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Demixing of two species via reciprocally concentration-dependent diffusivity
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We propose a model for demixing of two species by assuming a density-dependent effective diffusion coeffi-
cient of the particles. Both sorts of microswimmers diffuse as active overdamped Brownian particles with a noise
intensity that is determined by the surrounding density of the respective other species within a sensing radius
rs. A higher concentration of the first (second) sort will enlarge the diffusion and, in consequence, the intensity
of the noise experienced by the second (first) sort. Numerical and analytical investigations of steady states of
the macroscopic equations prove the demixing of particles due to this reciprocally concentration-dependent
diffusivity. An ambiguity of the numerical integration scheme for the purely local model (rs → 0) is resolved by
considering nonvanishing sensing radii in a nonlocal model with rs > 0.
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I. INTRODUCTION

Suspensions of mobile active particles are well known to
exhibit various spatiotemporal structures [1–5] which depend
both on the kind of single-particle activity and on the inter-
actions between the particles. Best investigated are groups
of self-moving units with aligning interaction as swarms or
flocks of animals [6–8]. Another example is dense bacterial
suspensions [9], in which propulsive agents might shape di-
verse complex flows ranging from compact laminar streaming
to turbulentlike patterns [5,10]. In the recent past, interesting
phenomena, as for instance motility-induced phase separation,
have been reported for run-and-tumble bacteria [11], for self-
propelled Brownian particles [12], and within the frame of
a Cahn Hilliard theory [13]. In all these cases, the directed
motion of particles creates an self-amplifying instability by
increasing the density due to impacts in direction of mo-
tion whereby at the backside of the particle the density is
depleted [14]. This situation was experimental verified for
carbon-coated Janusz-particles [15] the self-propelled motion
of which is based on diffusion phoresis. Comprehensive re-
views [16,17] summarize the phase-separating process of the
particles. Particularly relevant for our investigation is the most
recent work by Curatolo et al. [18] who studied experimen-
tally and in the framework of a reaction-diffusion equation
the phase separation of two strains of Escherichia coli bacteria
with a reciprocal motility interaction.

On the theoretical side, experimental studies have inspired
a large number of investigations on phase separation in sus-
pensions of self-moving object. Various interesting problems
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have been put forward as, for example, the mixtures of active
and passive or fast and slow particles [19–26], the influences
of different speeds of phase separation [27], different diffu-
sivities [28], a discontinuous motility [29,30], demixing of
active particles in external fields [31], chiral active matter
[32], descriptions of phase separation far from equilibrium
in continuum frame [33], learning of groups in swarms [34]
and chemotactically reacting particles [35,36], to mention just
a few publications. Also early work on chemically reacting
active Brownian particles creating complex behavior during
trail formation of ants and in excitable dynamics deserves to
be mentioned [37,38]. Especially in biophysical applications,
studies of phase separation might gain importance in the long
term; see, for example, Refs. [39–42].

Here we put forward a minimalistic model for a demixing
interaction of two species of diffusing particles in which the
effective diffusion coefficient of one sort (say sort A) is con-
trolled by the neighboring probability density function (pdf)
pB of the particles of the respective other sort (say sort B). In
this model, the diffusion of the A particles is increased by a
factor that depends on the power of the density pq

B, q ∈ N,
with which this enters into the model. As we will show, using
q = 1 (a linear dependence of the diffusion coefficient on the
density) does not result in a demixing despite the nonlinear
character of the corresponding macroscopic fluxes. However,
the most simple nonlinear dependence, namely a quadratic de-
pendence (q = 2), entering with a sufficiently high prefactor
causes a demixing of the two species.

Demixing will be demonstrated by particle simulations,
by a stability analysis and by numerical integration of the
asymptotic macroscopic equations for pA and pB. A techni-
cally challenging but interesting issue is how the pdf used in
the dynamics is incorporated. We also vary the value of the
sensing radius rs and demonstrate that also for nonvanishing
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radii particle separation for sufficiently strong nonlinearity
can be found. In contrast, a purely local sensing results in
an ambiguity of the mathematical description. Configurations
with steep jumping interfaces and with multiple domains are
found. Inconclusive ambiguous results which depend on time
steps as well as on the underlying integration grid are found
and do not allow unique answers. Here we study this interest-
ing situation in detail.

The corresponding microscopic dynamics of the two kinds
of particles are overdamped Langevin equations. Such dynam-
ics may result, for instance, from an adiabatic elimination of
inertia in models for stochastic microswimmers with constant
speed v0 and angular noise intensity Dφ , which have been
frequently employed in various studies [2,43–45]. In such
models the diffusional motion in two dimensions (or equiv-
alently as a projection on one dimension) is described by the
effective diffusion coefficient

Deff = v4
0

2Dφ

, (1)

in the long-term and spatially coarse-grained regime, i.e., at
time and length scales much larger then the characteristic time
of rotation τ0 = v2

0D−1
φ and the corresponding persistence

length �0 = τ0v0, respectively. Changes or modifications of
the effective diffusion coefficient Deff are eventually caused
by an alteration of the propulsive apparatus, i.e., of the speed
v0 or the angular noise Dφ . For the demonstration of the
mechanism for the demixing, we will restrict ourselves to the
one-dimensional projection of such dynamics in the present
work. Note that with different microscopic models of the
microswimmers and different spatial dimensions the diffusion
coefficient may differ from Eq. (1) and may even depend on
properties beyond v0 and Dφ [45–50].

As already mentioned, the strength of the effective self-
mobility or of the mobile response of the particles might be
also controlled by chemotactic or phoretic forces generated
self-consistently by the ensemble [37,51–55]. In a simple ex-
ample, particles distribute a chemical substrate which creates
a common memory field of the former particle motion. The
members of the ensemble respond to the strength of this field
by changing their diffusivities (this idea is pursued for one
species of particles, for instance, in Ref. [30]).

II. DEMIXING OF ACTIVE PARTICLES: MODEL

In this paper, we propose a simple model which exhibits
phase separation (demixing) of two types of agents, referred
to as A and B in what follows. We assume a symmetry
between both species with respect to all parameters. First,
each population contains the same number N of particles.
Asymmetric setups will show similar results but will com-
plicate the problem. Second, both A and B particles perform
an overdamped Brownian motion [56,57] as diffusional ap-
proximation of stochastic microswimmers [43,58]. Third, the
individual diffusion coefficient of, say the ith A particle is
a functional of the B particles’ density pB taken around the
current position xA,i(t ) inside a sensing domain with spatial
extension rs. Such sensing regions are very popular in inves-
tigations of animal motion [8] and swarming models [2,3,6].
We distinguish between a local version of the model, in which

we use an estimate of the density of B particles at xA,i(t ) and
a nonlocal version, in which the density of B particles within
the sensing radius rs enters.

Further on, we will restrict ourselves to a one-dimensional
setting and denote particle positions by xA,i and xB, j , re-
spectively, where i, j = 1, . . . , N . Particles can move in the
interval [−�, �] and we apply periodic or reflecting (no-flux)
boundary conditions.

As the central statistics of interest we consider the long-
time asymptotics of the pdfs pA(x) and pB(x) but we will also
briefly discuss transient behavior. The densities gain physical
meaning if connected with a spatial grid of Nbin elements
with spatial extension �x = 2�/Nbin. Inside the �x the pdfs
are assumed to be constants and hence, the partition of Nbin

elements defines the accuracy of our output.
We also will scale the sensing radius rs in units of the

introduced bin �x. In detail we will set

rs = (
s − 1

2

)
�x, s = 1, 2, . . . . (2)

In consequence, for s > 1 we describe situations in which the
pdf can be inhomogeneous within the sensing region.

The dynamics of the particle’s positions is given by the set
of Langevin equations

dxA,i

dt
=

√
2D0

[
1 + c〈pB(xA,i )〉q

rs

]
ξA,i(t ),

dxB,i

dt
=

√
2D0

[
1 + c〈pA(xB,i )〉q

rs

]
ξB,i(t ). (3)

Here ξA,i(t ) and ξB,i(t ) are independent Gaussian white
noise sources with vanishing mean and 〈ξF,i(t )ξG, j (t ′)〉 =
δF,Gδi, jδ(t − t ′) with F, G ∈ {A, B}. Despite their simplicity,
our model equations need some further explanation; specifi-
cally, the noise intensities of the fluctuating terms require a
number of comments. First, as we deal with multiplicative
noise, we need an interpretation of the stochastic differential
equation (see, e.g., Ref. [59]); here we will use throughout
the Ito interpretation (the use of the different interpretations is
discussed below). Second, we note that the probability density
is raised to an integer power q that controls the nonlinearity
of the interaction; throughout the paper we will study q = 2.
Third, in a simulation with 2N particles it is not clear what we
mean by pA,B(x) which is needed for the computation of the
noise intensity.

