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Abstract
We propose a simple Langevin equation as a generator for a noise process
with Laplace-distributed values (pure exponential decays for both positive and
negative values of the noise). We calculate explicit expressions for the correla-
tion function, the noise intensity, and the correlation time of this noise process
and formulate a scaled version of the generating Langevin equation such that
correlation time and variance or correlation time and noise intensity for the
desired noise process can be exactly prescribed. We then test the effect of the
noise distribution on a classical escape problem: the Kramers rate of an over-
damped particle out of the minimum of a cubic potential. We study the problem
both for constant variance and constant intensity scalings and compare to an
Ornstein—Uhlenbeck process with the same noise parameters. We demonstrate
that specifically at weak fluctuations, the Laplace noise induces more frequent
escapes than its Gaussian counterpart while at stronger noise the opposite effect
is observed.

Keywords: active particles, escape problem, colored noise, non-Gaussian
fluctuations, Langevin equation, Markovian embedding
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1. Introduction

How fluctuations lead to emergent behavior is a recurring theme in statistical physics. The
escape of a noise-driven particle over a potential well, the celebrated Kramers problem
[17, 20], is a paradigmatic example with many applications in different fields of science. A
lot of studies have focussed on the kind of nonlinear dynamics that is driven by the noise: be
it bistable, multistable, excitable, or chaotic. For the escape statistics, however, the nature of
the driving fluctuations has equal importance and so it is crucial to have well-understood noise
models that capture the salient features of the dynamical randomness that drives the dynamics
of interest.

Basic characteristics of dynamical fluctuations 7(f) comprise (i) its stationary statistics, i.e.
the stationary one-time probability density py(7), and (ii) its temporal correlations given by
the correlation function c(7) = (n(H)n(t + 7)) — (n(t)>2. Many studies of noise-induced effects
make the simple assumption of a white Gaussian noise; differential equations driven by such a
noise process then obey a corresponding Fokker—Planck equation for their probability density
that is a classical instrument for dealing with escape, transport and first-passage-time problems
[13, 34, 46]. If we want to relax the assumption of an uncorrelated noise (which is not met
in many systems, see [16]), but the noise still possesses Gaussian statistics, a colored noise
process can be incorporated into the Fokker—Planck framework by Markovian embedding, i.e.
by additional stochastic differential equations that generate temporally correlated noise. By far
the most popular example the Ornstein—Uhlenbeck (OU) noise in the scaled version

7—cﬁou = —Tou + 27—00'7275(1‘), (1)

where £(7) is Gaussian white noise with zero mean and (£(H)&(')) = §(t — ). Equation (1)
is the stochastic differential equation of the well-known Ornstein—Uhlenbeck process for the
velocity of a Brownian particle [45] [equivalently, it can be regarded as a Brownian motion in
a harmonic potential U, (n) = 1?/(27.), see figure 1(a)] but serves here as a generator for a

Gaussian and temporally exponentially correlated noise with pdf Py(n) = e /o) /A /27ra,,2]

and correlation function ¢(7) = o, e 171/ where o, is the variance and 7. = [~ d7 ¢(7)/c(0)
is the correlation time. More complex correlation functions are possible if we go from one
linear SDE to a system of linear SDEs (see e.g. [38, 39, 47]) but we always keep a stationary
Gaussian statistics.

On the other end, we can change the Gaussian statistics of the noise to a Lévy noise (e.g.
[7]) or Poisson noise (e.g. in [19]) but keep the limit of vanishing correlations, which has strong
effects on, for instance, the escape statistics of particles and can be described in the framework
of fractional Fokker—Planck equations [27, 42]. For the case of non-Gaussian and temporally
correlated noise, there is so far one analytically tractable example: the dichotomous noise or
random telegraph process that jumps between two distinct values (having thus a highly non-
Gaussian PDF) and possesses exponential correlations ¢(7) = e~ 17/ (identical to those of the
OU noise). Although this noise has important applications in neuroscience [9, 10, 30] and other
fields [3, 4], not all non-Gaussian processes are well captured by only two values.

