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Self-consistent autocorrelation of a disordered Kuramoto model in the asynchronous state
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The Kuramoto model has provided deep insights into synchronization phenomena and remains an important
paradigm to study the dynamics of coupled oscillators. Yet, despite its success, the asynchronous regime in the
Kuramoto model has received limited attention. Here, we adapt and enhance the mean-field approach originally
proposed by Stiller and Radons [Phys. Rev. E 58, 1789 (1998)] to study the asynchronous state in the Kuramoto
model with a finite number of oscillators and with disordered connectivity. By employing an iterative stochastic
mean field approximation, the complex N-oscillator system can effectively be reduced to a one-dimensional
dynamics, both for homogeneous and heterogeneous networks. This method allows us to investigate the power
spectra of individual oscillators as well as of the multiplicative “network noise” in the Kuramoto model in the
asynchronous regime. By taking into account the finite system size and disorder in the connectivity, our findings
become relevant for the dynamics of coupled oscillators that appear in the context of biological or technical
systems.
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I. INTRODUCTION

The synchronization of oscillators has been a focal point
of interest for multiple scientific disciplines, with applications
spanning from neuroscience to power grids [1–3]. While syn-
chronized states and their properties have been explored in
depth, the asynchronous states, which are also prevalent in
many systems [4–10], remain a less explored area of study.
In particular, the classical Kuramoto model has provided a
foundation for understanding synchronization in a system (or
network) of coupled phase oscillators [3,11]. However, real-
world networks often exhibit more intricacies as, e.g., disorder
in both the natural frequencies of individual oscillators and
the network topology (interaction strengths), which can lead
to more nuanced behaviors that the basic model might lack.
While the effects of different types of heterogeneity in the
network have begun to be addressed in earlier studies, these
mostly focused on the characterization of different dynami-
cal regimes with at least partial synchrony (see, e.g., [12]).
Here, we are more interested in the asynchronous state, which
has received relatively little attention in comparison. In par-
ticular for neuronal networks, synchronous states can often
be considered pathological, whereas the asynchronous state
corresponds frequently to the default [13]. To advance our un-
derstanding of network dynamics in such asynchronous states,
we therefore aim to deliver here a proper characterization of
such states in the paradigmatic Kuramoto model.

Important characteristics of the asynchronous state are the
fluctuation statistics of the single oscillators as well as of
the effective drive of individual oscillators due to couplings.

*Contact author: ygmrkati@gmail.com

The open problem for theory is to find approximations for
correlation functions or power spectra of these observables. It
is interesting to see how the fluctuation statistics depends on
the disorder of the oscillator frequencies and the connectivity.
If the dynamics of the single oscillators is more complicated,
e.g., given by a multidimensional system of differential equa-
tions for each oscillator, then the above questions can only
be addressed by numerical simulations of the network. How-
ever, such simulations of a large network of oscillators can
be computationally expensive and do not offer much mech-
anistic understanding of the fluctuation statistics. While the
Ott-Antonsen ansatz [14–19] has been used to simplify the dy-
namics of certain oscillator networks to a lower-dimensional
invariant manifold, it is only suitable for noiseless net-
works with homogeneous connectivity. This approach may
not capture all dynamics in heterogeneous networks or in the
presence of noise. In Refs. [20,21] a heterogeneous network
with independent binary elements has been studied which in-
cludes both negative and positive couplings, yet these authors
did not include a random connectivity matrix. A method that
considers disordered connectivity and noise is thus needed to
accurately analyze more general situations. In this context,
the iterative mean field approach, which effectively reduces
the N-oscillator system to a one-dimensional self-consistent
representation, emerges as a powerful tool. It has been ap-
plied to recurrent network models of rate units [22–24], of
integrate-and-fire neurons [25–27], of rotator units [10,28,29],
and to disordered chains of Ising spins [30]. For a Kuramoto
model with random connectivity, the stochastic mean field
theory that underlies the iterative approach was worked out
by Stiller and Radons [31] but applied only to the relaxation
of the order parameter, but not to the stationary fluctuations.
The results of this simplified description, as we will illustrate
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here, agree well with those of the full network dynamics
for heterogeneous Kuramoto networks with frequency and/or
connectivity disorder. Specifically, we aim here to analyze the
effects of randomness in interactions and leverage the IMF
approximation to this end. We focus our investigation on the
spectra of the single oscillators and of the network noise,
presenting a fresh perspective on the asynchronous dynamics
of oscillator networks. In addition to expanding the theoretical
framework, our investigation also serves to fill the gaps left
by previous research on the heterogeneous Kuramoto model.
Prior attempts have approached the numerical integration of
1D dynamics with iteration primarily to compute the time-
dependent order parameter [31,32]. However, the main focus
here is the temporal correlation statistics of the stationary
fluctuations.