Last, the brackets under the square roots define a spatial
average over the sensing radius in our model. The interaction
between the A and B particles takes place in the sensing range,
only. With xA,i(t ) being the position of the A particles the
bracket sums the B particles between [xA,i(t )−rs, xA,i(t )+rs]
and divides by the length of the sensing domain. This local
average is then raised to the qth power. On the aforementioned
spatial lattice, the average defines a kind of nonlocal interac-
tions for sensing radii with values s = 2, 3 . . . . The bracket
stands for the integral operator with arbitrary function f (x) at
position x:

〈 f (x)〉rs = 1

2rs

∫ rs

−rs

dx′ f (x + x′). (4)

We mention that if the sensing radius coincidences with the
binning length, one obtains the (spatially discretized) local
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version of the overdamped dynamics

dxA,i

dt
=

√
2D0

[
1 + cpq

B(xA,i )
]
ξA,i(t ),

dxB,i

dt
=

√
2D0

[
1 + cpq

A(xB,i )
]
ξB,i(t ). (5)

To reduce the number of parameters, we may rescale space
and time and replace them by nondimensional counterparts,
x′ = x/� and t ′ = t/τ ; using then Eq. (3) with τ = �2/D0, we
see that we get rid of the parameters D0 and � which can be
both set to unity. Omitting the primes for the ease of notation,
we will use nondimensional variables x and t in the following.

Our model equations contain probability density functions
(pdfs) that are not known but can be estimated from the po-
sitions of the particles. To define the usage of the pdfs in the
Langevin equations we link them to the position of particles
as follows. For a finite particle number and finite binning
length �x we introduce empirical probability function densi-
ties �A,B(x, {xA,B, j}). The latter functions are time-dependent
normalized histograms on the above mentioned grid (we recall
that we have Nbin discrete bins of width �x = 2�/Nbin) with
central positions xn = −� + (n − 1/2)�x (n = 1, . . . , Nbin).
To give an example, �B(x, {xB, j}) measures the fraction of
B particles in each bin divided by the bin size and returns this
normalized fraction for the bin that contains x (the function’s
first argument). More formally, if the first argument falls into
the nth bin (xn − �x/2 < x < xn + �x/2), then we can write
in terms of Heaviside functions θ (. . . )

�A(x, {xA, j}) = 1

N�x

N∑
j=1

θ (�x/2 − |xn − xA, j |), (6)

�B(x, {xB, j}) = 1

N�x

N∑
j=1

θ (�x/2 − |xn − xB, j |). (7)

For an appropriate limit N → ∞,�x → 0, these functions
converge to the probability densities as follows:

�A,B(x, {xA,B, j}) → pA,B(x, t ). (8)

Note that both �A,B(x, {xA,B, j}) and pA,B(x, t ) are separately
normalized for each particle sort. The normalization condition
for the pdf of A density in the continuous case, for instance, is
obviously

∫ �

−�
dx pA(x, t ) = 1; for the histograms, the condi-

tion reads

Nbin∑
n=1

�x �A(xn, {xA, j}) = 1. (9)

The histogram version of the nonlocal average Eq. (4) is
carried out as follows:

〈�A,B(x, {xA,B, j})〉rs
=

s−1∑
m=1−s

�A,B(xn+m, {xA,B, j})

2s − 1
. (10)

In all particle simulations, we thus simulate the following
version of Eq. (3) (setting now D0 = 1 and q = 2 according

to the discussion above):

dxA,i

dt
=

√
1 + c〈�B(xA,i(t ), {xB, j})〉2

rs
ξA,i(t ),

dxB,i

dt
=

√
1 + c〈�A(xB,i(t ), {xA, j})〉2

rs
ξB,i(t ). (11)

We scale the size of sensing radius Eq. (2) in units
of the introduced bin �x. For the local simulations,
we use s = 1, i.e., �A,B(xA,i(t ), {xB, j}) directly instead of
〈�A,B(xA,i(t ), {xB, j})〉rs

.
Let us discuss the dependence of the noise intensities on

the pdf of the respective other particle sort in more detail.
The effective diffusion coefficients in Eq. (11) grow with
the density which is an unusual assumption in equilibrium.
However, there are a few Monte Carlo studies [60] and model
calculations [61] showing such behavior.

Most importantly, there is the above mentioned study by
Curatolo et al. [18] (which has come to our attention only
after the first submission of the present paper) on two inter-
acting strains of E. coli bacteria which mutually regulate each
other’s motility and may display indeed a demixing due to this
interaction in the two-dimensional setting of the Petri dish.
These authors also study a reaction-diffusion model in two
dimensions that contains besides logistic growth terms also
drift- and diffusion terms that depend on the concentration of
the respective other species, similar to our model. In fact, one
version of the model is equivalent to a pure dependence of
the diffusion coefficient in Ito interpretation. Of course, the
model by Curatolo et al. [18] is richer: the number of particles
(being proliferating bacteria) is not conserved, the system is
two-dimensional, and the motility function does not depend
in a simple quadratic fashion on the other species density but
rather in a sigmoidal fashion function. In this sense, we regard
our model (one-dimensional with conserved particle numbers
and a particularly simple dependence of the diffusion coeffi-
cient) as a minimal model of the demixing effect that allows
for explicit analytical calculations of concentration levels.

Another motivation for the choice of our model comes
from early work on population dynamics by Shigesada
[62–64] and on noise in ecological systems [65]. Members
of different social groups repel or attract each other, as in
our case, diffusively which was modeled by an effective state-
dependent linear diffusion coefficient Deff =D0(1+∑

j c j p j).
In particular, as mentioned our model is also inspired by
recent studies by Golestanian and coworkers [51–55] in which
ensembles of chemophoretic particles were investigated. We
regard our model as a strongly simplified version, in which
the details of the chemistry are eliminated and are replaced by
an effective control of the diffusion coefficient: the particles of
the one species accelerate diffusively if particles of the second
kind are present in their vicinity.

A drawback of such a simplified description is that it is
not unique: different interpretations of stochastic differen-
tial equations with multiplicative noise are possible, i.e., Ito,
Fisk-Stratonovich, or Hänggi-Klimontovich (also known as
isothermal); for instructive overviews of the different inter-
pretations and how they follow from different microscopic
situations; see, for instance, Ref. [66]. As we show in the
Appendix, different interpretations of Eq. (5) may lead to
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distinct dynamics. In particular, the isothermal interpretation,
which imposes a Boltzmann distribution at equilibrium, does
not show demixing. From the physics perspective, this ambi-
guity stems from the fact that a Langevin equation describing
Brownian motion with state-dependent friction and diffu-
sion, neglects microscopic details, such as state-dependent
free path and free (intercollision) time. Instead, the collision
kinetics is reduced to a random force [67]. An alternative
approach is to start with details of all microscopic interactions
and to obtain an equation describing the evolution of the
particles’ density and then to proceed to the corresponding
stochastic differential equation for particle simulations, as
done, e.g., in the supplement of Ref. [18]. As a result of
the particular state dependencies of the kinetic parameters,
an effective Smoluchowski equation may correspond to any
or none of the interpretations mentioned above [66,68]. For
example, a closed isothermal system, such as, e.g., diffu-
sion of a particle bounded by parallel walls, must obey the
equilibrium Boltzmann distribution, which requires Hänggi-
Klimontovich interpretation of the corresponding Langevin
equation [69]. However, diffusion of interacting self-propelled
particles can be described by an effective Smoluchowski
equation equivalent to the Ito interpretation [18], consistent
with our simplified model. Another example of a Langevin
equation in Ito interpretation arises in modeling enzyme
chemotaxis [70,71].

III. PARTICLE SIMULATIONS: THE LOCAL CASE, s = 1

We integrated the overdamped Langevin equations Eq. (11)
in the local version (s = 1) with state-dependent diffusion
coefficients using a simple Euler-Maruyama scheme in the
Ito interpretation of the stochastic differential equations. Here
and in the following we selected q = 2 as simplest nonlin-
earity which exhibits demixing. A linear dependence (q = 1)
of the diffusion coefficient on the density of the other parti-
cle sort does not show demixing, which is also in line with
theoretical predictions (see Sec. IV A). We tested both re-
flecting and periodic boundary conditions at x = ±� = ±1.
In both cases we observed similar macroscopic configura-
tions with one important difference: under periodic boundary
conditions the system exhibits an even number of interfaces
whereas with reflecting boundaries this number is odd. If not
mentioned otherwise, then reflecting boundary conditions are
used.

