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Abstract

Seminal work by A. Winfree and J. Guckenheimer showed that a deterministic phase variable can be defined either in terms
of Poincaré sections or in terms of the asymptotic (long-time) behaviour of trajectories approaching a stable limit cycle.
However, this equivalence between the deterministic notions of phase is broken in the presence of noise. Different notions of
phase reduction for a stochastic oscillator can be defined either in terms of mean—return-time sections or as the argument of
the slowest decaying complex eigenfunction of the Kolmogorov backwards operator. Although both notions of phase enjoy a
solid theoretical foundation, their relationship remains unexplored. Here, we quantitatively compare both notions of stochastic
phase. We derive an expression relating both notions of phase and use it to discuss differences (and similarities) between
both definitions of stochastic phase for (i) a spiral sink motivated by stochastic models for electroencephalograms, (ii) noisy
limit-cycle systems-neuroscience models, and (iii) a stochastic heteroclinic oscillator inspired by a simple motor-control

system.

Keywords Stochastic oscillator - Phase reduction - Mean—return-time sections - Isochrons - Isostables - Neuroscience

1 Introduction

An important simplification in the analysis of nonlinear oscil-
lators is the reduction in their dimensionality by means of a
phase description. The study of oscillations by way of a phase
variable facilitates the study of relevant features of an oscilla-
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tor such as possible synchronization regimes, coherence, or
sensitivity to perturbations (Winfree 2001; Kuramoto 2003;
Pikovsky et al. 2003). In deterministic systems, oscillations
often correspond to attracting limit cycles in the phase space.
In these systems, the usage of the phase variable is not
restricted to the limit cycle but also to the whole basin of
attraction by means of the isochrons. Isochrons can be under-
stood as Poincaré sections having the same return time (the
period T of the oscillator itself) or as the set of points having
the same asymptotic convergence to the cycle (Hirsch and
Pugh 1970; Winfree 1974; Guckenheimer 1975).

Due to the increasing importance of stochastic oscillations
in many biological systems, over the last decades several
authors have focused on describing stochastic oscillators by
means of a phase variable, applying deterministic phase con-
cepts to stochastic systems (Freund et al. 2000; Freund et al.
2003; Yoshimura and Arai 2008; Teramae et al. 2009; Zhou
et al. 2013; Ma et al. 2014; Bonnin 2017; Bressloff and
MacLaurin 2018; Giacomin etal. 2018; Aminzare etal. 2019;
Engel and Kuehn 2021; Cheng and Qian 2021). However,
there are cases where noise strongly alters the dynamics of
the system or oscillations may even emerge only due to noise,
as for instance in excitable systems (Lindner et al. 2004) or
for noisy heteroclinic oscillators (Giner-Baldo et al. 2017).
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In general, the stochastic case, if it is not a weak pertur-
bation of a deterministic limit-cycle system, requires new
phase concepts. Following this insight, the above-mentioned
notions of deterministic phase, which are based on Poincaré
sections and on the system’s asymptotic behaviour, have
been generalised to stochastic systems. Whereas Schwabe-
dal and Pikovsky (2013) proposed a notion of phase based
on Poincaré sections having a uniform mean-return-time
(MRT) property, Thomas and Lindner (2014) introduced an
asymptotic phase for stochastic oscillators by means of the
argument of the slowest decaying complex eigenfunction of
the backward Kolmogorov operator (equivalently, the gen-
erator of the Markov process, or the stochastic Koopman
operator). However, and in marked contrast to the deter-
ministic case, these two notions of stochastic phase are not
equivalent (Cao 2017).

In this paper, we explore the nature of the differences
between these two notions of stochastic phase. To this end, we
will make use of a recently discovered link between the MRT
phase and the Kolmogorov backwards operator (Cao et al.
2020). By exploiting this link, we can calculate both phases
using one computational framework; we will use this frame-
work to compare systematically the differences between the
MRT phase and the asymptotic phase for a number of stochas-
tic biological systems.

Our paper is organised as follows. In Sect. 2, we review
the deterministic phase and isochrons. Next, in Sect. 3 we
review both notions of stochastic phase, the MRT and the
asymptotic phase. Then, in Sect. 4 we show a procedure
relating both expressions which we illustrate by different
examples in Sect. 5. We conclude the paper with a discussion
of our results. In the “Appendix”, we provide details about
the numerical methods used in this paper.

2 The deterministic phase

Consider an autonomous system of ODEs

x = F(x), x € R", n>2, (1)
whose flow is denoted by ¢, (x). Moreover, we assume F(x) is
a C? vector field having a T-periodic, asymptotically stable,
normally hyperbolic limit cycle parameterized by the phase

variable 6 = 2nt/T

y :T:=R/Z - R"

0 — y(0), @

Hence, the dynamics of Eq. (1) in I" can be reduced to a
single variable system

._27‘[

0 = 3

@ Springer

As we study attracting limit cycles, any point x € M,
where M is the basin of attraction of the limit cycle I", will
approach I" as t — oo (Hirsch and Pugh 1970). Thus, two
points p and ¢ € M will have the same asymptotic phase if

tl_l)Holo lp:(q) — ¢:(p)| = 0. “)

This condition extends the notion of phase of oscillation
to the basin of attraction M of I". Indeed, we can define the
function

P MCR'— T =][0,2n), )
X = U(x) =6.

assigning a phase to each point x € M. We can thus define
the isochrons as the level sets of ¥ (x), that is

Ip={xeM | 9 =0} (6)
which correspond to the leaves of the (strong) stable foliation
(that is, the stable manifold M) of I (Winfree 1974; Guck-
enheimer 1975; Winfree 1980). For a normally hyperbolic
invariant manifold as M, the phaseless sets correspond to

RMM.

3 Stochastic phase notions

Next, we review two notions of phase for stochastic systems:
the stochastic asymptotic phase and the mean-return-time
(MRT) phase. Throughout this Section, we will consider
Langevin systems

dX
e £(X) + g(X)5(0) (N

where f is an n-dimensional C? vector field, gisa C’nxk
matrix, and £ is k-dimensional white noise with uncorre-
lated components (& (1)&;(t")) = 8(t — t)8; ;. Moreover,
we require the elements g;; (X) in g to be such that the matrix
g = % gg ! is invertible for all x € R” (see Sect. 4 for fur-
ther details). For mathematical convenience, we interpret the
stochastic differential equation Eq. (7) in the sense of It
(Gardiner 1985).

3.1 The mean-return-time stochastic phase

Schwabedal and Pikovsky (2013) introduced a definition for
the phase of a stochastic oscillator in terms of a system of
Poincaré sections {€pmrT(¢0), 0 < ¢ < 2m}, foliating a
domain R C R? and possessing a MRT property: a sec-
tion £y satisfies the MRT property if for all the points
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x € {yurT the mean return time from x back to £yrT, having
completed one full rotation, is constant.