Our paper is organized as follows. We start by presenting
the network model and the stochastic iterative mean field
method used to compute the spectral statistics, followed by
a detailed comparison of analytical and numerical results. We
then take a detailed look at the network noise power spectra
properties, ending with a summary and discussion of our key
findings.

II. THE MODEL

We investigate a system described by the heterogeneous
Kuramoto model, a paradigm for weakly coupled oscillators.
Each oscillator in this network is characterized by the follow-
ing dynamics of its phase θ� (� = 1, . . . , N):

θ̇�(t ) = ω� +
N∑

m=1

K�m sin (θm(t ) − θ�(t )) + ξ�(t ). (1)

Here, ω� are the natural frequencies of the oscillators, K�m are
the coupling coefficients between the oscillators, and ξ� are
independent noise processes. The ω� are taken to be Gaussian
distributed with

ω� = G�σω, 〈ω�〉 = 0, 〈ω�ωm〉 = σ 2
ωδ�m (2)

where each G� (� = 1, . . . , N) is an independent Gaussian
random variable with vanishing mean and unit variance. The
coupling coefficients K�m are also taken to be independent
Gaussian numbers with

K�m = K

N
+ kG�m√

N
, 〈K�m〉 = K

N
,

〈K�mK�′n〉 = δ��′δmn
k2

N
+ K2

N2
, (3)

where G�m (for �, m = 1, . . . , N) denotes a N × N Gaussian
matrix with mutually independent entries of standard devi-
ation one and mean zero. Note that in our setting K�m and
Km� are uncorrelated. We consider the ξ�(t ) to be Gaussian
white noise with 〈ξ�(t )ξm(t ′)〉 = 2Dδ(t − t ′)δ�m, i.e., uncorre-
lated between individual oscillators, with noise intensity D.
We initialize the system with all oscillator phases θ� drawn
independently from a uniform distribution in [0, 2π ].

In our study for completely deterministic network oscilla-
tors (D = 0), we used the Runge-Kutta method to explicitly
integrate Eq. (1); in the stochastic case (D > 0), we used the

FIG. 1. Synchronous and asynchronous regimes of the model.
Variation of the order parameter r as a function of coupling strength
K (solid lines). There are three scenarios: disorder in connectivity
(blue), disorder in frequencies (red), and concurrent disorder in
both connectivity and frequencies (green). This paper exclusively
focuses on the asynchronous regime (shaded areas). Parameters:
N = 104 oscillators, MN = 20 realizations. Insets: Phase θ (t ) mod
2π for a subset of randomly chosen three oscillators (k = 1,
σω = 1). Left: Asynchronous state (K = 0); Right: Synchronous state
(K = 5).

Euler-Maruyama method. In both cases, we refer to the inte-
gration of Eq. (1) in the following as network dynamics (ND)
method. We discard a transient simulation time of td = 103

and use a high relative tolerance of the Runge-Kutta method
from 10−8 down to 10−14 (for D = 0). The time window
of further computations (e.g., Fourier transforms) is denoted
by T and chosen depending on parameters from 103 to 105

(see figure captions). We also performed simulations with a
simple Euler-Maruyama method (for D = 0 and D > 0) with
time step dt = 0.01 and obtained (for D = 0) results that were
quantitatively very close to those of the Runge-Kutta method.

In order to distinguish synchronous and asynchronous
regimes in the model, it is useful to inspect the order parameter
of the Kuramoto model, r, defined by

reiψ = 1

N

N∑
�=1

eiθ� . (4)

For a finite network, both the phase ψ (t ) and the order
parameter r will show fluctuations that can be reduced by
temporal averaging. In Fig. 1, we present the time-averaged
order parameter r obtained by averaging over the time win-
dow T after the transient td is discarded. Subsequently, this
averaged result is further processed by averaging over MN

disorder realizations of connectivities and/or frequencies. The
figure displays the order parameter r versus the average cou-
pling constant K for three different cases: oscillator-frequency
disorder with σω = 1 and no disorder in the couplings (blue
line), connectivity disorder with k = 1 and no disorder in the
natural frequencies (red line), and a combination of both types
of disorder. As expected, the stronger disorder in the system
leads to a larger range of coupling strengths for which the
system is in an asynchronous state, i.e., has a small order
parameter r � 1. Generally, asynchronous states in complex
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systems occur when the average coupling constant K is below
a critical coupling Kc. In the asynchronous regime, the order
parameter scales as 1/

√
N [33]. This can be motivated by

looking at the squared order parameter’s expected value:

〈r2〉 =
〈

1

N2

∑
�

∑
�′

eiθ�eiθ�′

〉

= 1

N
+

(
1 − 1

N

)
〈ei(θ1−θ2 )〉 ≈ 1

N
. (5)

