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Fluctuation-dissipation relations (FDRs) connect the internal spontaneous fluctuations of a system with
its response to an external perturbation. In this work we propose a nonlinear generalized FDR (NL FDR) as
a test for Markovianity of the considered nonequilibrium system; i.e., the violation of the NL FDR indicates
a non-Markovian process. Previously suggested FDRs are based on linear response and require a
significant number of measurements. However, the nonlinear relation holds for systems out of equilibrium
and for strong perturbations. Therefore, its verification requires significantly less data than the standard
linear relation. We test the NL FDR for two theoretical model systems: a particle in a tilted periodic
potential and a harmonically bound particle, each driven either by white noise (leading to Markovian test
cases, which should obey the NL FDR) or by colored noise (resulting in non-Markovian systems, which
may not obey the relation). The degree of violation is systematically explored for the non-Markovian
variants of our theoretical models. For the particle in the harmonically bound potential, all statistical
measures entering the NL FDR can be calculated explicitly and can be used to elucidate why the relation is
violated in the non-Markovian case. In addition, we apply our formalism and test for Markovianity in an
inherently out-of-equilibrium experimental system, a tracer particle, embedded in an active bath of self-
propelled agents (bristlebots) and subject to a force applied by an external air stream. An experimental
violation of the NL FDR is witnessed by introducing an additional timescale to the process, when using
bristlebots with two metastable speed states.
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I. INTRODUCTION

Markovian systems, in which the statistics of future
states depends only on the present state of the system but
not on its past, are an important class of stochastic models
that can describe systems both in or far beyond thermo-
dynamic equilibrium [1–3]. For Markov processes there
exists an established mathematical framework in the form
of the well-studied Fokker-Planck or master equations,
which we can apply once we know that we are dealing with
this kind of system. Whether a certain set of time series
adheres to the Markov property is thus a first crucial step in

model building for nonequilibrium systems when basic
equilibrium principles do not apply.
Trivially, it is not a problem to test for the Markov

property if unlimited amounts of data are available; how-
ever, in typical situations, such as in living and active
systems, the trial number is severely limited. Thus, probing
a system for Markovianity (or the lack thereof) is a
nontrivial but crucial problem for which different solutions
have been suggested [4–9]. Most of the tests are limited in
dimensionality (i.e., to a single time-dependent variable) or
require detailed balance or conservative forces. Thus,
alternative methods that apply to general Markov models
of nonequilibrium systems (lacking detailed balance or
being driven by nonconservative forces) are called for.
If both the spontaneous activity of a system as well as its

response to a time-dependent perturbation are experimen-
tally accessible, generalized fluctuation-dissipation rela-
tions (FDRs) [10–14] can be applied to test for
Markovianity [4,5]. By choosing an appropriate variable
(the conjugated variable to the perturbation), the correlation
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of the spontaneous fluctuations is proportional to the time-
dependent mean value in response to switching off the
static perturbation (perturbation arrest)—this is a necessary
(but not sufficient) condition for the system being
Markovian in the observed variables. Unfortunately, it
turns out in specific applications, as for instance, the
mechanosensory hair bundle of auditory hair cells [4], that
the typical limited amount of experimental data obtained
was insufficient for a proper distinction between
Markovian and non-Markovian dynamics [5]. The noise
level in such systems is too high in comparison to the signal
of the linear response to a weak perturbation to be averaged
out given the limited amount of data.
Here,we take a direct approach to overcome this challenge

and enhance the detectability of a Markovianity violation
relative to the noise level. We do so by going beyond the
linear-response regime. Applying strong perturbations to the
system enhances its response and relaxation back into its
nonperturbed steady state. To analyze the response to strong
perturbations, we develop a new nonlinear fluctuation
dissipation relation (NL FDR, derived in Sec. II), which
applies for Markovian systems that can be perturbed with a
step stimulus of arbitrary strength. Such a stimulus paradigm
is routinely used when cells are mechanically stretched by
laser beams [15], the mechanosensitive hair bundle is
deflected by a glas fiber [16], neurons in vivo are light
activated by channel rhodopsin [17], or the intracellular
calcium concentration responds to the sudden increase in
concentration of a signalingmolecule [18], to name but a few
examples of nonequilibrium systems and perturbations.
We design a simple protocol (detailed in Sec. II) to

determine the needed statistics for a multidimensional
Markov process xðtÞ. The protocol requires us to measure
the stationary probability densities of xðtÞ, PεðxÞ, and
P0ðxÞ, in the presence and absence of a static perturbation
ε, respectively. Using both probability densities, we define
a new variable by the nonlinear transformation:

zðxÞ ¼
�
PεðxÞ
P0ðxÞ

− 1

�
: ð1Þ

As we show in Sec. II, if the system is Markovian, in the
new variable it has to obey the NL FDR,

CzzðτÞ ¼ hzðτÞi; τ > 0; ð2Þ

where CzzðτÞ ¼ hzðτÞzð0Þi0 is the autocorrelation of the
conjugated variable in the unperturbed steady state and
hzðτÞi its response to the perturbation arrest. The relation is
a necessary (but not sufficient) condition for xðtÞ to be a
Markov process and, remarkably, it holds true for arbitrary
perturbation amplitude. It looks similar to a previously
derived relation [19] but differs by the definition of the
conjugated variable.

We demonstrate the working of our nonlinear relation
and the protocol for three different systems: (1) a particle
diffusing over a tilted washboard potential (Sec. III), (2) a
particle trapped in a harmonic potential (Sec. IV), and
(3) an experimental system of a trapped styrofoam ball in
an active bath of bristle robots (bristlebots); for the latter,
see Fig. 1 and Sec. V. All systems are studied in a
Markovian version [which should obey Eq. (2)] and a
non-Markovian version (which potentially violates it).
Our test protocol for the general case is described in

detail in Sec. II B. Briefly, we first measure the stationary
probability densities PϵðxÞ and P0ðxÞ with and without the
perturbation, respectively [Figs. 1(b) and 1(c)] and calcu-
late from them zðxÞ using Eq. (1) [solid green line in
Fig. 1(c)]. Next, we obtain the system’s response to the
perturbation’s arrest by averaging over many realizations of
the process hzðτÞi. We obtain the response in terms of the
conjugated variable by mapping xðtÞ to zðxðtÞÞ using the

FIG. 1. The NL FDR test on an experimental setup far from
equilibrium. An illustration of the system, bristle robots drive a
styrofoam ball stochastically (a). Under constant force perturba-
tion the average position of the ball shifts upward. Top view of the
experimental system (b). The experimental realization of the
model where a styrofoam ball is trapped in a bowl. It moves
stochastically due to collisions with bristle robots (inset). A
constant force perturbation is applied by a fan (labeled as “S”)
blowing a stream of wind on it. The stationary probability
densities are measured at both steady states, either with or
without the perturbation (c). From both distributions we calculate
the conjugated variable Eq. (1) zðxÞ (green line). A plot of the
correlation function CzzðτÞ and the mean response hzðτÞi reveals
that the NL FDR holds for a single-velocity active bath (d) but
can be violated if bristlebots with two velocity states are used (e);
for more details, see Sec. V.
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previously obtained zðxÞ. We calculate CzzðτÞ in the
unperturbed state using the same map. We compare the
response of the system to the autocorrelation [Figs. 1(d)
and 1(e)] for different kinds of active baths, one apparently
consistent with a Markov process [Fig. 1(d)] and one not
[Fig. 1(e)]; see detailed discussion in Sec. V.
Our main result is the validation of the novel NL FDR