First defined by Schwabedal and Pikovsky (2013) by
means of an algorithmic numerical procedure, the MRT
phase was recently related to the solution of a boundary
value problem (Cao et al. 2020). As the authors in this paper
showed, the £\rT sections correspond to the level curves of a
function T (x), with appropriate boundary conditions, satis-
fying the following PDE associated with a first-passage-time
problem

L'Tx) =—1, ¥

where £ corresponds to the Kolmogorov backwards opera-
tor (the adjoint of the Kolmogorov forward operator £). Both
operators read

L] = =V - F@u) + Y 39;(Gjxux) (9
i,j
L u)] =) - Vu) + Y Gij(x)d;0u(x), (10)

i.j

where G = %ggT, and u is an arbitrary C 2 function.

Cao et al. (2020) showed that upon imposing a boundary
condition amounting to a jump by 7 (the mean period of
the oscillator) across an arbitrary section transverse to the
oscillation, the unique solution of Eq. (8), up to an additive
constant 7Ty, is a version of the so-called MRT function,

O(x) = 2 /T)(Ty — T(x)). (11)

Hence, the MRT phase ©@ (x) satisfies

2
cfox = £, (12)
T
so it evolves in the mean as
dpomr =2 (13)
dr T’

which is formally analogous to the dynamics for the deter-
ministic phase (see Eq. 3).

3.2 The stochastic asymptotic phase

Thomas and Lindner (2014) defined a notion of stochas-
tic asymptotic phase by means of the eigenfunctions of
the Kolmogorov backwards operator. Since the Kolmogorov
backwards operator and the stochastic Koopman operator are
equivalent (Crnjarié-Zic etal. 2019), the setup in Thomas and
Lindner (2014), which we next review, generalises the Koop-
man approach to obtain the phase of deterministic oscillators

to stochastic systems (Mauroy and Mezi¢ 2018; Kato et al.
2021).

Consider an ensemble of trajectories described by means
of the conditional density

1
p(y, 1%, s) = [yl PriX() € [y, y +dy) | X(s) = x}

fors < t. The density evolves following Kolmogorov’s equa-
tions

a 0
—_ = _—— = T
atp(yst |X7 S) ‘Cy[p], asp(yst |X7 S) Cx[p] (14)

for £ and L7 defined in Eq. (9). Assuming the operators
L, LT admit a complete biorthogonal eigenfunction expan-
sion with respect to the standard inner product (u | v) =
Jgn w*(X)v(x) dx (Where u € C? N Lo and v € C2 N Ly)

LIP =Py, LO1=205 (0| Py)=8u (15)

we can write the conditional density as a sum

p(y. tx.5) = Po(y) + Y _ eV Py (y) 05 (%), (16)
A0

with Py suitably normalized, representing the unique station-
ary probability distribution. The normalization condition in
Eq. (16) implies Q¢ = 1.

The construction of the stochastic asymptotic phase
requires one to assume several properties of the system (7)
which Thomas and Lindner termed “robustly oscillatory”.
First, we require that the nontrivial eigenvalue in Eq. (15)
with least negative real part Ay = u + iw is complex, and
unique (occurs with algebraic multiplicity one). Thus, we
can express its associated right (forward) and left (back-
ward or adjoint) eigenfunctions in polar form as Py, (y) =
v(y)e %W and Q;tl(x) = u(x)e'V™  where v(y) > 0 and
u(x) > 0 are real functions specifying the amplitude of the
corresponding eigenfunction.

Second, we require that all other nontrivial eigenvalues
A’ be significantly more negative, that is, R[A'] < 2u. This
condition guarantees that at sufficiently long times, the sum
in Eq. (16) may be written as

PG 1% ) = P pu—s)

2u(y)u(x) cos(@(t =) + Y (x) — ).

This asymptotic form means that the density approaches
its steady state as a damped focus, with an oscillation period
of 27 /w, and a decaying amplitude with time constant 1 /|u|.

The third assumption is heuristic rather than rigorous:
the description as a “stochastic oscillator” will be more
appropriate, the larger the quality factor | /u| (Giner-Baldo

@ Springer
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etal. 2017). That is, provided the oscillation completes suffi-
ciently many rotations before the damping reduces its phase
coherence beyond detectability, the system will be “robustly
oscillatory”. Thus, we require |w/u| > 1, without specify-
ing an explicit threshold for this quantity.

The dynamics of this focus, capturing the asymptotic
oscillatory behaviour of the system, can be obtained in an
alternative way: along trajectories X(¢), the slowest decay-
ing modes Q;l (X(t)) evolve in the mean as

d
B0}, = MEIQ], ) (17)

so they exhibit the same linear focus behaviour as the density
p(y, t|x, s) when approaching its steady state Py. Therefore,
we can extract the “stochastic asymptotic phase” v (x) from
03 (%) =ux)e'V®, 50

¥ (x) = arg(Q3, (X)), (18)

provided u(x) # 0. Analogously to the deterministic case,
we will define the points

i = {x | u(x) = 0}, (19)

in which a phase cannot be defined as “phaseless sets”.
The expected value of 1 (x) follows (see “Appendix B”
for the complete calculation details)

%E[I//(X)] =w-—2 Z Gijoi In(u(x))9;9 (x), (20)

i,j

hence, in the limit G — 0, the dynamics for E[vr(x)]
follow the dynamics for the deterministic phase Eq. (3),
provided the deterministic system has a well-defined phase
(see also “Appendix D” for a discussion about the relation-
ship between ¥ (x) and ¥ (x) in the noise vanishing limit).
Moreover, if the assumptions under which the uniqueness of
solutions of Eq. (12) are met (see next Sect. 4 for a brief
review of such conditions), from Eq. (20) it follows that if
Zi’j Gij0i In(u(x))d;v (x) = 0, then T = 27/ w.

4 Mathematical relation between the phases

Following Cao et al. (2020), we assume (without loss of gen-
erality) the existence of a parameterisation x = K (, 8)!

K:TX[R_,R+]CTXR—>RCR2

21
(a, ) = K(a, B)

' See Guillamon and Huguet (2009) and Pérez-Cervera et al. (2020a)
for methods to obtain such parameterisation.

@ Springer

such that the original domain R C R? of system Eq. (7)
can be mapped to an annulus via an angular variable o (x) €
[0,27) and an amplitude-like variable (x) € [R_, Ry].
Furthermore, we require the noise matrix G in Eq. (9) to be
nondegenerate (invertible), so that the £ operator is strongly
elliptic (McLean 2000). For the Fokker—Planck equation (9),
we impose reflecting boundary conditions at Ri; for the
backward equation (10) we impose adjoint reflecting bound-
ary conditions. For the complete details on the assumptions
required for the MRT theory to apply, see Cao et al. (2020).