In Fig. 1 we demonstrate the existence of the demixed
stationary state of the two species for a supercritical con-
trol parameter c. Starting with a steplike inhomogeneous
distribution of B particles (thin red line) and a homoge-
neous distribution of A particles (thin blue line), we simulate
the system until the steady-state pdfs do not appreciably
change anymore. For a subcritical nonlinearity (c < ccrit = 4)
as in Fig. 1(a), the two densities (thick blue and red lines)
both approach a uniform profile pA(x) = pB(x) = 1/2 − no
demixing is observed in this case. In contrast, the two species
prepared in the same initial state as before but for a stronger
nonlinearity (c > ccrit = 4) settle in an inhomogeneous steady
state [Fig. 1(b)], in which the excess of one particle sort is
accompanied by a shortage of particles of the other sort. The
two pdf-profiles are symmetric with respect to x = 0 where
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FIG. 1. Demixing of two species in simulations of Langevin
equations Eq. (11). Snapshots of the steady-state probability den-
sity functions (pdf), pA,B(x, t = 10), are shown by solid lines for a
subcritical value c = 3 < ccrit (a) and a supercritical value c = 5 >

ccrit (b). Bin size for pdf estimation �x = 0.02. Thin lines show
corresponding initial densities pA,B(x, t = 0): homogeneous and
inhomogeneous (with an excess on the left) for A and B particles, re-
spectively, and identical in (a) and (b). Theory, Eq. (26), is shown by
black dashed lines. Other parameters: number of particles N = 106,
integration time step �t = 10−5, s = 1.

a sharp interface separates the two populations. The higher
value of pB on the left is (approximately) equal to the higher
level of pA on the right; the same holds true for the lower
values. The deviations from a uniform density can be well
predicted by the theory (dashed lines) that is detailed below
in Sec. IV C.

We note that with periodic boundary conditions (not
shown) the configurations look similar but a second inter-
face is created. Whereas the interface for the used reflecting
boundary condition is fixed on average to x = 0, for periodic
conditions, the interfaces can move stochastically due to the
existence of the Goldstone mode (the distance between the
interfaces is approximately constant).

Even if for reflecting boundary conditions, the position
of the interface seems to be fixed, the steady-state solution
is still strongly influenced by the initial conditions. Because
the system is completely symmetric with respect to A and
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FIG. 2. Transient dynamics of demixing. Snapshots of probabil-
ity density functions for c = 5, s = 1, bin size for pdf estimation
�x = 0.02, and uniform initial distributions of particles. (a) Heat
map of pA(x, t ); values of the pdf are according to the color-bar.
(b) Snapshots of probability density functions at t = 10 and t = 104

[final state of graph (a)]. Black dashed line shows theoretical upper
and lower bounds Eq. (26). Other parameters are c = 5, number of
particles N = 105, integration time step �t = 10−4.

B particles, it is evident that an excess of B particles on the
right and an excess of A particles on the left should be also
a steady-state solution for the system. Our initial condition
that started with an excess of B particles on the left seems
to promote the evolution toward a steady state in which B
particles are still in excess on the left. What happens if we
do not bias the system by the initial condition?

It turns out that not only which solution but also how
quickly this steady solution is approached, depends strongly
on the chosen initial distributions. In Fig. 2 we present sim-
ulations results in which both densities were started in an
spatially uniform state, pA(x.t = 0) = pB(x, t = 0) = 1/2.
Here we also show the time-dependent probability density
for the A particles [heat map in Fig. 2(a)], illustrating that
the uniform initial densities lead for short times to a large
number of interfaces; both densities jump between the two
(theoretically predicted values) back and forth, such that an
excess of one sort of particles implies a scarcity of the other
sort. As time goes on, the number of interfaces drops slowly as
inhomogeneous domains will approach each other and merge.
This, however, is a slow process and in our simulation it takes
more than a span of t = 1000 for the system to settle in the
ultimate steady state exhibiting only one interface. We note
that in contrast to the tendency of the Langevin system to
minimize the number of interfaces, the local Smoluchowski
density equations studied below in Sec. IV admit an arbitrary
number of interfaces (jumps between discrete levels) in their
steady-state solution (cf. Fig. 5).
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FIG. 3. Sharp density interface of demixing. Steady-state prob-
ability density functions for the indicated values of integration
time step, �t . Other parameters are: c = 5, number of particles
N = 106; s = 1, bin size for pdf estimation �x = 0.05. Integration
time t = 10.

Below, we will show results from numerical integrations of
the corresponding mean-field Smoluchowski equations for the
steady-state pdfs. In marked contrast to the particle simula-
tions, it will turn out that these density equations can maintain
a considerable number of jumps. With an extension of the
sensing domain larger than a grid element s > 1 we observe a
coalescence process to a single interface.

Turning back to the particle simulations we would like
to point out that not only the number of interfaces but also
the exact shape of the profile will depend on the details of
the numerical procedure. This is illustrated in Fig. 3 where
we investigate the sharpness of the interface depending on
the used time step of our integration scheme. Remarkably,
the interface can become extremely sharp: starting with time
steps about �t ≈ 10−5 and smaller, the density profiles ex-
hibit macroscopic jumps between the adjacent grid elements
around x = 0. Only for time steps �t < 10−6, the density
anticipates the piecewise constant function that we will find
in the next section as the solution of a partial differential
equations (cf. below Eq. (27) and Fig. 5).

IV. MEAN FIELD EQUATIONS WITH ARBITRARY
SENSING RADIUS

In the macroscopic limit N → ∞ and �x → 0 (while
keeping s�x, i.e., the sensing radius, constant), the set of
Langevin equations corresponds to a Fokker-Planck equation
for the pdf of the 2N particles of our ensemble. The latter is
a high-dimensional diffusion equation in the 2N-dimensional
position space. Since the diffusion coefficients depend on the
current locations of the particles via the 〈�A,B〉q

rs we have to
state how to interpret the stochastic differential equation. Be-
cause the considered particles are active objects, their intrinsic
noise arises from variations of their internal propulsion mech-
anism. We assume here that this mechanism contributes in a
temporally discrete fashion very different to the thermal noise
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acting on passive Brownian particles in fluids. Consequently,
we have to use the Ito rule [56,59] for the formulation of the
kinetic equation of the pdf (two other interpretations of the
stochastic differential equations are discussed in Appendix
A).

Starting with the full probability density P =
P2N (. . . , xA,i, . . . , xB, j, . . . ; t ) for the 2N particles, we obtain
in Ito interpretation:

∂P

∂t
=

N∑
i=1

∂2

∂x2
A,i

(
1 + c 〈�B(xA,i )〉q

rs

)
P

+
N∑

j=1

∂2

∂x2
B, j

(
1 + c 〈�A(xB,i )〉q

rs

)
P. (12)

Reduction to the one-particle pdfs pA(x; t ), pB(x; t ) of an
arbitrary A and B-particle at position x is performed by in-
tegrating over all possible values of the other positions, by
de-correlating the particles in a mean field approximation and
by using Eq. (8). This yields the nonlinear and nonlocal set of
coupled Smoluchowski-equations:

∂t pA(x; t ) = ∂2
x

(
1 + c 〈pB〉q

rs

)
pA,

∂t pB(x; t ) = ∂2
x

(
1 + c 〈pA〉q

rs

)
pB. (13)

These are the basic equations for the further numerical and an-
alytical exploration of the system. The boundaries are as in the
particle simulations, either reflecting or periodic at x = ±�.
Complications may arise in case of nonvanishing sensing radii
which have to be taken into account in the formulation of the
boundary conditions. In particular, when solving Eq. (13) on
a discrete grid, one has to extend the number of grid elements
beyond the boundaries corresponding to one sensing radius.

As Eq. (13) are nonlinear and nonlocal, multiple stationary
solutions might exist. The stability of these solutions may
change when changing parameters (bifurcations of the steady
solutions). The simplest guess for stationary solutions are two
uniform distributions p0

A = p0
B = p0 = 1/(2�), i.e., a situation

in which both types of particles are well mixed. In the next
subsection we will address the stability of this uniform state.

A. Stability analysis

We modify the stability analysis of one-component sys-
tems in Refs. [72–74] to make it applicable to the case of
two species. We assume small periodic perturbations δpA,B ∝
exp(λt + ikx) around p0 with eigenvalue λ and wave num-
ber k. Corresponding to the normalization condition for the
probability densities and the boundary conditions, we choose
k = lπ, l =1, 2, . . . and x ∈ [−1, 1]. Linearisation of the den-
sity equations with respect to the small perturbations yields
the dispersion relation for the larger of the two eigenvalues

λ(k) = −k2

(
1 + c pq

0

(
1 − q

sin(krs)

krs

))
. (14)

Let us first consider the simple limit of a vanishing sensing
radius, in the continuous case of Eq. (13) given by rs → 0; for
this local case we give also the details of the stability analysis
in Appendix A. We then obtain

λ = − k2
(
1 + c pq

0(1 − q)
)
. (15)

Clearly, if q = 1 the eigenvalue is always negative, i.e., there
is no instability in this case. With q = 2 and p0 = 1/2 all
eigenvalues become positive for coupling values larger than
the critical value

ccrit = 1

pq
0(q − 1)

= 4; (16)

the latter value is obtained for our parameter choices of �=1,

q = 2. For values of c above this critical value, the homoge-
neous solutions are destabilized and the fastest growing mode
at the critical situation is k → ∞. Hence, when perturbations
of all wave lengths occur, we will first see an instability
corresponding to very high wave number or correspondingly
very small wave lengths, i.e., the homogeneous mixture of the
two sorts of particles decomposes starting with tiny spatial
separating regions.

