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Critical current for giant Fano factor in neural models with bistable firing dynamics
and implications for signal transmission
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Bistability in the firing rate is a prominent feature in different types of neurons as well as in neural networks.
We show that for a constant input below a critical value, such bistability can lead to a giant spike-count diffusion.
We study the transmission of a periodic signal and demonstrate that close to the critical bias current, the signal-
to-noise ratio suffers a sharp increase, an effect that can be traced back to the giant diffusion and large Fano
factor.
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I. INTRODUCTION

The stochasticity encountered in transport and diffusion
processes in statistical physics has, at first glance, little to do
with the stochasticity of spiking nerve cells that may encode
information about sensory stimuli. However, there are strik-
ing analogies between the statistical characteristics of both
phenomena. The position and mean velocity of a Brownian
particle are equivalent to the spike count and firing rate of a
spiking neuron, respectively: the spike count N (t0, t ) in the
time window (t0, t ) can be regarded as a one-sided random
walk, i.e., a kind of discrete position variable, and the tem-
poral derivative of its ensemble average, i.e., the firing rate
r(t ) = 〈N (t, t + �t )〉/�t , can be seen as the mean velocity.
The particle’s diffusion coefficient and Péclet number have
their counterpart in the spike-count diffusion coefficient and
the (inverse) Fano factor, characterizing the variability (or,
equivalently, the regularity) of the transport or the spike gener-
ation, respectively. These analogies (summarized in Fig. 1) are
fruitful because we may ask what certain nontrivial statistical
phenomena observed in one class of models may imply for the
other.

For active particles that switch between two directions
of motion [1], for assemblies of molecular motors that
show a similar bistability in their velocity [2–6], and for
underdamped particles in a periodic potential that switch
stochastically between a bound and a running state [7–10], it
has been shown that the diffusion coefficient grows exponen-
tially with a shrinking amplitude of the driving fluctuations
if the asymmetry between the two velocity states is not too
strong.

There are similar bistabilities between two firing states
in some types of neurons, such as pacemaker neurons [11],
sensory neurons [12], and motoneurons [13], which are also
suggested to play important roles in short-term memory and
information processing [12,14] as well as in shaping patterns

of so-called spindle oscillations [15]. Likewise, at the neural
network level, there are population-wide transitions between
up and down states [16–18], a kind of bistability in the popu-
lation rate with substantial implications for signal processing
[19–21]. Theoretical studies have revealed several mecha-
nisms for generating such bistability, ranging from generic
networks of spiking neurons with adaptation and/or synaptic
dynamics (e.g., in [22–25]) and rate models with traveling
waves (e.g., in [24,26]) to the more abstract but general frame-
work of self-organized bistability [27,28].

From the viewpoint of nonlinear dynamics, these neural
systems show two attractors in phase space: a stable limit
cycle and a stable resting state; in the presence of fluctuations,
transitions between these states are observed. Focusing on the

FIG. 1. Analogies between the mechanical transport model and
the neuron model. The table illustrates the correspondence of char-
acteristics of the transport model and the (single) neuron model.
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single-neuron example, we can thus conjecture that the spike
count in a bistable neuron can display the same giant diffusion
as observed, e.g., for underdamped particles in a suitably tilted
periodic potential. Consequently, we may expect that within
an input range limited by a critical current, the variability
of the spike count will increase drastically with decreasing
noise. Here we pursue this question in terms of the diffusion
coefficient, but we also study the behavior of the Fano factor (a
more common measure of spiking variability in computational
neuroscience), and we explore the consequences of giant
spike-count diffusion for the transmission of a weak periodic
signal. We demonstrate that (i) the specific form of firing
bistability (the bifurcation by which the bistability emerges
as well as whether it is at the single-neuron level or at the
network level) does not matter for the effect; (ii) the two-state
theory developed for the transport models can be applied to
neural systems with firing-rate bistability and extended to the
case of periodic driving to capture salient features of signal
transmission; and (iii) the concept of a critical asymmetry
determines a value of the neural input current at which the
signal-to-noise ratio undergoes a drastic increase; our theory
elucidates the causal relationship between this effect and the
properties of the transition rates. We show this in models of a
single neuron and of a bistable network.

II. TWO NEURONS WITH SPIKE-RATE BISTABILITY

We study a version of the INa,p + IK model, a two-
dimensional simplification of the Hodgkin-Huxley model
popularized by Izhikevich [29], containing additive noise:

CV̇ = I − gL(V − EL ) − gNam∞(V )(V − ENa)

− gKn(V − EK) +
√

2Dξ (t ),

ṅ = [n∞(V ) − n]/τ (V ). (1)

Here V denotes the membrane voltage, C is the capacitance, I
is the bias current, gi are conductances, and Ei are the Nernst
equilibrium potentials. Noise with intensity D accounts for
the observed neural variability and can be caused by channel
fluctuations, stochastic input from other neurons, and synaptic
variability (for another version of this model, in which channel
noise is incorporated in more detail, see [30]). The function
m∞(V ) represents the activation of the instantaneous Na+
current, while n is a slower dynamical variable describing the
fraction of open K+ channels. Following [29], all steady-state
activation functions are approximated by sigmoid functions of
the type f∞(V ) = [1 + exp{(V1/2 − V )/k}]−1.