With these assumptions, we next show how the MRT phase
©®(x) can be represented as the stochastic asymptotic phase
¥ (x) plus an additional phase shift Ayr(x). Consider the
equality:

L10%, ] = (u+iw) 0, (%) (22)

using QF = u(x)e!¥ ™ and the definition of the £ operator,
dividing by ¢!Y®| taking the imaginary part and assum-
ing u(x) is a non-vanishing function in R, we find (see
“Appendix B” for a complete derivation)

LT @1 +2 " Gijd: Inwx)9; ¥ (%) = o. (23)

i,J

Considering the difference between the two phases,
AP (x) = O(x) — ¥ (x), it obeys the equation

2(x) Aw

2
LAY ] =23 Gyt w00+ =~ 24)

i,j

Indeed, if we use O (x) = ¥ (x) + Ay (x), we obtain
Lo = Ly x) + Ay (x)]
=L @]+ LAy )] = 25)
=LY+ 2K + Aw =

’

S|y

which is exactly the definition of MRT phase in Eq. (12).

As one can see, since both phase functions, ®(x) and
¥ (x), have a 27 jump, the function Ay (x) = O(x) —
Y (x) will not have a jump. We notice the dependence of
ET[AW(X)] on the term Aw corresponding to the difference
between the frequency w of the slowest decaying complex
eigenmode Qil (x) and the MRT frequency 277/T. Whereas
w can be extracted from the spectra of £, the MRT period
T can be obtained from the stationary probability current J,
which is given by

Jo = I:JO,X] _ |:fxi| Py — l |:3x(gxxP0) + 3y(gxyP0)i|
JO,y fy 2 8x(gyx PO) + ay(gnyO) ’
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where Py(x) corresponds to the stationary probability den-
sity, satisfying £[ Py(x)] = 0 and | Py(x)dx = 1. As shown
in Cao et al. (2020), one obtains the mean period by integrat-
ing the -component of the current Jo along a simple smooth,
non-self-intersecting curve, connecting the inner and outer
domain boundaries. That is,

1 Ry
1 f Jou(@. BAB. 26)
T R_

See “Appendices A.2 and C” for details of the numerical
calculation, and an analytical solvable example of Eq. (26),
respectively.

In conclusion, solving for and using the first two func-
tions of the eigenvalue problem for £ and L gives us both
the stochastic asymptotic phase, the MRT phase, and the dif-
ference between the two phases.

5 Examples

Next, we consider different examples to study how the MRT
phase ®(x) and the stochastic asymptotic phase ¥ (x) are
related. We will proceed under the assumption that all the
models we study satisfy the eigenfunction expansion in
Eq. (16), as well as the regularity assumptions given in Cao
et al. (2020). For numerical details about computations in
this Section, we refer the reader to the numerical “Appendix
A’.

5.1 Spiral sink

We start considering a classical and well-studied stochas-
tic process: a two-dimensional Ornstein—Uhlenbeck process
(OUP) in a setting such that the origin becomes a stable sink
(Uhlenbeck and Ornstein 1930; Gardiner 1985; Leen et al.
2016; Thomas and Lindner 2019). The general Langevin
equation is:

X = Ax + BE 27)

where we assume that the two eigenvalues of A are a complex
conjugate pair denoted as A+ = p +iw with u < 0 and
o > 0. We write the matrices A and B as

A=)
o p

Bi1 B2
B = . 28
(le Bzz> (28)

For Eq. (27), the matrix G = BB in LT (see Eq. (9))
can be written in the following way
1( B, + B},

Gg=—-
2 \B11B21 + B12B2»

=E<l+ﬂD ,Bc )
/36 1_/3D

Following Thomas and Lindner (2019), we know the
asymptotic phase function for Eq. (27) is written as”

B11By1 + BuBzz)
2 2

B;, + By,
(29)

¥ (x) = arctan(x2/X1) (30)

whose expected value follows

d _ Bpx1X2 Be(x] —x3)
EE[W(X)] =+ 4de ( - 1)

(x3+x3)2  2(x3+x3)2

=0 — 2,

showing that, as long as there is some noise in the system
(e > 0), the term £2(x) diverges at the origin.

In “Appendix C”, we derive the following expression for
the mean period 7":

27 (@? + p2(1 — B2 — B2))

T =
w(u? + w?)

(32)

which, together with Eq. (31) yields that if Bp = . = 0,
that is for isotropic noise of the same amplitude, the MRT
phase and the stochastic asymptotic phase for the stochastic
sink in Eq. (27) are equivalent.

To illustrate the OUP case, we choose coefficients from
Powanwe and Longtin (2019), in which a noisy focus is used
to model fast gamma-band brain signals (see also Duchet
et al. (2020); Spyropoulos et al. (2020) for similar modelling
approaches in a neuroscience context). In particular, we take
A = [0.1598, —0.52; 0.7227, —0.319] and B = /2D -
[1,0;0,0.5] with D = 0.01125. After a linear change of
variables, we put the model in the form of Eq. (28), with u =
—0.0796, w = 0.564and B = [0, 0.0492, —0.126, 0.0214]
from which we obtain €, Bp, B, = [0.0046, —0.74, 0.11].

Figure la, b shows both level curves of the stochastic
asymptotic phase ¥ (x) and the MRT phase @ (x). As Eq. (31)
indicates, the farther we move from the origin, the smaller the
term £2 (x) becomes. As a consequence, the difference A (x)
is almost negligible far from the origin (panel c¢) thus caus-
ing ¥ (x) and ®(x) to differ just in a small neighbourhood
of the origin (panel d). In this case, thanks to the analytical

2 Algorithmically, we interpret arctan(xy/X1) as arctan2 (x1,x2)
to avoid dividing by zero.

@ Springer
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Fig.1 Phase analysis of a noisy linear focus Eq. (27). a, b Level curves
of the stochastic asymptotic phase v (x) and the MRT & (x) (y-label
shared). ¢ Difference Ay d Stationary probability distribution (colour
coded), with acomparison between some level sets of ¥ (x) (dashed) and
©® (x) (solid). e Comparison of the MRT property (T ~ 11.07, 2n/w ~
11.13) for ¥ (x) (blue) and ®(x) (orange) for three different MRT-
isochrons.

expression for Ay (see “Appendix A”), we are able to find
the values of the difference near the phaseless set (the ori-
gin). As Fig. 1c illustrates, near the origin, the term Ay (x)
alternates between positive and negative values. Panel (e)
confirms that the resulting MRT isochrons have the MRT
property. While the numerically computed MRT isochrons
satisfy the MRT property with high accuracy, the isochrons
based on the stochastic asymptotic phase show small but sig-
nificant deviations from uniformity.

