX ( f ) = lim
T→∞

〈
X̂T ( f )X̂∗

T ( f )
〉

T
(5)

where X̂T ( f ) denotes the Fourier transform of X(t) in the
time interval [0, T ] to the frequency domain:

X̂T ( f ) =
∫ T

0
X(t)e−2π i f tdt (6)

and 〈 〉 stands for the ensemble average. The cross-spectrum
of processes X(t) and Y (t) is defined as:

SX ,Y ( f ) = lim
T→∞

〈
X̂T ( f )Ŷ ∗

T ( f )
〉

T
(7)

If X(t) is the output of a systemwith known transfer function
K (t), the Fourier transform of which defines the susceptibil-
ity, χ( f ) = F{K (t)}, the cross-spectrum can be expressed
in terms of the power spectrum of the system’s input SY ( f )
as follows:

SX ,Y ( f ) = χ( f )SY ( f ). (8)

The coherence function between processes X(t) and Y (t) is
a linear measure of information transmission

CX ,Y ( f ) = |SX ,Y ( f )|2
SX ( f )SY ( f )

. (9)

It attains values between 0 and 1 and can be regarded as
a (squared) correlation coefficient (covariance over product
of standard deviations) in the frequency domain. For Gaus-
sian stimuli in a broad frequency band [0, fc], as used in
this paper, the coherence also provides a lower bound to the
mutual information rate, given by Rinfo = − ∫ fc

0 d f log2(1−
C( f )) (Rieke et al. 1993;Gabbiani 1996) [an improved lower
bound formula for slow stimuli is derived and discussed by
Voronenko and Lindner (2018)]. A high coherence value in a
certain frequency band indicates a strong information trans-
mission of the corresponding stimulus component.
In order to quantitatively distinguish between low-pass and
band-pass/high-pass information filtering, the quality of
information filtering (Kruscha 2017)

Q = 1 − C(0)

C( fmax)
(10)

can be applied. The coherence function of a system which
acts as a low-pass filter has a maximum at zero frequency
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Fig. 2 Coherence function comparison. The coherence function of a
PSC acting as a CD (black) with a short membrane time constant (τ =
0.1) and high voltage threshold (vT = 10). The optimally matched SO
coherence function (purple) is likewise dependent on a time parameter
(Δopt = 0.18) and a threshold parameter (γopt = 0.19). Although the
match is not perfect, there is strong agreement in the region of interest
around the peak (color figure online)

(C( fmax) ≈ C(0)), resulting in a Q value close to or equal
to zero. In contrast, band-pass information filters are char-
acterized by a pronounced peak at some finite frequency. A
large difference between the maximum and the amplitude at
f = 0 leads to values of Q close to one. Therefore, for the
SO to act as a good proxy for the CD, its information filter-
ing quality should be near 1, matching that of the high-pass
operational regime of a typical CD.

3 Tailoring partial synchrony tomimic
coincidence detector information
transmission

The PSC as defined in Eq. (3) generates spikes indirectly in
response to the broadband stimulation of the first-stage pop-
ulation. If we do not change the parameters of the stimulus
(amplitude, bandwidth) and of the population (time constant,
noise intensity, internal bias), the coherence of the PSC’s
spike train and the input stimulus will depend only on the
membrane time constant and threshold value. Can we mimic
the coherence function for different values of the parameters
vT and τ with that of the partial synchronous output if we
adapt the synchronization time windowΔ and the synchrony
threshold γ accordingly?

In Fig. 2, we show for one example of a PSC in CD mode
that it is possible to achieve a strong similarity of the coher-
ence functions of the PSC and the SO in a frequency band
around themaximal coherence (Bostner 2019). In the follow-
ing, we demonstrate that this is not an isolated case, but that
generally, given a postsynaptic detector with certain values
of vT and τ , corresponding synchrony parameters, Δ and γ

can be found which minimize the difference between the two
coherence functions in a certain frequency window.

Fig. 3 Demonstration of the search process. a Relative squared devi-
ation ε over the parameter space (γ,Δ) of the SO with sampling
resolution dγ = 0.01 and dΔ = 0.01 for fixed parameters of the
coincidence detector: τ = 0.1, vT = 10. Dark shades of blue indicate
the position and shape of the two minima with a pronounced maxi-
mum between (dark red). We focus here on the minimum to the right
of the maximum, corresponding to a parameter regime where the SO
is tuned to detect synchronous spiking. The minimum to the left of
the maximum, at which the SO detects common silence, is neglected.
The green line indicates the position of the minimum as a function
of γ , ε(γ,Δopt(γ )). b Minimum of ε as a function of γ for initial
(green: dΔ = 0.01) and increased (blue: dΔ = 0.0005) sampling res-
olutions. Although in both cases the same global minimum is found
(purple dashed line), the descent to the minimum is smoother with a
smaller sampling step and, therefore, the values for γopt and Δopt can
be more reliably determined (color figure online)

3.1 Synchrony parameter search

The similarity of the coherence functions of the postsy-
naptic cell CCD and the partial synchronous output CSO, can
be quantified by a relative squared deviation

ε(CCD,CSO) =
∫ fsim
0 (CCD( f ) − CSO( f ))2d f

∫ fsim
0 C2

CD( f )d f
. (11)

fsim characterizes the size of the interval on which the coher-
ence functions are compared; in the following we will use
fsim = fc = 4. Smaller values of ε indicate greater similar-
ity between the coherence functions.