Two sets of parameters were chosen such that bistabil-
ity of the firing rate emerges either through a saddle-node
bifurcation off invariant circle (see Fig. 2) or a subcritical
Andronov-Hopf bifurcation (see Fig. 3). Simulations were
carried out using the Euler-Maruyama method with time
steps of 5 × 10−4 and 5 × 10−3 ms for the saddle-node and
Andronov-Hopf cases, respectively. Data were obtained from
50 trials that were simulated for 5 × 1010–1011 time steps.

Typical features of spiking bistability are illustrated in the
system with a stable-node resting state in Fig. 2. For a small
value of injected current I [Fig. 2(a)], the system resides either
in a lower quiescent state or in a higher-baseline spiking state
[the spikes are magnified in Fig. 2(c)]. Increasing the input
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FIG. 2. Firing bistability in the INa,p + IK model with saddle-
node bifurcation. (a),(b) Membrane voltage for two different bias
currents as a function of time [a magnified version of (a) in (c) re-
veals single action potentials in the spiking state]. In the phase
plane of the system (d), the quiescent state corresponds to a sta-
ble node, while the spiking state corresponds to a stable limit
cycle (two transitions between these states are shown). Parameters
are as follows: C = 1 μA/cm2, gL = 0.3 mS/cm2, EL = −80 mV,
gNa = 1 mS/cm2, ENa = 60 mV, gK = 0.4 mS/cm2, EK = −90 mV,
km = 14 mV, V1/2,m = −18 mV, kn = 5 mV, V1/2,n = −25 mV, and
τ (V ) = const = 3 ms.

current results in more frequent and longer-lasting spiking
[Fig. 2(b)]. The mechanism for the bistability can be under-
stood in terms of the nullclines with their three intersection
points (stable node, saddle point, and unstable focus) shown
in Fig. 2(d). In this configuration, the system either displays
small-scale fluctuations around the stable node (correspond-
ing to the quiescent state) or continuous rotations around
the unstable focus (corresponding to the spiking state), and
transitions between those states are enabled by noise-induced
fluctuations. We identify the subsequent passing of two crit-
ical lines around the unstable focus as the emergence of a
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FIG. 3. INa,p + IK model with subcritical Andronov-Hopf bifur-
cation. Evolution of the membrane voltage over time (a) and the
corresponding trajectory in the phase plane (b). Small fluctuations
correspond to the resting state, and strong oscillations indicate
the spiking state. Parameters are as follows: C = 1 μA/cm2, gL =
1 mS/cm2, EL = −78 mV, gNa = 4 mS/cm2, ENa = 60 mV, gK =
4 mS/cm2, EK = −90 mV, km = 7 mV, V1/2,m = −30 mV, kn =
5 mV, V1/2,n = −45 mV, and τ (V ) = const = 1 ms.
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spike, and the instant in time of the crossing of the first line is
registered as the time ti of the ith spike.

With the second parameter set, illustrated in Fig. 3, the
INa,p + IK model exhibits bistability in the amplitude of
its oscillations around a single fixed point: the quiescent
state is characterized by small-amplitude fluctuations around
the equilibrium point, while the spiking state shows large-
amplitude oscillations around the same point. Still, changes
in the input current have the same effects as above: small and
large values favor the resting and spiking state, respectively.
In this setting, we count as a spike only oscillations with an
amplitude above a threshold.

III. GIANT DIFFUSION OF THE SPIKE COUNT

Here we consider an abstract spike train of δ functions,
x(t ) = ∑

δ(t − ti ), and its integral, the count variable N (t ) =∫ t
0 dt ′x(t ′). We define the firing rate as the ensemble average

r = 〈x(t )〉 of the spike train, and we quantify the variability of
the spike count by its effective diffusion coefficient Deff and
by the asymptotic Fano factor F ,

Deff = lim
t→∞

〈[N (t )−〈N (t )〉]2〉
2t

,

F = lim
t→∞

〈[N (t )−〈N (t )〉]2〉
〈N (t )〉 . (2)

When calculating these statistics in practice, it is important
to ensure that the time window t and averaging ensemble are
sufficiently large in order to avoid introducing a systematic
bias in the Fano factor [31,32]. While the diffusion coeffi-
cient underpins the analogy to the stochastic motility models
[1,7,33,34], the Fano factor is a measure of spike variability
used more often in the field of computational neuroscience
[31,35–38] with the simple reference value for a Poisson
process of F = 1.