5.2 Noisy Wilson-Cowan

Next, we study a noisy version of the Wilson—Cowan (WC)
equations, which are widely used to model large-scale neural
activity (Wilson and Cowan 1973; Destexhe and Sejnowski
2009; Akam et al. 2012). We adopt the form

E == _E + Se(ClE - CZI + P) + DESE(I)V

. (33)

I =—1+Si(c3E —c4l + Q)+ Di§i (1),
with S, ;(x) = [1 + exp (—ae,i(x — Ge,i))]_l being the sig-
moidal activation function and &, ; () being Gaussian white
noise. Here, D,, D; = D - [1,0.5] with D = 0.1. Since
the conditions for the WC model to show oscillations are

@ Springer

Fig. 2 Phase analysis of a noisy Wilson—Cowan system near a Hopf
bifurcation. a, b Level curves of the stochastic asymptotic phase v (x)
and the MRT phase ©®(x) (y-label shared). ¢ Phase difference Ay d
Stationary probability distribution (colour coded), with a comparison
between level sets of 1 (x) (dashed) and & (x) (solid). e Comparison of
the MRT property (T ~ 5.7, 27 /w =~ 5.99) for ¥ (x) (blue) and O (x)
(orange) for three different MRT-isochrons

well known (Wilson and Cowan 1972; Borisyuk and Kirillov
1992), we choose parameters c1, ¢2, €3, C4, de, Gi, 0, 0; =[13,
12, 6,4, 1.3,2,4, 1.5] and use P, Q as bifurcation param-
eters. We choose (P, Q) = (2.5, 0), so the system Eq. (33)
shows a stable limit cycle of period T = 5.26 (Pérez-Cervera
et al. 2020b).

Figure 2 displays the results. Panels (a, b) compare the
level curves of the stochastic asymptotic phase ¥ (x) and the
MRT phase @ (x). In this case, the differences between both
level curves are more striking than in the linear focus case.
As Fig. 2¢ shows, and similarly as in the linear focus case,
near the phaseless set of the deterministic system, the dif-
ference Ay alternates between positive and negative values.
However, the nonlinearities of Eq. (33) cause Ay to differ
from O in the bulk of the domain, thus causing differences
between the level sets of ¥/ (x) and ® (x) (see panel d). Panel
(e) demonstrates that the isochrons of the numerically com-
puted MRT phase @ (x) satisfy the MRT property to within
a 1% margin of error, while the isochrons of the stochas-
tic asymptotic phase ¥ (x) do not. Moreover, panel (e) also
shows that the larger the differences between the level curves
of ¥ (x) and ® (x), the larger the deviations of ¥ (x) from the
MRT property (compare results in panel (e) for Zo,; and 7. 4 ).
This result confirms our expectations. ‘
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Fig.3 Phase analysis of a noisy Van der Pol oscillator with anisotropic
noise [Dy, Dy] = V2D - [1,0.1] with D = 0.1. a, b Level curves of
the stochastic asymptotic phase 1 (x) and the MRT phase & (x) (y-label
shared). ¢ Phase difference Av. d Stationary probability distribution
(colour coded), with a comparison between level sets of ¥ (x) (dashed)
and ©(x) (solid). e Comparison of the MRT property (T ~ 6.55,
2n/w ~ 6.59) for ¥ (x) (blue) and ®(x) (orange) for three different
MRT-isochrons

5.3 Noisy Van der Pol oscillator

Next, we study a stochastic version of the Van der Pol equa-
tions,

—y+x —x7 + D& (1),
X+ Dyfy(t),

x

y

(34)

which in the absence of noise displays a limit cycle of period
T =~ 6.663. In this case, we set the noise in each component
to be [Dy, Dy] = +/2D - [1,0.1], with D = 0.1. Due to
their similarity with the FitzHugh—Nagumo model (FitzHugh
1961; Nagumo et al. 1962), these equations are widely used in
neuroscience as a useful reduction in the Hodgkin—Huxley
neuron model (Izhikevich 2007). At a macroscopic level,
they are also used to describe successfully the dynamics of
epileptic tissue (Proix et al. 2017; Pérez-Cervera and Hlinka
2021).

We illustrate results for this oscillator in Fig. 3. As panels
(a, b) illustrate, differences between the stochastic asymptotic
phase v (x) and the MRT phase © (x) are very small and they
are restricted to a neighbourhood of the origin. Indeed, the
structure of the discrepancies is similar to the differences for

the OUP. That s, they alternate between negative and positive
values (compare panel (c) in Figs. 1, 3). We observe (panel d)
that both phases are almost identical near the maxima of the
stationary distribution Py. Together with the near equivalence
of both periods 27 /w ~ 6.59, T =~ 6.55, their similarity
causes both phases to be nearly indistinguishable in this case.
Indeed, as panel (e) shows, the MRT property is satisfied very
accurately for both phases, except for ¥ (x) in points very near
the origin (where phase discrepancies Ay (x) are larger).

5.4 Noisy heteroclinic oscillator

We complete our comparison between the stochastic asymp-
totic phase 1/ (x) and the MRT phase ® (x) by studying anoisy
heteroclinic oscillator. The specific form of the deterministic
heteroclinic system we consider was introduced in Hirsch
et al. (2012), chapter 10, and was adapted to a biological
context as a conceptual model for a central pattern generator
control mechanism based on a dynamical architecture alter-
native to the standard limit cycle architecture (Shaw et al.
2012, 2015; Lyttle et al. 2017; Park et al. 2018). We study
the form given in (Giner-Baldo et al. 2017), namely

X = cos(X) sin(Y) + a sin(2X) + v/2DE& (1)
Y = —sin(X) cos(Y) + a sin(2Y) + v2D& (1)

with @ = 0.1, D = 0.01125 and reflecting boundary condi-
tions on the domain —m/2 < {X, Y} < 7 /2. Without noise,
Eq. (35) has an attracting heteroclinic cycle, consisting of a
closed loop of trajectories connecting a sequence of saddle
equilibria which is capable of sustaining robust oscillations
in the presence of noise (Thomas and Lindner 2014).