and the resulting substantial reduction in the number of
trials required to test for Markovianity in all three systems
as compared to the linear FDR. In addition, we show that
there is an optimal value of perturbation that provides the
most sensitive test for Markovianity. Intuitively, the con-
ditions for the optimal force can be understood from
Fig. 1(c). The conjugated variable used in our NL FDR
is calculated from the ratio of the two position distributions
PϵðxÞ and P0ðxÞ according to Eq. (1). The sensitivity of our
test relies on the dynamic range of zðxÞ and our ability to
measure it correctly both in the unperturbed state and for
the transient response of the system with limited number of
trials. To this end, we would like to work in conditions in
which the overlap between PϵðxÞ and P0ðxÞ is small
enough to allow for a large range in zðxÞ, on one hand,
but not so large that it will fall into the far tails of one of the
probabilities in which statistics are more limited.
Intuition on the underlying physics responsible for the

violation of the NL FDR for non-Markovian processes is
gained inSec. IVbyconsidering the simplest possiblemodel,
a harmonically bound particle. For this system we can
calculate analytically the full statistics appearing in the
NL FDR, both in the Markovian version (when the particle
is driven by white noise) and in the non-Markovian version
(when the noise is colored).We find that the finite correlation
time of the colored noise affects the correlation function
CzzðτÞ (appearing on the lhs of Eq. (2) but not at all the mean
value zðτÞ [appearing on the rhs of Eq. (2)]. This explains
why pronounced correlations in the underlying noise process
lead to the inequality of left- and right-hand sides in Eq. (2).
The paper is structured as follows. In Sec. II we introduce

the derivation of theNL FDR and a protocol to determine the
statistics of interest, CzzðτÞ and hzðτÞi, in simulations or
experiments. In Sec. III, we explore random motion in an
inclined washboard potential as a nonlinear example of a
stochastic dynamics that lacks (even in the Markovian
version) detailed balance. Section IV explores the simpler
case of a harmonically bound particle, in which all statistics
can be calculated analytically. Finally, in Sec. V we present
an experimental test of theNL FDR of amacroscopic system
composed of self-propelled bristlebots (an active bath) and a
tracer ball. In Sec. VIwe summarize our findings and give an
outlook on future extensions and applications.

II. NONLINEAR FLUCTUATION-DISSIPATION
RELATION

In the following section we derive the NL FDR and
design a protocol to measure all relevant statistics.

A. Derivation

We consider a Markovian system characterized by a one-
dimensional variable xðtÞ that has been subject to a static
perturbation ε for a sufficiently long time to reach steady
state. The perturbation is switched off at time t ¼ toff
(cf. Fig. 2). The time-dependent response of the mean value
of a certain function f½xðtÞ� for a time t > toff can bewritten
as follows:

hf½xðtÞ�i ¼
Z

dx1

Z
dx2fðx2ÞP0ðx2; tjx1; toffÞPεðx1Þ; ð3Þ

where Pεðx1Þ is the steady-state probability density for a
constant perturbation and P0ðx2; tjx1; toffÞ is the conditional
probability density with the perturbation switched off
[εðtÞ ¼ 0]. Here we imply that xðtÞ is a Markov process
by assuming that P0ðx2; tjx1; toffÞ is completely indepen-
dent of what happened to the system before time t ¼ toff
(indicated by the index “0”).
We can rewrite the above expression as follows:

hf½xðtÞ�i − hf½xðtÞ�i0
¼

Z
dx1

Z
dx2fðx2Þ

�
Pεðx1Þ
P0ðx1Þ

− 1

�

× P0ðx2; tjx1; toffÞP0ðx1Þ; ð4Þ

in which we can identify

zðxÞ ¼
�
PεðxÞ
P0ðxÞ

− 1

�
ð5Þ

as a conjugated variable for the specific perturbation εðtÞ
applied to the system. We use in the following both zðxÞ
(with an x argument) as the nonlinear function that
describes the mapping from x to z and zðtÞ ¼ z½xðtÞ� (with
a time argument) as the new time-dependent observable.

Time

Time

�
PerturbationPerturbationPerturbation

Nonlinear response <f(x)>�

0

<f(x)>
0

<f(x(t))>

t
off

t
off

FIG. 2. Response to a steplike perturbation. A perturbation of
strength ε (not necessarily small) is switched off at time toff (top)
and the time-dependent mean value of a nonlinear function
f½xðtÞ� (bottom) is observed.
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For the conjugated variable zðtÞ, we find

hδf½xðtÞ�i ≔ hf½xðt�Þi − hf½xðtÞ�i0 ¼ hf½xðtÞ�zðtoffÞi0 ð6Þ

for t > toff ; i.e., the response of the system to the pertur-
bation arrest is given by the stationary cross-correlation
between the conjugated variable and the function f½xðtÞ� in
the absence of the perturbation (indicated by the index 0).
The stationary mean of z without perturbation vanishes,
irrespective of the perturbation amplitude ε,

hzi0 ¼
Z

dxzðxÞP0ðxÞ ¼
Z

dx

�
PεðxÞ
P0ðxÞ

− 1

�
P0ðxÞ

¼
Z

dx1Pεðx1Þ −
Z

dx2P0ðx2Þ ¼ 0; ð7Þ

and also irrespective of whether the process is Markovian
or not (we use only the steady state of the perturbed and
unperturbed system).
Our relation Eq. (6) looks similar to Eq. (7) in Ref. [19]

[Eq. (3.6) in the review Ref. [20] ] but differs by the
definition of the conjugated variable, which is in
Refs. [19,20] solely based on the unperturbed density
[P0ðxÞ in our notation] while our variable zðxÞ depends
on both P0ðxÞ and PεðxÞ.
If we choose the function f to be the conjugated variable

itself, fðxÞ ¼ zðxÞ, we obtain [taking into account that
according to Eq. (7), hδzðtÞi ¼ hzðtÞi, and measuring time
since the switch-off by τ ¼ t − toff ]:

hzðτÞi ¼ hzðτÞzð0Þi0 ¼ CzzðτÞ: ð8Þ

This is our key result, the NL FDR. It is trivially satisfied
for τ → ∞ as response and correlations both go to zero in
this limit (for Markovian and non-Markovian processes
alike). It is also satisfied for both Markovian and non-
Markovian processes at τ ¼ 0, which can be seen as
follows. The left-hand side of Eq. (8) for τ ¼ 0 is given
by the stationary average of PεðxÞ=P0ðxÞ − 1 over the
density PεðxÞ:

hzð0Þi¼
Z

dx
�
PεðxÞ
P0ðxÞ

−1

�
PεðxÞ¼

Z
dx

P2
εðxÞ

P0ðxÞ
−1: ð9Þ

For the right-hand side of Eq. (8) we obtain at τ ¼ 0, the
variance of PεðxÞ=P0ðxÞ − 1 in the unperturbed state:

hzð0Þzð0Þi0 ¼
Z

dx

�
PεðxÞ
P0ðxÞ

− 1

�
2

P0ðxÞ

¼
Z

dx
P2
εðxÞ

P0ðxÞ
− 1; ð10Þ

i.e. the same as Eq. (9). Because we have not used the
Markov property here, the NL FDR should be obeyed at