A. Simulation results

In Fig. 4 we show results for the count statistics (firing
rate, diffusion coefficient, and Fano factor) in both bifurca-
tion regimes [saddle-node in (a) and Andronov-Hopf in (b)]
and for different noise intensities as indicated. Looking at
the top panels, the firing rates behave quite regularly: they
increase with I , and for large I they approach the deterministic
firing rate on the limit cycle (black line); the dependence
becomes less steep for larger noise intensities, but this is not
a very drastic effect. The diffusion coefficient and the Fano
factor (mid and lower panels, respectively), however, show
a nonmonotonic behavior, both passing through maxima. A
lower noise intensity results in a steeper dependence for all
these firing characteristics versus input current. Notably, the
diffusion coefficient and Fano factor at a low noise inten-
sity undergo dramatic changes spanning orders of magnitude
when I is varied over the shown range. In particular, we
recover the finite range of diverging diffusion coefficients
observed in models of active [3] and underdamped passive
Brownian motion [7–10], i.e., diffusion curves for different
noise levels (approximately) intersect at two critical values of
the input current. Most remarkably, at the higher of these two
critical values, the Fano factors also intersect: below this value

FIG. 4. Count statistics as a function of I of the INa,p + IK model.
From top to bottom: overall firing rate, effective diffusion coefficient,
and Fano factor for INa,p + IK model with saddle-node bifurcation
(a) and with subcritical Andronov-Hopf bifurcation (b). Note that for
D = 0 the bifurcations to stable tonic firing would occur outside the
shown ranges at I ≈ 0.36 μA/cm2 and I ≈ 48.9 μA/cm2 in (a) and
(b), respectively.

Icrit, the Fano factor increases strongly with decreasing noise
intensity D; above it (I > Icrit) the Fano factor drops strongly
with decreasing D. We would like to emphasize that all of
these observations can be made both for the system close to
a saddle-node bifurcation off the invariant circle [Fig. 4(a)]
and for the system close to an Andronov-Hopf bifurcation
[Fig. 4(b)].

B. Two-state theory

In the case of low noise intensity, the transition times
between the resting state and the firing state will be much
shorter than the periods of time that the neuron stays in either
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state, allowing for a concise description of the system in terms
of two discrete states R (for resting) and F (for firing). The
transition rates between the states are assumed to obey an
Arrhenius law:

νX = ν0X exp

(
−�UX

D

)
, X ∈ {R, F }, (3)

where νX denotes the transition rate from state X to the respec-
tive other state, �UX is the corresponding potential barrier that
needs to be overcome, and D is the noise intensity. By fitting
the rates for a given input current to different levels of noise,
we can determine �UX (I ), similar to the procedure done in
Ref. [7]. For a similar approach to describing the ISI statistics
in bistable neurons, see [39].

An elementary calculation shows that the probability to be
in the firing state is νR/(νF + νR), and, if rF is the firing rate in
the firing state, the overall firing rate will be rF νR/(νF + νR).
The growth over time of the spike count variance follows from
the integral over the velocity’s exponential autocorrelation
function via the Kubo theorem. Summarizing the results, we
get the following formulas for the stationary firing rate, the
diffusion coefficient, and the Fano factor of the spike count:

r = rF
νR

νF + νR
, Deff = r2

F νF νR

(νF + νR)3
, F = 2rF νF

(νF + νR)2
. (4)

For more details on the general problem, see [3] and the
discussion of the related problem of Taylor dispersion by Van
den Broeck [33].

We have measured the rates as functions of the input
current for different values of the noise intensity D. To this
end, we measured the residence times TF and TR in the spik-
ing and resting states, respectively; the transition rates were
then simply defined as their inverses: νX = 1/TX . The rates
for three different noise intensities are plotted in Fig. 5(a),
in which the circles represent the transition rate out of the
spiking state, νF , and the squares indicate the transition rate
out of the resting state, νR. As the bias current increases, νF

drops whereas νR increases. In other words, with increasing
current it becomes more likely to occupy the spiking state.
Higher noise fluctuations provide more “kicks” that are strong
enough to overcome the potential barrier, boosting transition
rates in general.

The effective transition rates in combination with the two-
state theory capture the Fano factor and diffusion coefficients
over a wide range of input currents; this is shown for the
model close to the saddle-node bifurcation in Fig. 5(b). This
agreement demonstrates that the firing-rate bistability is the
main source of deviations from Poisson statistics, i.e., from
F = 1.

The same kind of analysis (extraction of effective potential
barriers from simulation data) can be carried out for the model
setting close to the Andronov-Hopf bifurcation, in which case
the corresponding two-state theory also captures the Fano
factor and diffusion coefficient rather well [40].