We study this oscillator for lower (D = 0.01125) and
higher (D = 0.1) level of noise and present results for each
case in Figs. 4 and 5, respectively. Panels (a, b) compare the
stochastic asymptotic phase 1/ (x) and the MRT phase & (x).
In contrast to the previous cases, the structure of the phase
difference Ay (x) appears to be rotationally symmetric, to a
good approximation, in a neighbourhood of the centre (see
both ¢ panels). These differences in phase lead to the principal
discrepancies between the level curves of both phases appear-
ing near the origin (panel d). Indeed, as the MRT property
check in panel (e) shows, whereas the MRT property holds
quite well for points computed using the MRT phase © (x), it
does not hold in general for the stochastic asymptotic phase
¥ (x). However, for lower noise, the MRT property holds for
points away from the origin in which the level curves for
both phases coincide and the stationary probability is con-
centrated. As noise increases, the mean return time of the
stochastic asymptotic phase becomes increasingly position-
dependent close to the domain border.
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Fig. 4 Phase analysis of a noisy Heteroclinic Oscillator with lower
(D = 0.01125) noise. a, b Level curves of the stochastic asymptotic
phase ¥ (x) and the MRT phase @ (x) (y-label shared). ¢ Phase differ-
ence Ay d Stationary probability distribution (colour coded), with a
comparison between some level sets of 1 (x) (dashed) and @ (x) (solid).
e Comparison of the MRT property (T ~ 16.26, 2m/w ~ 16.38) for
¥ (x) (blue) and @ (x) (orange) for three different MRT-isochrons

6 Discussion

In this paper, we have derived a framework to compute
simultaneously the MRT phase and the asymptotic phase of
a stochastic oscillator. Our results build on prior work by
Schwabedal and Pikovsky (2013) and Thomas and Lind-
ner (2014) defining the notions of MRT phase ®(x) and
stochastic asymptotic phase ¥ (x), respectively. While ini-
tially defined on an algorithmic basis, the MRT phase was
recast by Cao et al. (2020) as the solution of a PDE with
jump-periodic boundary conditions. As a result of Cao et al.
(2020), a relationship between the Kolmogorov backwards
L' operator and the MRT phase was derived (see Eq. (12)).
Since the stochastic asymptotic phase was already defined as
the argument of the slowest decaying eigenfunction of £,
in this work we developed the link between both phases and
the Kolmogorov backwards operator to obtain an expres-
sion for the difference between the two phases. That is,
Ox) = ¥ (x) + Ay (x), with Ay (x) satisfying Eq. (24).
The computation of the difference Ay (x) allowed us
to compare both phases in different dynamical scenarios:
we have considered two examples of noise induced oscil-
lations (a spiral sink and an heteroclinic oscillator) and
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Fig. 5 Phase analysis of a noisy Heteroclinic Oscillator with higher
(D = 0.1) noise. a, b Level curves of the stochastic asymptotic phase
¥ (x) and the MRT phase @ (x). ¢ Phase difference Ay d Station-
ary probability distribution (colour coded), with a comparison between
some level sets of 1/ (x) (dashed) and @ (x) (solid) (y-label shared). e
Comparison of the MRT property (T ~ 11.41, 27/w ~ 12.43) for
¥ (x) (blue) and @ (x) (orange) for three different MRT-isochrons

noisy limit cycle dynamics. Formally, from the uniqueness
results in Cao et al. (2020) (see Theorem 3.1) it follows
that both phases are not equivalent if the term £2(x) =
Zi’j Gij0; In(u(x))d;v (x) in the right hand side of Eq. (20)
is not zero. As Cao (2017) observed, for a planar oscillator
with isotropic noise, the condition §£2(x) = 0 is satisfied if
the eigenfunction Q’;l is a complex analytic function of its
arguments (in the sense of complex variables theory). But the
practical significance of the difference Ay (x) has not been
systematically explored before now.

6.1 Two perspectives on stochastic oscillators

Anderson et al. (2015) articulate the distinction between
pathwise and ensemble descriptions of a stochastic process.
For example, a general diffusion process may be described
either in terms of the Itd stochastic differential equation

X = £(X) + gX)& (1),

which describes the evolution of a single trajectory along a
sample path, or in terms of the Fokker—Planck equation
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which describes the evolution of the density p(x,t) =
ﬁPr [X(?) € [x,x + dx)] of an ensemble of trajectories
(@ksendal 2003).

Similarly, a discrete chemical reaction process compris-
ing M reactions with stoichiometry vectors ¢ and haz-
ard functions Ag, driven by independent Poisson processes
{Y (t)},i"’= 1» has a pathwise description of the form

M '
X() =X+ Yty ( /0 M X(5)) ds) ,
k=1

as well as an evolution equation (the so-called chemical mas-
ter equation (Higham 2008)) of the form

d M M
P& 0= P = G DX = 6) = (X, 1) Y Ak(X)

k=1 k=1

where p(x, t) is the probability that the state X(#) is exactly
x at time ¢ (Anderson and Kurtz 2015).

The transit time for a stochastic oscillator to reach a
Poincaré section from a starting point on that section, hav-
ing completed one full rotation, is a stopping time (Karatzas
and Shreve 2012), thus, a random variable that arises from
the individual sample path. The “mean—return-time” function
T (x) (Cao et al. 2020) is defined from the ensemble average
of this quantity. Importantly, the MRT property describes the
behaviour of trajectories over a finite time horizon, namely
looking roughly one period into the future.

In contrast, one defines the stochastic asymptotic phase
¥ (x) (Thomas and Lindner 2014) in terms of the long-
time statistical behaviour of an ensemble of trajectories,
as captured by the biorthogonal eigenfunction expansion
Eq. (15) of the forward and backward operators. Thus,
while the equations satisfied by both the MRT function,
namely £[T] = —1, and the stochastic asymptotic phase
eigenfunction, namely CT[Q] = M\Q, involve the back-
ward Kolmogorov operator, we see the MRT as related to
a “pathwise” description over a finite time horizon, and the
asymptotic phase as related to the “ensemble” description of
the process at long times.

We speculate that this distinction may turn out to play
a role in choosing which notion of phase applies more
naturally to specific problems, such as synchronization
of coupled stochastic oscillators (long-time behaviour), or
“phase response” of a stochastic oscillator to a single kick
(short-time behaviour). Fortunately, as we have seen above,
for many biological examples the quantitative difference
between the two types of phase is small. Their quantitative
similarity thus provides investigators a degree of flexibility

in working with whichever notion of phase is conceptually
best suited to a given problem.