Especially for random motility phenomena in biological systems, exponential distributions
of noise increments (or at least distributions with pronounced exponential tails) are often seen;
examples include the diffusive motion of colloidal beads [49], probe particles in active gels
[44], intracellular RNA protein particles [21], and nanoparticles in cells [51] (cf also the review
in [50]). These observations call for a colored noise model with exponential distribution. In this
paper we introduce such a noise model, calculate its exact correlation function, its correlation
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Figure 1. Ornstein—Uhlenbeck (OU) noise compared to Laplace (LA) noise potentials
(left), example traces (middle) and probability densities (right) for the OU noise (a) and
LA noise (b) for 7. = 1, 0> = 2. Correlation function, equation (3) in linear (c) and
logarithmic (d) scale compared to simulation results at different variances and correla-
tion times as indicated (in the shown scaling, all data collapse to a single curve); the
purely exponential correlation function of the OU noise is also displayed (c) and (d);
the deviation of LA correlation function from a pure exponential is shown in the inset in
(d) (simulation data for 7. = 1 and various values of the variance).

time and noise intensity and demonstrate that it is very close but not identical to an exponential
function. We furthermore inspect how such an exponentially distributed noise drives a parti-
cle over a potential barrier. We compare our results with that for an OU noise with the same
correlation time, variance and noise intensity and find that the exponential noise distribution
can greatly facilitate the escape rate over a barrier for an intermediate value of the fluctuations’
correlation time.

Methodologically, our approach is similar in spirit to previous suggestions to incorporate
non-Gaussian noise by a Markovian embedding: Fuentes ef al [12] and Sen and Bag [41] have
considered fluctuations with strong deviations from Gaussian statistics (yet these fluctuations
are not exponentially distributed). An obvious advantage of the noise model considered here
is that it is simple enough to allow for an exact calculation of the noise correlation function
and for a convenient control of the noise parameters correlation time and noise intensity in an
appropriately scaled version of the generating stochastic differential equation.

2. Model for an exponentially distributed noise

The basic model for the exponentially distributed noise is the overdamped Brownian motion
in a piecewise linear potential U, (n) = p|n| (see figure 1(b))

e = — 4 - Sg0(1ea) + /20 (1), 2)

where sgn(x) is the signum function and £() is again a white Gaussian noise with the afore-
mentioned properties. It is an elementary task to find the stationary probability density Py(1) =
exp(—v/2|n|/0)/V20? and variance 0 = 207 /2. More difficult is the derivation of the auto-
correlation function, for which we have found an explicit expression (the derivation is outlined
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in the appendix)

Cia(T) = 0? [(1 — %ahl - %(a7)2> \/ %am 607/21
3
+ (1 —a|7| + (a7)* + (a;-)) erfc(\/aT/Z)] . (3)

Here the abbreviation o« = 5/(47.) is given in terms of the correlation time, which reads (see
appendix)

T =

2 4)

Evidently, if we plot equation (3) scaled by the variance and in terms of a rescaled lag time 7 /7,
correlation functions for different noise parameters should fall onto one universal curve, which
is confirmed by comparison with numerical simulations (cf figures 1(c) and (d)). Remarkably,
although the expression for the correlation function is not elementary (involving a Gaussian and
a complementary error function), the resulting curve is very close to an exponential function
(the deviation from a pure exponential is shown in the inset of figure 1(d)). Thus, if properly
scaled, the main difference of the Laplace noise to the Ornstein—Uhlenbeck noise will be the
stationary distribution but not the second-order temporal correlation structure.

The simple expressions for variance and correlation time suggest to use the process in the
following parameterization

TelLA = —% sgn(rLa) + %UZTC £(). (&)

2

If we want to generate a noise with fixed intensity D instead of fixed variance o~, we simply

substitute 0> = D/ in these expressions.