In contrast and as can be expected, a finite sensing ra-
dius rs > 0 evokes a spatially more smooth destabilization
of the homogeneous solution according to Eq. (14). First, it
can be shown that λ(k; rs > 0) < λ(k; rs → 0); second, the
difference between vanishing and nonvanishing sensing ra-
dius grows with k and λ(k; rs > 0) will become negative for
sufficiently large k even for c > ccrit. This is illustrated in
Fig. 4 where we show the eigenvalue λ(k) versus k for two
different sensing radii as indicated in the caption (note that
despite the continuous curve only values at k = �π have to
be considered). For smaller value of rs [Fig. 4(b)] the fastest
growing modes are found at larger wave number k in line
with results of the local theory where the fastest mode is at
k → ∞. Also the growth rate of perturbations becomes larger
[cf. scales of the λ axes in Figs. 4(a) and 4(b)].

There is a second transition for fixed c with growing sens-
ing radius rs. Let c > ccrit . If rs becomes comparable to the
overall length scale 2� of the considered situation, then the
uniform distribution resumes stability. The eigenvalue again
changes the sign and for large sensing radii the single stable
solution is the uniform one. Taking the lowest possible value
of k = π , we obtain for the critical radius the equation

1 + cpq
0

(
1 − q

sin(πrs)

πrs

)
= 0

→ sin(πrs) =
(
cpq

0

)−1 + 1

q
πrs. (17)

The solution will obviously depend on the value of c but we
can ask what happens if we have an arbitrary strong coupling
(c → ∞). In this case, the solution of the transcendental equa-
tion for q = 2 is rs,crit ≈ 0.6034, i.e., for values of the sensing
region larger than 61% of the system size we can exclude any
instability.

We found that for c > ccrit and sufficiently small sensing
radius, homogeneous densities of each particle sort become
unstable, however, does that also imply an inhomogeneity
for the total distribution of particles? This question can be
addressed by inspecting the stability of the overall density
p(x, t ) = pA(x, t ) + pB(x, t ). The latter is normalized to 2 and
the steady uniform distribution reads p(x) = 1. We can write
down equations for p(x, t ) and for the density of one sort of
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FIG. 4. Eigenvalue vs. k according to Eq. (14) for c = 5 and
different values of the sensing radius: (a) rs = 0.1; (b): rs = 0.01.
Note that only discrete values of k = lπ with l = 1, 2, . . . can be
attained.

particles, say pB(x, t ):

∂t p(x, t ) = ∂2
x [p + c ((p − pB) 〈pB〉q + pB 〈p − pB〉q)] ,

∂t pB(x, t ) = ∂2
x [(1 + c 〈p − pB〉q) pB(x, t )] . (18)

and everywhere pA = p − pB have to be inserted. The eigen-
values of the equations linearized with small δp and δpB

around the steady-state solutions p = 1, pB = p0 = 1/2 fac-
torize which results for the eigenvalues of the overall
density p,

λp(k) = −k2

(
1 + c pq

0

(
1 + q

sin(krs)

krs

))
, (19)

and the expression known from Eq. (14) the pdf of B-particles.
For q = 2, the perturbations of p(x, t ) decay with eigenvalue
λp [the factor 1 + 2 sin(krs)/(krs) remains strictly positive]
and the uniform distribution of the sum of the pdfs with p = 1
is always stable; this will be different for stronger nonlineari-
ties q > 2 but is not explored here any further. Below, we will
make use of the overall density’s asymptotic stability around
the uniform steady state.

B. Symmetric asymptotic cases: Numerical findings

We consider the asymptotic steady states obtained from
the long-time limit of the numerical integration of the local
coupled Smoluchowski-equations; the nonlocal model will be
considered in Sec. V. The local model also allows for an ana-
lytical solution that we explore in the subsequent subsection.

We start with the numerical integration results for the local
case, rs = 0. The parameter c is adjusted to values where the
uniform distribution is unstable. In particular we use c = 5 if
not stated otherwise. We use initial conditions for pA,B(x, 0)
in form of a step-function, which is symmetrical around the
uniform state and around the origin at x = 0,

pA(x, 0) =
{

1
2 + δ, −1 � x � 0

1
2 − δ, 0 < x � 1

,

pB(x, 0) = 1 − pA(x, 0).

(20)

The parameter 0 � δ � 0.5 specifies how far from the uni-
form state the initial conditions are.

In Fig. 5 we show representative numerical examples
which exhibit demixed states. In Fig. 5(a) the particle species
A (B) displays an increased probability density with numeric
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FIG. 5. Symmetric stationary solutions from numerical solutions
of the local Smoluchowski equation and from analytical treatment
with reflecting boundary condition. In both panels the initial and
stationary solutions are shown by dashed and solid colored lines,
respectively. Black dashed lines show theoretical predictions Eq. (26)
(see next Sec. IV B). Panels differ in their initial distance to the
uniform distribution (dotted line): δ = 0.16 (a), δ = 0.14 (b). Other
parameters: M = 100 (number of grid points), c = 5.

value about ph ≈ 0.72 in the domain left (right) from the
origin. In contrast, right (left) from the origin the densities
attain a diminished value pl ≈ 0.28.

In this case the initial conditions (colored dashed lines)
differ sufficiently strongly from the uniform distribution and
also trigger with their left/right asymmetry the asymmetry of
the asymptotic solution. For the latter, deviations from unifor-
mity, i.e., the values ph and pl of increased and diminished
probability attained in the long-time limit (black dashed line)
can be well predicted by the calculation presented in the next
subsection. Note that the domains of increased and diminished
probability have equal size and that an increase in one sort’s
pdf is accompanied by the decrease in the other sort’s pdf
(demixing). In line with the stability of the homogeneous state
discussed in the previous section, we observe numerically that
for arbitrary x

p(x) = pA(x) + pB(x) = ph + pl = 1. (21)

Figure 5(b) illustrates the drastic change caused by initializing
the system closer to the uniform density (cf. colored dashed
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FIG. 6. Total number of interfaces in the stationary pdfs vs. the
grid size and the initial condition parameter δ. (a) The number of
interfaces normalized to the grid size M vs. M for the indicated
values of δ. (b) The normalized number of interfaces vs. δ for the
indicated values of M. For both panels, c = 5; the initial conditions
are given by Eq. (20).

lines) by choosing a slightly smaller value of δ. Asymptot-
ically, the same constant values ph and pl will be attained.
However, in contrast to Fig. 5(a), the two densities jump mul-
tiple times between these levels obeying strictly the demixing
property that an increase in one sort comes along with a
decrease in the other one. How many of such jumps can we
observe and how does their number depend on the initial
conditions for the two densities?

In the numerical solution of the coupled Smoluchowski
equations we use finite grid elements and thus the maximal
number of interfaces cannot exceed this number of elements.
Any number of jumps below this maximal number is possible
in the local version of the problem (as long as the densities
also obey the normalization condition). This is due to the
absence of a surface tension, no activation is needed to create
a couple of new interfaces (jumps). All these configurations
with different numbers of interfaces appear asymptotically
stable for the set of deterministic Smoluchowski Eq. (13).

Importantly, the precise number and localization of in-
terfaces is, as the solution of the Smoluchowski equation,
uniquely determined by the given initial condition. The num-
ber of interfaces in the stationary pdfs depends on how far
away from the uniform distributions the initial pdfs are, i.e.,
on parameter δ in Eq. (20). As illustrated in Fig. 6(b), the
number of interfaces drops monotonically from M (small δ),
the number of grid points, to 1 (for large values of δ).

The fraction of possible interfaces does not seem to de-
pend much on the grid size once a sufficient size has been
reached: as demonstrated in Fig. 6 the relative number of
jumps (compared to the maximally possible number) depends
on the initial distance to the uniform distribution, δ but not
much on the number of grid points used. In contrast, as can be
also extracted from Fig. 6, the absolute number of jumps does
depend on the number of grid elements. A different partition
(i.e., a different �x) of the same line [−�,+�] creates another
spatial arrangement of A and B. It possesses the same density
plateaus but usually a different number of interfaces.

Interestingly, only the solution with a single interface is in
agreement with the long-time asymptotic solutions in particle
simulations; we recall that solutions with multiple jumps are
observed as long-living transients (cf. Fig. 2). Similarly to

what we have observed there, an initial condition closer to
a uniform distribution typically enables a larger number of
interfaces.