In order to compare the information-filtering properties of
both models, the PSC parameter values are held fixed and a
grid search is performed over the parameter space (γ,Δ) of
the SO, computing the squared deviation ε at each point from
the coherence curves obtained by numerical simulations. Fig-
ure 3a shows the resulting ε values across the parameter space
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for the fixed PSC values τ = 0.1 and vT = 10 used through-
out this subsection. The optimal values of the SO parameters,
(γopt,Δopt), are the coordinates of the global minimum of ε.
As can be seen in the figure, there are actually two local
minima corresponding to parameter values which cause syn-
chrony detection and values which cause common silence
detection (for a discussion of this symmetry, see alsoKruscha
and Lindner (2016)). The two minima are separated by a
maximum, where the focus shifts from common silence to
common firing. In the following, we will only consider the
part of the parameter space which corresponds to common
firing, or synchrony in the classical sense, which is shown
mostly in the lower right triangle of Fig. 3a.

In order to get a better understanding of the landscape
around the minimum, the dimensionality can be reduced by
plotting the minimum of ε as a function of γ only; Δ is
determined from the corresponding minimum value of ε for
a given γ , shown by the green line running almost along
the diagonal in Fig. 3a. The minimum ε values of that line
are shown in Fig. 3b at two sampling resolutions for delta,
dΔ = 0.01 in green anddΔ = 0.0005 in blue. The resolution
of gamma, which is limited by the size of the presynaptic
population, is in both cases dγ = 0.01. A gradual increase
in the resolution with which possible candidates for optimal
matches is sampled in the (γ,Δ) parameter space leads to a
suppression of numerical artifacts and a better localization of
the minimum, and therefore optimal γ , which is indicated by
the dashed line in Fig. 3b. Once the optimal SO parameters
are found, the coherence functions of the CD and SO can be
plotted for comparison.

As can be seen in Fig. 2, the minimization of the relative
squared deviation leads to a particularly close match of the
two coherence functions in the frequency interval around the
peak, whereas at smaller and larger frequencies deviations
are more apparent.

3.2 Relations between parameters of detector (PSC)
and proxy (SO)

Using the above process of finding optimal SO parameter
matches for given PSC parameters, the relationships among
the parameters of the two types of output can be found by sys-
tematically varying one of the PSC parameters while holding
the other fixed.

Figure 4a shows some examples from the variation of both
vT and τ for illustration purposes. The black lines are the
PSC coherences with constant τ for different values of vT
and the blue, purple, and pink lines are the SO coherences,
which are all close to the corresponding black line. The gray
lines show the PSC coherences for fixed vT and two different
values of τ , along with the matched SO coherences in green
and orange.

The optimal SO parameters of all variations can then be
plotted against the PSC parameters as shown in Fig. 4b,
where the highlighted points represent the matched param-
eters of the selected examples in Fig. 4a. An approximately
linear relation between temporal (τ and Δ: bottom right)
as well as between threshold (vT and γ : top left) param-
eters becomes apparent. In contrast, there is only a weak
dependence between the threshold and temporal parameters
(bottom left and top right).

The search for optimal matches can be extended to a grid
search in a region of the PSC parameter space, (vT , τ ), as
shown in Fig. 5. For every sampled point in that space, one
of the optimal SO parameters is found (surface plot) as well
as the value of Q, the quality of information filtering (color-
coded contour plot). Q provides a means of distinguishing
regions in parameter space where the postsynaptic cell acts
primarily as a band-pass information filter from those where
it performs low-pass filtering. When restricted to the band-
pass (blue) regions, the grid search results corroborate the
results of Fig. 4: a roughly linear dependence between anal-
ogous parameters of bothmodels and little-to-no dependence
between dissimilar parameters.

In light of the results of the next section (especially,
Sect. 4.2), one may wonder how strongly the mapping
procedure depends on the randomization of the synaptic
amplitudes ak that we have exclusively used so far. In
appendix, Sect. 1, we show equivalent results for the case
of constant amplitudes when matching the SO and CD
coherence functions (ak ≡ 1) and for the relation between
time-window and threshold parameters. The results illus-
trate that the mapping does not qualitatively hinge on having
stochastic amplitudes, but that the exact choice of amplitude
distribution quantitatively changes the relation between syn-
chrony and CD parameters, as can be somewhat expected.

4 Approximating coincidence detector
coherence explicitly

4.1 Linear response to shot-noise input from
population

In the previous section, the focus was on finding the best
parameters for the SO, such that it acts as a good proxy for
the postsynaptic coincidence detector cell. In this section,
we return to the PSC itself and develop an alternative to
the proxy description: a direct analytical approximation of
the coherence between the PSC’s output spike train and the
stimulus agitating the first-stage population (Bostner 2019).