τ ¼ 0 regardless of whether the process is Markovian or
not; this does not hold true (as we demonstrate below) for
nonvanishing lag times τ > 0, for which Eq. (8) can be
strongly violated for a non-Markovian xðtÞ.
We note that the entire line of argument can be repeated

for an n-dimensional Markov process, x ¼ ðx1; x2;…; xnÞ,
where the conjugated variable is now defined using the
multidimensional probabilities [this was introduced above
in Eq. (1)]:

zðxÞ ¼
�
PεðxÞ
P0ðxÞ

− 1

�
: ð11Þ

In particular, the NL FDR attains the very same form
as in Eq. (8). If we consider only a subset of variables
x1ðtÞ;…; xkðtÞ of an n-dimensional Markov process (with
k < n), this constitutes in general a non-Markovian
projection of the process that does not have to obey Eq. (8).
Returning for the ease of notation to our one-dimensional

example, if we assume a weak perturbation (ε ≪ 1), Eq. (8)
brings us with a few additional steps back to the known
linear-response result [10–14]. This and related fluctuation-
response relations have been tested for the sensory hair
bundle [4] and also for colloidal particles driven by laser
tweezers [13,21–23].
To compare to linear response, we insert

zðxÞ ≈ ∂ ln½Pðx; εÞ�
∂ε

����
ε¼0

ε ¼ εzLRðxÞ ð12Þ

into Eq. (8) and obtain

hδzLRðτÞi ≈ εhzLRðτÞzLRð0Þi0: ð13Þ

From the probability densities Pðx; εÞ ¼ PεðxÞ and
Pðx; 0Þ ¼ P0ðxÞ, we approximate zLRðxÞ by

zLRðxÞ¼
ln½PεðxÞ�− ln½P0ðxÞ�

ε
¼1

ε
ln

�
PεðxÞ
P0ðxÞ

�
¼ ẑðxÞ

ε
: ð14Þ

In terms of the rescaled variable ẑ, the linear-response
version of our theorem reads

hδẑðτÞi ≈ hẑðτÞẑð0Þi0: ð15Þ

The approximate sign in this relation is solely due to

zðxÞ ¼ PεðxÞ
P0ðxÞ

− 1 ≈ ln

�
PεðxÞ
P0ðxÞ

�
: ð16Þ

The approximate sign canbe replacedwith the equal signonly
in the limit ε → 0 when the density PεðxÞ approaches P0ðxÞ
[by expanding the logarithm, lnf½P0 þ ðPε − P0Þ�=P0g≈
0þ ðPε − P0Þ=P0 þ � � �, we obtain with the first two terms
the exact relation for the conjugated variable]. For all practical
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purposes, a small value of ε may suffice for Eq. (15) being
satisfied within the accuracy of measurement. A sufficiently
small value will necessitate a large number of trials for two
reasons. For one, the estimate of the conjugated variable in
Eq. (14) will become more noisy with shrinking perturbation
amplitude (unless compensated by an increase in trials),
which results in increased unreliability in the estimates of the
time-dependent mean value and of the correlation function in
the unperturbed state. Secondly, the time-dependent mean
value is also harder to distinguish against measurement
noise if the difference in the two states (imposed by the
weak perturbation) is only very small. Belowwe compare the
left- and right-hand sides of Eq. (8) (the exact nonlinear
relation) and of Eq. (15) (the approximate linear relationship)
in order to illustrate the benefit of the nonlinear FDR.
Both of our theoretical example systems can be written

as an overdamped noisy particle dynamics in a time-
dependent potential Vðx; t; εÞ:

_x ¼ −V 0ðx; t; εÞ þ sðtÞ: ð17Þ

We look at two variants of Eq. (17). For the first we choose
Gaussian white noise of intensity D, sðtÞ ¼ ffiffiffiffiffiffiffi

2D
p

ξðtÞ,
where hξðtÞi ¼ 0 and hξðtÞξðt0Þi ¼ δðt − t0Þ, resulting in
xðtÞ being a Markov process. For the second variant, xðtÞ
becomes a non-Markovian process by using sðtÞ ¼ ηðtÞ,
where ηðtÞ is a temporally correlated (colored) Ornstein-
Uhlenbeck process,

τc _ηðtÞ ¼ −ηðtÞ þ
ffiffiffiffiffiffiffiffiffiffiffi
2σ2τc

q
ξðtÞ; ð18Þ

in which ξðtÞ is again a white Gaussian noise. The low-pass
filtered noise ηðtÞ is Gaussian and possesses an exponential
correlation function, hηðtÞηðt0Þi ¼ σ2 exp½−ðjt − t0j=τcÞ�,
with correlation time τc and variance σ2. We note that
the two-dimensional process ½xðtÞ; ηðtÞ� described by
Eqs. (17) and (18) is Markovian whereas the one-dimen-
sional projection xðtÞ alone is not. By deliberately ignoring
the second component of the two-dimensional process, we
create a non-Markovian example process for which we can
ask whether it obeys the NL FDR or not.

B. Protocol

Here we present the general protocol that is used to test
the NL FDR on stochastic systems in the following
sections. We illustrate it by means of the Brownian motion
in a washboard potential in the Markovian version with
white Gaussian noise [see Eq. (23) and surrounding
discussion below]. As a specific perturbation of the
dynamics, we consider a jumplike shift of the potential
[see inset of Fig. 3(a) for the two potential shapes]. The
perturbation, i.e., the shift of the force field by ε, is
switched off exactly at the middle of the time window T,
i.e., at time t ¼ T=2:

Vðx; t; εÞ ¼ V½x − εΘðT=2 − tÞ�: ð19Þ

Here ΘðτÞ is the Heaviside function, which is zero and one
for negative and positive arguments, respectively.

0 T/4 T/2 3T/4 T
t

0

�/2

�

3�/2

2�

�

i

:
:

0 2�
x

-5

0

V
 

0 T/4 T/2 3T/4 T
t

0

�/2

�

3�/2

2�

VIIIII II

(a)

(b)

(d)
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2
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0
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1

2
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III

IV
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I

II
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FIG. 3. Protocol to test the nonlinear fluctuation-dissipation
relation for a small number of trials (here,M ¼ 1000). Procedure
is illustrated for a model of Brownian motion in an inclined
periodic potential, Eq. (23) with white noise, solved with periodic
boundary conditions for M subsequent trials; perturbation is a
shift in the potential; see inset in (a). (a) Time window T is
subdivided into four equal periods or phases; perturbation of size
ε is applied in the first two phases of the time window and
switched off at time t ¼ T=2; we show a single trajectory xi (gray
line) and ensemble average hxii from the M trials (differently
colored in the four phases). We obtain in phases I and III transient
behavior in response to the sudden change in the external
perturbation. In phases II and IV, when the system is approx-
imately settled in the respective steady states, we estimate the
stationary probability densities (b) by a combined time and
ensemble average. By means of the two densities, the trajectories
xiðtÞ can now be transformed to realizations of the conjugated
variable ziðtÞ (c). Using the stored trajectories xiðtÞ from phases
III and IV, we can estimate the ensemble mean of zðtÞ in response
to the perturbation arrest as well as the stationary correlation
function hzðtÞzðtþ τÞi0 in the absence of the perturbation.
Comparison of the two functions confirms the NL FDR,
Eq. (8) (d). Parameters are F ¼ 1.2, ε ¼ π=2, D ¼ 0.02, time
window T ¼ 103, integration time step size Δt ¼ 10−2.
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The following protocol is repeated for M subsequent
trials; the simulation time window T of each trial has to be
subdivided in four distinct periods of equal length T=4. In
the first two periods, the perturbation is switched on, during
the last two periods it is switched off. The protocol is as
follows [cf. Fig. 3(a)].

(I) During the first period, the system reaches approx-
imately the steady state corresponding to the per-
turbation being on.