6.2 Noise amplitude

For systems with an underlying limit cycle, we observe
empirically that both phases appear to coincide with the
deterministic phase as the level of noise approaches zero. For
the MRT phase, its convergence to the deterministic phase
in the case of vanishing noise has been investigated by Cao
et al. (2020) §2.4, who established convergence under addi-
tional regularity assumptions. For the stochastic asymptotic
phase, its convergence to the deterministic phase for vanish-
ing noise was anticipated by Thomas and Lindner (2014), see
also the discussion in terms of the Koopman operator by Kato
et al. (2021) and derived in “Appendix D” in this manuscript
using the same additional regularity assumptions as in Cao
et al. (2020). In line with these observations, although the
intrinsic differences between both phases depend on each
particular system, we have found the differences between the
MRT phase and the stochastic asymptotic phase to grow as
the noise is increased. It is nevertheless interesting to observe
that, in every case we have explored, the differences between
both phase level curves were restricted to areas where the
stationary density was low. Therefore, once differences in
mean period were accounted for, both phases were practi-
cally indistinguishable when describing single trajectories,
differing only in how well they satisfy the MRT property,
which is a property of the ensemble.

For a deterministic limit cycle (LC) system, in which both
phase perspectives coincide, the function ¢/¥ ™ is an eigen-
function of £T with eigenvalue A; = iw. As soon as some
noise is introduced in the system (G # 0), the eigenvalue A4
associated with the slowest decaying eigenfunction becomes
complex instead of purely imaginary, thatis A1 = pu + iw
(with © < 0). As a consequence, for G # 0, the informa-
tion about the initial phase is dissipated as time progresses.
By contrast, we can think of the MRT function as a function
containing information about the oscillatory system which
does not vanish as t — 00. Therefore, for systems having an
underlying LC, one can expect that the more robustly oscil-
latory the system (i.e. |t| < ), the more similar 1 (x) and
©® (x) become. This interpretation agrees for the LC systems
we studied: the Wilson—Cowan (WC) equations and Van der
Pol (VdP) model. For the WC equations, we observed larger
discrepancies between ¥ (x) and ©® (x) than in the VdP model.
These differences cause a loss of the MRT property for the
stochastic phase, which is consistent with the magnitude of
|i/w| for both cases: |u/w| &~ 0.415 for the WC equations
and |u/w| ~ 0.054 the VAP model, respectively (see Table 1
and Fig. 6 at “Appendix A”).

Despite not having a limit cycle, we observe that for
the noisy heteroclinic oscillator (HO), the system is less
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robustly oscillatory as the noise increases. More precisely,
[n/w| = 0.115 for D = 0.01125, and |u/w| =~ 0.269 for
D = 0.1, respectively (see Table 1 and Fig. 6). Indeed, our
computations for the HO suggest that both ¢« and w tend to 0
as G — 0, which can be interpreted as the system approach-
ing an infinite period closed loopas G — 0.Hence, the results
for the HO can be considered a particular case of the LC case,
thus supporting the interpretation of the role of |t/w| in the
loss of the MRT property for the stochastic asymptotic phase.

The focus case requires a different interpretation. Unlike
the LC or HO cases, stable focus systems have no closed loop
structure in the absence of noise. Indeed, in the focus case
1, approaches the negative nonzero real part of the stable
focus eigenvalue as G — 0. As a consequence, the addi-
tion of noise may, in general, increases or decreases |u/w|.
In this paper, we considered a widely used linear model:
the Ornstein—Uhlenbeck process (OUP). For this model, we
provided a new formula 7' and an initial seed for computing
A (x) accurately even near the origin, thus facilitating the
computation of its MRT function. However, the OUP sys-
tem we studied has the particular property of not changing
|i/w| as the noise increases. Studying how the change of
n/w affects the phase dynamics and other important fea-
tures of nonlinear stochastic foci, such as the amplitude of
the stochastic oscillator (Pérez-Cervera et al. 2021), appears
as an interesting topic for further research.

6.3 Future perspectives

In developing our numerical examples, we have proceeded
under the assumption that the robustly oscillatory criteria are
met and that each system studied has a complete biorthogonal
eigenfunction expansion. Whether this is rigorously true or
not in specific cases is a question of functional analysis that
goes beyond the scope of this paper. However, although our
theoretical development assumes the expansion, it appears
that practically, all that is really required is that the low-lying
spectral elements (eigenmodes with eigenvalues having rel-
atively small real and imaginary parts) exist and are discrete.

From a numerical perspective, the methodology intro-
duced in this paper extends the numerical procedure intro-
duced in Cao et al. (2020) which assumes the location of
the phaseless set to be known a priori (see Section A.4 in
the “Appendix” for further discussion of this point). How-
ever, whereas our procedure is restricted to systems in which
the set of SDEs describing the system is known, and the
noise is temporally uncorrelated and Gaussian, the proce-
dure presented in Schwabedal and Pikovsky (2013) (based on
Monte Carlo simulations) applies to a wide range of systems,
noise types and also to data. Nevertheless, due to the equiva-
lence between the Kolmogorov backwards operator and the
stochastic Koopman operator (Crnjari¢-Zic et al. 2019), we
expect that the computation of the eigenfunctions of interest
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from data via dynamical decomposition methods (Schmid
2010; Budisi¢ et al. 2012; Proctor et al. 2016; Brunton and
Kutz 2019; Mauroy et al. 2020), combined with the theoreti-
cal expression we gave in Eq. (24), may provide an alternative
way of obtaining the MRT phase from data.

A Numerical details

In this Appendix, we detail the numerical methodology lead-
ing to the results in this paper. Results in this Appendix follow
from previous work in Cao et al. (2020); Pérez-Cervera et al.
(2021).

A.1 Diagonalization of the £ operator

We construct the £ operator as follows.
Given a Langevin equation as in Eq. (7), we restrict its
phase space to a rectangular domain

D=[x",x"Ix[y,y"l (36)

whose size is chosen large enough so that the probability
for individual trajectories X(¢) to reach the boundaries is
very low. For the special case of the heteroclinic oscilla-
tor, boundaries are given by the nature of the system. Then,
we discretize the domain D in N and M points such that
Ax = (x4 —x_)/N and Ay = (y+ — y—)/M. Then,
we build £ by using a standard centred finite difference
scheme, except at the borders of the domain. For the hetero-
clinic oscillator, we implemented adjoint reflecting boundary
conditions at the borders of the domain Gardiner (1985). In
contrast, for the unbounded systems, since there is no natu-
ral border, we substitute the centred finite difference scheme
by a forward (or backward) finite difference scheme over
a bounded domain. Using adjoint reflecting boundary con-
ditions for these systems yielded numerically very similar
results.

By diagonalizing the resulting matrix, we obtain the eigen-
values and the associated eigenfunctions of £. We remark
we are not interested in the complete spectrum of £ but on
the small part of it (see Fig. 6). As we review at Sect. 3,
we just need to consider the eigenvalue associated with the
slowest decaying complex eigenfunction Q}t] (x) to obtain
the functions u(x) and ¥ (x).

