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Many systems in physics, chemistry, and biology exhibit oscillations with a pronounced
random component. Such stochastic oscillations can emerge via different mechanisms,
for example, linear dynamics of a stable focus with fluctuations, limit-cycle systems
perturbed by noise, or excitable systems in which random inputs lead to a train of
pulses. Despite their diverse origins, the phenomenology of random oscillations can
be strikingly similar. Here, we introduce a nonlinear transformation of stochastic
oscillators to a complex-valued function Q∗1 (x) that greatly simplifies and unifies
the mathematical description of the oscillator’s spontaneous activity, its response to
an external time-dependent perturbation, and the correlation statistics of different
oscillators that are weakly coupled. The function Q∗1 (x) is the eigenfunction of the
Kolmogorov backward operator with the least negative (but nonvanishing) eigenvalue
�1 = �1 + i!1. The resulting power spectrum of the complex-valued function is
exactly given by a Lorentz spectrum with peak frequency !1 and half-width �1; its
susceptibility with respect to a weak external forcing is given by a simple one-pole filter,
centered around !1; and the cross-spectrum between two coupled oscillators can be
easily expressed by a combination of the spontaneous power spectra of the uncoupled
systems and their susceptibilities. Our approach makes qualitatively different stochastic
oscillators comparable, provides simple characteristics for the coherence of the random
oscillation, and gives a framework for the description of weakly coupled oscillators.

nonlinear stochastic differential equations | power spectrum | linear response |
cross-correlation of coupled oscillators

In the age of big data, the human mind craves simple explanations of complex phenomena.
The general category of “stochastic oscillations” embraces a bewildering array of natural
and engineered systems in which one or more measurable quantities vary repeatedly but
irregularly. Examples range from the molecular scale [oscillations in genetic regulatory
circuits (1)] to the macroscopic scale [fluctuations in predator-prey systems (2, 3)], from
physical and chemical systems [lasers (4, 5), chemical oscillations (6), swaying of bridges
(7), oscillations in aircraft wings (8, 9)] to living systems [oscillations in hair cell bundles
(10, 11), in glycolytic yeast activity (12, 13), in locomotor CPG activity (14), and in
cortical networks (15, 16)], and from millisecond time scales [neuronal firing (17, 18)]
to hours [circadian rhythms (19, 20)] and longer [menstrual cycle (21)].

A universal framework for understanding and comparing stochastic oscillations would
seem to be an impossible goal, not only because nonlinear stochastic dynamical systems are
intrinsically difficult to analyze but because stochastic oscillations arise from a wide variety
of underlying dynamical mechanisms. In the simplest case, one may obtain irregular
oscillations by incorporating noise into a deterministic limit-cycle system. Examples
of noisy oscillations generated by such mechanisms include spontaneously active hair
bundles in the auditory system (22), tonically active nerve cells in the sensory periphery,
that produce trains of action potentials perturbed by “channel noise” (random gating of
ion channels) (23, 24), and oscillations in genetic regulatory circuits perturbed by copy-
number noise (1). In addition, there are multiple types of noise-induced oscillations:
systems in which the oscillatory activity would die out in the absence of noise. A well-
known class of noise-induced mechanisms arises when a deterministic excitable system
is perturbed by noise. Below its activation threshold, such an excitable system will not
produce sustained activity. But when perturbed by dynamical noise, an excitable system
may produce an ongoing train of pulsatile activations (25). A nerve cell receiving a
subthreshold current provides a familiar example (26–29). Another important class of
noise-induced oscillators includes quasicycle systems. Quasicycles arise when a system has
a stable equilibrium (with complex eigenvalues), perturbed by fluctuating inputs (30).

Many physical and biological systems show random oscillations attributed to qua-
sicycle dynamics. Examples include underdamped linear mass-spring system immersed
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in a heat bath (31), subthreshold oscillations in nerve cells
sustained by channel noise (32), models of EEG oscillations and
intermittent cortical network activity (33–36), and oscillations
in predator-prey systems sustained by demographic (finite-
population) noise (2). Demographic fluctuations can also sustain
oscillations in systems with rock–paper–scissors interactions
by yet another mechanism: noisy heteroclinic cycle dynamics
(37–40).

Despite this diversity in the origins of noisy oscillations,
each of the mechanisms above can be instantiated as a Markov
process, for example, as a system of stochastic differential
equations. Previous investigations of such systems have relied
on empirical quantities such as the power spectrum (for a single
unit), the cross-correlation (for multiple units), or the linear
response to small-amplitude perturbations. The possibility of a
simpler, unifying description of Markovian oscillators remains
an important open question. Ideally, one would aim to find
the stochastic analogue of the well-known “phase reduction.” In
deterministic limit-cycle systems, the phase reduction (41, 42)
and also the phase-amplitude reduction (43–46) provide low-
dimensional descriptions that have yielded far-reaching insights
into regulation, entrainment, and synchronization of oscillating
systems (47–50). Although the deterministic phase concept
can also be applied to some noisy systems, e.g., single linear
and nonlinear oscillators (51) and coupled stochastic systems
(52), generally, the notion of phase has to be redefined in a
stochastic framework in order to make it applicable to cases of
pure noise-induced oscillations for which a deterministic phase
does not exist (53–58). Here, we go beyond such a simple
extension of the phase definition and suggest a transformation
to a complex-valued function that brings about a tremendous
simplification in the description of stochastic oscillators. We
show that by transforming the system’s output to a complex
eigenfunction of the backward Kolmogorov operator, we obtain
a surprisingly simple, unified treatment of irregular oscillations,
regardless of their underlying mechanisms. Importantly, using
our complex-valued eigenfunction description, we show that
both the power spectrum and the susceptibility for single
oscillators, and the cross-spectrum for multiple oscillators, take
dramatically simplified, universal forms.