In the second to last step, we simplify the sum by choosing
two distinct oscillators (all pairs of distinct oscillators are
statistically equivalent). In the last step, we take into account
that the oscillators are asynchronous, i.e., θ1, θ2 are statisti-
cally independent and their phases are uniformly distributed.
The critical coupling constant for the homogeneous Kuramoto
network with Gaussian-distributed frequencies is analytically
found as Kc = σω

√
8/π [3]. For a system of N = 104 os-

cillators, as shown in Fig. 1 where we set σω = 1, k = 0,
we numerically found that r(

√
8/π ) ≈ 0.16 because of the

finite-size effect (the value approaches zero for N → ∞). Ac-
cordingly, whenever we have N = 104 oscillators, we define
the asynchronous areas when r � 0.16 also for the cases with
heterogeneous connectivity (areas shaded in blue and green).
In the two insets of Fig. 1, we show the oscillator behavior
over time θ�(t ) for three selected oscillators in the system.
As expected, the oscillators in the asynchronous state (K = 0)
show a random behavior over time, while they keep a small
phase difference for the synchronous case (K = 5).

As a measure of the fluctuations in the asynchronous state,
we analyze the power spectrum Sx�

of individual oscillators
in networks with different types of disorder: in the natural
frequencies, in the connectivities, and in both. An oscillator
is represented here by its complex pointer x� = eiθ� , allowing
us to compute its power spectrum with

Sx�
(ω) = lim

T →∞
〈x̃�(ω)x̃∗

� (ω)〉
T

, x̃�(ω) =
∫ T

0
dteiωt x�(t ),

(6)

where the angular brackets represent an average over time (see
below). We can also look at the power spectrum averaged over
all oscillators:

Sz(ω) = 1

N

N∑
i=1

Sx�
(ω), (7)

which, in the asynchronous state where individual oscillators
are uncorrelated, is equivalent to the power spectrum of the
observable

z(t ) = 1√
N

N∑
�=1

x�(t ). (8)

For the numerical evaluation of the time average of the power
spectra in Eq. (6) we cannot perform the limit T → ∞ but
have to use a sufficiently large total time window, such that
even a fraction of this window T/MT (see below for an
explanation of MT ) captures the slowest time scales of the
stochastic process; depending on the parameters, we use here
total time windows of T = 104 or T = 105. The average is

performed in three ways, depending on the specific measure
considered. For the single oscillator spectra, we average only
over MT consecutive smaller time windows of size T/MT ,
keeping the network connectivity and frequencies of the os-
cillators fixed. The time average is practically carried out by
performing the Fourier transforms over the large time window
of T and smoothing the raw spectrum over MT neighboring
frequency bins such that the resulting coarse-grained fre-
quency bin is 
ω = 2πMT /T . The effective time window
of T/MT = 100 is still large enough for an estimation of the
power spectrum; depending on the above stated size of the
time window, this amounts to either MT = 100 (for T = 104)
or MT = 1000 (for T = 105). In other situations, as indicated,
we will also average over MN realizations in each of which
we draw random values of coupling coefficients K�m and the
initial oscillator phases θ�; if explicitly indicated, we also draw
random values of the oscillator frequencies, otherwise they
remain constant.

We are interested in the dependence of these power spectra
on the properties of the network, i.e., the disorder in the
frequencies, in connectivities, and the dynamical noise. We
study both large as well as small systems.

III. DERIVATION OF SELF-CONSISTENT EQUATION

Stiller and Radons have developed a stochastic mean-field
theory [31] that describes the dynamics of a single oscillator
driven by a Gaussian network noise with self-consistent auto-
correlation statistics. Their derivation is based on the method
of generating functionals, and they applied their result to the
problem of relaxation into the steady state using a method
pioneered by Eissfeller and Opper [30]. Here we give an
alternative, simplified derivation of the stochastic mean-field
dynamics and apply the self-consistent iterative method to the
problem of stationary power spectra of single oscillators and
network noise. Note that a similar approach has been used
for random networks of integrate-and-fire neurons [25–27],
pulse-coupled [10], and non-Kuramoto coupled oscillators
[10,28,29].

In our setting of the model, we deviate in two respects
from the model considered by Stiller and Radons: (i) the mean
value of the interaction is not zero, i.e., we also include in
this way the original Kuramoto model; (ii) the interaction
between oscillators is completely random (this is the special
case with Stiller and Radon’s parameter η = 0). Furthermore,
we include a finite-size correction in our theory that is not
present in Stiller and Radon’s theory.