A.2 Computing the MRT period T

To compute the MRT period T, we build the Kolmogorov
forward operator £ in Eq. (9) following the same numerical
procedure as in A.1 underlying the construction of £7. We
obtain Py as the eigenfunction of £ with null eigenvalue.
Then, as we explained in Sect. 4, we compute the integral
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= ° L (for the studied cases in this paper max error values were
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- 10 —05 00 points of the grid inside ry, by using extrapolation routines.

Re(A) For the noisy spiral sink in Eq. (27), we found

Fig. 6 For the five models considered in the main text, namely, a the
spiral sink in Eq. (27), b the noisy Wilson—Cowan in Eq. (33) and ¢ the
Van der Pol equations in Eq. (34) the noisy heteroclinic oscillator in
Eq. (35) for lower d and larger e noise we show: Eigenvalue spectra of
L' (left panel). The stochastic asymptotic phase ¥ (x) can be obtained
from the argument of the eigenfunctions Q;t, (x) associated with the
eigenvalues the smallest non-negative purely complex eigenvalues A4
(A4 = Ap). In addition, the eigenfunction ¥ (x) associated with the
smallest non-negative purely real eigenvalue Apjoq corresponds to the
stochastic isostables. Right panel: level curves of the isostable function
X (x), ten trajectories and the stochastic limitcycle Xy = {x| X' (x) = 0}
(black curve)

in Eq. (26) to obtain T. More precisely, if we denote the
phaseless point as (¥, ¥), we determine T by integrating the
y component of the stationary probability current Jo,, along
the line joining x and x4

AW(X) =

€
(@ + p?) (2 +y?)? <y(x2 O+ 2axy)

(39)

with y = —B.u + Bpw and o = B.w + Bpu to be a very
good initial seed since it solves Eq. (38) with an O(e?) error.
Thanks to this initial seed, it was not necessary to remove
any point from the least square iterative solver (that is to say
Fmin = 0).

A.4 Topological considerations
The theoretical framework for the MRT phase requires that
the domain be an annulus having inner and outer radius

[R_, Ri]and implicitly assumes the existence of a phaseless
point u (see Eq. (19)) inside the inner radius. In systems with
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Table 1 Parameters for

numerical implementation and N M x+ - ot - H @ MFlog
resulting leading eigenvalues for g, gjpi 120 120 15 —15 15 —15  —0080 0564  —0.159
the different stochastic
oscillators Wilson—Cowan 120 120 1.0 —-0.3 0.9 —-0.1 —0.435 1.049 —0.828
Van der Pol 120 120 2.5 —-2.5 2.5 —-25 —0.051 0.952 —0.758
Het-low 120 120 =w=/2 —-m/2 w2 —mw/2 —0044 0383 —0332
Het-high 120 120 /2 —m/2 /2 —/2 —0.136 0.505 —0.553
. For these reasons, despite the topological differences,
5 we prefer to use a complete rectangular grid instead of an
annulus for numerical implementation. This method leads
4 to a simpler implementation which nevertheless still yields
numerically indistinguishable results, with respect to the
) ones which would be obtained by explicitly adding a hole
) around the phaseless set. On a theoretical level, there are
four separate kinds of isochrons that one may consider: the
g eigenvalue A and eigenfunction Q = ue'¥ for the simply
connected domain, and for an annular domain; and the MRT
0 phase 6 for the annular domain and the MRT phase obtained

Fig.7 Comparison for different topologies between the MRT sections
for the noisy heteroclinic oscillator with isotropic noise (D = 0.01125).
The blue-yellow colour scheme corresponds to the results published in
Cao et al. (2020) (with a small hole around the origin, corresponding
to an annulus). We superimposed the results of the present paper (see
Fig. 4c) without a hole (hence, a topological grid). Both topologies yield
numerically indistinguishable isochrons

a sufficiently high degree of symmetry, the location of the
phaseless set may be clear a priori. For instance, in the hete-
roclinic oscillator, which has the symmetry of the square, the
phaseless point should be at the centre of the square. How-
ever, in other systems, such as the Wilson—Cowan system,
the location may not be known a priori. This lacuna prevents
one from constructing an annular domain numerically that is
guaranteed to exclude the phaseless point.

Fortunately, we have observed that in systems for which
the phaseless set’s location is known, there is no practical dif-
ference in the structure of the isochrons produced by solving
the MRT equation with a small central exclusion with reflect-
ing boundary conditions, and a construction with a grid that
covers the entire domain without implementing the central
excluded region (see Fig. 7). This apparent robustness of the
numerical procedure means that in a nonsymmetric system
such as the Wilson—-Cowan example, we may construct our
numerical implementation without the inner annular exclu-
sion. The resulting isochrons will converge and conflict in a
small region on the scale of a single grid spacing. This sin-
gularity localizes the phaseless point to within the accuracy
of a grid spacing.
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numerically for a simply connected domain. In this paper,
we investigated analytically the relationship between ¥ and
0 on a general domain and investigated numerically the two
phases on the simply connected domain. The MRT isochrons
obtained using the (theoretically questionable) simply con-
nected domain nevertheless satisfied the MRT property: the
mean time to return to the isochron was independent of the
starting position along the isochron.

Thus, the topological discrepancy between the annular and
simply connected domain does not seem to be significant
numerically, at least for the examples we considered in this
paper. It is an interesting open question to ask how A and Q
compare on the annular versus the simply connected domain.
What impact does the size and location of the annular exclu-
sion have on A and Q? Moreover, how do A and Q change
if the hole is located at a point not overlapping the phaseless
set of the simply connected domain? In cases for which we
do not know a priori the location of the phaseless set, these
questions may become highly relevant.

A.5 Choosing the zero-th phase through the
stochastic isostables

Like deterministic phase variables, the MRT phase ® and
the stochastic asymptotic phase i are defined up to an arbi-
trary additive constant. In deterministic limit cycle systems,
the phase is often chosen to be zero at the maximum of some
variable of interest, such as the voltage of a spiking neuron. In
order to compare ® and v/, we use a recently introduced gen-
eralization of the isostable coordinate adapted to stochastic
systems Pérez-Cervera et al. (2021). Briefly, just as the slow-
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estdecaying complex eigenmode Q;l (x) allows one to define
a stochastic phase ¥ (x), the slowest decaying purely real
eigenmode allows one to define a stochastic amplitude since
it accounts for the slowest mode describing pure contraction
without an associated oscillation. Hence, the level curves of
such a slowest decaying purely real eigenmode—which we
denote as X' (x)—correspond to the stochastic isostables (see
Fig. 6). For this reason, and following the usual approach
from deterministic systems, in this paper we used the max-
imum of the “stochastic limit cycle”, corresponding to the
0-level isostable Xy = {x | X (x) = 0} in the x direction,
to set the zero phase point for both phases ®(x) and ¥ (x).
In this way, we are able to provide a consistent basis for
comparison throughout the paper.