3. Escape out of a cubic potential well
We now explore a nonlinear dynamical system driven by either Ornstein—Uhlenbeck or Laplace

noise. Specifically, we would like to study the escape rate from a cubic potential driven by either
OU of LA colored noise. The dynamics reads

=x— B+, ©6)

in which 7 is either given by the OU noise in equation (1) or by the LA noise generated by
equation (5). The dynamics can be regarded as that of an overdamped Brownian particle* that

moves in a cubic potential U(x) = —vx3/3 + Bx. For 3 > 0, as we will assume throughout the
following, the potential possesses a stable minimum at x,,i, = —+//3/ and a potential barrier

(maximum) at Xy, = +/5/7 (see figure 2(a) for a sketch of the potential shape); the barrier

4 Taking into account the Stokes friction coefficient I" in the overdamped dynamics T'x = —U’(x) + 1(r) could be
easily done by rescaling the parameters v, 3, and o, i.e. by using /T", 3/T", o /T" instead. For the ease of notation, we
omit the additional parameter I" here.
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Figure 2. (a): the cubic potential for 5 = 1 and v = 1 possesses a minimum at x =
—1 and a maximum (the potential barrier) at x = 1. (b): the escape rate with OU and
LA noise for a fixed variance as a function of the correlation time compared with the
asymptotic limit as in equation equation (11). (c): comparison of Laplace and Gaussian
distributions for the two values of ¢ as indicated. The shaded area to the right of n =1
shows the relevant range of integration in equation (11) (n > 3): for o> = 0.2 (upper
panel), the fatter tail of the Laplace distribution leads to higher escape rates whereas for
02 = 1 (lower panel) the Gaussian has more probability, at least if 7 is still close to the
critical value, which results in higher escape rates for the OU noise. Parameters in (b) and
(c): B = 1,7 = 1 (corresponding to a barrier height of AU = 4/3). (d): inverse rate as a
function of the potential barrier AU (varied solely by changing ~) for 8 = 1, 7. = 100
from simulations (symbols) compared to the theoretical formulas for the large-7. limit
(dashed lines), equation (12) (LA noise) and equation (13) (OU noise); the dotted line
marks the potential barrier used in (b) and (c). In all numerical simulations of this figure
we used a simple Euler—Maruyama integration scheme with a time step of At = 1073,
initial and final points at x; = +10.

_4 |7
=55

The system is also known as the normal form of a saddle-node bifurcation (occurring at 5 = 0
and usually defined with the parameter 3 having the opposite sign) and the escape-time problem
has been studied in computational neuroscience under the label of the firing rate of the quadratic
integrate-and-fire neuron [5, 24].

We start the dynamics at x(f) = x_ = —10 and consider an escape to have taken place at
timet + T if x(t + T) reaches x; = 10; we then reset x to x_ (the noise ) is not reset), register 77
as one realization of the first-passage time from x_ to x_, and continue simulating the dynamics
in order to measure the next escape time. The escape rate is then given by the inverse of the
mean first-passage time:

r=1/(T);

height is given by

AU (N

®)
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the average (. . ) is taken over a long sequence of subsequent escape times.

With a correlated noise, different choices for the initial value of the noise at the beginning
of the escape process are possible: one can start the noise for each escape realization at a fixed
value (e.g. in [48]), draw it for each escape initially from the stationary probability density of
the noise process (e.g. in [18]), or let it evolve unaffected by the escape process itself (e.g. in
[29]). As mentioned above, we follow the latter procedure which is adequate when the colored
noise is an external one and when there is an intrinsic mechanism that brings the variable right
after escape quickly back to its starting point so that we can measure the escape rate from a
temporal sequence of escape events.

Thanks to our rescaled dynamics and the knowledge of noise variance, intensity and corre-
lation time for both processes, we can compare the effect of the statistical distribution on the
escape rate—does an exponential distribution of noise values generally lead to higher or lower
values of the escape rate than a Gaussian noise with the same variance, intensity and correlation
time? Or is the role of this statistical feature negligible? We study the rates as functions of the
correlation time 7 separately in two scenarios: for a fixed noise variance o (or, equivalently,
standard deviation) and for a fixed noise intensity D = o>7. = const because these different
scalings admit different limit cases for vanishing and infinite correlation time.

3.1. Escape rate with fixed variance

The escape rates with OU and LA noise for two different values of the variance are shown in
figure 2(b) and as functions of the noise correlation time.