For either the population or the PSC, it is assumed that
the respective activity (population or firing rate) can be well-
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Fig. 4 Extracted dependencies of γopt andΔopt on τ and vT . a Selected
examples of the comparisonof the coherence functions of theCD(black:
vT varied, τ = 0.1; gray: τ varied, vT = 10) and the optimally matched
SO (blue, purple, pink: vT varied; seafoam green, orange: τ varied). b
Top: γopt increases somewhat linearlywith vT (left),whereas it ismostly
independent of the chosen value of τ (right), confirming the connection
between the threshold parameters. Bottom: The value of Δopt is largely
unaffected by changes in vT and instead increases roughly linearly with
its time-parameter counterpart τ (color figure online)

approximated by the linear-response ansatz:

〈z(t)〉 ≈ 〈z(t)〉s(t)≡0 +
∫ t

−∞
K (t − t ′)s(t ′) dt ′

〈
ẑ( f )

〉 ≈ χ( f )ŝ( f ), ∀ f > 0 (12)

In other words, the stationary rate (with s(t) = 0 or equiv-
alently c = 0) plus the convolution of the signal with a
first-order causal filter K (t), whose Fourier transform is the
susceptibility χ( f ). For the second-order statistics, i.e., the
power spectrum, we use another common ansatz:

Sz ≈ Sz,0 + |χ |2Ss (13)

where Sz,0 is the unperturbed power spectrum and Ss is the
stimulus power spectrum; for a discussion of the validity of
this approximation, see Lindner et al. (2005a).

Fig. 5 Dependence of γopt andΔopt on τ and vT . The 3D plots show the
results of a grid search for optimal SOmatches in a region of the (vT , τ )
PSC parameter space. The colored contour plots indicate the quality of
information filtering Q of the PSC, independent of the SO values and is
therefore the same in both A and B. Of particular interest are both blue
regions, which have large Q values and indicate band-pass filtering. a
The dependence of γopt is qualitatively similar to Fig. 4 and holds even
for low information quality regions, suggesting a robust and exclusive
connection between the threshold parameters. b The dependence of
Δopt is also as previously shown, but only for regions with large quality
of information filtering. The results for the small area around (vT =
25, τ = 0.05) were excluded because the variances in the estimations
became as large as the amplitudes due to the finite size of the ensembles
(104 realizations) used in the numerical simulations

All neurons in the system are LIF neurons for which ana-
lytical solutions for the spectra exist when they are driven by
Gaussian white noise (Lindner and Schimansky-Geier 2001;
Lindner et al. 2002; Brunel et al. 2001), including the power
spectrum SGN and susceptibility χGN (for the corresponding
expressions, see appendix, Sect. 2). In the case of the popu-
lation, the neurons are subject to Gaussian white noise and
hence these results can be applied. For the PSC, the incoming
spike trains of the population are closer to what is known as
Poissonian shot noise, for which there again exist solutions
for the power spectrum SSN and susceptibilityχSN (Richard-
son and Swarbrick 2010; Droste 2015; Droste and Lindner
2017a) that we will use below.

In order to calculate the coherence of the PSC with the
signal using Eq. (9), their power spectra and cross-spectrum
are needed. The power spectrum of the common white-noise
signal is proportional to its intensity, Ss( f ) = 2Dc. Using
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Eq. (8), the cross-spectrum between the common stimu-
lus, s(t), and the output spike train of the PSC, x(t), can
be approximated by combining the linear responses of the
population (Gaussian ansatz, χGN) and the PSC (shot-noise
ansatz, χSN). The common stimulus modulates the popula-
tion rate, which in turn is seen by the PSC as rate-modulated
shot noise, resulting in the cross-spectrum:

Sxs = χPSCχPOPSs ≈ 2DcNχSNχGN (14)

here,χPOP( f ) = NχGN( f ) is the susceptibility of the presy-
naptic population to the common stimulus evaluated using
the intensity D of the total noise including the signal (see
Lindner et al. (2005b)). This susceptibility is proportional to
the single-neuron susceptibility because all N neurons are
uncoupled. The function χPSC( f ) ≈ χSN( f ) is the suscep-
tibility of the PSC to the modulation of the firing rate of its
input spike train approximated by the shot-noise susceptibil-
ity.

The power spectrumof the PSCcan be found using a linear
response approximation for the two stages of transmission.
Beginning with the population and applying Eq. (13), the
power spectrum of its output y(t) is estimated by:

Sy = 〈
ŷ ŷ∗〉 =

∑

i

∑

j

〈
ŷi ŷ

∗
j

〉

= NSy1 + N (N − 1)Sy1,y2
≈ N (Sy1,0 + |χGN|2Ss) + N (N − 1)

〈
χGNŝχ

∗
GNŝ

∗〉

= NSGN + N 2|χGN|2Ss (15)

(Cross-correlation terms are only due to the common stimu-
lus).

In the next processing stage, the output of the population is
the spike train input to thePSC.The analytical solution for the
power spectrum of an LIF neuron receiving shot noise input
introduced earlier, SSN, requires the input to have homoge-
neous Poisson statistics and thereby a flat power spectrum.
However, Eq. (15) is not generally a flat spectrum, and there-
fore what the PSC sees is not the kind of noise for which we
know the susceptibility and power spectrum. Nevertheless,
as mentioned above we will use the shot-noise susceptibility
as an approximation for the PSC’s susceptibility to the pop-
ulation rate modulation. This still leaves the problem of how
to approximate the PSC’s power spectrum if the input spike
trains do not have Poissonian statistics.

In order to get an approximation for the power spectrum,
we use a different kind of linear response ansatz in the Fourier
domain:

Sx ≈ SSN + |χSN|2(Sy − ShP)

≈ SSN + N |χSN|2(SGN + N |χGN|2Ss − rGN) (16)

where rGN = rPOP0 is the mean firing rate of an LIF neu-
ron driven by Gaussian white noise, and therefore of a single
population neuron, and ShP = NrPOP0 is the power spectrum
of a (hypothetical) Poissonian spike train that has the same
overall firing rate as the populationoutput. InEq. (16), the dif-
ference between the true input spectrum and the Poissonian
spectrum is treated as a small perturbation that is corrected
with a response term given by the rate-modulation suscepti-
bility (Schwalger 2019); for a detailed inspection ofwhen this
approach works and how it can be (approximately) derived
in the low-frequency limit, see Bostner (2019).