C. Symmetric asymptotic cases: Analytic findings

Setting the temporal derivative to zero, we obtain the sta-
tionary Smoluchowski equations in the local case

d2

dx2

[
1 + c p2

A(x)
]

pB(x) = 0, (22)

d2

dx2

[
1 + c p2

B(x)
]

pA(x) = 0. (23)

Focussing on the case with reflecting boundary conditions, we
can safely assume vanishing probability currents for the two
species, and hence not only the second derivative but already
the first derivative of the product has to be zero.

Both densities must be thus (piecewise) constant, attaining
a high level ph and a low level pl , respectively. We assume in
this subsection that the corresponding integration constant in
the two Smoluchowski equations is the same:(

1 + cp2
h

)
pl = E = (

1 + cp2
l

)
ph . (24)

The assumed symmetry also implies that the domains of in-
creased and decreased density are of equal size. The above
equations together with the normalization condition provide
algebraic conditions for the determination of the constant val-
ues ph and pl as solutions left and right from interfaces (jump
points). We underline, due to the symmetry of Eq. (23), both
(pl , ph) and (ph, pl ) are possible solutions for [pA(x), pB(x)]
(and both have to be attained at least in two distinct domains
to satisfy the normalization condition).

To find analytical expression for pl , ph we divide Eq. (24)
by the product ph pl and obtain

1

ph
+ c ph = 1

pl
+ c pl . (25)

Furthermore we can use that in agreement with Eq. (21),
the two values should deviate by the same amount from the
uniform density, ph,l = 1/2 ± ε. One obtains quickly the first,
trivial solution ε = 0 (both densities equal to the uniform
distribution). The other solutions read

ph,l = 1

2
±

√
1

4
− 1

c
. (26)

In line with the stability analysis of Sec. IV A these solutions
exist for sufficiently large c beyond a pitchfork bifurcation at
ccrit = 4.

The simplest solutions for reflecting boundary conditions
and a supercritical value of c, i.e., the solutions with only one
jump, can be formulated in terms of the Heaviside function

pA(x) = phθ (x) + plθ (−x),

pB(x) = plθ (x) + phθ (−x). (27)

Of course, there is the second solution

pA(x) = plθ (x) + phθ (−x),

pB(x) = phθ (x) + plθ (−x), (28)

in which both densities switch roles.
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In principle, normalized densities with any (even or odd)
number of jumps between ph and pl are possible as long as
the total domain size for one specific level (say, ph) adds up to
� = 1. To give an example, the following solution would also
satisfy the stationary Smoluchowski equations:

pA(x) = plθ (x2 − x1 − x) + phθ (x + x1 − x2)θ (x1 − x)

+plθ (x − x1)θ (x2 − x) + phθ (x − x2),

pB(x) = phθ (x2 − x1 − x) + plθ (x + x1 − x2)θ (x1 − x)

+phθ (x − x1)θ (x2 − x) + plθ (x − x2), (29)

with 0 < x2 < 1 and −1 < x1 < x2 and there can be two
or three jumps of the density, depending on the choice of
x1 and x2. However, like the numerical solutions our ana-
lytical solution allows the maximal number of jumps M if
the resulting function is in agreement with the normalization
condition. The densities jump in antiphase between the two
values ph and pl as calculated below. Every grid element �x
is bound to attain one of two values. Also configurations with
extended pieces of constant densities between two interfaces
are in agreement with the analysis. Note that for the solutions
discussed so far, the number of grid elements with diminished
density equals the corresponding number of increased density
due to the normalization condition.

D. Asymmetric asymptotic states:
Numerical and analytical findings

A different class of stationary solutions emerges for the
initial conditions pA(x, 0), pB(x, 0), which are not symmet-
ric, in particular, when Eq. (21) is initially not fulfilled and
pA(x, 0) + pB(x, 0) 
= 1 (at least for some range of x). Con-
sider, for instance, the initial condition for pA(x, t ) as above
with parameter δ, but set a uniform initial pdf for species
B, pB(x, 0) = 1/2. Exemplary stationary pdfs obtained from
numerical solutions of the Smoluchowski equations are dis-
played in Figs. 7(a) and 7(b). In Fig. 7(c) we show the
common distribution p(x) = pA(x) + pB(x). For two differ-
ent values of δ. Both densities again approach piecewise
constant solutions but now differ in the attained constant
levels: in total, we have now two different pairs of solutions
(pA,l , pB,h) and (pA,h, pB,l ). We recall that we had before
in the symmetric solution pA,l = pB,l and pA,h = pB,h. Now,
however, these values are not the same anymore, pA,l 
= pB,l ,

pA,h 
= pB,h. In addition, the domain size for the two pairs of
solutions is not equal and it seems to depend on the pair of
values attained and on the initial condition.

To calculate these asymmetric solutions, we relax the as-
sumption of equally sized domains of increased and decreased
probability. With the new spatial asymmetry parameter �, we
have as new normalization conditions

pA,h(1 − �) + pA,l (1 + �)

= pB,l (1 − �) + pB,h(1 + �) = 1. (30)

Again from the Smoluchowski Eq. (13), the expressions
under the Laplacians should be constants in the stationary
state. However, in contrast to the symmetric case, these in-
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FIG. 7. Asymmetric stationary solutions of the local Smolu-
chowski equation with different initial conditions in terms of
parameter δ = 0.5 (a) and δ = 0.4 (b). Stationary solutions and
initial conditions in panels (a), (b) are shown by solid and dashed
colored lines, respectively. We observe two pairs of piecewise con-
stant solutions, (pA,l , pB,h) and (pA,h, pB,l ) that occupy domains of
distinct sizes 1 + � and 1 − �, respectively; numerically, we find
� = 0.16 (a) and � = 0.22 (b). Remarkably, these asymmetric solu-
tions (asymmetric with respect to the domain sizes), lead to a slightly
inhomogeneous distribution of particles in the two domains as shown
in panel (c). Parameters: M = 100 (grid points), c = 5.

tegration constants now possess different values(
1 + cp2

B,l

)
pA,h = (

1 + cp2
B,h

)
pA,l = EA,(

1 + cp2
A,h

)
pB,l = (

1 + cp2
A,l

)
pB,h = EB. (31)
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FIG. 8. Stationary plateau values in case of asymmetric steps
as function of �. Numerical solutions of Eq. (31) and the normal-
ization condition Eq. (30) for c = 5. As revealed by the stability
analysis in Appendix A, the steady-state solutions are stable only for
� < �crit ≈ 0.34 (indicated by thick lines). Blue points correspond
to the asymptotic solutions found to be at � ≈ 0.16 in Fig. 7(a) and
at � ≈ 0.22 in Fig. 7(b).

Given a specific value of �, we can solve Eqs. (30) and
(31) numerically for the four unknown levels. Results of this
computation as functions of the parameter � are presented
in Fig. 8 for c = 5. The values for � = 0 correspond to the
symmetric case Eq. (21) and solutions Eq. (26) with c = 5.
In the limit � → 1, the surviving solution (the one for which
the two levels are closer to each other and which is occupied in
the larger domain 1 + �) has to be a uniform distribution and,
consequently, the dashed lines converge to 1/2. Because the
uniform solution was already shown to be unstable for c = 5,
it is evident that not all values of � will lead to a stable asymp-
totic solution. In Appendix A we demonstrate that sufficiently
small � < �crit ≈ 0.34, the asymmetric solutions are stable
with respect to weak perturbations (this range is indicated
in Fig. 8 by thick lines). For � > �crit, one eigenvalue is
positive and, hence, the corresponding state is not a stable
solution.

Finally, we mention an important difference between the
numerical solutions of the Smoluchowski equations and the
particle simulation results for the Langevin equations. First,
asymptotically stable asymmetric states could not be found
in the Langevin simulations Eq. (3). Hence, these solutions
are a special feature of the Smoluchowski equations and
a consequence of neglecting finite size fluctuations in the
mean-field theory. Inclusion of fluctuations at the level of the
density equations might change this disagreement between
the two levels of description. Second, because the Smolu-
chowski equations are deterministic, the solution for the same
initial conditions will always be the same. This is not so,
of course, for the Langevin equations–even for very large
populations of particles, a tiny fluctuation may introduce a
break in symmetry in one way or the other. The asymp-
totically stable states may differ for different runs of the
system.