In this setting with fixed noise variance, both rates become monotonically increasing func-
tions of the correlation time. We can easily understand that in the limit 7. — O the escape rate
has to go to zero: in this limit, the noise process does not affect the driven dynamics because its
effect averages out; the combination of a limited standard deviation and a vanishing temporal
correlation is equivalent to zero noise intensity.

In the other limit of 7. — oo, the escape rate saturates for both noise processes at finite
values. Interestingly, for a small noise variance (upper panel in figure 2(b)), the rate for the
LA-driven system is larger than that of the OU-driven system—for the larger noise variance it
is the other way around. We can understand this and also gain an analytical approximation of
the rate in the limit of large correlation time (shown in figure 2(b) by dashed horizontal lines)
as follows.

If the correlation time is very long in comparison with the typical escape time, we can
assume that the external noise remains approximately constant during the escape (similar
approaches have been pursuit in computational neuroscience for integrate-and-fire models
driven by colored noise, see e.g. [28, 29]). If n is constant, we can integrate the dynamics
over x and obtain by standard methods

o~ /x+ W 1 _ arctan (ﬁ) — arctan ( \/7(‘17*—75)) )
X =0B4n V(= B) ’

which obviously has a finite solution only if n — 8 > 0. With a frozen value of 7, we obtain
a particularly simple result if we let initial and threshold values go to infinity (x4 — £00); in
this case the rate (the inverse of the first-passage time) is given by

1 —
o) = = = 7”(’;5). (10)
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This expression describes the escape rate in the asymptotic limit only for values of
1 2 Naiiea = J- In order to find the escape rate for all values we have to average this expres-
sion with its corresponding stationary distribution (see [29] for a thorough discussion of why
one has to average the inverse time to obtain the rate):

r=/ﬁ dn Po(m)r(n). Y

This is the point at which the distribution of noise can make a difference.
For the Laplace noise, we can calculate the corresponding integral explicitly and obtain

1 Yo —\/2’3/
r — e Pro. 12
MAT g V2r (12)

For the OU noise, equation (11) leads to an expression in terms of modified Bessel functions
of the second kind K, (x) [1]

3/2 2 2 2
B () (@)

The two expressions equations (12) and (13) match well the numerical simulations results for
correlation times 7, > 10!,

Considering the noise distributions (cf figure 2(c)), we can also qualitatively understand,
why at low noise variance the OU noise leads to a larger escape rate and why this effect is
reversed at larger noise variance. At weak noise (o> = 0.2) there is for most of the relevant
range over which we integrate in equation (11) a higher probability for the exponential noise
because it decays slower than the Gaussian noise in the relevant tail. For the larger noise, the
picture is more complicated: initially (and these are the values that contribute most probability
to the integral), the Gaussian distribution is larger—only at very high values the exponential
tail exceeds the Gaussian function. In consequence, the rate is higher for the Gaussian noise
and will be even higher if we further increase the noise variance.

We can also find the values of the variance o2 at which the escape rates for both noise
sources are equal. Setting the rates equal, we obtain a transcendental equation in $/c, which
has a unique solution 3/0 & 1.3206 and thus we get the following relation between variance
and the potential parameter /3 (independent of the potential parameter ):

o2 ~0.573395°. (14)

This result is plausible: the further minimum and maximum are apart and the higher the poten-
tial barrier, the larger will be the noise amplitude at which the Gaussian-noise-induced escape
rate exceeds the rate of escapes due to exponential noise. Of course, the principle scaling
relation (noise standard deviation is proportional to absolute value of 3) can be obtained by
renormalizing the parameters of the system (similar to what is done in [22]).