Plugging in the results for the spectra derived above, the
coherence of the PSC is approximated as follows:

Cx,s ≈ N 2|χSNχGN|2Ss
SSN + N |χSN|2(SGN + N |χGN|2Ss − rGN)

(17)

Note that the power spectrum SSN and the susceptibility χSN

also depend on the size of the population N , but their depen-
dence is more indirect and cannot be expressed by a simple
prefactor.

The results for the cross-spectrum, Eq. (14), power spec-
trum, Eq. (16), and coherence, Eq. (17), of the PSC in two
different modes are shown in Fig. 6. In the left column, the
PSC acts as the coincidence detector encountered above. As
a CD, the neuron engenders the characteristic behaviors of
quick memory loss and being driven by fluctuations of the
input (〈ak〉 NrPOP0 τ < vT ), i.e. the mean input from the pop-
ulation alone does not drive the PSC over the threshold. The
input fluctuations in this case represent synchronized behav-
ior of the population. These properties are realized by a short
time constant (τ = 0.1) and a thresholdwhich is high enough
to discount small, chance synchronicity but low enough to
capture desired concurrence (vT = 10).

In contrast, when the PSC acts as an integrator (INT)
as shown in the right column of Fig. 6, it retains informa-
tion about past events over longer periods of time due to a
larger time constant (τ = 10). Instead of the fluctuation-
driven regime, the INT operates in the mean-driven regime
(〈ak〉 NrPOP0 τ > vT ), in which it is continually reacting to
the population activity as a whole, instead of singling out
coincident events. Note that with the chosen high threshold
for the INT (vT = 20), the mean firing rates of INT and CD
are not very different (rINT = 2.7, rCD = 1.5).

The top row of Fig. 6 shows the cross-spectra of the PSC
with the stimulus, normalized by the stimulus’ power spec-
trum. The cross-spectrum is a measure of the correlation
between the output of the PSC and the common stimulus
and has a similar shape for both the CD and INT. It exhibits
a peak at the individual mean rate of the population neurons
as expected and is accurately described by Eq. (14).

The power spectra (middle row, Fig. 6) for the cases of
the signal being present (c > 0: theory in magenta, simula-
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Fig. 6 Approximations for the power and cross-spectra and the coher-
ence function compared to numerical simulations. Left: fluctuation-
driven regime, τ = 0.1, vT = 10. Right: mean-driven regime, τ = 10,
vT = 20. Top: Square of cross-spectra amplitudes normalized by the
power spectrum of the common stimulus. Middle: Power spectra with
the common stimulus [gray: simulation; magenta: theory] and without
[light blue: simulation; blue: theory]. For comparison, the analytical
expression for the power spectrum of the PSC driven purely by Poisson
shot-noise (SSN) is shown in black. Bottom: Coherence functions. 1000
simulations, T = 1000, dt = 10−3, 〈ak〉 = 1 (color figure online)

tions in gray) or absent (c = 0: theory in blue, simulations
in light blue) are shown and compared to the LIF spectrum
for homogeneous shot noise (black). When there is no com-
mon stimulus (c = 0), the difference between the blue and
black curves is solely due to deviations of the population’s
activity from Poisson statistics. Most markedly, the peak in
the population’s activity spectrum (see below: Fig. 8, mid-
dle) results in a similar peak in the PSC’s power spectrum
at rPOP0 . The regularity of population firing is also reflected
in the depressed spectrum at frequencies lower than rPOP0 ,
which is smaller than that of the shot-noise spectrum. For
this reason, a subtractive term is needed in the theory and is
achieved by the correction term in Eq. (16). The population’s
spectrum at higher frequencies, on the other hand, converges
to the firing rate (as for a Poisson process), and therefore the
PSC’s spectrum for c = 0 approaches the shot-noise theory
in that limit. When applying the common stimulus (c > 0),
it is first filtered by the population and results in an upward
shift in the PSC’s spectrum, especially around f ≈ rPOP0 .Our

theoretical ansatz, Eq. (16), describes the PSC’s spectrum in
all cases reasonably well.

Finally, dividing the cross-spectra (top) by the power
spectra (middle) yields the coherence functions (bottom),
displaying again good agreement between simulations and
theory. The CD encodes little information except in a nar-
row frequency band around the population’s individual rate.
Such band-pass information filtering is characteristic of a
neuron tuned to detect synchrony and comes at the expense of
the overall information transmission. In contrast, in the INT
mode the PSC preferentially conveys low-frequency stim-
ulus information. However, the expected peak at f → 0
and accompanying monotonic decrease, the hallmarks of a
low-pass filter, are missing. Instead, there is still a peak at
rPOP0 (although not as pronounced) and thus the INT can be
regarded as a (imperfect) band-pass information filter. The
reason for this behavior in the INT mode is explained in
the following section. Before we come to this, we study the
effect of an additional bias current on spectral measures and
the coherence of the PSC.