IV. CONSEQUENCES FOR SIGNAL TRANSMISSION

We now explore how the observed giant spike-count dif-
fusion impacts the transmission of a weak and slow signal.
Specifically, we change in Eq. (1) from a constant input

FIG. 5. Two-state theory for the INa,p + IK model close to the
saddle-node bifurcation. (a) Transition rates between spiking and
resting states as the bias current is increased. A larger bias favors the
spiking state, as shown by higher νR (squares) and lower νF (circles),
while larger noise intensities D result in faster overall transition rates.
(b) Comparison between measured values of Deff and F (circles)
and two-state theory (lines). For D = 0.25, the two-state theory was
extrapolated from the other transition rates, but still showed excellent
agreement with the simulations up to I = 0.2.

current I to one that is periodically modulated, i.e., I →
I + ε cos(2π fst ). We measure the spike train’s Fourier trans-
form over a time window T , x̃( f ), and, by averaging over
many realizations, its power spectrum S( f ) = 〈|x̃|2〉/T (see
Fig. 6 for two examples). The signal-to-noise ratio (SNR)
is then obtained by dividing the signal-induced ac peak at
the driving frequency fs by the noise floor [41] (red lines
in Fig. 6). For a weak and slow signal, the peak is given
in terms of the susceptibility at zero frequency (the slope
of the transfer function, i.e., the derivative of the firing rate
with respect to input current), the driving amplitude ε, and
the measuring time window T [42]. Furthermore, the noise
floor can be approximated by the spike train power spectrum
at zero frequency without the driving, which is related to the
spike-count diffusion coefficient S( f → 0) = 2Deff. Hence,
we arrive at the following expression for the SNR [43]:

SNR = ε2T |dr/dI|2
8Deff

, (5)
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FIG. 6. Power spectra (a),(b) and signal-to-noise ratios (c),(d) of the INa,p + IK model. Power spectra for a weak (a) and a strong (b) input
current for the system close to the saddle node reveal ac peaks at the driving frequency (here fs = 5 × 10−3 Hz); low- [S( f → 0) = Deff] and
high-frequency limits [S( f → ∞) = r] are indicated. The measured SNRs for the system close to the saddle-node bifurcation [symbols in (c)]
or close to the Andronov-Hopf bifurcation [symbols in (d)] are compared to the approximation resulting from the two-state theory (solid lines).
Signal frequencies and amplitudes fs = 5 × 10−3 Hz and ε = 0.01 μA/cm2 for the data in (a)–(c), and fs = 10−2 Hz and ε = 0.05 μA/cm2

for the data in (d).

which depends on the derivative of the stationary firing rate
as follows:

dr

dI
= d

dI

( rF νR

νR + νF

)
= r′

F νR

νR + νF
+ rF (νF ν ′

R − νRν ′
F )

(νR + νF )2
. (6)

Here a prime denotes the derivative with respect to I . The
derivative of rF can be obtained from simulations of the noise-
less system, and the derivatives of the transition rates are given
by

ν ′
X =

(
ν ′

0X

ν0X

− �U ′
X

D

)
νX

and can now be calculated numerically from the obtained
curves as discussed above in Sec. III B.

Because the diffusion coefficient determines the low-
frequency limit of the power spectrum, we see already one
simple effect of the giant diffusion on the signal transmission:
a high diffusion coefficient implies a strong background noise
that generally lowers the SNR. However, another factor is the
slope of the transfer function, i.e., the derivative of the overall
firing rate with respect to the input current given above in
Eq. (6), and the effect of this factor cannot be neglected.

The theory as outlined above explains the numerical ob-
servations very well even quantitatively, as seen by the lines

(theory) and symbols (simulations) in Fig. 6(c), where the
SNR is shown as a function of the constant input current,
i.e., our asymmetry parameter. We recall that the diffusion
coefficient (determining the background noise floor) suffers a
rapid drop at Icrit, especially if the system operates at weak
noise. We thus expect to find a rapid increase of the SNR
around this value—indeed for the INa,p + IK model such an
increase not far from Icrit is observed. However, the SNR also
shows a pronounced maximum around Imax which is puzzling
at first glance because at this point the diffusion coefficient
possesses a maximum. Importantly, at the same time, the
firing rate is at this point highly sensitive with respect to
changes in the bias current, and this is the dominating effect
that leads to a maximization of the SNR there. Clearly, also
the stochastic resonance effect [42] is present here: deep in
the bistable regime, an increase in noise intensity is beneficial
for the SNR.

We can use the two-state theory to predict how the run
of the curve would look for an even smaller noise inten-
sity [purple curve in Fig. 6(c)]. For this value, a reliable
estimation of the SNR from numerical simulations was not
possible. We see that the dominating effect for small noise
intensities is the rapid drop of background noise at the
critical current, i.e., the SNR maximum around the inflec-
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tion point of the firing rate becomes much lower and less
prominent.