(II) Via time and ensemble average, the steady-state
density PεðxÞ ¼ PIIðxÞ (for the constant perturbation
ε) is measured and stored. We use the entire
trajectory xiðtÞ within this period for all realizations
i ¼ 1;…;M to estimate a histogram for the prob-
ability to be at a certain x ∈ ½0; 2π�.

(III) This period serves two purposes. For one, we
measure M transient responses xiðT=2þ τÞ to the
switch-off in the potential that happens at t ¼ T=2
(at the beginning of this phase) and store them.
Secondly, we let the system reach approximately the
new (unperturbed) steady state.

(IV) The system is now in the new steady state and we
can use the trajectories measured here to estimate the
probability density P0ðxÞ ¼ PIVðxÞ in the absence of
a perturbation. We store all the trajectories xiðtÞ
for i ¼ 1;…;M.

The protocol requires a window T that is much longer than
the relaxation times of the probability density (we cannot
use an infinite T and that is why we use the word
approximately in steps I and III). For this purpose, one
may monitor time-dependent mean values [for our example
system we choose hxðtÞi] and test whether they have
reached approximately constant values in phases II and
IV [cf. orange and purple lines in Fig. 3(a)].
With estimates of PεðxÞ [steady-state distribution PIIðxÞ

of phase II] and P0ðxÞ [steady-state distribution PIVðxÞ of
phase IV] we can estimate the variable zðxÞ via Eq. (5);
both distributions and the new variable are shown in
Fig. 3(b). We then use the responses xiðtÞ to the perturba-
tion arrest from phase III to calculate the mean transient
response of zðτÞ:

hzðτÞi ≈ 1

M

XM
i¼1

z½xiðT=2þ τÞ�; ð20Þ

which is shown as a function of τ in Fig. 3(c).
We can now furthermore take the ensemble of trajecto-

ries xiðtÞ from phase IV and calculate the correlation
function of zðtÞ in the absence of a perturbation by a
combined ensemble and time average:

CzzðτÞ ¼ hzð0ÞzðτÞi

≈
XM
i¼1

Z
T−τ

3T=4
dt

z½xiðtÞ�z½xiðtþ τÞ�
MðT=4 − τÞ : ð21Þ

The correlation function can now be compared to the
transient response [see Fig. 3(d)], resulting in a confirma-
tion of the NL FDR Eq. (8) for a small M.
A quantitative measure to evaluate the degree of viola-

tion of Eq. (8) is the integrated relative squared deviation
(RSD) Δ2 between the two time-dependent functions
(normalized by an integral over the transient itself):

Δ2 ¼
R Tc
0 dτ½hzðτÞi − hzðtÞzðtþ τÞi�2R Tc

0 dτ½hzðτÞi�2 : ð22Þ

By looking at the noisy functions in Fig. 3(d), it becomes
clear that we should not use an excessively long time Tc for
this integral because at large lag times we will mainly
collect measurement noise in both integrals in the numer-
ator and the denominator. We have chosen the integration
window Tc according to visual inspection to capture the
main part of the correlation and the transient response. A
reasonable rule of thumb seems to be to terminate the
integration once hzðτÞi has reached the standard deviation
of the measurement noise.

III. RANDOM MOTION IN AN INCLINED
PERIODIC POTENTIAL—A NONLINEAR

NONEQUILIBRIUM EXAMPLE

We consider the above example in more detail for both
white noise (the Markovian case, used already in Fig. 3)
and colored noise (the non-Markovian case, in which the
NL FDR does not have to be obeyed). For the convenience
of the reader, we state the equation for the specific setup
(with periodic boundary conditions in x ∈ ½0; 2π�):

_x ¼ F − sin½x − εΘðT=2 − tÞ� þ sðtÞ: ð23Þ

Without perturbation (ε ¼ 0) and with sðtÞ ¼ ffiffiffiffiffiffiffi
2D

p
ξðtÞ,

this equation describes a plethora of physical phenom-
ena [1,24]. It is in both Markovian and non-Markovian
versions a nonequilibrium system, because for nonvanish-
ing bias F ≠ 0 there is a steady probability current running
through the system [1] and the steady-state probability
density deviates from the Boltzmann distribution expected
in thermodynamic equilibrium [25].
We test the NL FDR for both Markovian and non-

Markovian cases: as in Fig. 3 we choose a strong
perturbation of ε ¼ π=2 but use a smaller bias force: it
is now at its critical value, F ¼ 1, which results in less
pronounced oscillatory behavior than for the stronger bias
used in Fig. 3.
For the Markovian case shown in Fig. 4 the stationary

density distributions Pε and P0 are of the same form but
shifted by the perturbation parameter ε (densities can also
be analytically expressed by quadrature; see, e.g., Ref. [1]).
To test the NL FDR, Eq. (8), we use in Fig. 4(b) a rather
small ensemble size of M ¼ 100, for which the agreement
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between the time-dependent mean value and the correlation
function is already remarkably good. For a still reasonable
ensemble size of M ¼ 1000 [Fig. 4(c)] the agreement is
overall quite excellent. To compare the two time-dependent
functions in more detail, we show them with a logarithmic
axis in the insets.
For the non-Markovian case, Fig. 5, the parameters of the

colored noise σ2 and τc were chosen such that the transient
responseof thesystemissimilar in formandstrength to thatof
the Markovian case in Fig. 4. We recall that in the non-
Markoviancasewecannotexpect that theNLFDRisobeyed;
indeed,aviolationofEq.(8)becomesalreadyapparentfor the
small ensemble size ofM ¼ 100 [Fig. 5(b)] and even more
clearly for M ¼ 1000 [Fig. 5(c)]. The correlation function
displays more pronounced oscillatory features (note the
maximum around τ ¼ 10) and a stretched decay, most likely
determined by the long correlation time of τc ¼ 100 of the
intrinsic colored noise—the transient response of the mean
value (red line) lacks this long transient.
For a quantitative analysis we inspect the RSD, Eq. (22),

as a function of the perturbation amplitude ε [Fig. 6(a)]
and trial number M [Fig. 6(b)]. For weak perturbation,
estimates of the statistics are unreliable and the RSD
for Markovian and non-Markovian model versions are

10
0

10
2

�

0
5

10
15

z(�)
C(��

0 �/2 � 3�/2 2�
x

0

1

2

3

P�
P�
z/10

0 25 50
�

0

5

10

15

0 25 50
�

0

5

10

15

10
0

10
2

�

0
5

10
15

(b)

(c)

(a)

FIG. 4. Random motion in an inclined periodic potential—
Markovian case [sðtÞ white noise with D ¼ 0.02]. Dynamics
Eq. (23) with F ¼ 1, ε ¼ π=2, T ¼ 1000, Δt ¼ 0.01. Stationary
probability densities in absence and presence of the perturbation
and the conjugated variable zðxÞ (a). Comparison of transient
response and stationary correlation function for trial number
M ¼ 100 (b) and M ¼ 1000 (c).

0 /2 3 /2 2
x

0

1

2

3

P�
P

z/10

0 25 50

0

5

10

15

0 25 50

0

5

10

15

10
0

10
2

0
5

10
15

z( �
C( �

10
0

10
2

0
5

10
15

(b)

(c)

(a)

FIG. 5. Random motion in an inclined periodic potential—non-
Markovian case. Equation (23) with sðtÞ being colored Gaussian
noise obtained from Eq. (18) with correlation time τc ¼ 100 and
variance σ2 ¼ 0.2. Other parameters as in Fig. 4. Stationary
densities and conjugated variable zðxÞ (a). Comparison of
transient response and stationary correlation function for
M ¼ 100 (b) and M ¼ 1000 (c).