A.6 Computation of the MRT property

Once Ay is computed, we obtain the MRT phase as © (x) =
Y (x) + Ay (x). To check if the computed function © (x)
satisfies the MRT property, we do the following for each
point xo: first, we interpolate @ (x) in the whole domain D in
Eq. (36) by using a 2D spline method. Then, we integrate the
system of interest for a time large enough to assure that the
first return occurs with overwhelming probability. In practice,
we integrate for a time 37 by means of a Euler—Heun scheme
with a time step O(1073). By using the interpolated grid, we
can obtain a description of the trajectory X(¢) in terms of the
phase 6(¢) = ©(X(¢)). Hence, we can check at which time
we first cross @ (x*) = @ (xo) + 2. We repeat the procedure
averaging the return time over 10° realisations. To check the
MRT property for the stochastic asymptotic phase ¥ (x), we
repeat the previous procedure just substituting © (x) by ¥ (x).
The computed standard error of the MRT results in panel (e)
of Figs. 1, 2, 3, 4 and 5 was found to be less than 0.1.

B Derivation of S E[y(x)] (Eq. 20) and
LTy (t)] (Eq. 23)

In this section, we give details of the derivation of Egs. (20)
and (23). We thank the anonymous reviewer who provided
the following elegant derivation.

For the aim of a compact notation, we remove the x
dependence for the functions, adopt Einstein’s summation
convention (implicit summation over repeated indices) and
derive results for Q;fl . First,

£, 1= LM ue1,
=ul' [V ]+ eV LTu] + 26k (3;u) ('), (40)
= ul [+ eV (L1l + 2iG 5 00 @)

231
since
LV = (fj8) + Girdjon)e'V,
= Z.Eil/ffjaj"/f +iGdj eV o).
= [i (5w + 9w — Gnrme] G
=V [ic"v) - G @00
then, substituting (41) in (40) leads to
£7107,1 = [ £l = G 09 @)
(42)

i (w01 + 2000000 |

hence, substituting £+[Q;f|] = (u + iw)ue’V in (42) and
dividing by €'V,

(+ioyu = Lul — G (@;9) @)

(43)
+i (uﬂ[w] + 2gjk(aju)(ak1//)) .
Equating imaginary parts in (43) yields
Ul +2G k() () = uow. (44)

Thus, wherever u > 0 is nowhere vanishing, (43) we
recover

LY+ 2G4 (3, In(w)) () = uw,

which results in (20), (23).
For completeness, we also state

LI ul = pu + Gjx (9;9) (k) (45)

whose significance remains to be explored elsewhere.

C Oscillation frequency and mean return time
period for the noisy spiral sink

In this Section, we briefly discuss the details involving
the derivation of the mean return period T for the two-
dimensional spiral sink in Sect. 5.1.

Following Thomas and Lindner (2019), we know we can
express the stationary probability density Py(x) as follows:

-1 —1.2 —1 —1.2
Po(x) = (€2m) . (_ I Xy + 200 xyx0 + 15, x2>

Jaetn P 2
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with

4 (1 - Bp)u? + 0 — pope
Iy =—p—y 2 2 2N
o+ p=(1 = Bz — Bp)
1 24 o2 .
HQE1=—M( -ZF,BD)ZM +w2+u;o,3¢’ 46)
o+ p (1 - Bz — By)

Ber? — pwp
+ (1 — B2 - B3’

—1 —1
I, =1 =p—
w

and
Ty = (14 Bp)u? + @* + pwp.
—p(w? + 1?) '
—p(@? + p?) ’
_ 2
My = Ty = P T b,
—p(w* + p?)
with
2 2 2 2
+ p2(1— B2 -
det(r7y = & U =P —Fp) 48)

W (2 + o)
Then, the probability current J can be written as

Jy(x1, x2) =[px1 —wxy—€ (1 + Bp)dx, +Be0x,) | Po(x),
Jy(x1, x2) = [wx1+pxs—€ ((1 — Bp)dx, +Bedx; ) | Po(x),

so the mean period T can be computed as

= /OO Jx (0, x2)dx2, (49)
0

N =

which yields

1 w
T~ 2rp/det(Il) (50)

from which we obtain 7" in Eq. (32).

D Relation to the asymptotic phase for deter-
ministic systems

In this section, we explore the relationship between the mean
return time (MRT) phase ® (x), the stochastic asymptotic
phase ¥ (x), and the deterministic phase ¥ (x). Under certain
regularity assumptions, Cao et al. (2020) §2.4 established
convergence of @ (x) to ¥ (x) in the limit of vanishing noise.
Here, we present a similar argument as in Cao et al. (2020)
§2.4, to establish that if suitable regularity conditions are
satisfied, then in the limit of small noise the stochastic asymp-
totic phase ¥ (x) likewise converges to ¥ (X).

@ Springer

We start by taking the time derivative of the deterministic
phase function ¥ (x), defined in Eq. (5),

do (x)
dr

)TV (x) = 2?” 51)

which holds Vx in the basin of attraction of the limit cycle.

Consider a family of stochastic differential equations as
in Eq. (7), but with the noise scaled by a small parameter /€.
That is,

dX

4 X+ VegX)E(r) (52)

where £ is a vector with components comprising independent
delta-correlated white noise. Moreover, we also consider the
corresponding family of solutions of Eq. (20), that is

LIYe®)] =E®)TVY(X) +€ Y GijdPre(X)
ij
= e =2 Gijd In(ue (x))9; e (%).

i,J

(53)

We now make the regularity assumption thatas € — 0, ¥ (X)
converges uniformly on compact subsets of the domain to a
C? function ¥ (x).> As for any €, V¢ (x) is defined up to an
additive constant, we consider convergence in the sense that
for arbitrary nonzero vectors v € R2,

vI(Vio(x) — Ve (x)) — 0 as € — 0, 54)

for all x in the domain. Fixing x and setting v = f(x), we see
for each x

fTVYo(x) — TV (x) = £TVY(x) — (we + O(€)) — 0, (55)

as € — 0; here, we have used Eq. (53). Consequently, if
Ve (x) converges to a well-behaved function v (x) in this
way, it must satisfy

LW = £X) TV (x) = . (56)

Comparing Egs. (51) and (56), evidently if the deterministic
system has a stable limit cycle, then the function 1 (x) must
correspond with the deterministic phase ¥ (x) through the
linear relation

Yo(x) = 9 (x) + Do, (57)
for an arbitrary constant .

3 Proving rigorous conditions on f and g that are either necessary or
sufficient to guarantee that this assumption holds would lie beyond the
scope of this paper. To our knowledge, such conditions have not yet
been established in existing literature.
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