Finally, it should be emphasized that the effects discussed
here do not hinge on a specific bifurcation scenario; similar
curves were obtained for both parameter sets throughout the
analyses. Therefore, we would expect to find the effects in
higher-dimensional neuron models with a firing rate bistabil-
ity, for instance in the Hodgkin-Huxley model with increased
extracellular potassium concentration [44].

V. COUNT DIFFUSION AND SNR FOR A
BISTABLE NETWORK

We now consider a recently proposed network model
of spiking neurons [25], undergoing stochastic transitions
between a nearly quiescent state and an active state with ele-
vated firing; this random network of excitatory and inhibitory
integrate-and-fire neurons shows asynchronous irregular ac-
tivity in both of its states.

Beginning in Sec. V A, we describe the neural network
and the relevant parameters. We then briefly discuss how the
bistability can be controlled by means of external shot-noise
input and network size in Sec. V B. This aspect requires a
more elaborate discussion because the external drive and the
noise experienced by the neurons from the Poisson input as
well as from the network itself are intertwined, and therefore
they cannot be altered independently as in the single-neuron
case. In Sec. V C, we show that the spike-count diffusion and
the SNR of the network display the same behavior as for the
bistable neuron model. Finally, in Sec. V D we consider an
alternative means of controlling the state asymmetry and noise
intensity for a network of adapting neurons that leads to the
same qualitative picture, which suggests that the phenomenon
is rather general and does not hinge on the specific way in
which the switching rates are controlled.

A. Description of the network model

The model is a random recurrent network (fixed in-degree)
of leaky integrate-and-fire neurons with Poisson random input
[45,46]. Specifically, the model consists of Ne excitatory and
Ni = γ Ne inhibitory neurons, where γ = 0.25, and thus the
total network size is N = Ne(1 + γ ). The membrane potential
of the kth neuron evolves according to

τm,α v̇k (t ) = −vk (t ) + El + Rm,αI tot
k (t ), (7)

where τm,α is the membrane time constant, and α = e, i in-
dicates whether the kth neuron is excitatory or inhibitory
(τm,e = 20 ms, τm,i = 10 ms). Note that α is a function of k
and not a free index. However, we do not indicate this depen-
dence explicitly in order to simplify notation. Furthermore,
El is the resting potential, Rm,α is the membrane resistance,
and I tot

k is the total input current. The membrane resistance is
Rm,α = τm,α/Cm with membrane capacitance Cm = 1 nF. If all
voltages are measured with respect to the resting potential,
then we can set El = 0. Whenever the voltage reaches the
threshold value vθ = 20 mV, the neuron emits a spike and the
voltage is reset and clamped at vr = 10 mV for an absolute
refractory period of τref = 2 ms. All spikes emitted from a

neuron constitute its output spike train

xk (t ) =
∑

n

δ(t − tk,n), (8)

where δ(t ) is the Dirac delta function, and the nth spike time
of the kth neuron is denoted by tk,n.

The total input current I tot
k (t ) is composed of two terms,

I rec
k and Iext

k , which model the recurrent and external inputs,
respectively:

Rm,αI tot
k (t ) = Rm,α

[
I rec
k (t ) + Iext

k (t )
]
. (9)

The recurrent input is a sum over spike trains from the net-
work,

I rec
k (t )= τm,αJα

Rm,α

⎡
⎣ ∑

j∈Pe(k)

x j (t −Dk j ) − gα

∑
�∈Pi (k)

x�(t −Dk�)

⎤
⎦,

(10)

where the presynaptic excitatory neighbors of neuron k,
Pe(k), are a random selection of Ce = 1000 excitatory neu-
rons, and Pi(k) is a random selection of Ci = γCe = 250
inhibitory neurons; self-connections are excluded. The con-
nection probability is almost independent of the cell type
and is pc,ee = Ce/(Ne − 1) ≈ pc,ei = pc,ie = Ci/Ni ≈ pc,ii =
Ci/(Ni − 1) ≈ C/N , where C= Ce + Ci is the total number
of recurrent inputs per neuron. The coupling efficacy is
governed by the synaptic weights, Je = 0.2 mV (from ex-
citatory onto excitatory neurons) and Ji = 0.34 mV (from
excitatory onto inhibitory neurons), which are amplified by
the respective factor ge = gi = 4 for inhibitory synapses. The
transmission delays Dk j (Dkl ) are drawn once for each neu-
ron pair from an exponential distribution with mean Dex =
20 ms (Dinh = 10 ms) if the presynaptic neuron is excitatory
(inhibitory).

The external input term for the kth neuron is a sum of
Cext = 1000 independent Poisson spike trains, each with a
constant rate rext,

Iext
k (t ) = τm,αJα

Rm,α

Cext∑
i=1

∑
l

δ(t − tk,i,l ), (11)

where the tk,i,l indicate the firing times. Inputs Iext
k (t ) and

Iext
k′ (t ) to different neurons (k 
= k′) are statistically indepen-

dent; they all possess the same postsynaptic efficacy on a
neuron in a population as an excitatory neuron from the net-
work, that is, Jα .