10
-2

10
0

� �

10
-4

10
-2

10
0

�

Non-Markovian -
Markovian -

10
1

10
2

10
3

10
4

M

10
-4

10
-2

10
0

�

Non-Markovian
Markovian
Power Law

10
-1

�

+
+

(a)

(b)

~1/M

FIG. 6. Random motion in an inclined periodic potential—
degree of violation for different parameters. RSD Δ2 for
Markovian (black) and non-Markovian (red) cases versus
strength of the external perturbation ε for M ¼ 103 trials (a)
and versus trial numberM for ε ¼ π=2 (b). With growing number
of trials M, the error for the non-Markovian case saturates, while
it drops like 1=M for the Markovian system (b). We use Eq. (22)
with Tc ¼ 50.

A NONLINEAR FLUCTUATION-DISSIPATION TEST FOR … PHYS. REV. X 13, 021034 (2023)

021034-7



similarly high. However, with increasing ε the RSD for the
Markov process decreases to small values whereas the non-
Markov model always displays values significantly differ-
ent from zero. Interestingly, there is an optimal perturbation
amplitude (close to our standard value ε ¼ π=2) at which
the RSD is minimal. If we increase the number of trials
[Fig. 6(b)], the RSD decays like 1=M in the Markovian case
but saturates at a nonvanishing value for the system with
colored noise.

IV. RANDOM MOTION UNDER A LINEAR
FORCE—A TRACTABLE EXAMPLE

Why can the NL FDR be violated for the non-Markovian
case with colored noise? To better understand the under-
lying physics governing our NL-FDR-based test, we now
pick a simple parabolic potential, the origin of which is
shifted by ε until t ¼ T=2:

Vðx; t; εÞ ¼ k½x − εΘðT=2 − tÞ�2=2: ð24Þ

Equation (17) now turns into a linear equation:

_x ¼ −k½xðtÞ − εΘðT=2 − tÞ� þ sðtÞ: ð25Þ

For the unperturbed Markovian case [ε ¼ 0, sðtÞ being
white Gaussian noise] this corresponds to an Ornstein-
Uhlenbeck process and may, for instance, represent an
overdamped particle in a harmonic trap in equilibrium [1].
For the non-Markovian case we choose sðtÞ again to be the
Ornstein-Uhlenbeck noise ηðtÞ generated by Eq. (18); in
this case, the full system of two linear stochastic differential
equations constitutes a two-dimensional Markov process
whereas the variable xðtÞ on its own must be regarded as a
non-Markovian process. The system with colored noise is
outside thermodynamic equilibrium because in the latter
case correlations in fluctuations imply memory friction that
is not present in our model.
The great advantage of this model is that all the

quantities entering the NL FDR can be calculated ana-
lytically in both Markovian and non-Markovian cases,
which in particular explains why in the non-Markovian
version of the model a violation of the NL FDR can be
expected.
First of all, because the dynamics is linear, we obtain the

dynamics of the time-dependent mean value hxðtÞi:
d
dt

hxi ¼ −k½hxðtÞi − εΘðT=2 − tÞ�; ð26Þ

the noise term (white or colored) will drop out in the
ensemble average. The solution is a simple exponential:

hxðtÞi ¼ ε

�
1 t < T=2

exp ½−kðt − T=2Þ� t ≥ T=2:
ð27Þ

Any other time-dependent mean value will depend on t
only via this mean value because we can eliminate the
perturbation from the dynamics entirely when choosing a
new variable yðtÞ ¼ xðtÞ − hxðtÞi, for which we find

_y ¼ −kyðtÞ þ sðtÞ: ð28Þ
As long as the driving noise sðtÞ is Gaussian (no matter
whether correlated or uncorrelated in time), we find that
the new variable also obeys Gaussian statistics, PyðyÞ ∝
exp½−y2=ð2σ2xÞ� and thus, going back to the original
variable, we have

Pðx; tÞ ¼ exp

�
−
½x − hxðtÞi�2

2σ2x

�	 ffiffiffiffiffiffiffiffiffiffi
2πσ2x

q
: ð29Þ

The variances for the two cases can be calculated with
standard methods [1,2]; for the Markovian case, it is

σ2x ¼ D=k; ð30Þ
whereas in the non-Markovian case, one finds

σ2x ¼
τcσ

2

kð1þ τckÞ
: ð31Þ

From Eq. (29), we obtain very quickly the two steady-state
distributions [using hxðtÞi from Eq. (27) with t < T=2 and
t → ∞ for PεðxÞ and P0ðxÞ, respectively]:

PεðxÞ ¼
exp½− ðx−εÞ2

2σ2x
�ffiffiffiffiffiffiffiffiffiffi

2πσ2x
p ; P0ðxÞ ¼

exp½− x2

2σ2x
�ffiffiffiffiffiffiffiffiffiffi

2πσ2x
p : ð32Þ

The two densities give us the conjugated variable:

zðxÞ ¼ PεðxÞ
P0ðxÞ

− 1 ¼ e−ε
2=ð2σ2xÞ exp

�
εx
σ2x

�
− 1: ð33Þ

The conjugated variable for both Markovian and non-
Markovian versions of our model is thus a simple
exponential function. The Gaussian distributions and the
exponential function for the conjugated variable are also
found following our protocol [Figs. 7(a) and 8(a)].
In order to calculate the time-dependent mean value

hz½xðtÞ�i in response to the perturbation arrest, we can now
use the one-time probability density Eq. (29):

hz½xðtÞ�i ¼
Z∞

−∞

dxzðxÞPðx; tÞ

¼
Z∞

−∞

dx
exp½− x2−2xhxiþhxi2−2εxþε2

2σ2x
�ffiffiffiffiffiffiffiffiffiffi

2πσ2x
p − 1

¼ eεhxðtÞi=σ2x − 1: ð34Þ
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In particular, for t > T=2 we obtain

hz½xðT=2þ τÞ�i ¼ exp

�
ε2

σ2x
e−kτ

�
− 1: ð35Þ

From this expression we see that the time-dependent mean
value does not depend on the temporal correlations of the
noise (once we make sure by our parameter choice that both
systems have the same variance σ2x for the x variable). We
cannot expect the same for the stationary correlations of
xðtÞ—if the driving noise is very slow, for instance, we may
expect that hzðtÞzðtþ τÞi is affected by this and will reflect
in some way the slow timescale. Hence, from the inde-
pendence of the mean value of the correlation time of the
noise, we may already suspect that the NL FDR has to be
violated for a slow noise ηðtÞ.
In order to calculate the correlation function for z½xðtÞ� in

the unperturbed case, we first note that the correlation
function CxxðτÞ can be easily calculated for both
Markovian and non-Markovian cases, e.g., by the Rice
method for the power spectrum (Fourier transformation of
the Langevin equation, multiplication with the complex
conjugated equation, averaging) and a back transformation
to the time domain to obtain the correlation function. This
gives in the Markovian case:

CxxðτÞ ¼
k
D
e−kjτj ¼ σ2xe−kjτj: ð36Þ

In the non-Markovian (colored noise) case we obtain

CxxðτÞ ¼
k

σ2τc

1þ τck
1 − τck

ðe−kjτj − τcke−jτj=τcÞ ð37Þ

¼ σ2x
1 − τck

ðe−kjτj − τcke−jτj=τcÞ: ð38Þ

To calculate the correlation function of z½xðtÞ�, we can use
that the correlation function of the new variable

u ¼ heaxðtÞ ð39Þ

is related to that of xðtÞ by [see Ref. [26], Eq. (8.103)]