Stochastic Oscillators Described by
Eigenfunctions

The key step in finding a universal description comes from the
observation that stochastic systems may be described not just
by individual trajectories but by an ensemble of trajectories, de-
scribed by a probability density. Nonlinear stochastic dynamical
systems are difficult to analyze (25, 59–61), in particular, if they
violate detailed balance (62). However, their densities evolve
following linear dynamics, making the densities amenable to
analysis as linear systems.

We suppose that a stochastic oscillator obeys the Langevin
equation (which we interpret in the sense of Itô)

dx
dt

= f(x) + g(x)ξ(t), [1]

where ξ represents k-dimensional white Gaussian noise with
uncorrelated components 〈ξi(t)ξj(t ′)〉 = δ(t− t ′)δi,j. For Eq. 1,
the conditional probability of the state vector x, given initial
condition x0, obeys the forward Kolmogorov equation (62):

∂

∂t
P(x, t | x0, s) = L[P]

= −∇x ·(f(x)P) +
∑
i,j

∂2

∂xixj

(
Dij(x)P

)
, [2]

where D = 1
2 gg

ᵀ. The formal adjoint of the operator L is
Kolmogorov’s backward operatorL† (also known as the generator
of the Markov process Eq. 1 and closely related to the Koopman
operator), which satisfies the equation

−
∂

∂ s
P(x, t | x0, s) = L†[P]

= f(x0)·∇x0(P) +
∑
i,j

Dij(x0)
∂2P

∂x0,ix0,j
.

[3]

Let us assume that the operators L, L† possess a discrete set of
eigenvalues with corresponding eigenfunctions

L[Pλ] = λPλ, L†[Q∗λ ] = λQ∗λ . [4]

Under the natural inner product, we have the biorthogonality
condition

〈Qλ′ | Pλ〉 =
∫

dxQ∗λ′(x)Pλ(x) = δλ′λ, [5]

so that the transition probability can be expressed as (62)

P(x, t|x0, s) = P0(x) +
∑
λ6=0

eλ(t−s)Pλ(x)Q∗λ(x0), [6]

for t > s. That is, as established for many stochastic systems
(60, 62, 63), the transition probability P can be regarded as a
sum of modes, each of which decays at a rate given by the real part
of its respective eigenvalue λ, leading in the long-time limit to
the stationary distribution P0(x), which we assume to be unique.
The latter is the eigenfunction for the eigenvalue λ0 = 0; the
corresponding eigenfunction for this eigenvalue for the operator
L† is Q0 = 1. N.b. Even in the stationary state, the system will
maintain a steady circulation of probability.

The decaying modes in Eq. 6 have been shown to contain
important information about the stochastic oscillation (54, 58,
64); the most prominent mode being the one whose associated
eigenvalue has least negative nonvanishing real part—as this is the
mode that decays the slowest. Some of us suggested a definition
of a stochastic oscillator and its stochastic phase along these lines:
according to ref. 54, the stochastic system in Eq. 1 qualifies as
robustly oscillating if the following conditions are met:

1. There exists a nontrivial eigenvalue with least negative real
part λ1 = µ1 + iω1 which is complex-valued and unique;

2. The oscillation is pronounced, i.e., the quality factor |ω1/µ1|
is much larger than one;

3. All other nontrivial eigenvalues λ′ are significantly more
negative in their real parts, i.e., |<[λ′]| ≥ 2|<[λ1]|.

If these conditions are fulfilled, then one can extract the stochastic
asymptotic phase ψ(x) as the complex argument of the slowest
decaying eigenfunctionQ∗1 (x), i.e.,ψ(x) = arg(Q∗1 (x)). We can
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then ascribe at any time t a phase variable to the state x(t) of the
system by making the nonlinear transformation to a real-valued
phase of the system ψ(t) = ψ(x(t)) (modulo 2π ).

Here, we pursue this eigenfunction perspective further by
demonstrating that the nonlinear transformation of the system,
using the complex eigenfunction Q∗1 (x), i.e.,

x(t) → Q∗1 (x(t)), [7]

leads to a universal description of stochastic oscillations, inde-
pendent of the specific stochastic mechanism responsible for
their generation. The transformation to the complex-valued
variable Q∗1 (x(t)) entails a tremendous simplification for all
of the oscillator’s essential aspects. First, we derive unifying
and strikingly simple formulas for its spontaneous spectral
statistics; this enables a systematic comparison of different
stochastic oscillators. Second, we also calculate its linear response
to external time-dependent stimuli and find a fluctuation–
dissipation theorem. Third, we put forward a simple but
quantitatively successful theory of cross-correlations of weakly
coupled stochastic oscillators. Hence, using the full function
Q∗1 (x) (instead of using only its complex argument ψ(x)) as
the stochastic analog of the asymptotic phase, we achieve a
true simplification and capture the universal characteristics of
stochastic oscillations.