We note that in both equations (12) and (13), there is no Arrhenius- or Kramers-like depen-
dence on the potential barrier AU as in r ~ exp(—AU/D). This is to be expected because
first of all in the strict static limit 7. — oo, the noise intensity D = o7, diverges if we keep
the variance constant—the Arrhenius dependence holds only true, however, for AU >> D and
thus cannot be a valid description of the rate anymore. Another way to see that an Arrhenius-
like dependence does not work in this limit is to change the barrier height by varying the
parameter 7. According to equation (7), we have AU ~ 1/, /7, by means of which we obtain

7
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for both LA and OU noise r ~ 1 /AU, a much weaker dependence on AU than the exponen-
tial relation in the classical Kramers rate. In figure 2(d) we compare simulation results for
the inverse of the rate in the case of a long-correlated noise (7. = 100) as a function of the
potential barrier to the approximations equations (12) and (13); plotted in this way, the data
follow indeed roughly the theoretically predicted linear relationship on AU. Small sublinear
deviations for higher barriers can be explained by the fact that the theory requires 1/r < 7,
which is not obeyed for larger barriers in figure 2(d) (for any large but finite value of the corre-
lation time, there is an upper bound for the barrier height, for which r ~ 1/AU). In any case,
the relation is very different than the exponential function 1/r ~ exp(AU/D) (Arrhenius- or
Kramers-like dependence).

3.2. Escape rate with fixed noise intensity

We now turn to a different scaling, in which we use in all of the above equations and formulas
D = 0?7, = const when varying 7.. We will see that this permits a non-trivial white-noise
limit 7. — 0 and an entirely different physical effect.

The rate for constant noise intensity is shown as a function of the correlation time in figure 3.
Both curves start at the same rate for very small 7, the firing rate for the exponential noise then
starts increasing strongly and finally drops down to zero at large correlation time. The firing
rate for the system with OU noise decreases monotonically. Put differently, the exponential
noise statistics leads to a strong amplification of the Kramers rate at intermediate correlation
times. This effect is more pronounced for a smaller value of the noise intensity. We start with
the analysis of the limit cases of vanishing and infinite correlation times and then explain the
cause for the maximum.

First of all, it is not difficult to understand why the rate has to drop to zero in the limit of
infinite noise correlation time. For a fixed noise intensity, the variance is given by 0> = D/7
and has to go to zero as 7. — 00. A zero-variance noise will not cause any escape independent
of its correlation time.

In the opposite limit 7. — 0 we deal with Gaussian white noise in both cases of
Ornstein—Uhlenbeck and Laplace noise. While it is well-explored and well-known that the
Ornstein—Uhlenbeck process converges to white Gaussian noise for 7. — 0, the same conver-
gence might be surprising for the Laplace noise—after all, for any value of the correlation
time, a snapshot of noise values over different realizations of the Laplace noise would be of
course still exponential. So why would this noise act effectively like a Gaussian white noise in
the limit 7. — 0? This problem has already been thoroughly addressed for other non-Gaussian
noise processes [12]; here we would like to discuss it briefly for our model in a qualitative
manner.

The answer to the above question is best understood if we think in terms of a finite
integration scheme for equation (6):

t+At
x(t + Af) = x(1) + (yx(1)> — B)AL + / dr' n(t), (15)

which describes the trajectory sufficiently well if we choose a sufficiently small but fixed value
of Az. If we let 7. become smaller and smaller, the last term turns into an integral over a rapidly
changing function i.e. over a sum over many independent function values, and thus will attain
Gaussian statistics according to the central limit theorem. It is not hard to calculate that the
variance of the integral term will approach 2Ato?7.. Thus, independent of the instantaneous
distribution statistics of the noise values 7(f), the noise increments will in the limit 7. — 0

8
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Figure 3. The escape rate with OU and LA noise for a fixed noise intensity as a function
of the correlation time. The time step used is between df = 1073 and df = 10~ for
small 7.. The white-noise limit for small 7. is compared with the quadrature result,
equation (17), and the white-noise Kramers rate, equation (18); the asymptotic limit is
compared with the theoretical results in equations (12) and (13). Remaining parameters:
f=1y=1

correspond to that in the white-Gaussian-noise driven dynamics
& = yx* — B+ V2DE®). (16)

Indeed, in both cases (LA-noise- and OU-noise-driven escape problem), the rates approach
the same value for 7. — 0 that can be exactly calculated by a numerical evaluation of a double
integral or approximated by classical Kramers formula as follows. First of all, one can employ
the first-passage-time approach for white-noise driven systems [13]. The mean first-passage
time can be expressed by the following double integral [24]:

1 *+ w3 3-px [ w336y
(T(x_ —x4)) = l_)/ dxe "D dye” 1o . (17)

—00

In this paper we are interested in the noise with small intensity, so we can also consider the
Kramers escape rate which gives a good analytical approximation of the escape rate with white
noise for small values of D, and it is given by [8, 24]:

4 [
-5\

VB

r~ —— exp
T

_ VP {_AU} . (18)
T D
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While this approximation is a reasonable one for D = 0.2 as in figure 3 (top), there are clearly
deviations for larger noise intensity, e.g. D = 0.5 in figure 3 (bottom).

The most interesting effect is the emergence of a strong maximum for intermediate values of
the correlation time. How can we understand this effect, at least qualitatively? It is reasonable
that for a nonvanishing correlation time the exponential tails in the Laplace noise will lead
to noise increments that are larger than the typical Gaussian increments. Half of the times
these increments are also positive and may contribute to an escape event. The effect of these
non-Gaussian outliers in the noise statistics becomes especially important in the weak-noise
limit—which is the classical limit for the Kramers rate. Hence, we can also understand why
the effect is more pronounced at weaker noise.

4. Summary and conclusions

We have developed a simple model for an exponentially distributed noise process. We have
found exact expressions for its correlation function, noise intensity, and correlation time. A
closer inspection revealed that the correlation function of the exponential Laplace noise is
very close to the purely exponential correlation function of the Ornstein—Uhlenbeck process,
the most often used model for a Gaussian colored noise. This means, that the main difference to
the latter is the exponential distribution of the noise values. It is thus very simple to explore the
effect of the stationary one-time noise statistics in nonlinear dynamical systems by comparing
the effect of the Laplace and Ornstein—Uhlenbeck noise sources, especially if the properly
scaled dynamical equations (1) and (5) are used.

As a first example we considered the escape problem over a potential barrier. We found
that indeed in several respects the distribution of the noise made a difference for the value of
the escape rate. In the constant-variance scaling, we could derive a simple relation telling us
for which noise variances the Laplace noise leads to a higher rate than the OU noise does.
In this scaling the differences between the rates are most pronounced in the slow-noise limit
T. — 00, where we can calculate the rate for both noise models and understand why at small
noise variance the exponential tail of the Laplace noise leads to higher escape rates.

An even more interesting related (but not identical) effect was observed in the constant-
noise-intensity scaling. Here the Laplace noise evokes a much stronger escape rate than the
Gaussian noise but it is still highly dynamic at the point of maximal amplification. Unfortu-
nately, we have not found yet a way to estimate the rate in this limit. The most promising
approach to this problem seems to be the two-dimensional Fokker—Planck equation as used
in [5] for the OU-noise and to solve the problem for small values of the correlation time by a
perturbation calculation. This is certainly an interesting exploration for future studies but goes
beyond the scope of our paper.

Most promising are applications of the Laplace noise to models of active motion, e.g. active
Brownian particles [11, 35] that, already in one dimension, show interesting diffusion prop-
erties [25], uncommon behavior in the escape over a barrier [6, 14] and in the rectification of
fluctuations in ratchet potentials [2, 33, 40]. In order to take into account increment statistics
with exponential tails seen experimentally (see e.g. [26, 31]), exponentially distributed noise
(or a combination of such noise with Gaussian fluctuations that model thermal noise) should
be used. So far, only the effects of dichotomous and Gaussian colored fluctuations on the dif-
fusion coefficient of active particles have been explored [23]. The noise process put forward
here allows for a more systematic investigation of the effects of colored non-Gaussian noise
in active motility models. This could also be of interest for systems of interacting active parti-
cles in higher spatial dimensions, where structure formation [15, 32, 36], alternations between
ballistic and diffusive motion [43], and nontrivial behavior close to surfaces [37] are observed.
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5. Dedication

I would like to dedicate this paper to my teacher, collaborator, and friend Lutz Schimansky-
Geier (1950-2020), whose ideas, insights, and passion for stochastic physics had a deep impact
on my scientific thinking (BL).