Equations are integrated with an Euler time scheme and
time step �t = 0.01 ms. In each of the 100 trials, the network
is simulated first for Tinit = 0.1 s, which is discarded from the
analysis. Spikes are then recorded for a time window T =
1000 s. (For the population with Ne = 3000, it was necessary
to run the trials for T = 2000 s such that an adequate number
of transitions between states occurred.)

With this choice of parameters, the global activity shows
bistability, as made clear by the raster plot seen in Fig. 7(a).
Indeed, the network jumps between an active (“up”) state and
a quiescent (“down”) state. This kind of firing regime is often
observed in cortical networks during sleep, anesthetized, or
idling states [47,48]. In the down-state, the network is almost
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FIG. 7. Firing rate bistability in the network model. (a) Raster
plot from a single trial for 100 randomly selected excitatory neurons.
(b) Network firing rate A(t ) = 1/Ne

∑
k xk 
 B(t ), where xk (t ) is the

spike train of the kth neuron given by (8), B(t ) is a normalized
box function with length 1 s, and 
 indicates convolution. (c) The
probability of being in the active state can be adjusted via the ex-
ternal input rate (cf. Fig. 1). Parameters are as follows: Ne = 2000,
T = 1000 s, ε = 0, rext = 3.7162 Hz (b); rext = 3.7100 Hz (c, left);
rext = 3.7225 Hz (c, right).

silent, while the up-state is characterized by sustained, asyn-
chronous irregular firing with an average rate (per neuron) of
≈3 Hz [Fig. 7(b)]. For a detailed discussion of this bistability,
see Ref. [25].

To measure the signal-to-noise ratio (SNR), a slow and
weak periodic current

Isig,α (t ) = ε

Rm,α

cos(2π fst ) (12)

is injected into each neuron (added to the currents in eq. (9)),
where ε/Rm,α = 0.1 mV and fs = 0.01 Hz. The measures
computed in the following use the sum of all spikes fired by
the excitatory population.

B. Bistability and the role of parameters

Transitions between the two states are caused by the in-
terplay of the external random input received by each neuron
with the recurrent network dynamics. Note that the effective
input noise received by each neuron in the network depends
not only on the choice of parameters, but also on the current
state of the network. Hence, a separate control of transi-
tion rates and state asymmetry is not as straightforward as
in the case of a single neuron and cannot be achieved by
varying a single parameter. One simple way of manipulating
the asymmetry is changing the rate of the external input, as
demonstrated in Fig. 7(c): intuitively, a stronger excitatory
drive makes the active state more likely. Because the active
state’s average rate is affected little by this transition in ex-
ternal input, the shift in state probability with input is also
reflected in the network’s average rate curve in Fig. 8(a),

FIG. 8. Count statistics and SNR of the excitatory neurons of a
recurrent network. From top to bottom: average firing rate, effec-
tive diffusion coefficient, Fano factor, and signal-to-noise ratio for
periodic stimulation. All statistics are plotted as functions of the
rate rext of the excitatory Poissonian input spikes and for different
network sizes Ne as indicated; other parameters: T = 1000 s (for
Ne = 3000, T = 2000 s), �t = 0.01 ms, Ni = 0.25Ne, vθ = 20 mV,
vr = 10 mV, τm,e = 20 ms, τm,i = 10 ms, τref = 2 ms, Ce = Cext =
1000, Ci = 250, exponentially distributed synaptic delays with aver-
ages Dex = 20 ms and Dinh = 10 ms, ge = gi = 4, Je = 0.2 mV (no
autapses), Ji = 0.34 mV, ε = 0.1 mV, fs = 0.01 Hz.

where a rate near 3 Hz indicates the network occupying the
active state more often.

To draw a comparison with the single neuron, for which
the noise level was changed to manipulate the switching rates
between states (without affecting the state probabilities), the
total network size was varied while keeping the number of
connections per neuron fixed. In this way, the connection
probability changes according to pc = C/N , which means that
larger networks are more sparsely connected. The connection
probability has an impact on the cross-correlations in the
network [46,49–51], which in turn strongly influence the in-
ternally (autonomously) generated part of the network noise.
Each neuron in the network is subject to both an external noise
source (a sum of Cext independent Poisson spike trains) and
an internally generated noise source, i.e., the superposition
of C quasirandom input spike trains. The internally generated
noise depends not only on cross-correlations and all network
parameters, but also on the network state, since the total input
firing rate that each neuron receives is very different in the two
states. For this reason, any change in the network parameters
that alters the effective noise intensity is likely to have a
different impact on the stability of the two states and must be
compensated for in some way if the symmetry of the transition
rates is to be preserved. Hence, although the network size can
be used to manipulate switching rates, the effect is not equal
on the two states, such that the inflection point (i.e., where the
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switching probability is equal to 1/2) is also slightly shifted,
as seen in Fig. 8(a).