Before proceeding, we note that Q∗1 (x(t)) has a zero stationary
mean value, in the sense that〈

Q∗1 (x(t))
〉
=
∫

dxQ∗1 (x)P0(x) = 0, [8]

which follows from the biorthogonality relation Eq. 5. Further-
more, we normalize it to have unit variance〈

|Q∗1 (x(t))|2
〉
=
∫

dx |Q∗1 (x)|2P0(x) = 1. [9]

Finally, we note that the complex argument of Q∗1 (x) (the
abovementioned asymptotic phase of a stochastic oscillator) is
only defined up to a constant phase shift.

Example Models

Throughout the paper, we will illustrate our unified theory by
applying it to three models in which stochastic oscillations arise
from qualitatively different mechanisms. We will use each model
at two different parameter sets—one corresponding to a more
coherent (cf. Fig. 1) and one to a less coherent (cf. Fig. 2)
stochastic oscillation. We tune parameters such that all models
in the more coherent case have the same leading nontrivial
eigenvalue λ1 = −0.048+ i0.698 and thus also the same quality
factor of |ω1/µ1| = 14.5, thereby satisfying condition (ii) for
a robust stochastic oscillation well. Likewise, we find parameters
such that all models in the less coherent case have the same
λ1 = −0.168 + i0.241 and thus also the same quality factor of
|ω1/µ1| = 1.43 which obeys condition (ii) for a robust stochastic
oscillation only barely but represents the interesting limit case in
which fluctuations definitely cannot be regarded as weak.

Damped harmonic oscillator with white noise—As a first
illustration, we consider an elementary physical model that is
analytically treatable (31): a one-dimensional harmonic oscillator
with mass M which is subject to Stokes friction and white
Gaussian noise and obeys the stochastic differential equations

ẋ = v, Mv̇ = −γ v −Mω2
0x +
√

2Dξ(t). [10]

A

B

C

D

Fig. 1. Three models of “robust” stochastic oscillations. In the three panels,
we show for each model ten sample trajectories in phase space together
with the stochastic asymptotic phase  (x) (Left), a time series of one of the
components (Lower Right), and the spectrum of eigenvalues (Top Right). For
the three models, parameters have been tuned so they have the same value
for the eigenvalue �1 = −0.048 + 0.698i with the smallest nonvanishing real
part. (A) Damped noisy harmonic oscillator for M = 1,  = 0.096, !0 = 0.699,
D = 0.01125. (B) Noisy Stuart–Landau for a = 1, b = −0.3, D1 = D2 = 0.04.
(C) Noisy SNIC model (beyond the bifurcation, i.e., in the limit-cycle regime)
for m = 1.216, n = 1.014, and D1 = D2 = 0.0119. (D) Power spectra (Left) and
correlation function (Right) of x(t) (harmonic oscillator, green), x1(t) (noisy
Stuart–Landau model, purple), and x1(t) (SNIC model, blue).

The model is already formulated in nondimensional variables
(space and time) and parameters (friction coefficient γ , eigen-
frequency ω0, and noise intensity D) and will be considered
exclusively in the underdamped limit (ω0 > γ/(2M)). We
show sample trajectories and the time courses of the stochastic
oscillation for a high-quality factor of |ω1/µ1| = 14.5 in
Fig. 1A and for a less coherent oscillation with |ω1/µ1| = 1.43
in Fig. 2A. The trajectories in phase space spend most time
around the origin and in the time series of the position variable
strong stochastic variations in amplitude and phase are seen. The
eigenvalue spectra (Upper Right in Figs. 1A and 2A) on the
left side of the complex plane are in part complex-valued, but
some are also purely real; the next eigenvalue to λ1 fulfills the
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A

B

C

D

Fig. 2. Three models of stochastic oscillations. In the three panels, we
show for each model ten sample trajectories in phase space together with
the stochastic asymptotic phase  (x) (Left), a time series of one of the
components (Lower Right), and the spectrum of eigenvalues (Top Right). For
the three models, parameters have been tuned, so they have the same value
for slowest decaying eigenvalue �1 = −0.168 + 0.241i. (A) Damped noisy
harmonic oscillator for M = 1,  = 0.337, !0 = 0.294, D = 0.01125. (B)
Noisy Stuart–Landau for a = 1, b = −0.713, and D1 = D2 = 0.0995. (C)
Noisy SNIC model (prior to the bifurcation, i.e., in the excitable regime) for
m = 0.99, n = 1, and D1 = D2 = 0.01125. (D) Power spectra (Left) and
correlation function (Right) of x(t) (harmonic oscillator, green), x1(t) (noisy
Stuart–Landau model, purple), and x1(t) (excitable SNIC model, blue).

condition (iii) with the equal sign (the spectrum is discussed in
ref. 60).*
Noisy Stuart–Landau oscillator—This is the canonical model

for a supercritical Hopf bifurcation, which we consider in a
version endowed with white Gaussian noise

ẋ1 = ax1 − x2 − a(x2
1 + x2

2)(x1 + bx2) +
√

2D1ξ1(t),

ẋ2 = ax2 + x1 − a(x2
1 + x2

2)(x2 − bx1) +
√

2D2ξ2(t), [11]

*Although it is well known that one cannot unambiguously define the “asymptotic phase”
for a deterministic linear spiral sink, it was shown in ref. 65 that both the Q∗1 function and
hence the stochastic asymptotic phase are well defined as long as the noise has finite
amplitude.

with a, b ∈ R. In the absence of noise, this system has a limit cycle
of period T = 2π/(1 + ba). Because of the existing limit cycle,
the amplitude variations of the stochastic oscillations are much
smaller than for the harmonic oscillator (see Left and Bottom
Right of Figs. 1B and 2B). The eigenvalue spectra (Top Right of
Figs. 1B and 2B) are, in the displayed region, far less populated
than for those of the harmonic oscillator. We note that there are
also purely real eigenvalues outside the shown range; these are
related to the amplitude of the stochastic oscillation (58).