So far, we used a value of μ = 0 for the external cur-
rent. It is not clear a priori, however, whether the PSC
operates in a fluctuation- or mean-driven regime; this can
be controlled in our model, Eq. (3), by the parameter μ.
We therefore test our theory for cross-spectra (top row),
power spectra (middle row), and coherence functions (bot-
tom row) for different values of μ in Fig. 7, starting with
a value of μ = −3.75 which puts the PSC deep into the
fluctuation-dominated regime (〈ak〉 NrPOP0 τ + μ < vT with
vT = 7.5, rPOP0 ≈ 0.6, 〈ak〉 = 1, τ = 0.1) and ending
with μ = 3.75, a PSC in the mean-driven regime, for which
〈ak〉 NrPOP0 τ + μ > vT . Both cross- and power spectra
increase with growing bias. As a result, the coherence main-
tains a peak but i) this peak becomes less pronounced and ii)
the amount of total information increases. Regarding the first
observation, we note that the ratio of the peak’s magnitude
to the average coherence decreases (around 3:1 on the left
and less than 2:1 on the right), indicating that the PSC loses
some of its effectiveness as an information filter. For all bias
values shown, the theory tracks the simulation results rather
well.

4.2 Effect of synaptic weights on information
transmission

The lack of a low-pass profile in the INT coherence of Fig. 6
is somewhat surprising, given that the parameters of the PSC
in this case should result in an integrator, which should relay
low-frequency information with high fidelity. In the follow-
ing, we demonstrate that the weak band-pass information
filtering is an effect of endowing the output spikes of the pop-
ulation with random amplitudes. To this end, we analyze the
coherence function of the latter with the broadband stimulus
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Fig. 7 Spectra and coherence functions of the PSC in CD mode in
response to different biases, μ. The external input is swept from nega-
tive to positive values (left-to-right) and all other parameters are left
unchanged. Top: Squared magnitude of the cross-spectrum of PSC
and signal, normalized by the stimulus’ power spectrum. Middle: PSC
power spectrum. Bottom: Coherence between PSC output and the com-
mon stimulus. 500 simulations, T = 1000, dt = 10−3, vT = 7.5,
τ = 0.1, 〈ak〉 = 1

and compare it to the coherence of the total population out-
put with constant spike amplitudes (referred to as all-spikes
coherence by Middleton et al. (2009), Sharafi et al. (2013),
Grewe et al. (2017)). These coherence functions are upper
bounds for the coherence functions of the PSC driven by
the population spikes with random and constant amplitudes,
respectively.

In the following, the coherence of the input current

I (t) =
∑

k

akδ(t − tk) (18)

is compared for the cases that ak ≡ 1 (constant amplitude
case) and ak coming from an exponential distribution with
〈ak〉 = 1.

A comparison of the spectra and coherence functions of
the weight schemes are shown in Fig. 8. The cross-spectrum
(normalized by the signal power; top) and power spectrum
(middle) for both schemes exhibit a peak at the single-neuron
mean rate, rPOP0 . However, the coherence (bottom) displays
the peak for randomweights only. As calculated in appendix,
Sect. 3, the cross-spectrum

SIs = 〈ak〉 NχGNSs (19)

is the same for both cases (see top panel), and therefore clar-
ification is sought in the power spectrum. The latter can be

Fig. 8 Spectra of weighted PSC input, I(t). [green: all weights are the
same; purple: each spike receives a random (rand) weight] Top: The
cross-spectrum is unaffected by the weight scheme and therefore the
same for both (theory from Eq. (19): black, dashed line). Middle: The
power spectrum (theory found in Eq. (20): dashed lines) for random
weights is shifted upward across frequencies by an additive white noise.
Bottom: The same coherence (theory fromEq. (21): dashed line) retains
most low-frequency information due to low power in that region. The
rand coherence shows significant low-frequency information loss due
to the comparatively high power at low frequencies. The additive white
noise drowns out information in all frequency bands except around rPOP0
(color figure online)

approximated (see also appendix, Sect. 3) as

SI = N 〈ak〉2
[
(N − 1)|χGN|2Ss + SGN( f ) + rPOP0 C2

V ,a

]

(20)

The difference between the two cases is in the coefficient
of variation of the amplitudes, which is C2

V ,a = 1 for the

exponential distribution but C2
V ,a = 0 if the amplitudes are

all the same (constant).
As a consequence of the additional offset in the power

spectrum in the case of random weights, the coherence func-
tion obtained from the spectral measures above,

CI ,s =
[
N − 1

N
+ SGN + rPOP0 C2

V ,a

N |χGN|2Ss
]−1

, (21)
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Fig. 9 PSC coherence with constant versus random synaptic weights.
[Random amplitudes: Simulations of PSC (black) versus the input the-
ory (Eq. (21), purple). Same amplitude: Simulations of PSC (gray)
versus the input theory (Eq. (21), green).] Left: In coincidence-detector
(CD) mode, the desired band-pass peak is achieved with constant or
random weights. Right: In integrator (INT) mode, the type of synaptic
weight makes a marked difference. In both weight schemes, the PSC
transmits most available low-frequency information and attenuates at
higher frequencies. If all incoming spikes have the same weight, the
INT is a prototypical low-pass filter. In contrast, the INT receiving ran-
dom weights has poor fidelity at low frequencies and a peak at a finite
frequency, rPOP0 . Parameters are the same as those in Fig. 6 (color figure
online)

displays a peak at the frequency where the cross-spectrum
is maximized, rPOP0 . This is a consequence solely of the flat-
tening of the spectrum by the randomization of the synaptic
amplitudes; no coincidence detection is involved. This effect
is confirmed by numerical simulations in Fig. 8 and demon-
strates preferential encoding of a narrow frequency band
already at the input side of the PSC with random amplitudes.