Starting from the network dynamics defined by Eq. (1),
we rewrite the sine coupling using complex exponentials,
which permits us to write the coupling term as a multiplicative
network noise that is multiplied with a complex exponential of
the driven phase variable:

θ̇�(t ) = ω� + ξ�(t ) +
N∑

m=1

K�m

2i
(ei(θm (t )−θ�(t )) − e−i(θm (t )−θ�(t )) )

= ω� + ξ�(t ) + Im(e−iθ�(t )ζ�(t )). (9)
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Here we introduced the network noise,

ζ�(t ) =
∑

m

K�meiθm (t ). (10)

For a large network in the asynchronous state, this noise com-
prises many independent stochastic processes, a superposition
with Gaussian statistics by virtue of the central limit theorem.
For the correlation function of this noise, we find

〈ζ ∗
� (t )ζ�(t ′)〉 =

∑
m,n

〈K�mK�nei(θm (t ′ )−θn(t ))〉 (11)

=
∑
m,n

(
k2

N
δmn + K2

N2

)
〈ei(θm (t ′ )−θn(t ))〉, (12)

where we have used that the connection strengths K�m and
K�n are uncorrelated with the phases of the driving (mth and
nth) oscillators, and thus the exponential term and the product
of coupling strengths can be separately averaged, which also
eliminates the explicit dependence on � (the correlation statis-
tics of the network noise is the same for all oscillators). Taking
into account that different oscillators will be uncorrelated
in the asynchronous state, 〈ei(θm (t ′ )−θn(t ))〉 = δmn〈ei(θm (t ′ )−θm (t ))〉,
we can carry out the sum and arrive at

〈ζ ∗(t )ζ (t ′)〉 =
(

k2 + K2

N

)
〈ei(θ (t ′ )−θ (t ))〉. (13)

Importantly, on the right-hand side, we find essentially the
autocorrelation function of the pointer eiθ (t ) of a single phase
variable, but averaged over all oscillators; note that we there-
fore suppressed the indices on both sides. In Fourier space, the
same relation reads

Sζ (ω) = (k2 + K2/N )Sz(ω). (14)

The network noise power spectrum is directly proportional
to the power spectrum of the single oscillator’s pointer, av-
eraged over all oscillators, which reflects the self-consistence
between the activity of the single rotator and the fluctuation
by which it is driven.

To summarize, in the large-N limit, we can transform the
N oscillator problem Eq. (1) into a single oscillator problem
with self-consistent noise statistics:

θ̇ (t ) = σωξω +
√

2Dξ (t ) + Im(e−iθ (t )ζ (t )) (15)

where ξ (t ) is a Gaussian white noise with correlation func-
tion 〈ξ (t )ξ (t ′)〉 = δ(t − t ′), and ξω is a static noise obeying
〈ξω(t )ξω(t ′)〉 = 1. The real-valued Gaussian noise processes
ξω and ξ (t ) and the complex-valued network noise ζ (t ) have
all zero mean. While the statistics of ξω and ξ (t ) are known be-
forehand and can simply be simulated in Eq. (15), the statistics
of the network noise has to be determined self-consistently
from the driven phase variable via Eq. (13) or its Fourier
variant Eq. (14), which is in turn shaped by the network
noise. The noise statistics can be determined by an iterative
procedure detailed below. We note that the analytical approach
of Ref. [10] cannot be applied in the current case because the
equivalent network noise (or total input) Im(e−iθ ζ (t )) appear-
ing in Eq. (15) turns out to be non-Gaussian.

At the core of what we refer to in the following as iterative
mean field (IMF) method stands the insight that a Gaus-
sian noise with a prescribed power spectrum can be easily

produced by generating random numbers in the frequency
domain and subsequent Fourier transformation [34]. More
specifically, for each trial, if we draw two independent arrays
of Gaussian numbers, Gr (ω) and Gi(ω) with zero mean and
unit variance, where each element corresponds to a frequency
bin (uncorrelated with each other and among the frequency
bins), then

ζ̃ (ω) = (Gr (ω) + iGi(ω))

√
Sζ (ω)T

2
(16)

constitutes the Fourier transform of a Gaussian noise with
power spectrum Sζ (ω), the inverse Fourier transform of which
will provide a sample of this surrogate noise process. Equa-
tion (16) is based on the central limit theorem, which implies
that the combined effect of many independent stochastic pro-
cesses in a large network is approximated by Gaussian noise,
provided the single processes possess a finite variance. In our
specific system, it means that the coupling coefficients should
be i.i.d. and have a finite variance; they do not have to be
Gaussian (although for simplicity we chose them to be Gaus-
sian for all our numerical examples). We have confirmed that
this method works for Lorentzian-distributed natural frequen-
cies but fails for Lorentzian-distributed coupling coefficients
(because they possess an infinite variance).