Noisy SNIC system—A two-dimensional system that, in its
deterministic version, undergoes a saddle-node bifurcation on an
invariant circle (SNIC) is given by

ẋ1 = nx1 − mx2 − x1(x2
1 + x2

2) +
x2

2√
x2

1 + x2
2

+
√

2D1ξ1(t),

ẋ2 = mx1 + nx2 − x2(x2
1 + x2

2)−
x1x2√
x2

1 + x2
2

+
√

2D2ξ2(t).

[12]

Without noise, the saddle-node bifurcation from the excitable
to the oscillatory regime occurs at m = 1. Here, we consider
this model endowed with white Gaussian noise once set in
the oscillatory regime (leading to the more coherent stochastic
oscillation, see Fig. 1C ) and once set in the excitable regime
(leading to the less coherent stochastic oscillation, see Fig. 2C ).
In marked contrast to the first two models, the x1 variable
of the SNIC model has a temporally asymmetric time series;
however, we observe this asymmetry to be more pronounced in
the excitable case. In this case, the trajectory stays most of the
time close to the stable node and occasionally the noise causes
a transition across the unstable saddle. Similarly to the Stuart–
Landau case, we have fewer eigenvalues in the displayed range
compared to the harmonic oscillator; again, there exist purely real
eigenvalues outside the range shown.

As Figs. 1D and 2D show, despite having chosen the
parameters of the three models such that they all have the
same value of λ1 = µ1 + iω1 and thus share the same long-
term evolution time dependence† in Eq. 6, the power spectra
and autocorrelation functions of the models at one λ1 differ.
The differences are more pronounced for the less coherent
oscillation (Fig. 2D), and they reflect the specific nature of
the system. For instance, the SNIC system with its highly
temporally asymmetric time series shows pronounced higher
harmonics, while the harmonic oscillator does not. Except for the
harmonic oscillator (31), it is difficult to calculate power spectra
or correlation functions for these stochastic oscillators analytically
(for the Stuart–Landau oscillator, some approximations for power
spectrum and linear response have been put forward in refs.
66–68).

By contrast, and as we show next, the heterogeneous profiles for
the statistics of spontaneous fluctuations, as given by the power
spectra or correlation functions, will be reduced to a universal
form when we observe the processes through the lens of the
leading backward eigenfunction Q∗1 (x(t)).

Correlation Functions and Power Spectra

Generally, for any eigenfunction Q∗λ(x(t)), the correlation
function is given by Cλ,λ(τ ) = 〈Q∗λ(x(τ ))Qλ(x(0))〉 and

†Shared time dependence in the long-term evolution of Eq. 6, i.e., in P(x, t|x0 , s) ≈ P0(x)+
e�1(t−s)P1(x)Q∗1(x0), refers here to the shared exponential function of time; obviously,
the state-dependent functions differ among the different systems.
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its Fourier transform, the power spectrum, by Sλ,λ(ω) =∫
∞

−∞
Cλ,λ(τ )e−iωτdτ . Following ref. 60, we can write the

autocorrelation function as an integral over the formal solution
of the Fokker–Planck equation using the stationary probability
density P0(x)

Cλ,λ(τ ) =
∫

dxQ∗λ(x)e
L(x)τ

[
Qλ(x)P0(x)

]
.

If we expand the functionQλ(x)P0(x) =
∑
λ′ κλ′Pλ′(x) in terms

of the forward eigenfunctions and use the biorthogonal properties
Eq. 5 of these functions (see SI Appendix for an alternative
derivation), we arrive for τ > 0 at

Cλ,λ(τ ) = 〈|Q∗λ |
2
〉eλτ . [13]

This is a strikingly simple result: The correlation function is given
by the product of the stationary variance of Q∗λ and a complex
exponential function. Specifically, for our variable Q∗1 (x), taking
into account Eq. 9 and generalizing the formula to both negative
and positive time lags τ , the correlation function reads

C1(τ ) = exp [µ1|τ |+ iω1τ ] . [14]

Real and imaginary parts of this function display damped
oscillations corresponding to the finite coherence of the stochastic
oscillations. One characteristic of the oscillation is the quality
factor |ω1/µ1| that tells us how many cycles (in multiples of
2π ) are seen in the correlation function before the exponential
envelope has decayed to 1/e.

The even simpler expression for the power spectral density
corresponds to a (purely real-valued) Lorentzian, peaked at ω =
ω1 with a half-width of µ1

S1(ω) =
2|µ1|

µ2
1 + (ω − ω1)2 . [15]

In Fig. 3 we show the power spectra of Q∗1 (x) and the real
part of the autocorrelation function C1(τ ) for the parameters
chosen in Figs. 1 and 2 (Fig. 3 A and B, respectively). As we
show in Figs. 1D and 2D, the power spectra and correlation
functions of the models in the original variables exhibit different
shapes. However, when transforming to Q∗1 (x), since we tuned
parameters such that all three models in Figs. 1 and 2 have the
same complex eigenvalue with the smallest real part, λ1, the three
very different systems possess identical power spectra. This is
confirmed by our simulations (symbols) which all fall on the line
predicted by Eq. 15 (Fig. 3). Therefore, by means of the function
Q∗1 , we have made the three systems quantitatively comparable
and, moreover, characterizable with a simple analytical expression
and two informative parameters—the frequency and the half-
width of the spectral peak (or, equivalently, the frequency and
the quality factor).