As mentioned above, the derived coherence functions
of the input constitute upper bounds for the corresponding
coherence functions of the PSC with the stimulus. In Fig. 9,
coherence functions calculated from simulations of the PSC
for bothweight schemes in theCD (left) and integrator (right)
modes are compared to the calculated upper bounds from
Eq. (21).Apeak in the coherence is always observedwith ran-
dom amplitudes (purple and black curves), irrespective of the
parameters of the PSC. With constant-amplitude population
input, the PSC shows a low-pass coherence in the integrator
mode (right, gray curve) but a narrow-band coherence in CD
mode (left, gray curve). Directly comparing the PSC’s per-
formance with the incoming information upper bounds gives
a clear idea how PSC parameters generate (for input with
a constant amplitude) and sharpen (for input with random
amplitudes) the information filtering effect.

5 Summary and conclusions

We achieved two goals in this paper. First of all, by extensive
numerical simulations of a simple two-stage neural system,
we identified the relation between the information linearly
encoded by the coincidence detector at the second stage to
that encoded by the synchronous output of the first stage.
As conjectured in the literature, we can take the latter as a

proxy for the former if the parameters of the partial syn-
chronous output are appropriately chosen. Specifically, we
found that the time window Δ and threshold γ of our syn-
chrony definition scale approximately linearly with the time
constant τ and voltage firing threshold vT of the PSC over a
physiologically relevant range, matching our intuition about
the meaning of Δ and γ (Kruscha and Lindner 2016). Con-
versely, we can also regard the PSC as a suitable synchrony
detector—adapting the PSC parameters, we could tune the
output to optimally pick up synchronous spikes according to
a given synchrony parameter pairΔ, γ . This is what presum-
ably happens in the electrosensory system of weakly electric
fish: sensory receptor cells (P-units) target neurons in multi-
ple maps in the electrosensory lateral line lobe; target cells
vary in their cellular properties across the maps and thus
encode information in the frequency bands of a broadband
stimulus differently, which can be traced back to their distinct
responses to synchronous input (Grewe et al. 2017).

The second goal was to develop an alternative approxima-
tion for the coherence function of thePSCwhich does not rely
on the proxy approximation of Sharafi et al. (2013), Kruscha
and Lindner (2016). To this end, we applied linear response
theory combined with a novel approach to approximating
the power spectrum of an integrate-and-fire model driven by
non-Poissonian shot noise. We demonstrated that this theory
works surprisingly well and can capture the information-
filtering effect seen in the spectral coherence function of the
PSC in both the mean- and fluctuation-driven regimes.

We specifically chose to incorporate stochastic synapses
in our two-stagemodel in order to reflect the variability in the
effect of individual spikes seen in experiments (Lefort et al.
2009). We found, somewhat surprisingly, that the whitening
of the input from the first stage has an information filtering
effect on the encoding of the stimulus in the PSC output,
independent of whether it is a CD. Hence, even when the
PSC is in an integrator mode, if its synapses are strongly
stochastic, the coherence can display a maximum around the
firing rate of the population neurons. In CD mode, this leads
to an even sharper peak in the PSC’s coherence, i.e., the
information filtering effects of stochastic synapses and of
coincidence detection compound.

Our analytical results rely on the assumption of a broad-
band Gaussian stimulus: the signal was a band-limited noise
that had a flat power spectrum up to a cutoff frequency of
fc = 4 (in multiples of the inverse membrane time constant
of the population neurons). Enlarging fc would only improve
the agreement with the theory because the latter assumes infi-
nite bandwidth. Decreasing fc substantially wouldmean that
we drive the two-stage system by a colored (temporally cor-
related) noise,whichwould already lead to different response
properties at the single-cell level (see e.g. Brunel et al.
(2001), Fourcaud-Trocmé et al. (2003), Moreno-Bote and
Parga (2010), Lindner (2016), Droste and Lindner (2017b)).
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Exploring our two-stage transmission problem for both col-
ored intrinsic noise and correlated input signals certainly
represents a difficult but interesting subject for potential
future investigations.

Another opportunity to generalize the studied problem lies
in the connection topology of the system. The theory devel-
oped in the second partmay be applied to scenarioswithmore
than two stages of transmission or with recurrent connections
among neurons of one stage. This will cover cases of signal
transmission in other sensory areas, for instance in the visual
system, where lateral connections play an important role in
the first stage of processing.
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Appendix

Mapping synchrony encoding to PSC encoding for
constant synaptic amplitudes

In this section, we repeat the procedure from Sect. (3), this
time considering the case in which input to the PSC is
weighted with constant synaptic amplitudes; as before, we
focus on a parameter regime in which the PSC operates as
a CD. Using this kind of input to the PSC, we would like to
verify that the equivalence between the postsynaptic output
and the partial synchrony does not hinge on a particular dis-
tribution of synaptic amplitudes. This is especially important
because we saw that a randomization of synaptic amplitudes
can contribute its own information filtering effect, regardless
of spike synchrony. We also aim to characterize the depen-
dencies between the parameters of the postsynaptic cell on

Fig. 10 Extracted dependencies of γopt and Δopt on τ and vT for the
case of constant amplitudes. Comparison of a selection of coherence
functions of the CD in the constant regime (red) against those of the
optimally matched SO (green, cyan and yellow). As a reference, coher-
ence functions of the CD in the random synaptic amplitude regime are
also shown (blue). In a, CD parameter vT is varied, while τ is held fixed,
and vice versa in b. c Found relations between CD and SO parameters
for a model with constant amplitudes (red) compared to results from
Sect. (3) (blue) (color figure online)

the one hand and those of the partial synchronous output on
the other hand.