E. Inspection of stability of asymptotic case
by Cahn Hilliard formalism

We apply now another theoretical approach to the stabil-
ity problem of the inhomogeneous state. The deterministic
set of local Smoluchowski equations can be regarded as
a Cahn-Hilliard equation for a conserved order parameter
[13,17,75,76]. We write the Smoluchowski equations for the
densities as nonlinear flux equations:

∂t pA(x, t ) = −∂x JA{pA, pB},
∂t pB(x, t ) = −∂x JB{pA, pB}. (32)

On the right-hand side, there are the components of the flux-
vector JA,B, which can be expressed as functional derivatives

JA = − ∂x
δ�

δpA
, JB = − ∂x

δ�

δpB
, (33)

for which the potential reads

�{pA(x, t ), pB(x, t )} = 1

2

∫ 1

−1
dx

(
p2

A + p2
B + c p2

A p2
B

)
.

(34)

This potential is locally defined. Because we consider the
local version of the model, which has a vanishingly small
sensing radius, the potential does not contain any interaction
term corresponding to a creation of surface tension. The lack
of such a term is the reason for the narrow interfaces [77,78].

It is well known that a potential like Eq. (34) plays the role
of a Lyapunov function [79]. Hence, we can use � to discuss
the stability properties of the steady states. Insertion of the
uniform state yields

�unif = 1

2
+ c

16
. (35)

It is compared to the potential value of the inhomoge-
neous solution with in antiphase distributed pA,B = 1/2 ±√

1/4 − 1/c, both extended over a length of 1. Here the de-
pendence for c > 4 yields

�inh = 1 − 1

c
, c � ccrit. (36)

Both curves intersect at c = 4. However, for a supracritical
value c > ccrit the potential value Eq. (36) is smaller and hence
corresponds to the stable solution. We note that the value of
�inh does not depend on the number of jumps (interfaces)
which is a consequence of the local character of the potential.

Further on, we inspected the asymmetric steady states
by help of the above mentioned Lyapunov function
�{pA(x), pB(x)} within the parameter region c > ccrit . By
insertion of the spatially asymmetric inhomogeneous states,
one finds numerical values higher than these from the
corresponding symmetric ones �{pA(x)asym, pB(x)asym} >

�{pA(x)sym, pB(x)sym}.
Hence, we expect that the asymmetric configurations cor-

respond to metastable states that are left quickly toward the
symmetric states, once fluctuations are taken into account.
This is exactly the case in the particle simulations and may
explain why asymmetric states are not observed in the latter.
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FIG. 9. Evolution of the probability density functions toward
stationary state for the nonlocal case for c = 5, a spatial grid with
M = 500, and a sensing radius, rs = 0.01. Both species are initially
distributed according to step-functions with a single interface shifted
to negative values of x. Three panels show snapshots of pA(x, t ) and
pB(x, t ) at indicated values of time t .

V. NONLOCAL MODEL WITH FINITE SENSING RADIUS

Despite some agreement between the results of parti-
cle simulations and of the corresponding mean-field theory
in form of coupled Smoluchowski equations, we found
also a number of striking discrepancies between these two
levels of description. One prominent difference, on which
we focus now, is that in the Langevin simulations a state
with several domains and corresponding interfaces develops
asymptotically into a state with a single interface whereas
the Smoluchowski equations with local coupling admit also
asymptotically stable states with arbitrary number of inter-
faces, limited only by the number of grid points used in the
numerical integration scheme. In addition, asymmetric states
which do not obey Eq. (21) also appear in the deterministic
(mean-field) treatment which we never observed in particle
simulations.

A. Transient and asymptotic states in the nonlocal model

Integration of the Smoluchowski equation shows that the
grid size M determines the number of domains for the sym-
metric as well as for asymmetric distributions. This ambiguity
of the numerical integration results from the local interaction
in case of sensing radius rs = �x/2 as assumed above. As
shown below, this ambiguity and the differences between
particle simulations and mean field theory will be removed
if the model includes a larger value of the sensing radius,
specifically, equal or larger than the size of an individual grid
element rs � �x.

A typical temporal evolution in case with sensing radius
rs � �x is presented in Fig. 9. Arbitrary initial configuration
relax quickly to a symmetric state in which the full probabil-
ity density p(x) = pA(x) + pB(x) is uniform, i.e., Eq. (21) is
obeyed, but still several interfaces coexist. The corresponding
time scale of this first relaxation of the initial state is given
by the eigenvalue λ1 from Eq. (19). The distribution during
this period resembles the transient states with many interfaces
observed in some of our particle simulations (cf. Fig. 2) and
the asymptotic solution for certain initial conditions obtained
for the local Smoluchowski equations [cf. Fig. 5(b)]. Eventu-
ally, for very long times, the different domains coalesce and
a single interface remains between two demixed states of A
and B particles. This corresponds to the single inhomogeneous
asymptotic state, which we found in particle simulations.
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FIG. 10. Stationary probability density, pA(x), for the nonlocal
model estimated from Langevin equations, and from the numerical
solution of Smoluchowski equation. Initial conditions were given
by Eq. (20) with δ = 0.5 for both Langevin and Smoluchowski
equations. Number of particles of each species, N = 106, and inte-
gration time t = 10, for Langevin equation. Number of grid points,
M = 500. (a) pA(x) from the Smoluchowski equation (thick color
lines) and its estimate from Langevin equations (black lines) for the
indicate values of the sensing radius, rs. The integration time step
of Langevin equations, �t = 10−5. (b) Comparison of the stationary
solution of the Smoluchowski equation for s = 26 (thick grey line)
with estimates from Langevin equations for the indicated values of
integration time step, �t .

Figure 10 illustrates the excellent correspondence between
stochastic simulations of the Langevin equations (particle
simulations) and the numerical solution of the Smoluchowski
equations. In particular, Fig. 10(b) demonstrates conver-
gence of particle simulations to the stationary solution of
Smoluchowski equation already for relatively large time step,
�t ≈ 10−3. This can be contrasted with the local case of
Fig. 3, where such convergence is observed for much smaller
�t . The increase of sensing radius widens the profile of
the smooth interface. Eventually, for the sensing parameter s
comparable with M/2 (i.e., rs = � = 1), the uniform solution
becomes stable [not shown in Fig. 10(a)], which we found
already by inspecting the eigenvalue in Eq. (17). Upon further
increasing the sensing radius, the governing Smoluchowski
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FIG. 11. Evolution of the probability density functions from
symmetric initial condition Eq. (20) with δ = 0.12, toward stationary
state. Numerical integration used the spatial grid with M = 500 and
sensing radius, rs = 0.01. (a) The heat map of pA(x, t ). (b) The
convergence error, ε(t ).

equations are less and less affected by the respective other
species and thus loose their nonlinear character.

Generally, the long time needed to go to the final steady
state depends crucially on the initial conditions. When started
from symmetric initial conditions Eq. (20) with large δ, so-
lutions of both the Langevin and Smoluchowski equations
approach stationary solutions quickly. In contrast, if the ini-
tial distribution Eq. (20) is close to the uniform, i.e., for
small values of δ, the transient to stationary solution may
become extremely slow, as illustrated in the heat-map plot
in Fig. 11(a). As can be seen, multiple interfaces developed
at small times converges eventually to the single interface,
resulting in the stationary solution shown in Fig. 10(b) (blue
line). This approach to the stationary solution can be quanti-
fied by the convergence error defined as the maximum of the
difference of probability densities at two consecutive integra-
tion windows, T :

ε(t ) = max |pA(x, t ) − pA(x, t + T )|.
Peaks in the convergence error shown in Fig. 11(b) correspond
to the merging of interfaces in the probability density.

In Fig. 12 we summarize the properties of the asymptotic
state if crossing from the local to the nonlocal model. First,
already a size of a few grid elements �x are sufficient to
remove the strong dependence on the initial state with its
multiple interfaces and the ambiguity of the local model,
in which the asymptotic state is not unique with respect to
the underlying integration grid. With rs � �x we observe a
unique one-interface solution irrespective of the initial con-
ditions and on the partition of the integration scheme. The
smooth character of the front indicates that the sensing radius
generates a kind of surface tension between the moving A
and B particles. Taking into account the particle numbers of
adjacent cells when computing the diffusivities DA, DB in
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FIG. 12. Effect of the sensing radius on the stationary probability
density function obtained from numerical solution of the Smolu-
chowski equation. (a) Stationary pdf, pA(x), for the indicated values
of sensing radius, rs. Number of grid points, M = 500. (b) Slope at
the interface center of the stationary pdf vs. sensing radius, rs, for
the indicated numbers of grid points, M. This figure indicates that
for a given sensing radius the stationary solution is invariant with
respect to the number of grid points, M. It changes from very steep
occurrence for small radii to very flat interfaces for large nonlocal
sensing.

Eq. (3) causes a smoothing and avoidance of many drastic
jumps in the probability densities.

Figure 12(b) depicts the interface’s maximal slope and how
it depends on the sensing radius. The slope develops in nearly
three steps with growing rs. At small sensing radius it de-
creases rapidly. For moderate sensing sizes the slope changes
only weakly. When the sensing radius approaches half of the
system size, the slope goes quickly to zero, indicating the
transition to the uniform distribution. We would like to point
out that these results do not depend on the grid size – several
choices of M show the same behavior.