By a procedure similar to that for the correlation func-
tions and power spectra for Q∗λ(x(t)), we can also calculate
expressions for the cross-correlation functions Cλ,λ′(τ ) =
〈Q∗λ(x(τ ))Qλ′(x(0))〉 (see SI Appendix for details):

Cλ,λ′(τ ) =
〈
Q∗λQλ′

〉 {e−λ′∗τ , τ < 0
eλτ , τ > 0

, [16]

and for the cross-spectra Sλ,λ′(ω) =
∫
∞

−∞
dτCλ,λ′(τ )e−iωτ

Sλ,λ′(ω) = −
〈
Q∗λQλ′

〉 ( 1
λ− iω

+
1

λ′∗ + iω

)
. [17]

We will need these expressions below for the theory of coupled
stochastic oscillators.

Excitable SNICStuart-LandauHarmonic Oscillator

A

B

Fig. 3. Power spectra S1(!) and real part of the autocorrelation function
C1(t) of Q∗1(x(t)) for the different models with parameters in A and B
as in Figs. 1 and 2, respectively. (A) For parameters from Fig. 1 (chosen
such that �1 = �1 + i!1 is approximately the same for all models with
�1 = −0.048,!1 = 0.698, leading to a more coherent oscillation with a
quality factor of |!1/�1| = 14.3), we compare Eq. 15 (solid line) to stochastic
simulations of the three models (symbols). (B) For parameters from Fig. 2
(chosen such that �1 = �1 + i!1 is approximately the same for all models
with �1 = −0.168,!1 = 0.241, leading to a less coherent oscillation with a
quality factor of |!1/�1| = 1.43), we compare Eq. 15 (solid line) to stochastic
simulations of the three models (symbols).

Linear Response and Fluctuation–Dissipation
Theorem

We now consider how the stochastic oscillators respond to a
weak time-dependent forcing εp(t) that enters the system via a
perturbation vector e. That is, we consider

dx
dt

= f(x) + εp(t)e + g(x)ξ(t), x, e ∈ Rn. [18]

How the time-dependent mean value of our variable Q∗1 (x(t))
is affected by the perturbation p(t) can be described in terms of
linear response theory (60, 61, 69, 70)

〈
Q∗1 (x(t))

〉
= ε

∫ t

−∞

dt ′ Ke(t − t ′)p(t ′), [19]

where we have taken into account Eq. 8 and introduced
the complex-valued linear-response function Ke(τ ) (the index
indicates the dependence on the direction of perturbation,
e). Equivalently, we can use the susceptibility χe(ω) =∫
∞

−∞
dτ e−iωτKe(τ ), the Fourier transform of the response

function.
In order to derive an expression for Ke(τ ), we follow Risken

(60, chapter 7) and express the Fokker–Planck operator by an
unperturbed partL and a perturbation partLe = −e ·∇, leading
to the Fokker–Planck equation

∂tP(x, t) =
(
L(x) + εp(t)Le(x)

)
P(x, t). [20]

Expanding the density in powers of ε, P(x, t) = P0(x) +
εPe(x, t) + O(ε2), taking only the leading linear order and
expressing this by an integral over the formal time-dependent
solution, we obtain

Pe(x, t) =
∫ t

−∞

dt ′ p(t ′)eL(x)(t−t ′)
[
Le(x)[P0(x)]

]
. [21]
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By expressing the time-dependent mean value
〈
Q∗1 (x(t))

〉
by the

integral over Pe(x, t) and comparing to Eq. 19, we obtain for the
linear-response function the intermediate result

Ke(τ ) =
∫

dx Q∗1 (x)eL(x)τ
[
Le(x)[P0(x)]

]
, τ > 0. [22]

We expand Le(x)[P0(x)] =
∑
λ′ βe,λ′Pλ′(x) into forward eigen-

functions, use the eigenvalue equations and the biorthogonality
relation Eq. 5, and finally take into account causality (which
implies Ke(τ ) ≡ 0 for τ < 0) to arrive at a simple expression for
the linear-response function (see SI Appendix for details)

Ke(τ ) = βe

{
eλ1τ , τ > 0
0, else

, [23]

where the complex-valued coefficient βe = βe,λ1 (we omit the
second index for ease of notation) is given by

βe = −
∫

dxQ∗1 (x)[e · ∇P0(x)], [24]

where ∇P0(x) is the gradient of the stationary density in our
n-dimensional phase space. We note that for a stationary density
P0(x) obeying natural boundary conditions, βe = e ·

〈
∇Q∗1 (x)

〉
,

i.e., the coefficient is related to the mean change of Q∗1 (x) in the
direction of the perturbation.

The susceptibility of the stochastic oscillator is given by

χe(ω) =
∫
∞

−∞

dτ Ke(τ )e−iωτ =
βe

−µ1 + i(ω − ω1)
, [25]

i.e., a simple bandpass filter centered at ω = ω1. Its modulus
and its phase are given by,

|χe(ω)| =
|βe|√

µ2
1 + (ω − ω1)2

,

arg(χe(ω)) = arg(βe) + arctan(ω1 − ω,−µ1). [26]

We confirm these results via numerical simulations of all three
models in Fig. 4 (see SI Appendix for details on measuring
susceptibilities). For the harmonic oscillator, we show only the
susceptibility for the physically relevant case of a perturbation
of the velocity equation. For the Stuart–Landau model, the
susceptibilities for perturbations in the x1 and x2 directions are
shown separately but coincide because of the symmetry of the
model; the phase shifts are also the same up to a constant (we
recall that the phase of our output variable Q∗1 is only determined
up to a constant phase). In contrast to the rotational symmetry of
the Stuart–Landau oscillator, the excitable SNIC model differs
in its response to perturbations in the x1 and x2 directions:
perturbations in the x1 direction are more efficient in kicking
the system out of the stable fixed point and thus in evoking a
response; consequently, χex1 > χex2 for all frequencies.