Figure 10a, b displays a selection of PSC coherence
functions (red) together with their optimally matched SO
counterparts for different values of the postsynaptic cell’s
threshold (A; time constant is fixed) and time constant (B;
voltage threshold is fixed).Weobserve that alsowith constant
synaptic amplitudes the SO can be tailored in a way that the
profile of its coherence function closely mimics that of the
PSC, at least in the proximity of the coherence peak. As a ref-
erence, we also show PSC coherence functions for the same
parameters values but with random synaptic weights (blue),
i.e., the case considered in the main part of the paper. Given
the same parameter values for τ and vT , coherence functions
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with constant amplitudes cover a larger range of magnitudes
than those with random weights, which can be seen by com-
paring the red and blue curves in A or B. The additional
noise provided to the PSCby the randomized amplitudesmay
reduce an already high coherence or boost a weak coherence
(observed here at a high threshold), presumably by the effect
of stochastic resonance (Gammaitoni et al. 1998;McDonnell
and Abbott 2009).

Figure 10c shows the extracted relations between the PSC
and SO parameters for both scenarios. In the scenario with
constant synaptic weights (red), we observe that dependen-
cies qualitatively similar to those from Sect. (3) (shown in
blue for comparison) can be recovered. There are, however,
a few noticeable differences. First, we see that the approx-
imately linear relations between γopt and vT and between
Δopt and τ are steeper than those observed in Sect. (3). This
is a direct consequence of the fact that the PSC coherence
functions from the scenario with constant amplitudes can
assume a larger range ofmagnitudes as discussed above:with
constant synaptic amplitudes, the SO parameters have to be
changed over a broader rangewhen fitting the PSC coherence
in order to account for the larger change in magnitudes as vT
or τ are varied. Secondly, the extracted relations are not as
smooth as those discussed in Sect. (3), e.g., Fig. 10c lower left
subplot. Increasing the size of the ensemble of spike trains
and stimuli realizations from which all the spectral prop-
erties are estimated from 104 to 105 did not significantly
reduce the observed variations, and we therefore conclude
that they reflect some underlying fine structure in the para-
metric dependence. Thirdly, in contrast to the case with
random amplitudes treated in the main text, there is a weak
anticorrelation between the PSC parameter τ and SO param-
eter γopt: an increase in the former leads to a decrease in the
latter.

Analytical expressions for firing rates, power
spectra, and susceptibilities

For convenience, the theoretical spectralmeasures used in the
text are reproduced below. In order to reduce clutter, angular
frequencies (ω) are written instead of temporal frequencies
( f ) as in the text.

Gaussian white noise

An LIF neuron with intrinsic Gaussian white noise has a
stationary firing rate given by (Ricciardi 1977):

rGN =
[
τref + √

π

∫ μ−vR√
2D

μ−vT√
2D

ez
2
erfc(z)dz

]−1

(22)

and a power spectrum with the form (Lindner et al. 2002):

SGN(ω) = rGN
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(23)

where

Δ = v2R − v2T + 2μ(vT − vR)

4D

and Diω(z) is the parabolic cylinder function (Abramowitz
and Stegun 1970).
The susceptibility to a signal can be expressed as (Lindner
and Schimansky-Geier 2001):

χGN(ω) = rGN√
D

iω

iω − 1

Diω−1
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(24)

(for the detailed calculation, see Lindner (2002) and for an
equivalent expression, see Brunel et al. (2001)).

Shot noise

The rate given by Richardson and Swarbrick (2010) can be
extended to include a bias μ as appears in our model by
simply shifting the voltage, i.e., subtracting the bias value
from the threshold and reset voltages:

rSN =
[
τm

∫ 1/〈ak 〉

0

1

sZ0(s)

( es(vT −μ)

1 − 〈ak〉 s − es(vR−μ)
)
ds

]−1

(25)

where 〈ak〉 is the average synaptic weight and the generating
function for the subthreshold-voltage moments,

Z0(s) = (1 − 〈ak〉 s)−τm Rpop , (26)

receives the total population rate Rpop = NrGN.
Figure 11 plots Eq. (25) along with the simulated rates at
the values of μ used in Fig. 7. The theory generally captures
the trend shown by the simulations, especially for low bias
magnitudes.
The power spectrum in this case has the form (Droste 2015;
Droste and Lindner 2017a) (an equivalent theory can be
found in Richardson and Swarbrick (2010)):
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Fig. 11 Steady-state rate of the PSC for different values of the external
biasμ. Themagenta line shows the theory fromEq. (25). The gray boxes
show the values calculated from the simulations in Fig. 7. Parameters
are the same as in Fig. 7 (color figure online)

SSN(ω) = rSN

∣∣∣e−iωτrefF(vT , ω)

∣∣∣
2 −

∣∣∣
Rpop

Rpop−iωG(vR, ω)

∣∣∣
2

∣∣∣e−iωτrefF(vT , ω) − Rpop
Rpop−iωG(vR, ω)

∣∣∣
2 , (27)

whereF(v, ω) andG(v, ω) are the confluent hypergeometric
functions (Abramowitz and Stegun 1970):