In our iterative routine, we start with a Gaussian noise with
a Lorentzian power spectrum γ /[π (ω2 + γ 2)] and then solve
Eq. (15) for a number of realizations that we categorize as
follows. For a given random value of the frequency σωξω, we
produce MI trials (realizations) by generating different real-
izations of the network noise. We repeat this N times for the
N different frequencies of the network oscillators, such that
the total number of trials is Mtrial = N · MI . From the Mtrial

trials, we compute the power spectrum of the pointer eiθ (t ) and
determine the next (improved) version of the power spectrum
of the network noise Sζ (ω) via Eq. (14). The latter is then used
to obtain surrogate noise samples for the next iteration step.
Note that the number of oscillators N in the network enters
twice in the IMF simulation scheme: Once by the amplitude
of the network noise in Eq. (14) [later used in Eq. (16)] and,
second, by the number of frequencies drawn in each iterative
step. If the number of iterations, I , is large enough, the noise
spectrum does not change anymore (for the parameters used in
Fig. 2 this is already the case for I = 15). After convergence
has been reached, we can also obtain the spectrum of an
individual oscillator with frequency ω� = σωξω by simulating
Eq. (15) with a fixed eigenfrequency and subsequent Fourier
transformation of the dynamics of the pointer eiθ (t ). In cases
where the average power spectra Sz are of interest, we call
new Gaussian-distributed random numbers σωξω for each of
the Mtrial realizations—i.e., not only once for each of the
N oscillators but also for each of the MI trials—differing
from the approach used to compute the single oscillator
spectra Sx�

.
While we begin our iterative scheme with an Sζ that has

a specific Lorentzian distribution (see Fig. 2), our tests show
that other random distributions, such as those with different
widths of Lorentzian, uniform, and Gaussian distributions,
do also converge to the ND result after enough iterations.
Note that using a smaller Mtrial (less than 103) leads to an
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FIG. 2. Convergence of the iterative mean field (IMF) approach
for the self-consistent noise spectrum. Noise spectra Sζ labeled by
the iterative step; we start with a Lorentzian spectrum, i.e., 2/(π2 +
20ω2) (labeled as zero) and quickly approach a self-consistent shape
(spectra for 15 and 30 steps agree within line thickness). Parame-
ters: k = 1, K = 0, σω = 0, T = 103, dt = 10−3, with N = 104 and
MI = 1, i.e., Mtrial = 104 number of realizations.

inaccurate estimate of the power spectrum Sζ , making the
iterative scheme unreliable.

In Fig. 2, we illustrate the effective convergence of Sζ using
the IMF method, beginning with a Lorentzian spectrum (black
line) as the initial state. As mentioned above, the method
reaches stable convergence in this case at the 15th iteration
(red line), which is illustrated by its agreement with the re-
sult for the 30th iteration (blue dashed line). We furthermore
validate the IMF approach by the systematic comparison with
numerical results from the ND method.

In the regime dominated by the intrinsic white noise ξ�,
the system’s dynamics are described by θ̇ ≈ √

2Dξ (t ) (we
can neglect all the other terms on the right-hand side if
the white noise is very strong). Under the Gaussian-white-
noise assumption, the autocorrelation function, C(t − t ′) =
〈ei[θ (t )−θ (t ′ )]〉, reduces to e−D|t−t ′ |, a special case of the Kubo
oscillator [35] (the general Kubo oscillator is driven by a tem-
porally correlated Gaussian noise). The power spectra, derived
through the Fourier transform, are succinctly expressed as

Sz(ω) = 2D/(D2 + ω2), (17)

providing a simple testable limit case.
Finally, we would like to comment in advance on our

choice of the parameters MN and MI for the data shown in the
following figures. In Figs. 3 and 4 we use only a single realiza-
tion of frequency and connectivity disorder MN = 1, MI = 1
because the network size N = 104 is large enough such that
the individual frequencies and connectivity parameters from
a single draw do not influence the network noise statistics
significantly; in addition, our effective time average provides
sufficiently smooth estimates of the single-oscillator spectra.
In Fig. 1 we used MN = 20 because the order parameter
was a more sensitive statistics and still showed considerable
fluctuations for a single realization of the network. In Figs. 5
and 6 we used multiple realizations of the network (MN > 1
and, correspondingly, MI > 1, see figure captions for specific
values) because the network size was smaller and frequency
disorder was in some cases more pronounced.

FIG. 3. Single-oscillator dynamics with (a) and without (b) con-
nectivity disorder. Power spectra for three distinct oscillators with
ω6 = −2.6, ω32 = 0.02, ω79 = 2.3 and with Gaussian disorder in the
connectivity [k = 1 in (a)] or without disorder in the connectivity
[k = 0 in (b)]. Red solid lines (IMF) and black dashed lines (ND)
show matching results for both network types. The analysis is con-
ducted with a frequency variability of σω = 1, coupling strength
|K| = 1, in a system of size N = 104 and over a time window
T = 104. All results were obtained from a single realization of fre-
quency and connectivity disorder: MN = 1, MI = 1.