We note that we can calculate the response functions and
susceptibilities of the higher eigenfunctions Q∗

λ′
(x(t)) in an

analogous fashion, resulting in very similar formulas, Eqs. 23
and 25. The main differences are that i) we have to use λ′ instead
of λ1, and ii) in the computation of the coefficient βe in Eq. 24,
we use Q∗

λ′
(x) instead of Q∗1 (x).

Turning back to the statistics of Q∗1 (x(t)), we stress that
the simple expressions for the autocorrelation function of the

A

B

C

Fig. 4. Susceptibility functions �e(!) of the variable Q∗1(x(t)) for the differ-
ent models with the same parameters as in Fig. 2 and different perturbation
vectors e as indicated. For each model, we show the squared of the absolute
value, |�e(!)|2, (Left) showing a Lorentzian profile and its angle arg(�e(!))
(Right). The perturbation vectors are e1 = (1,0)> and e2 = (0,1)>. (A)
The harmonic oscillator �ev = −3.87i (blue, computations; cyan, theory);
(B) Stuart–Landau model �e1 = 0.641−0.297i (orange, computations; yellow,
theory), �e2 = 0.297 + 0.641i, (blue, computations; cyan, theory); (C) SNIC
excitable system �e1 = 1.38 + 1.3i (orange, computations; yellow, theory),
�e2 = −0.54 + 0.19i (blue, computations; cyan, theory).

oscillator and its response function permit a simple connection
between them, which can be regarded as a fluctuation–dissipation
theorem (FDT). FDTs are relations between the spontaneous
activity of a system and its response to external perturbations and
have been derived for thermodynamic equilibrium (60, 69, 71)
as well as for nonequilibrium settings (61, 72–76). For our broad
model class, we obtain the simplest relation in the time domain
as follows:

Ke(τ ) = βeC1(τ ), τ > 0. [27]

This relation resembles, formally, the generalized FDT (61, 72,
73, 77), but differs from the latter, because the generalized
FDT is based on the (purely real-valued) conjugated variable.
Our result Eq. 27 constitutes a simple fluctuation–dissipation
theorem holding true for the general class of stochastic oscillators,
most of which operate far from thermodynamic equilibrium. For
relations between the power spectrum and the susceptibility that
are formally closer to the standard FDT of equilibrium systems
in the Fourier domain (71), see SI Appendix.

Two Weakly Coupled Stochastic Oscillators

We now demonstrate that the transformation to the variable
Q∗1 (x) also allows for a simplified description of the statistics of
weakly coupled stochastic oscillators. For simplicity, we consider
only two coupled oscillators; however, the general method can
be applied for larger systems of interacting units too.

We couple the two oscillators with the scalar functions
Hx(x, y) = Hxx(x) +Hyx(y) and Hy(x, y) = Hxy(x) +Hyy(y)

6 of 11 https://doi.org/10.1073/pnas.2303222120 pnas.org
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along the directions ex and ey, respectively, and scale the coupling
terms by a small parameter ε

ẋ = fx(x) + εex[Hxx(x) + Hyx(y)] + gx(x)ξx(t),
ẏ = fy(y) + εey[Hxy(x) + Hyy(y)] + gy(y)ξy(t). [28]

Here, the terms with mixed indices Hyx(y) (Hxy(x)) describe the
effect of the y (x) oscillator on the x (y) oscillator; the diagonal
terms Hxx(x) and Hyy(y) can in principle be lumped into the
drift terms fx(x) and fy(y), respectively (which will then also
change our Q∗1 functions). Here, we keep for clarity the diagonal
terms as a perturbing input such that the eigenfunctions Q∗1x(x)
andQ∗1y (y) are those of the uncoupled oscillators (see SI Appendix
for a discussion of the alternative treatment of the problem).

We use the response functions Eq. 23 in a realization-wise
version

Q∗1x= Q∗1x ,0 + ε

t∫
−∞

dt ′Kex(t−t
′)[Hxx(x(t ′))+Hyx(y(t ′))],

Q∗1y= Q∗1y ,0 + ε

t∫
−∞

dt ′Key (t−t
′)[Hxy(x(t ′))+Hyy(y(t ′))], [29]

and similarly for the other backward eigenmodes Q∗
λ′x

and Q∗
λ′y

(SI Appendix). In Eq. 29, the functions Q∗1x ,0 and Q∗1y ,0 denote
the spontaneous activity of the uncoupled oscillator, respectively.
A similar approximation (using the response function for the
time-dependent mean value to approximate the realization-wise
response of the system) has been successfully applied in the past to
stochastic network models of recurrently coupled spiking neurons
(78, 79).