CuuðtÞ ¼ h2ea
2σ2xðea2CxxðtÞ − 1Þ: ð40Þ

Our variable zðxÞ according to Eq. (33) also involves an
offset (we subtract 1), which does not change this result. In
the Markovian case we obtain

CzzðτÞ ¼ exp

�
ε2

σ2x
e−kjτj

�
− 1; ð41Þ

which exactly agrees with the time-dependent mean value
in Eq. (35). Hence, in the Markovian case, our explicit
calculation of the mean value and the stationary correlation
function confirms the NL FDR Eq. (8), as can be expected.
For completeness, we show in Fig. 7(b) the agreement of
the two statistics also by means of numerical simulation
results obtained by following our protocol; they obviously
agree well with each other as well as with the calculated
theoretical results [Eq. (35) or (41)].
In contrast, in the non-Markovian case, Eq. (40) yields

CzzðτÞ ¼ exp

�
ε2

σ2x

e−kjτj − τcke−jτj=τc

1 − τck

�
− 1; ð42Þ

which involves two exponential functions in the exponent
and hence differs in its functional form qualitatively from
the time-dependent mean value in Eq. (35). Only in the
white noise limit, τc → 0 (while keeping the intensity
σ2τc ¼ D constant), we can achieve agreement between
mean value and correlation function—this is, of course,
again the Markovian limit case, for which we have
confirmed Eq. (8) already. For a nonvanishing value of
τc, our result demonstrates analytically that the non-
Markovian system violates the NL FDR Eq. (8). We also
illustrate the violation by comparing time-dependent mean
value and correlation function obtained from numerical
simulations [cf. Fig. 8(b)]. Because in the example the
correlation time of the colored noise was chosen rather long
(τc ¼ 100), there is a pronounced mismatch between mean
value and correlation function; as we can well understand
from our analysis, the mean value quickly decays to zero (it
is only determined by the timescale of the x dynamics
which is set by k), whereas the correlation function has a
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FIG. 7. Random motion with linear force—Markovian case.
Equation (25) is simulated with white Gaussian noise. Measured
stationary probabilities (histograms) and the conjugated variable
zðxÞ (thin solid line in green) compared to theory (dashed lines)
Eqs. (32) and (33) (a). NL FDR is confirmed, as correlation
function and time-dependent mean value of zðtÞ closely agree
and also match the analytical results Eqs. (35) and (41) (b).
Parameters are M ¼ 104, T ¼ 1000, Δt ¼ 0.01, k ¼ 1, ε ¼ 0.2,
D ¼ 1=11.
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part that decays much slower because it is set by the
correlation time τc.
Wequantify theviolationof theNLFDRby theRSDΔ2 in

Fig. 9 as a function of different parameters. The non-
Markovian case (red) reveals itself by high RSD, whereas
in the Markovian case (black) the RSD is generally rather
small. If we increase the amplitude of the perturbation ε
[Fig. 9(a)], we first gain from leaving the linear-response
regime—here, differences between the RSD of non-
Markovian andMarkovian cases becomemore pronounced.
However, in the Markovian case, after having passed
through a broad minimum, Δ2 increases again—if the
amplitude becomes too large (ε ≫ σx ≈ 0.3) there is only
little overlap between the two probability densities, making
the determination of zðxÞ and its statistics unreliable.
For the non-Markovian case, the RSD grows with the

correlation time τc of the colored noise increases [inset in
Fig. 9(a)]. If we fix the correlation time and plot the RSD as
a function of the trial numberM, the RSD of the Markovian
system decays like 1=M, whereas that of the Markovian
system saturates.
We finally mention that for Eq. (25) studied here, we can

easily calculate an exact (and different) FDR in terms of the
original variable xðtÞ, which is for this specific linear
system not limited to weak perturbations.

V. TESTING THE NL FDR EXPERIMENTALLY
FAR FROM THERMAL EQUILIBRIUM

In this section we describe an experiment aimed at
testing the applicability and the benefits of the NL FDR.

A. Experimental setup

We realize experimentally a stochastic nonequilibrium
system of a fluctuating particle in a harmonic potential (see
Fig. 10) as described below.An ensemble of bristlebots and a
styrofoam ball are placed inside a parabolic plastic bowl,
acting as a gravitational harmonic well. Collisions between
the bots keep them in a chaotic state, in which they act as an
active bath on the styrofoam ball, our tracer particle (see
Movie 1 in Supplemental Material [27]). The locomotive
motion of bristlebots aswell as their individual dynamics in a
gravitational harmonic potential was studied before [28].
Here we use a system with either 10 or 4 bristlebots with an
effective area fraction of 8% and 5%, respectively, and focus
on the statistics of the random motion of the tracer particle.
In order to test the NL FDR in the experiment, we use a

fan (Yate Loon electronics 12 V 0.30 A cooling fan) and
shutter system to perturb the trajectory of the tracer particle.
The air stream emanating from the fan exerts a uniform
external force on the styrofoam ball but barely affects the
bristlebots. To ensure a sudden deactivation (activation) of
the perturbing force, we add a shutter to cut off the transient
behavior of the fan and achieve thus an abrupt perturbation
arrest. The magnitude of the applied perturbation is con-
trolled by the operating voltage of the fan. Summarizing,
the main forces acting on the tracer ball are due to the
gravitational potential, the air stream from the fan, and the
random collisions with the bristlebots.

0 25 50 75
0

0.2

0.4

10
-2

10
0

10
2

0

0.2

0.4
z( �

C( �
Theory

-1 0 1
x

0

1

2
P�
P

z/10

(a)

(b)

FIG. 8. Random motion with linear force—non-Markovian
case. Equation (25) is simulated with colored noise sðtÞ ¼ ηðtÞ
obeying Eq. (18). Measured stationary probabilities (histograms)
and conjugated variable zðxÞ (green solid line) compared to
theory (dashed lines) Eqs. (32) and (33) (a). Mean value and
correlation function differ as revealed by the simulation results
(lines) and the theoretical expressions (points), Eqs. (35) and (42)
(b). Parameters are M ¼ 104, T ¼ 1000, Δt ¼ 0.01, F ¼ 1,
ε ¼ 0.2,σ2 ¼ 0.1, τ ¼ 10.
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FIG. 9. Random motion with linear force—quantifying the NL
FDR violation. RSD Eq. (22) for an integration window of
Tc ¼ 10 andM ¼ 104 as a function of perturbation strength ε for
the Markovian (black) and the non-Markovian setup (red); inset
shows Δ2 as a function of the correlation time τc of the colored
noise [theory is obtained using Eqs. (35) and (42) in Eq. (22)].
For τc ¼ 10, RSD of the non-Markovian system (red) versus
number of trialsM (theory value forM → ∞ indicated by dashed
line); RSD of the Markov version (black) decays like a power
law 1=M.
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We image a top view of the experiments using a logitech-
BRIO 4k camera at a frame rate of 30 fps. Because of the
finite energy storage of the bristlebot battery, the duration
of the experiments is limited to 30 min. We extract the
trajectories of the styrofoam ball using standard MATLAB

algorithms. Finally, we project the trajectory of the tracer
onto the axis of the direction of the air stream. We choose a
macroscopic experimental system for several reasons. First,
the system is clearly out of equilibrium, being composed of
active matter (the bristlebots). The steady state relies on
constant injection of energy and its dissipation to the
environment (friction within the bowl and with the sur-
rounding air). Second, the system can be easily monitored,
controlled, and perturbed mechanically, and there are
obviously no significant thermal contributions. Finally,
the dynamics of a tracer ball interacting with the bots in
the bowl is similar to that of a colloidal particle in a
harmonic potential, discussed in Sec. IV: In both cases the
tracer particle is bound by a confining potential and
experiences random collisions.