IV. RESULTS

In the following, we conduct a comparative analysis of the
power spectrum obtained using two distinct methods: (i) the
IMF method, a stochastic mean field technique that simplifies
the system of N oscillators to a single effective oscillator;
and (ii) the ND method, wherein we solve the differential
equations for N oscillators, Eq. (1). All the IMF results (col-
ored lines) are close to the ND results (dashed black lines),
confirming the validity of the mean-field approximation.

Figure 3 displays the spectra Sx�
of individual oscillators,

contrasting a Kuramoto model with disordered connectivity
[k = 1, panel (a)] with a uniformly connected one [k = 0,
panel (b)], while the frequency variability σω is set to one
in both cases. We examine the spectra of three oscillators
with distinct natural frequencies {ω6, ω32, ω79} to show how
they are differently affected by the network noise (the latter
is proportional to Sz shown in Fig. 5 by the red curves). For
the spectra in Fig. 3(a), it is important to realize that the main
share of the input network noise that shapes these spectra is
around zero frequency. Hence, the oscillator with a negative
(positive) eigenfrequency displays a shoulder on the right
(left) of its eigenfrequency—exactly in the frequency band
around zero, whereas the oscillator with an eigenfrequency
about zero does not display such an asymmetry. Without dis-
order in the network connectivity, Fig. 3(b), the oscillators’
spectra become distinctly narrow with clear separation, in
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FIG. 4. Dependence of single-oscillator power spectrum on net-
work disorder with (a) and without (b) frequency variability. Power
spectrum of 32nd oscillator Sx�

for increasing values of the Gaus-
sian network disorder k as indicated (a) with natural frequency
ω32 = 0.02 (same as the middle curve in Fig. 3) and with a variability
in natural frequencies of the network oscillators of σω = 1. In (b),
the same spectra but without frequency variability (all oscillators
ω� = 0). Dashed lines represent the ND method for a single realiza-
tion (MN = 1) with N = 10 000. Solid lines depict the IMF approach
after iterations within I = 20 in (a) and I = 50 in (b), both with
MI = 1, N = 104, T = 105. All data correspond to D = 0, except
for the cyan solid line (IMF), the corresponding black dashed line
(ND), and the cyan circles [Eq. (17)] in panel (b), which represent
D = 0.5. In (a), |K| = 1; in (b), |K| = 0. All results were obtained
from a single realization of frequency and connectivity disorder:
MN = 1, MI = 1.

contrast to the overlapping profiles seen in the heterogeneous
network model in Fig. 3(a).

The effect of network disorder becomes clearer when we
increase k in steps from 0.1 to 2, shown in Fig. 4(a). Here
we maintain, for different values of k, the identical disorder
realization of the connectivities G�m and of the frequencies
G� as in Fig. 3; those values where defined in Eqs. (2)
and (3). In Fig. 4, we focus on the 32nd oscillator, shown
as the central curve with ω32 = 0.02 in Fig. 3, among a
total of N = 104 oscillators. As the strength of connectiv-
ity disorder, k, increases, we note a gradual broadening of
the spectra alongside a reduction in peak amplitude, while
the area beneath the curves remains constant; this simply
reflects the fact that the variance of the pointer x� = eiθ�

is always one, 〈|x�|2〉 = 1. Instead of network disorder, in-
trinsic white noise (here with D = 0.5) can also broaden
the peak.

Going from Figs. 4(a) to 4(b), we examine the impact
of removing frequency variability on the power spectra. We
observe that the spectrum becomes more narrow and its am-
plitude increases. However, the narrowing of the peaks is
only moderate. Therefore, the peak width seems to be mainly

FIG. 5. Average power spectra Sz = 〈Sx�
〉� with (a) and

without (b) connectivity disorder. Spectra averaged over all
oscillators in the network with Gaussian connectivity [k = 1
in (a)] or without [k = 0 in (b)]; in both panels we indicate
increasing disorder in frequencies, σω. Dashed lines indicate
ND with N = 103. We used MN = 103 realizations with time
window T = 105 (a), and MN = 200 realizations with time
window T = 104 (b). Solid lines illustrate the IMF method with
I = 20 iterations, employing MI = 100 and T = 105 [for both
(a) and (b)]. We set the parameter K equal to the value of |σω|.
Inset of (a): Integrated squared deviation 
 between ND and
IMF methods for the power spectra Sz with σω = 0.5, k = 0.5,

K = 0, T = 1000, MN = MI = 4 · 106/N . The dashed line is
∼1/N2. All results are averaged over the disorder realizations of
both connectivities and natural frequencies.

determined by the heterogeneity of the connectivity. While
we consider N = 104 oscillators for both Figs. 3 and 4, we
obtain similar results for N = 103 oscillators, confirming that
the outcomes are independent of N as long as K2/N � k2