We assume that we can expand the coupling functions into
the backward eigenfunctions as follows:

Hxx(x) + Hyx(y) =
∑
λ′x

γλ′xQ
∗

λ′x
+
∑
λ′y

αλ′yQ
∗

λ′y
,

Hxy(x) + Hyy(y) =
∑
λ′x

αλ′xQ
∗

λ′x
+
∑
λ′y

γλ′yQ
∗

λ′y
, [30]

where the coefficients γλ′x ,αλ′x are given by

γλ′x =
∫
dx Pλ′x(x)Hxx(x), αλ′x =

∫
dx Pλ′x(x)Hxy(x),

γλ′y =
∫
dy Pλ′y (y)Hyy(y), αλ′y =

∫
dy Pλ′y (y)Hyx(y). [31]

In addition to introducing these coefficients, we now also
consider the finite-time-window Fourier transforms of the
observables (see SI Appendix for details) and thus obtain from
Eq. 29

Q̃∗1x = Q̃∗1x ,0 + εχex

(∑
λ′x

γλ′x Q̃
∗

λ′x
+
∑
λ′y

αλ′y Q̃
∗

λ′y

)
,

Q̃∗1y = Q̃∗1y ,0 + εχey

(∑
λ′x

αλ′x Q̃
∗

λ′x
+
∑
λ′y

γλ′y Q̃
∗

λ′y

)
, [32]

and similarly for the remaining modes. From this linear system
of equations, by a systematic expansion in the weak coupling

strength ε, we obtain the cross-spectrum between Q∗1x and Q∗1y
in terms of the susceptibilities Eq. 25 and cross-spectra between
the modes of one oscillator Eq. 17 (SI Appendix):

Sc1,yx = ε
(
χ∗ex

∑
λ′y

α∗λ′y
S1y ,λ′y + χey

∑
λ′x

αλ′xSλ′x ,1x
)
. [33]

From this formula, we can extract the following information. First
of all, for weak coupling, the cross-spectrum between oscillators
is proportional to ε. Second, the first term in the parenthesis
consists of the susceptibility of the x oscillator and a weighted
sum of cross-spectra between the different eigenfunctions of
the y oscillator with the most important term being the power
spectrum S1y . The complex-valued coefficients of this sum are
determined by Hyx(y), the coupling function from y to x,
via Eq. 31. The second term in the parenthesis is similar,
only the roles of x and y are switched. For two statistically
identical oscillators with symmetric coupling, the second term
is the complex conjugate of the first one and hence the cross-
spectrum will be real-valued; any nonvanishing imaginary part
thus reflects a heterogeneity in the oscillators or the coupling. For
the interesting case of a purely unidirectional coupling from y to
x, for instance, the second term in the parenthesis in Eq. 33 will
simply vanish.

Our result for the cross-spectrum of the oscillators Eq. 33
still contains an infinite sum of terms. However, as all of our
numerical examples below show, just a few terms in the sums
will effectively contribute. Specifically, for the case of coherent
stochastic oscillators with similar frequencies, we may restrict the
sums just to the first terms (involving the spectra associated with
λ1 and λ∗1) and still obtain accurate results.

We start testing our formula for the cross-spectrum of two
identical harmonic oscillators that are weakly coupled by a spring
(Fig. 5A). In this case, of course, the cross-spectrum between
the original position variables of the two oscillators can be easily
calculated and is shown in the Left panel (and calculated in the SI
Appendix): a purely real function with a positive lobe forω < ω0,
a negative lobe for ω > ω0 and everything mirrored at negative
frequencies. When computing the cross-spectrum of the variables
Q∗1x , Q

∗
1y , we can take advantage of the analytical expression for

Q∗1 (SI Appendix) to find that the coupling function is exactly
given by a linear combination of Q∗1 and Q1 (hence, higher
coefficients α∗

λ′y
and αλ′x in the expansion are identically zero; see

SI Appendix for further details). Therefore, the infinite sum in
Eq. 33 reduces to

Sc1,yx ≈ 2ε<
(
χ∗e α

∗
1S1 + χ∗e α1S1,1

)
, [34]

where we have omitted the x, y dependences of the functions on
the r.h.s. since both oscillators are assumed to be identical.

As we observe in Fig. 5 A, Right, Eq. 34 displays an excellent
agreement with numerical simulations. If we compare the cross-
spectrum of the Q∗1x , Q∗1y functions with the cross-spectrum
in the original position variables, we note that they look very
similar with the only difference being that in Sc1,yx(ω) everything
happens exclusively at positive frequencies (we consider rotating
pointers in the complex plane instead of real-valued time series)
and the zero crossing of the function is at ω1 (here close to ω0).
Hence, the cross-spectrum of the two systems described in terms
of the backward eigenfunctions reflects the interdependence of
the two systems appropriately. We note that, while the largest
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A

B

C

Fig. 5. Cross-spectra of two coupled units for weak coupling strength " =
0.01. In all panels, the thin (thick) lines indicate simulations (theory); blue
(green) corresponds to real (imaginary) part. (A) For two harmonic oscillators
with parameters as in Fig. 1, we show cross-spectra between the position
variables of each oscillator (Left) and between the Q∗1 functions, Sc1,yx. (B) For
two symmetrically coupled but nonidentical Stuart–Landau oscillators, we
show the cross-spectrum between the Q∗1 functions; Left: oscillators slightly
detuned with one oscillator as in Fig. 1 and the other one with a changed
value of b = −0.25; Right: the second oscillator is more strongly detuned with
b = −0.1. (C) For two coupled identically SNIC systems, we show the cross-
spectra Sc1,yx with parameters as in Fig. 1 (Left) and Fig. 2 (Right). In the Right,
two versions of the theory are shown: approximations by one mode (dashed
line) and by the five leading terms (solid line, see text).

contribution to Sc1,yx in Eq. 34 is given by the power spectra
term S1, the additional term S1,1, even if it is small, has to be
included to match the asymmetry between the two lobes (sizes of
minimum and maximum are slightly different); including only
power spectra terms would result in a strictly odd function with
respect to ω = ω1.