B. Quantifying the advantage of the NL FDR

We start by measuring the statistics needed for the NL
FDR Eq. (8) and the linear version Eq. (15) in a system of
10 bristlebots and a fan operating at 12 V. Specifically, we
apply an external force with the fan on the styrofoam ball in
the following sequence: every 2 min the fan is turned on for
a minute and abruptly turned off for the following minute,
which could be done 15 times in the 30 min of one
recording. This sequence of perturbations was repeated
throughout each of the 25 recordings resulting in a total of
375 experimental trials. Following the analysis protocol of

Fig. 3, we first obtain the time-dependent tracer position
along the perturbation direction. In Fig. 11(a) we show the
time-dependent mean value of these positions, which
illustrates that the two steady states in phases II and IV
and the transition between them are well captured within
our time window.
For further analysis, we extract the steady-state position

probability densities, with and without a perturbing force,
and the conjugated variable calculated from them via
Eq. (5) [all functions are shown in Fig. 11(b)]. The two
quantities of the NL FDR can now be evaluated. The
response to the perturbation arrest in terms of the mean
conjugated variable is obtained from section III (red) of the
time window; the correlations of the stationary fluctuations
in the absence of the perturbation were calculated from
section IV (violet). These two quantities are plotted in
Fig. 11(c) (their standard errors are indicated by the dashed
lines). When comparing the response and the correlation
function, we focus on the initial part, up to a time Tc ¼ 1 s,
indicated by a vertical line in Fig. 11(c) [time at which hzi
reach the standard error of the mean value estimate in the
steady state].
As before, we quantify how well the NL FDR is satisfied

(or not) by the RSD, Eq. (22). Figure 11(d) displays the
RSD versus number of trials M. This analysis is highly

FIG. 10. Experimental setup. A styrofoam ball (diameter
∼4 cm) is trapped in a gravitational harmonic potential, a plastic
bowl (diameter 38 cm, depth 5 cm), and subjected to collisions
with self-propelled bristlebots (inset: standard bot, 4 × 1 cm).
The ball is repeatedly perturbed with a uniform air stream created
by an external fan to test the NL FDR. To enforce an abrupt onset
and release of the perturbation, a mechanical shutter is used
(denoted by “S”). A typical trajectory of the styrofoam ball
perturbed by ten bristlebots is plotted (time color coded); see also
Movie 1 in Supplemental Material [27]. The response to the air
stream arrest is measured along the x axis (white arrow).

FIG. 11. Experimental test of the NL FDR with bristlebots.
Ensemble mean of position hxiðtÞi (bold line, color coded
according to phase) and a single trajectory xiðtÞ (gray line);
averages were calculated over M ¼ 375 trials (a). Probability
densities of the two steady states of the periods II (Pε, yellow) and
IV (P0, violet) overlayed by the conjugated variable (green line);
histograms are normalized and linearly interpolated (b). Transient
response hzðtÞi, and the autocorrelation CzzðtÞ, from periods III
and IV, respectively, as functions of time (dashed lines indicate
standard errors); up to time Tc (dash-dotted line), both curves
agree well (c). Deviations from the NL FDR are quantified by the
RSD versus trial number (d), integrated up to time Tc [gray points
are subsets of trials (see text); blue points are average of these
separate computations]. We use ten regular bristlebots with a fan
operating at 12 V, for driving cycles of T ¼ 2 min.
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sensitive to the choice of subset of trials that we select. We
therefore repeat this computation for different subsets of
trials [gray data points in Fig. 11(d)]. The colored data
points are the average of these separate calculations.
Clearly, the RSD drops toward zero as the number of trials
increases, indicating that the NL FDR Eq. (8) holds in these
conditions. Hence, our results are consistent with a
Markovian dynamics of the tracer particle.
At first glance, the interaction of a few bristlebots with

the styrofoam ball cannot be expected to yield strictly
Markovian dynamics for the styrofoam ball. Nevertheless,
our results suggest that under the inspected conditions the
effective dynamics of the light ball could not be proven to
be pronouncedly non-Markovian. This, of course, is not a
proof of Markovianity in itself but supports at least this
simplifying assumption. We interpret this result as follows.
Since the ball is light (possesses little inertia) and collisions
with the chaotically moving bristlebots are frequent, we
may expect an approximate Markovian dynamics, i.e., a
loss of memory, at timescales larger then the typical time
between collisions, and thus the NL FDR should hold.
We also remark that although the true motion of the

styrofoam ball within the bowl is two dimensional, there
seems to be little effect of the motion in the direction
perpendicular to the air stream. This is similar to an
extension of our model of a harmonically trapped particle
Eq. (25) to two spatial dimensions by an addition of an
independent second equation,

_x2 ¼ −kx2 þ
ffiffiffiffiffiffiffi
2D

p
ξ2ðtÞ; ð43Þ

with ξ2ðtÞ being an independent white Gaussian noise and
no perturbation included. Then the original dynamics xðtÞ
would still be Markovian and our test would also confirm
the NL FDR as before. This argument does not hold true in
a nonlinear two-dimensional system, in which both vari-
ables affect each other; see Ref. [5] for an example.
To emphasize the advantages of the nonlinear relation as

a test for Markovianity for nonequilibrium systems, we
examin both the linear and the nonlinear relations under
weak (fan at 9 V) and strong (fan at 12 V) perturbations, for
an otherwise identical setup. The results for these two
conditions are displayed in Figs. 12(a) and 12(b). The insets
test the linear relation, Eq. (15), obtained by following the
same protocol for the linear conjugated variable, Eq. (14)
(see also Ref. [5]). We can see a pronounced violation of
the linear relation, Eq. (15) [with the conjugated variable
defined by Eq. (14)] for the strong perturbation, Fig. 12(b),
while both linear relation and NL FDR are obeyed for the
weak perturbation, Fig. 12(a). This result confirms that the
NL FDR of Eq. (8) is fulfilled even in the presence of a
strong perturbation, where the linear version is violated.
Moreover, in the nonlinear-response regime, the NL FDR
requires significantly fewer data to capture the response.
Specifically for the presented data, the same small RSD

value of Δ2 ¼ 0.02 can be reached in the strong-fan
configuration with only 195 trials [see vertical dashed line
in Fig. 12(c)], whereas 345 trials are required to reach the
same degree of quantitative agreement for the linear version
[cf. vertical dashed line Fig. 12(d)]. In conclusion, the
nonlinear FDR requires less experimentation time and is
thus better suited for situations in which only a limited
number of trials is feasible.