[otherwise the network noise Eq. (13) will depend on N .
In Fig. 5, we turn to the network averaged spectra Sz for dif-

ferent frequency disorder from σω = 0.1 to 2 in the presence
and absence of connectivity disorder, k = 1 in (a) and k = 0
in (b), respectively. The red curves for σω = 1 correspond to
the network-averaged spectra of Fig. 3. We recall that there
is a simple relationship between the network noise and the
network averaged spectra, Eq. (13), according to which both
are proportional to each other. Put differently, in Fig. 5 we
look at scaled versions of the network noise power spectra
Sζ . We again emphasize that the IMF method (colored solid
lines) yields excellent agreement in reproducing the spec-
tra of the true network noise obtained from ND simulations
(dashed lines).

In the absence of connectivity disorder, the spec-
tra in Fig. 5(b) attain the shape of a Gaussian, Sz =√

2πe−ω2/2σ 2
ω/σω. This is plausible for K = 0 where in

the network noise we add up deterministic oscillators with
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FIG. 6. Impact of mean coupling K at finite network size N
on power spectra of single oscillator (a) and network noise (b).
Spectrum of the third oscillator Sx�

with ω3 = 0.13 in (a) and
noise spectrum Sζ in (b) for a small network with N = 8.
Parameters: σω = 2, N = 8, MI = 1000, MN = 1000, T = 104; fre-
quencies ω = [0.97, 0.26, 0.13, 2.6, 1.3, −5.1, −0.31, 1.04]. IMF
results in orange (K = 0.1, k = 0), green (K = 0, k = 0.2), and red
(K = 1, k = 0.2) lines are compared with ND (dashed lines).

randomly drawn eigenfrequencies according to a Gaussian
distribution. It remains a valid approximation though for val-
ues of K below the critical value Kc. We emphasize that in the
presence of connectivity disorder, Fig. 5(a), the shape of the
spectra is neither captured by a Lorentzian nor by a Gaussian.
The inset of Fig. 5(a) shows the deviation between the IMF
and ND methods for the average power spectra Sz, defined as


 =
∫ ωc

−ωc
dω

[
Sz

ND(ω) − Sz
IMF(ω)

]2√∫ ωc

−ωc
dω1Sz

ND(ω1)
2 ∫ ωc

−ωc
dω2Sz

IMF(ω2)
2
, (18)

where ωc = π/
t . In Sec. III, we noted that Mtrial =
N · MI should be large enough for an accurate estimate of the
power spectrum Sζ . Thus, we fixed the total number of trials
Mtrial = N · MI and correspondingly, N · MN to 4 · 106 for a
fair comparison. We observed that the deviation 
 decays
with a power law ∼1/N2 to a small value, i.e., ∼10−5, from
a 2-oscillator to a 100-oscillator system, and then it saturates
due to the finite-sampling error. The power-law decay of the
deviation indicates a systematic improvement for networks of
increasing size because the network noise meets better and
better the assumption of the central limit theorem, i.e., the
Gaussianity of the network noise. The deviations between ND
and IMF spectra can be seen for N = 8 oscillators in Fig. 6,
cf. the small but significant discrepancy between colored lines
and dashed lines.

So far, we have concentrated on large networks with N �
1, where finite-size corrections are negligible. One may ask
whether the theory holds equally well for smaller networks,
and if the contribution that stems from the mean connection

strength in Eq. (14) becomes relevant in this case. In Fig. 6,
we analyze a system comprising N = 8 oscillators with fixed
natural frequencies ω�, � = 1, . . . , 8, and investigate the im-
pact of varying both the average coupling constant K and
the coupling disorder strength k. In panel (a), we plot the
power spectrum of the third oscillator for a finite network
disorder (k = 0.2) for vanishing mean connectivity (K = 0,
green line) and for a finite but subcritical value of the mean
connectivity (K = 1 < Kc, red line); clearly, the value of the
mean connectivity has an impact on the spectrum (green and
red lines differ substantially). This is due to the finite size of
the network because K enters the mean-field theory only by
a factor of K2/N that vanishes in the thermodynamic limit.
For the small number of oscillators considered here, the power
spectrum has a complicated shape with several distinct peaks,
the dominating one being located at the eigenfrequency of the
oscillator, ω3 = 0.13. The spectrum is furthermore shaped by
the input noise that is illustrated in panel (b); to determine
the network noise, we average here over different realizations
of the connectivity disorder. For both the oscillator and noise
spectra, the agreement between the stochastic mean-field IMF
method and the ND simulations is reasonably good; in par-
ticular, the alignment for the oscillator spectra confirms the
finite-size correction of our theory. Our results clearly indi-
cate the necessity of finite-size correction when the condition
N � 1 is not met. We also demonstrate that our theory does
not need a nonvanishing value of the connectivity disorder
but also works for the original Kuramoto model that has only
frequency disorder (k = 0, K = 0.1, orange line); also, here,
the IMF result agrees fairly well with the ND simulations.