B. Hysteresis upon variation of coupling strength

Finally, we discuss how the system with nonlocal interac-
tions behaves for different values of the coupling coefficient
c. In Fig. 13 we show how the structure of the stationary
pdf changes with the parameter c by global bifurcations.
The following parameter continuation procedure was used.
In Fig. 13(a) we started with parameter c = 30 from the
initial conditions Eq. (20) with pB(x, 0) = 1 − pA(x, 0) and
δ = 0.1. The parameter c was decreased in steps of 1, and the

022113-12



DEMIXING OF TWO SPECIES VIA RECIPROCALLY … PHYSICAL REVIEW E 103, 022113 (2021)

5 10 15 20 25 30

= c

-1

-0.5

0

0.5

1

x

(a)

0.2

0.4

0.6

0.8

1.0

= c

5 10 15 20 25 30

c =⇒

-1

-0.5

0

0.5

1

x

(b)

0.2

0.4

0.6

0.8

-1 0 1

x

0

0.5

1

P.
d.

f.

c = 5
(c)

forward
backward

-1 0 1

x

c = 10

FIG. 13. Parameter continuation of the stationary solutions for
N = 200 and rs = 0.015. (a) Heat map of pB(x) vs. c, for the back-
ward continuation, when c decreases from c = 30 to c = 3. (b) Heat
map of pB(x) vs. c, for the forward continuation, when c increases
from c = 4.1 to c = 30. (c) Stationary density pB(x) for the indicated
values of c, for the backward and forward continuation.

initial conditions were taken from the stationary pdfs of the
previous parameter c value. As can be seen, the number of
interfaces becomes smaller as c decreases and sequences of
domains merge to larger areas of demixed states. The picture
is nearly periodic and several collapses of domains happen
for the same c-value. However, the parameter continuation
in the forward direction, i.e., c increases say from 4.2, does
not change the structure of stationary pdfs, which contains
a single interface, as shown in Fig. 13(b). It means that the
asymptotic state for higher c values is multistable at least with
respect to the various attractive states shown in the Fig. 13(a)
during the decrease of the c-values. This is further illustrated
in Fig. 13(c), which displays vertical cuts of backward and
forward evolution of the densities for the indicated values of
c. For c = 5 stationary states obtained from either backward
or forward continuation procedure are identical. In contrast,
c = 10 yields distinct stationary densities.

VI. DISCUSSION

In summary, we considered a symmetric mixture of two
species of stochastic micro-swimmers that move as over-
damped Brownian particles in one dimension. We assumed

that the effective diffusion coefficient of particles grows non-
linearly with the particle number of the second species inside a
sensing radius rs. This assumption yields an instability induc-
ing a spatial demixing of the two particle sorts above a critical
strength of interaction. This demixing was demonstrated both
by particle simulations as well as by analytic inspection and
numerical solution of the corresponding macroscopic (mean-
field) Smoluchowski equations for the densities. The latter
investigations revealed that the asymptotic solutions of the
mean-field theory depend on the size of the sensing radius.

In case of a local definition with the radius of the or-
der of an element of the integration grid, stable sequences
of stepwise constant demixed domains with sharp interfaces
were established as solutions of the coupled Smoluchowski
equations numerically and analytically. We can infer from the
observed number of interfaces (jumps) that the local model in
the absence of any mechanism for surface tension possesses
an ambiguous character; the slope of the interfaces in particle
simulations depends on the chosen time step of integration;
the spatial structure with multiple interfaces looks very dif-
ferent for different partitions of the underlying integration
scheme for the corresponding Smoluchowski equation.

The simplest solutions for both densities are fully de-
scribed by just two probability levels and are symmetric in the
sense that they occupy equal domains of the entire interval.
We also found, however, asymmetric solutions in which A
and B particles show different levels of demixing and, to
describe the system, we need in total four levels of probability,
with one pair of increase/decreased probability attained in
two distinct domains of sizes 1 ± �. We characterized the
(in)stability of these asymmetric solutions (only small values
of asymmetry � lead to stable solutions) but also pointed out
that the asymmetric solutions as well as the multi-interface
solutions were not observable as long-time distributions in
the particle simulations. This result was also in line with
the Cahn-Hilliard potential that was generally higher for the
asymmetric states than for the symmetric ones, indicating that
the asymmetric states are metastable and cannot survive in the
Langevin simulations with finite-size fluctuations.

We then showed that a nonlocal definition of the diffusion
coefficients in which we average over a neighborhood of
the current grid point removed the ambiguity of asymptotic
solutions of the Smoluchowski equations. Nonlocality of the
interaction regularizes the stationary state. Arbitrary initial
configurations end after a coalescence of domains in a unique
stationary state, which in its front profile displays excellent
agreement with the results of particle simulations.

Our results are in line with very recent experiments
by Curatolo et al. [18] on a two-component bacterial sys-
tem with reciprocal motility regulation. In this (effectively
two-dimensional) system, two engineered populations of
Escherichia Coli interact via quorum sensing in a density-
dependent manner and can show either demixing (if an
increased density leads to a higher motility as in our model) or
colocalization (if an increased density of the other population
reduces the diffusivity). The system is more complicated in
that bacteria also proliferate (their number is not conserved)
and that the system is two-dimensional with the spherical
symmetry of the Petri dish. The authors of [18] also study
two coupled Smoluchowski equations that in their simplest
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version [their Eqs. (1) and (2)] correspond to the Ito-
interpreted two-dimensional generalization of our model but
are also complemented by population terms accounting for a
logistic growth of the bacterial populations. They perform a
linear stability analysis (equivalent to our calculation shown
in the Appendix) and find a criterion for demixing.

Our analysis, which was independently developed, differs
from the theoretical results of Ref. [18] in several respects.
First, it demonstrates that neither two spatial dimensions nor
population growth terms are needed to get a demixing ef-
fect (this is qualitatively also discussed by the authors of
Ref. [18]). Second, because we consider a more abstract
model (not supposed to explain the specific setup of the E. coli
experiment), our nonlinearity is particularly simple. Third,
because of the simplicity of our model, we can calculate
explicitly the levels of the demixed densities and prove their
dynamical stability, which goes beyond the linear stability
analysis of the uniform state. Fourth, we have also per-
formed particle simulations and discussed the similarities and
(sometimes subtle) differences to the outcome of the density
equations. Last, we have also discussed the importance of the
different kinetic interpretations of the multiplicative noise.

Turning back to our model, we note that we have also
studied it in higher spatial dimensions. With nonlocal sensing
(rs > 0 in the thermodynamic limit) a transition to a demixed
state with asymptotically two domains have also been ob-
served in two-dimensional particle simulations with periodic
boundary conditions. As in the one-dimensional system, we
obtain two distinct domains in which two distinct values of the
probability are attained for the two species (e.g., increased for
A and decreased for B). As the boundary to the other domain
is crossed, the two densities switch roles and jump to the
respective other value (i.e., increased for B and decreased for
A). Both regions are separated by a sharp interface; density
values agree with the result of the analytic treatment given
here. It remains an interesting task for future studies to explore
novel features of demixing that are possible only in systems
with higher spatial dimension.
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APPENDIX A: EIGENVALUES OF THE STEADY STATES
AND INTERPRETATION OF MULTIPLICATIVE NOISE

The connection between the Langevin equations with mul-
tiplicative noise [56,59] and the corresponding Smoluchowski
equation was formulated in the main text for the Ito in-
terpretation of the corresponding differential equation. For
completeness, we give here the details of the eigenvalue anal-
ysis for this interpretation in the case of a local coupling
(the generalization to nonlocal coupling is straightforward).
In addition, we repeat the stability analysis for the case of
the Stratonovich interpretation of the stochastic differential

equations and demonstrate that in this case the homogeneous
state is always stable with a quadratic nonlinearity.

The Smoluchowski equations in the Ito interpretation of the
Langevin equations read [59]

∂t pA = ∂2
x { f (pB(x)) pA(x)},

∂t pB = ∂2
x { f (pA(x)) pB(x)}, (A1)

where we used for the ease of notation the abbreviation
f (p) = 1 + cp2. Let us suppose that we have found steady
states p0

A and p0
B, i.e., constant values in a certain domain.