C. Giant count diffusion and SNR for the bistable network

The previous subsections clearly showed that the sepa-
ration of state asymmetry from the noise level achieved by
changes in the external input and recurrent connection prob-
ability is not strict, because, for instance, the Poisson trains
also contribute to the noise in the system. Yet, if we plot the
diffusion coefficient [Fig. 8(b)] and Fano factor [Fig. 8(c)] of
the population’s spike count as functions of the external rate,
we see a very similar behavior as in the single-neuron case:
both functions go through maxima that are roughly attained
where the firing rate [Fig. 8(a)] has its inflection point, and
the maxima are more pronounced if we reduce the intrinsic
noise by increasing the network size.

If we drive the network with a common cosine stimulus,
the SNR for this signal [Fig. 8(d)] exhibits the same shape
we have already discussed for the single-neuron case [cf.
Fig. 6(c)]: a local maximum at the point of maximized dif-
fusion, a minimum at intermediate rate, and a pronounced
increase beyond the point of critical asymmetry. Another
robust observation is that with decreasing noise, the local
maximum shrinks and the increase at high input rates becomes
stronger.

In the next section, an alternative way to manipulate transi-
tion rates is discussed. Importantly, the qualitative shape of all
curves is conserved, which suggests that the main effect dis-
cussed in this study does not depend on a specific mechanism.
It requires only that the system is bistable with long residence
times in each state and that the asymmetry of those states can
be controlled.

D. Model with spike-frequency adaptation

Many excitatory pyramidal neurons in the neocortex
display spike-frequency adaptation [52,53]. A simple and
well-established model for this biological mechanism is a
self-inhibition current ak (t ) modifying the input current (9)
for excitatory neurons as follows:

Rm,eI tot
k (t ) = Rm,e

[
I rec
k (t ) + Iext

k (t ) − ak (t )
]
. (13)

The adaptation variable obeys [53–55]

τaȧk (t ) = −ak (t ) + τa�axk (t ), (14)

in which the adaptation variable is driven by the neuron’s
own spike train, Eq. (8). In (14), �a is the adaptation strength
and τa = 500 ms is the adaptation-current relaxation time. The
asymmetry in the state probabilities was controlled, as for
the nonadaptive network, by changing the input rate of the
external Poisson input. Here, however, we chose a reference
value of the external shot-noise input, r̂ext = 0.7445 × rθ ,
where rθ = vθ /(τm,eJeCe), and we varied the input rate of
each external input spike by �rext = �μeff/(τm,eJeCext ). This
change in the external input rate corresponds to a change
in the mean input by �μeff with respect to the reference
value. In other words, the external input rate correspond-
ing to a given �μeff is r̂ext + �μeff/(τm,eJeCext ). In this
subsection, simulation results are plotted as a function of
�μeff .

FIG. 9. Giant spike-count diffusion and consequences for the
SNR in a network model with spike-frequency adaptation. From top
to bottom: average single-neuron firing rate (a), network spike-count
diffusion coefficient Deff (b), network spike-count Fano factor (c),
and SNR (d) as functions of the mean external effective input �μeff .
The effective noise is controlled by changing the spike-frequency
adaptation parameter �a. The resting potential El (�a) for each value
of �a is chosen such that the two states are equally probable for
�μeff = 0. Parameters: �t = 0.1 ms, fs = 0.1 Hz. All other param-
eters are the same as for the nonadaptive network in Fig. 8. The
statistics shown here were calculated from the spike trains of the
entire network, as opposed to only the excitatory population output
used for the nonadaptive network.

As a more substantial difference from the nonadaptive
case, instead of changing the network size and sparsity, the
transition rate between up- and down-states was manipulated
by changing the strength of the spike-frequency adaptation
�a, which in the cortex can vary according to the cell type
even within the same region [52]. Increasing �a decreases
the mean lifetime of up-states more than that of down-states.
To ensure that up- and down-states are equally probable for
�μeff = 0, the resting potential of each neuron was shifted by
a suitable value El (�a), found empirically.

Figure 9(a) shows the average firing rate as a function
of �μeff for three values of �a. As stated above, these two
parameters manipulate state asymmetry and switching rates,
respectively, and they play a similar role as the bias input
current and channel noise in the single-neuron case. Although
for �μeff = 0 the up- and down-states are equally likely,
the firing rate in the up-state slightly depends on �a, so
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that the three curves do not intersect exactly at the same
point.