One might wonder how mean field methods yield accurate
results for systems as small as comprising N = 8 oscilla-
tors. While we fixed the natural frequencies for all N = 8
oscillators in the networks analyzed for Fig. 6, we aver-
aged over multiple instantiations of the connectivity matrix
K�m, which allows us to obtain ensemble-averaged observ-
ables that remain well described by the IMF approach. In
the case of large system sizes N � 1, the network dynamics
becomes self-averaging, and the IMF approach yields correct
results for observables that are determined using ND for net-
works with a single instantiation of the connectivity disorder
(see Figs. 3 and 4).

In our study, for large system sizes (N � 1), we observe
a notable insensitivity of the system dynamics to the cou-
pling strength K when |K| < Kc, i.e., below the onset of
synchronization. Specifically, the resulting power spectra do
not depend on the value of K , including negative ones; for
instance, spectra for K = 0,−σω,+σω agree.

V. SUMMARY AND CONCLUSIONS

In this study, we have explored the asynchronous states
of the Kuramoto model with a specific focus on the power
spectra of individual oscillators. We comprehensively an-
alyzed how two distinct types of disorder—variations in
natural frequencies and network connectivities—uniquely af-
fect the dynamics of single oscillators. This approach allows
us to understand the model dynamics in a variety of cou-
pling conditions, including zero or nonvanishing average
coupling constants as well as homogeneous or heterogeneous
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network structures, hence, various situations that have previ-
ously been studied in the literature [36–39]. Building upon
the groundwork laid by Stiller and Radons [31], we have
further developed the mean-field method to account for the
finite average coupling and also rederived the framework in
a simplified manner. The stochastic iterative method applies
to the homogeneous network setup—the classical Kuramoto
model—and also provides an additional finite-size correction.
In both homogeneous and heterogeneous networks, we have
successfully reproduced the power spectra of large network
simulations by employing this stochastic iterative method.

Our analysis reveals that all spectra exhibit a significant
decrease in peak height and a concomitant broadening as we
transition from homogeneous (k = 0) to heterogeneous (k =
1) connectivities (see Fig. 3). The variation in k increases the
network noise and expands the range of frequencies. Put dif-
ferently, the static disorder in the connectivity translates into a
dynamic network noise. This mirrors findings in physical and
biological systems, where heterogeneity in interactions often
leads to more noisy behavior [40,41]. In ecological and social
networks, for instance, the introduction of diverse interaction
strengths or patterns often leads to a richer array of system
states and behaviors, reflecting a balance between resilience
and flexibility [42,43].

The large and small networks with heterogeneous connec-
tions in our study include both positive and negative coupling
coefficients K�m. As we ensure the average coupling is in
the range from −Kc to Kc, the system is always poised in
an asynchronous state. For large systems N � 1, we ob-
serve a notable insensitivity of the system dynamics to the
average coupling strength K when |K| < Kc. However, this
observation for large systems contrasts sharply with the dy-
namics observed in smaller systems, such as N = 8, where
the specific value of K (while still |K| < Kc) becomes signifi-
cant, distinctly influencing the system’s behavior as shown in
Fig. 6. Interestingly, for N = 8, there still exists a symmetry
in the system’s response to positive and negative values of

K of equal magnitude; choosing K = 1 or K = −1 yields
identical spectra. The existence of both positive and negative
couplings prevents excessive synchronization in neural net-
works [36] and maintains species diversity in ecological and
social models [44].

There are several extensions of the model that come to
mind, which could be treated with a similar stochastic mean-
field approach as applied in this paper. For instance, endowing
the phase oscillators with inertia provides a better network
model in many situations, e.g., for power grids [45]. Fur-
thermore, it is of interest in many fields, for example in
neuroscience, to explore how the network’s oscillators re-
spond to external perturbations (in the neural context this
could be a sensory signal to be represented in the oscillators’
activity). The iterative mean field method can certainly be
generalized to calculate the self-consistent response functions
(susceptibilities) of the network. Lastly, we could also con-
sider with the similar method a network of networks, as it has
been done previously for simple rotator networks [29].

A remaining open problem is the analytical solution
of the self-consistent network noise statistics. For simple
rotators, this can be done by solving simple differential equa-
tions [10,28]. For the Kuramoto model, the resulting noise
term is multiplicative and non-Gaussian [the noise ζ (t ) is
Gaussian but the last term in Eq. (15) is not]. Here a new
approach is needed. So, there are many exciting problems left
for future research to better understand the asynchronous state
of the Kuramoto model.

The code used for our computations has been submitted
to the edoc-Server, the Open-Access Publication Server of
Humboldt University, and is available at [46].
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