Appendix. Derivation of the correlation function

The correlation function C(7) of a stochastic process 7(¢) can be expressed by its stationary
distribution Py(n) and the transition probability P(n, 7|7/, 0) as follows [13]:

C(7) =/ d??'/ dnn'n Po()IP(, 7|n') — Po(m], 7> 0. (A.D)

The transition probability for the exponentially distributed noise given in terms of the Langevin
equation (2) obeys the following Fokker—Planck equation (FPE)

OP(n,tn) 0 0? ,

AR — | P(n, 1), A2
5 an " sgn(n) + Q o7 (. 1)) (A2)

which has to be solved with natural boundary conditions (lim, .+, P(1, #{n’) = 0) and the ini-

tial condition P(n), t = O|ny') = d(n — n'). First of all, the asymptotic solution of the FPE is given

by the Laplace distribution; it is obtained by setting the time derivative to zero and solving for

the zero-flux solution (which is implied by the natural boundary condition):

20

(the prefactor follows from the normalization of the density).
As shown in [34], the solution can be expressed by an eigenfunction expansion with contin-
uous spectrum that can be found by mapping the FP equation to a Schrédinger equation with

an attractive delta function potential of the form: Vi(x) = % — pd(x). Besides the eigenvalue

Po(n) = 2= exp (—gnl) (A3)

. . . . 2
zero (corresponding as usual to the stationary solution), the eigenvalues read \; = b + Qk?
for 0 < k < oo with even and odd eigenfunctions given by

2k cos(kn) — (u/ Q) sin(k|n|))

VAR + (/)%

G0 = 77 sin(kn).

Yr(n) =

In terms of these functions and the steady state distribution, the full transition probability
density reads

P(n, 1|rf) = Po(n) + ¢~ =170 / dk e M2y
0

e B0 [T gke Sz, (A4
0

Now we can use this formula to find the correlation function using equation (A.1). Evidently,
the term Py(7) drops out immediately and we are left with two separate integrals corresponding

1
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to the even and to the odd eigenfunctions:
C(1) = C5(1) + C°(7). (A.5)

The first term involves the even eigenfunctions:

C(r) = / dn’n'/ dnn%e_i%("”‘_"’/‘)_é"’/‘

o0 (Zk cos kr — 7 sin k|n\) (Zk cos kif' — % sin k|n’\) e M
X / dk 5
0 <4k2 + (/é) ) ™
—0. (A.6)

Because the integrand is odd in 7, the corresponding integral yields zero.

So only the odd eigenfunctions contribute to the correlation function; inserting the probabil-
ity densities, changing the order of integration in a similar fashion as above, using the symmetry
of the integrands in the integrals over 7 and 7/, and performing the elementary integral over
the product of linear function and complex-values exponential functions, we arrive at

(1) = /OO dn/oc a2 e_‘z%(\'n\ﬂn’\)/oo g Sk sin ko
—00 —00 2'Q 0 T
/oo d U ef/\kT (2/00 q - _L,]> 2
= sin kne 20
A 207 A nn n
B /oo dk,uefx\kT 32/~LQ3k 2
o207 \@P F4QK)

_ 2 / Tk ew [0k P —ork]. (A7)
0 o (k)

The last integral has been carried out using the computing software Mathematica and yields
the final expression for the correlation function:

oy (2 prr? Tt T

20 2ur @7 \/Ef
(g )T 4

which, after expressing parameters with 0 = 2Q/u%, 7. = 5Q/(2u?), and a = 5/(47.) used
in the main text is identical with equation (3).

We can use this expression together with that for the variance o2 to determine the correlation
time, defined by

- /°° ar €0 (A.9)
0

Inserting the above expression, the integral can be evaluated explicitly. As an alternative way
to calculate the correlation time (and as a test of our analytical result), we can use Risken’s

12
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integral formula for the correlation time of an overdamped Brownian motion in a potential
U(x) (see the supplement of the second edition of Risken’s text book [34]). The result is the
same in both cases and given in equation (4).
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