This might be the homogeneous solution, the symmetric so-
lution from Sec. IV C in two domains of identical size 1, or
the solutions in the asymmetric domains of size 1 + � and
1 − � from Sec. IV D. In any case, we add small spatiotem-
poral perturbations to these steady-state solutions, pA(x, t ) =
p0

A + δpA(x, t ) and pB(x, t ) = p0
B + δpB(x, t ), with δp(x, t ) ∝

exp(λt + ikx), and we linearize the problem with respect to
small δpA,B. In this way, one obtains

∂t δpA = − f
(
p0

B

)
k2δpA − p0

A f ′(p0
B

)
k2δpB,

∂t δpB = −p0
B f ′(p0

A

)
k2δpA − f

(
p0

A

)
k2δpB, (A2)

where f ′(p) stands for the derivative with respect to the argu-
ment of the function. From Eq. (A2) we obtain the eigenvalues
as nontrivial solutions λ 
= 0 of a quadratic equation:

λ1,2

k2
= −

[
1 + c

2

(
p2

A,0 + p2
B,0

)]
± c

2

√
p4

A,0 + 14p2
A,0 p2

B,0 + p4
B,0. (A3)

For the uniform densities for the entire domain (pA,0 = pB,0 =
1/2), we obtain

λ1,2

k2
= −1 +

{
1
4 c

− 3
4 c

, (A4)

which corresponds in its first (larger) solution to Eq. (15)
in the main text and shows in particular that one of the
eigenvalues becomes positive for c > ccrit and the uniform
solution looses its stability. For such supercritical values of the
coupling coefficient, we have found the alternative symmetric
solutions, say, pA,h and pB,l attained in one domain of size
1 and symmetrical solutions pA,l and pB,h in an identical
domain, where the values are given by [repeating Eq. (26)
from the main text]

pA,h = pB,h = 1

2
+

√
1

4
− 1

c
, (A5)

pA,l = pB,l = 1

2
−

√
1

4
− 1

c
. (A6)

The eigenvalues in this case read

λ1,2

k2
= − c

2
±

√
c2

4
+ 4 − c, (A7)

and it is not hard to see that for c > ccrit = 4, both eigenvalues
are negative, i.e., the symmetric solutions that show a demix-
ing are stable against small fluctuations.

Finally, if we assume asymmetric domains of size 1 + �

and 1 − �, then we were not able to find explicit solutions but
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FIG. 14. Eigenvalues for asymmetric solutions vs. excess in do-
main size �. This plot complements Fig. 8 and reveals that these
states loose stability for � � 0.34 where one of the eigenvalues be-
comes positive. The shown lines have been computed using Eq. (A3)
with pA,0 = pA,l , pB,0 = pB,h and pA,0 = pA,h, pB,0 = pB,l obtained
as numerical solutions from Eqs. (30) and (31).

had to resort to the numerical solution of Eqs. (30) and (31).
We would like to mention, however, that the four nonlinear
equations are partly linear in some of the variables and this
fact can be used to reduce the problem to one (highly nonlin-
ear) equation for a remaining variable (say, pB, l). Because
this resulting equation is very lengthy and not insightful,
we abstain from presenting it here. We have inspected the
equation graphically and made sure that (at least for our
standard value c = 5) the discussed solution for the four val-
ues pA,l , pA,h, pB,l , pB,h is the unique solution of the problem
(apart from the trivial second solution obtained by swapping
the indices A and B). If we insert the pairs of values into
Eq. (A3), then we obtain the eigenvalues shown in Fig. 14.

Let us return to the stability of the uniform distribution
from a more general perspective and also discuss what hap-
pens if we switch from the Ito interpretation to the Statonovich
interpretation.

Considering the linear system in Eq. (A2), we see quickly
that a saddle-node bifurcation (one real eigenvalue changing
sign) occurs if

p0
A p0

B f ′(p0
A

)
f ′(p0

B

) − f
(
p0

A

)
f
(
p0

B

)
� 0. (A8)

For the symmetric homogeneous distribution this reduces to
the simpler condition p0 f ′(p0) − f (p0) � 0, which means
cq(p0)q − (1 + c(p0)q) � 0. A minimal requirement is q > 1.
For q = 2 and p0 = 1/2 the instability occurs at c = 4 as
calculated above and in the main text; see Eq. (16).

Let us now turn to two other interpretations of the stochas-
tic differential equation with multiplicative noise. We start
with the Stratonovich calculus, i.e., we interpret the stochastic
differential equations in the sense of Stratonovich [59]. This
yields the Smoluchowski equation:

∂t pA = ∂x

√
f [pB(x)]∂x

√
f [pB(x) pA(x)],

∂t pB = ∂x

√
f [pA(x)]∂x

√
f [pA(x) pB(x)]. (A9)

We proceed as above and assume small wavelike perturba-
tions around the fixed homogeneous states p0

A and p0
B, i.e.,

pA(x, t ) = p0
A + δpA(x, t ) and pB(x) = p0

B + δpB(x, t ) with
δp(x, t ) ∝ exp(λt + ikx) and obtain

∂t δpA = − f
(
p0

B

)
k2 δpA − 1

2 p0
A f ′(p0

B

)
k2 δpB,

∂t δpB = − 1
2 p0

B f ′(p0
A

)
k2 δpA − f

(
p0

A

)
k2 δpB. (A10)

The difference to the Ito case is the appearance of factors 1/2
in front of the second or first term, respectively. In conse-
quence, one obtains for the two eigenvalues again a quadratic
equation and the instability in the Stratonovich case appears if

1
4 p0

A p0
B f ′(p0

A

)
f ′(p0

B

) − f
(
p0

A

)
f
(
p0

B

)
� 0. (A11)

We now inspect the condition for the homogeneous case with
p0

A = p0
B = 1/2 and our nonlinearity f (p) = 1 + cpq. Gen-

erally, for the homogeneous state the instability takes place
if p0 f ′(p0)/2 � f (p0). Remarkably, we find that for the
nonlinearity parameter q = 2 no bifurcation with respect to c
occurs. For the Stratonovich case one obtains that instabilities
appear if (

1
2 q − 1

)
c (p0)q � 1, (A12)

which requires a stronger nonlinearity with q � 3. The bifur-
cation is then attained for

c � 2q+1/(q − 2). (A13)

Finally, we consider the Hänggi-Klimontovich interpretation
[81–83] (also known as kinetic, anti-Ito or isothermal interpre-
tation [69]), which corresponds to a post-discretization rule. In
this case, the Smoluchowski equations read

∂t pA = ∂x{ f (pB)∂x pA},
∂t pB = ∂x{ f (pA)∂x pB}. (A14)

Performing again the same stability analysis, the linearized
differential equations in the vicinity of the homogeneous state
p0 yield

∂tδpA = − f
(
p0

B

)
k2 δpA,

∂tδpB = − f
(
p0

A

)
k2 δpB. (A15)

We immediately see that the two eigenvalues,

λ1,2

k2
= −1 − c(p0)q, (A16)

are identical and can only have negative solutions with c > 0
irrespective of the nonlinearity q, i.e., the homogeneous state
p0 is always stable. The numerical solution of the Smolu-
chowski equation (not presented) confirm this. Interestingly,
Eq. (A16) in its general expression λ1,2/k2 = − f (p0) implies
that in the Hänggi-Klimontovich interpretation the stability of
p0 is always valid ∀ f (p0) > 0.
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APPENDIX B: NUMERICAL SOLUTION
OF SMOLUCHOWSKI EQUATIONS

The original equations are

∂t pA(x, t ) = ∂2
x { f [pB(x)]pA(x)},

∂t pB(x, t ) = ∂2
x { f [pA(x)]pB(x)}. (B1)

For the nonlocal case, nonlinear function f [·] in Eq. (B1) was
applied to the corresponding averaged probability density,

p̃A,B(x, t ) = 1

2rs

∫ rs

−rs

pA,B(x + y)dy. (B2)

Discretization in the spatial variable, x → xn = −1 +
(n − 1)�x, �x = 2/(N − 1), n = 1, . . . , N , gives the system
of 2N Ode’s,

ṗA,n = 1

h2
[Pn+1 − 2Pn + Pn−1],

ṗB,n = 1

h2
[Qn+1 − 2Qn + Qn−1], (B3)

Pn = f (pB,n)pA,n, Qn = f (pA,n)pB,n.

These equations were solved using MATLAB solver ode15s for
stiff Ode’s. The no-flux boundary conditions, ∂x pA,B|x=±1 =
0, were used in all figures showing solutions of the Smolu-
chowski equation.

In numerical implementation the sensing radius is given by
Eq. (2) and we calculated the moving averages:

p̃n = 1

2s − 1

s−1∑
m=1−s

pn+m.

These were then used in calculations of the Pn and Qn in
Eq. (B3): Pn = f [ p̃B,n]pA,n, Qn = f [ p̃A,n]pB,n.

Numerical integration of Ode’s was carried out with an ab-
solute tolerance of 10−9. The approach to a stationary solution
was controlled by calculating the maximum difference over x
between probability densities at two consecutive integration
intervals, i.e.,

ε = max |pA,B(x, t + �t ) − pA,B(x, t )|,
and stopped when ε < 10−8.
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