The spike-count diffusion coefficient Deff (computed here
from all spikes fired by the entire network) displays a large
maximum when the up- and down-states are equiprobable
[Fig. 9(b)]. For �μeff > 0, the diffusion coefficient drops
drastically. The decrease is faster for smaller values of �a

(which correspond to lower effective transition rates). All
curves intersect at the same value, which can be seen as a
critical value of the mean input (with respect to the operation
point), as in the single neuron model. Although (as explained
in the previous paragraph) by design the firing rate curves in
Fig. 9(a) almost perfectly intersect at �μeff = 0, this does not
prescribe the behavior of the other statistics, such as Deff .
More specifically, it does not imply the intersection at the
critical point, which is a result of the system’s behavior. Well
above the critical value, the decrease of Deff tends to saturate
due to the intrinsic firing variability of the up-state, which sets
a lower boundary for the decrease of the spike-count diffusion.
The Fano factor shows a similar behavior [Fig. 9(c)].

Finally, we inject a weak and slow periodic current into
each neuron of the network according to (12) with fs = 0.1 Hz
and measure the SNR, defined as in the single-neuron case
and shown in Fig. 9(d). All SNR curves display the same
qualitative N-shaped behavior seen for the single-neuron and
nonadaptive network cases. Specifically, we observe a large
maximum where the spike-count giant diffusion occurs, a
sharp decrease happens in the vicinity of the critical input,
and there is a clear growing trend above the critical value.
Note that the saturation of Deff sets a limit on the growth of
the SNR. Using a larger, sparser network would reduce the
intrinsic variability of the network’s firing rate (as seen in
Fig. 8), which depends in general on the network size and how
the weights are scaled [51,56].

VI. CONCLUSIONS

Measuring the linear response to a weak periodic stimulus
has been an experimental standard for many decades (see, e.g.,
[57,58]). Changing the operation point of the neuron (i.e., the
constant part of the injected current) is likewise common in
the field. Our findings predict that an experimenter measuring
the SNR in a neuron with a comparatively low noise level
would find a drastic increase at Icrit. Nothing in the firing
rate curve (the transfer function) would hint at why at this
value anything special could happen. Our analogy with the
mechanical transport model and the diffusion problem pro-
vides an instructive explanation: an increase in current during
spontaneous activity leads to a strong drop of the diffusion
coefficient because at this point the system becomes suffi-
ciently asymmetric (see [3]). As the diffusion coefficient of
the spontaneous activity controls the background noise level
in the case of driven activity [42], a strong decrease of the

diffusion coefficient accompanies a strong increase of the
SNR. Particularly at small noise levels [cf. the purple curve
in Fig. 6(c)], our theory predicts that this strong drop of the
diffusion coefficient (appearing in the denominator of the
SNR) will outweigh the decrease in the numerator, which is
due to the bias-current dependence of the slope factor.

At the network level, we found similar effects of the firing
bistability on spike-count diffusivity and the properties of sig-
nal transmission: count diffusion and Fano factor go through
several orders of magnitude when the asymmetry between
the two firing states is changed, and the signal-to-noise ratio
for a weak common stimulus exhibits the typical N shape (a
maximum and a minimum) as a function of the external input
rate. For the network, the separation into bias parameter and
noise level is not as clean as in the single-neuron example if
we stick to network-relevant parameters such as the constant
rate of external (signal-unrelated) input spikes or the network
size. However, the qualitative picture resembles what was
found for the single neuron. Our results demonstrate how
an external input can control the information transfer by a
recurrent network, and that for larger networks variations of
the SNR over orders of magnitude can emerge for rather small
changes in input rates.

Our results lead to a number of challenges for future inves-
tigations. First of all, the single-neuron experiment outlined
above should be performed at different levels of noise. While
it does not seem to be a problem to inject more noise into the
neuron (on top of the constant bias current and the periodic
signal), to reach really low levels of noise, experimenters
may have to resort to special cell types, e.g., as in [59],
with apparently very low levels of intrinsic noise. Secondly,
we could think of relaxing some of our conditions on the
signal transmission scheme. We could generalize the setup to
a nonperiodic signal (e.g., a Gaussian broadband stimulus),
estimate lower bounds of the mutual information [60–62], and
study this more general measure of information transmission
as a function of the stimulus bandwidth. Visual cortex cells
of different kinds of vertebrates have shown highly reliable
spiking behavior in response to random stimuli [63,64], which
might happen for bistable neurons as well. Last but not least,
the implications of the found giant spike-count diffusion for
the autonomous dynamics of recurrent networks is worth
further exploration with respect to the emergence of slow
timescales. The incorporation of bistable neurons in network
models has drastic effects; it may result in a high degree
of synchronization, in abrupt cessations of network activity
[65,66], as well as in improving the robustness of work-
ing memory [67]. Although already tonically firing cells can
show slow correlations when connected in random networks
[68–71], the addition of a subpopulation of bistable cells to a
recurrent network will be another source of slow processes—
controlled, as we have shown here, by the mean input from
external sources and from the rest of the network.
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