F(v, ω):=1F1
(

− iωτm; (Rpop − iω)τm; v − μ

〈ak〉
)
, (28)

G(v, ω):=1F1
(

− iωτm; 1 + (Rpop − iω)τm; v − μ

〈ak〉
)
.(29)

The susceptibility is given by (Droste 2015; Droste and
Lindner 2017a) (an equivalent theory, derived earlier, can be
found in Richardson and Swarbrick (2010)):

χSN(ω) =
∫ vT
vR

P0(v)
[
(Rpop − iω)F(v, ω) − RpopG(v, ω)

]
dv

(Rpop − iω)F(vT , ω) − RpopeiωτrefG(vR, ω)

(30)

with the stationary probability density

P0(v) = τmrSN
〈ak〉

e−φ(v)

μ − v

∫ v

vT

eφ(x)dx (31)

and

φ(v) = v

〈ak〉 − τm Rpop ln(|μ − v|) (32)

for μ > vR .

Spectral measures for the population spike output
with constant or random amplitudes

The PSC receives the population output y(t) as an ensemble
of spike trains and a weight ak is assigned to each spike,
giving a total input I (t) to the PSC:

I (t) =
∑

k

akδ(t − tk) =
∑

i

ŷi (t) (33)

here, the sum with index i runs over both neurons and spike
times; in the second step, we have expressed the input by a
sum of each individual neuron’s output spike train, endowed
with its specific weights ŷi (t) = ∑

� ai,�δ(t − ti,�).
We will study two cases: constant amplitudes (ak ≡ 1)

and random amplitudes, each independently drawn from an
exponential distribution, i.e.,

Prob(a < ak < a + da) = exp(−a)da (34)

implying that the mean value is the same as for the constant
amplitudes (〈ak〉 = 1) and that the standard deviation of
the amplitude is equal to its mean. In other words, the ratio
of standard deviation to mean, the coefficient of variation,
CV ,a = 1. In the case of constant (non-random) amplitudes,
this coefficient vanishes (CV ,a = 0).

For general mean value and coefficient of variation of
the amplitude, we want to calculate i) the cross-spectrum
between I (t) and the signal and ii) the power spectrum of
the weighted sum I (t). The first task is simple. Because the
amplitudes are unrelated to the signal and to the intrinsic
noise in the population dynamics that renders the spike times
stochastic, we can separate the average over the ak (average
〈〉a), the intrinsic noise (average 〈〉ξ ) and the signal (average
〈〉s) and obtain for the cross-correlation function

〈I (t)s(t + τ)〉a,ξ,s = 〈〈I (t)〉a s(t + τ)
〉
ξ,s

=
〈
∑

k

〈ak〉a δ(t − tk)s(t + τ)

〉

ξ,s

= 〈ak〉a
〈
∑

i

yi (t)s(t + τ)

〉

ξ,s

= 〈ak〉a 〈y(t)s(t + τ)〉ξ,s , (35)

where y(t) is the population output, i.e., the sum of the N
spike trains yi (t) of the population neurons, whose correla-
tion is obviously described by the linear-response function,
or by the susceptibility in the Fourier domain, which yields
(equivalent to Eq. (19))

〈
Ĩ s̃∗〉

a,ξ,s
= N 〈ak〉a χGN

〈
s̃ s̃∗〉 . (36)

Next, we consider the autocorrelation function of I (t) and
split it into terms for the single (amplitude-modified) spike
trains ŷi (t) (omitting the ensemble average indices)

〈I (t)I (t + τ)〉 =
〈∑

ŷi (t)
∑

ŷ j (t + τ)
〉

= N
[ 〈
ŷ1(t)ŷ1(t + τ)

〉 + (N − 1)
〈
ŷ1(t)ŷ2(t + τ)

〉 ]
(37)
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where we arbitrarily chose ŷ1(t) and ŷ2(t) as statistical
representatives to express the autocorrelation and cross-
correlation terms. For the latter factor, an average over the
amplitudes is straightforward and gives

〈
ŷ1(t)ŷ2(t + τ)

〉
a,ξ,s = 〈ak〉2a 〈y1(t)y2(t + τ)〉ξ,s (38)

and is just a scaled version of the spike-train correlation func-
tion, which is entirely due to the common stimulus. In the
Fourier domain, this cross-correlation term will thus result
in

〈ak〉2a |χGN |2Ss . (39)

For the autocorrelation term, we write the averaged product
of amplitudes as follows

〈aka�〉a = δk,�

〈
a2k

〉

a
+ (1 − δk,�) 〈ak〉2a , (40)

where we have used the independence of the ak . Exploiting
this relation in the autocorrelation function, we obtain (drop-
ping the indices for ŷ1 and the synaptic ensemble averages)

〈
ŷ(t)ŷ(t + τ)

〉 = (
〈
a2k

〉 − 〈ak〉2)
∑

k

δ(t − tk)δ(t + τ − tk)

+ 〈ak〉2
∑

k,�

δ(t − tk)δ(t + τ − t�)

= 〈ak〉2
(
C2
V ,ar

POP
0 δ(τ ) + 〈x(t)x(t + τ)〉) (41)

where we used that δ(t− tk)δ(t+τ − tk) = δ(t− tk)δ(τ ) and〈∑
k δ(t − tk)

〉 = rPOP0 . The Fourier transform of this expres-
sion, along with the usual linear response approximation for
the spike-train power spectrum as well as Eqs. (39) and (37),
leads to the final expression for the power spectrum Eq. (20).
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