C. Violation of the NL FDR for a slowly
changing active bath

To provoke a violation of the NL FDR we construct a
non-Markovian system by using a two-sided model of
bristlebots [Fig. 13(a)]. This model of bristlebots can move
on either side, since it has bristles on both top and bottom
[see Fig. 13(a) herein and Movie 2 in Supplemental
Material [27]). We refer to these two types of motion as
up (↑) and down (↓) states with respect to the side on which
the bot moves. Interestingly, the bristlebots can flip
between states upon collisions and the motion in the up
state is slower [cf. Fig. 13(b)] and less stable [cf. Fig. 13(c),
where τ↑↓ ≪ τ↓↓]. We refer to the state of the bath as a
mixed (uniform) state if at least one (none) bath particle is
in the up state. The average lifetimes of the two states
of the bath are hτ↑↓i ¼ 0.5 s and hτ↓↓i ¼ 2.3 s. Since
hτ↑↓i; hτ↓↓i are of the order of the typical relaxation time of
the system, we expect non-Markovianity to arise. Our
approach to provoke non-Markovianity is reminiscent of

FIG. 12. Linear and nonlinear FDR under weak and strong
perturbation [9 V fan voltage (a),(c) and 12 V fan voltage (b),(d)].
Panels (a) and (b) display mean responses and correlation
functions for the NL FDR (main panels) and the linearized
version, Eq. (15) (insets), all for M ¼ 375 trials. Panels (c) and
(d) show the RSD versus number of trials for the weak (c) and
strong perturbation (d) for the linear (orange diamonds) and non-
linear relations (blue circles). The vertical dashed lines corre-
spond to the minimal M above which Δ2 < 0.02. Other
parameters as in Fig. 11.
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the recent study [29] in which an optically trapped colloidal
particle was driven by a telegraph noise.
To test for non-Markovianity, we conduct a fluctuation-

dissipation experiment with four two-sided bristlebots
using the same experimental procedure as in Sec. V B
[see Fig. 13(d)]. A violation of the relation becomes
apparent for times around the average lifetime of the mixed
state hτ↑↓i (horizontal dot-dashed line), implying non-
Markovian dynamics. For comparison, the inset of
Fig. 13(d) shows the NL FDR for the four regular bristlebot
system. In this case, the NL FDR holds, consistent with
Markovian dynamics of the tracer particle.

The non-Markovian version in the experiment is more
sophisticated than in the theoretical models and involves
the “heat bath” itself. Having bristlebots with two different
states of speed between which occasionally stochastic
transitions occur introduces a slow timescale in the system,
that (comparable to the colored noise in the theoretical
models) modifies the temporal correlations of the conju-
gated variable but not so much its time-dependent mean
value after the switch-off. For this variant of the experiment
a significant deviation from the NL FDR could be observed
(with just a few hundred trials necessary).

VI. DISCUSSION AND OUTLOOK

Fluctuation-response relations have been previously
studied beyond the linear-response regime [14,19,30,31].
However, two important aspects of these relations are still
poorly understood so far: (i) how Markovianity is a needed
precondition and how the nonlinear FDR is violated for
non-Markovian systems and (ii) how the number of
experimental or simulation trials can be substantially
reduced by exploiting the nonlinear response. In this paper
we investigate these aspects for a novel fluctuation-
dissipation relation for a nonweak perturbation of a
Markovian system, the NL FDR. We develop a simple
protocol tailored to probe the relation in simulations of
stochastic models or in experiments. We test it for two
paradigmatic models of statistical physics: the random
motion in a biased washboard potential and the harmoni-
cally bound particle with noise. Furthermore, we explore
the NL FDR for an experimental toy model: a styrofoam
ball embedded in an active bath of bristlebots placed in a
parabolically shaped bowl.
We succeed in our goal to utilize stronger perturbations to

decrease the amount of data needed for a test ofMarkovianity
in comparison with the linear-response version of the
relation [10–14]. Differences between Markovian and
non-Markovian cases in Figs. 6(b) and 9(b) emerge already
for a few tens of trials; it is unlikely that Markovianity can be
tested with statistical significance with much fewer data.
A significant improvement of the test’s applicability is also
shown in our experiments, in which the amount of data
needed is reduced by roughly one-half compared to linear-
response conditions. The comparison of the efficiency of our
method to other tests of Markovianity (see, for instance,
Refs. [6,7,9]) is an open problem for future studies.
We emphasize that the main element of our scheme for

testing the NL FDR, a perturbation in the form of a step
stimulus, is already part of many experimental standard
protocols for nonequilibrium systems [15–18]. Our method
could be used to reinspect systems for which linear-
response-based fluctuation-dissipation theorems have been
tested in the past [4,32,33].
An additional outcome of our analysis is the existence

of an optimal amplitude of perturbation. From Figs. 1(b)
and 3(b) it can be seen that the conjugated variable is most

FIG. 13. Experimental system with non-Markovian features.
Top view snapshot (a) of a mixed (↑↓) state with three particles in
the ↓ state (green) and one in the ↑ state (orange). The two
different types of bristlebots are shown on the right: regular (top)
and the two configurations of the two-sided bristlebot (bottom).
The average individual speeds (b) of the ↓ state (green diamond),
the ↑ state (orange diamond), and the regular bristlebot (blue
circle). The inset displays typical sequences of instantaneous
speed vðtÞ in cm=s for the regular (blue) and two-sided (green ↓,
orange ↑) bots over 30 s. Number of bots in each state with one
bot flipping back and forth (c). Violation of the NL FDR,
Eq. (8), at τ ≈ 1 s, obtained for an average of M ¼ 375 trials
and a strong perturbation, implies non-Markovian dynamics (d).
For comparison, an equivalent experiment for four regular
bristlebots, which does not display a significant violation of
the NL FDR below Tc (inset). Comparison of the RSD (e) with
Tc ¼ 1 s for the two types of experiments in (d). Unlike the
system of regular bristlebots, the RSD of the two-sided bristlebot
system does not decay to zero, indicating a systematic violation
of the NL FDR.
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informative when the overlap between P0ðxÞ and PεðxÞ is
not too large or too small. An optimal perturbation
amplitude and hence overlap is seen in Fig. 6(a) for the
motion in a biased periodic potential, where the RSD in the
Markovian case attains its minimum at ε ¼ π=2. Even more
pronounced is the minimal RSD for the harmonically
bound particle [Fig. 9(a)]. How the perturbation amplitude
can be optimized in different systems and for different
kinds of perturbations remains an exciting problem for
future investigations.
Notably, the analytically tractable case of the harmoni-

cally bound particle with colored noise permits us to trace
one cause for the violation of the NL FDR for a non-
Markovian dynamics. While the mean value of the con-
jugated variable is not affected at all by the correlations of
the driving fluctuations, the correlations of zðtÞ are shaped
by the noise color. We thus recognize the reason why these
two kinds of statistics disagree in general in the non-
Markovian setting. Qualitatively, the same holds true for
the random motion in the biased periodic potential, for
which the time-dependent mean value hzðtÞi decays rather
quickly after the perturbation is switched off, whereas the
correlations of zðtÞ in the unperturbed state display a slow
component due to the colored noise.
Having introduced the idea of using stronger perturba-

tion for more practical test for Markovianity, it is natural to
ask whether we can further minimize the required statistics.
First, the procedure itself can be optimized. Statistics can be
doubled by using both switch-off and switch-on perturba-
tions (provided they are abrupt). In addition, the phase
durations of the protocol can be chosen as different
according to need. Second, the general form of the NL
FDR Eq. (6) relates the time-dependent mean value of an
arbitrary observable f½xðtÞ� with the stationary cross-
correlation function of the very same observable f½xðt0Þ�
and the conjugated variable z½xðtÞ�. Are there choices of the
function fðxÞ that lead to particularly significant tests of
Markovianity? Finally, different perturbations from those
discussed here may lead to new tests of Markovianity with
different conjugated variables.
The set of ideas developed in this paper can be extended

to other stochastic nonequilibrium systems and to multi-
dimensional systems. In conclusion, our work lays the
foundation for a simple model-free experimental classifi-
cation of a diverse nonequilibrium system in terms of
Markovianity.
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