Next, we employ our formula Eq. 33, to study a case of
symmetrically coupled but nonidentical oscillators. We consider
two different noisy Stuart–Landau oscillators diffusively coupled
by their first coordinates x1 and y1. We study two cases to inspect
how inhomogeneities of the oscillators affect the cross-spectrum:
we set parameters such that i) both oscillators are slightly detuned
(λ1x = −0.048 + 0.698i, λ1y = −0.047 + 0.748i) and ii)
oscillators are more strongly detuned (λ1x = −0.048 + 0.698i,
λ1y = −0.045 + 0.9i). As all quality factors in this example are
small and the system is rotationally symmetric (which according
to our numerical observations implies S1,1(ω) ≡ 0), we expect
that the cross-spectrum is approximately given by

Sc1,yx = ε
(
χ∗exα

∗
1yS1y + χeyα1xS1x

)
. [35]

This formula agrees well with numerical simulations for both
cases (Fig. 5B). We note that, as the oscillators are nonidentical,
the cross-spectrum has both nonvanishing real and imaginary
parts. The effect of inhomogeneities is clearly seen by comparing

Left and Right panels in Fig. 5B. For small detuning (Left panel),
we observe a similar profile for the real and imaginary parts of
Sc1,yx: a one lobe function, which is only different from zero
around a narrow frequency band in the neighborhood of both
eigenfrequencies. As the detuning is small in case (i), the real
part of Sc1,yx is larger than the imaginary part. By contrast, in
case (ii) with stronger detuning, the situation is reversed, and the
imaginary part has a larger absolute value than the real part; also
now the two frequencies of the oscillator become visible by two
distinct peaks in both real and imaginary parts. Indeed, the larger
degree of inhomogeneity is not only captured by the increase of
power in the imaginary part of Sc1,yx, but also in the appearance
of two secondary peaks around the individual eigenfrequencies
of each unit.

Finally, we illustrate how for less coherent oscillators, more
terms in the sum are required to yield a quantitatively correct
result in Eq. 33. To this end, we consider first two identical SNIC
systems with parameters of the more coherent case (chosen as in
Fig. 1) and coupled symmetrically through their first coordinates.
Here, we expect that, again, few modes are needed, and, indeed,
similarly to the Stuart–Landau case, we just need the power
spectra term

Sc1,yx = 2ε<
(
χeα1S1

)
, [36]

(due to symmetry, we can drop the index again and obtain
a purely real-valued cross-spectrum). This formula shows an
excellent agreement with numerical simulations (Fig. 5 C , Left).
However, changing the parameters to the less coherent case
(parameters as in Fig. 2) (so now both coupled units are in
the excitable regime), we find that Eq. 36 does not suffice
(compare dashed and solid curves in Fig. 5 C , Right). Besides the
power spectra contribution, we find that obtaining an accurate
prediction in this noncoherent case requires including cross-
spectral contributions betweenQ∗1 and the neighboring backward
eigenmodes associated with the eigenvalues λ∗1, λ2, λ3, and λ4
(the contributions associated with λ∗2, λ

∗
3, and λ∗4 have negligible

covariance values).
Why did this last example require more modes than any

other of the cases considered? There is no general answer to
this question as Eq. 33 depends on the coefficients αλ′x , αλ′y
which depend in turn on the specific systems and the specific
coupling functions. However, the dependence of Eq. 33 on
the cross-spectra S1,λ can shed some light on this question. As
Eq. 17 shows, our formula for the cross-spectra S1,λ between Q∗1
and any other backward mode is weighted by their covariance〈
Q∗1Qλ

〉
. The more robustly oscillatory a system is, the smaller

we would expect the covariance between Q∗1 and the rest of the
backward modes. The reason for such expectation is illustrated
in Fig. 6. In Fig. 6A, we consider the SNIC model in the
coherent regime and show its eigenvalue spectrum (Left panel).
We observe that the closest eigenvalue to λ1 = −0.048+0.698i
is λ2 = µ2 + iω2 = −0.18 + 1.42i. Consequently, the power
spectrum of Q∗2 , which is also given by a Lorentzian centered
at ω2 and half-width of µ2, shows very little overlap with the
power spectrum of Q∗1 (Mid panel). Hence, it is not surprising
that the cross-spectrum S1,2 is small (Right panel). By contrast,
if we now consider the SNIC in the less coherent case (Fig. 6B),
this scenario changes. As we see in Fig. 6 B, Right, the eigenvalues
are much closer in their imaginary parts (also real parts are
larger) than in the coherent case (now λ1 = −0.168 + i0.241,
λ2 = −0.42 + i0.64, and λ3 = −0.73 + i1.11). Therefore,
there is an effective overlap between their respective power
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A

B

Fig. 6. Spectral overlap and cross-spectra between Q∗1 and the rest of the backward modes for a more (A) and less (B) coherent oscillator. Spectrum of
eigenvalues (Left), power spectrum S� of different eigenmodes (Mid), and the cross-spectra between Q∗1 and different eigenmodes (Right). SNIC model with
parameters in A and B as in Figs. 1 and 2, respectively.

spectra (Mid panel) leading to non-negligible cross-spectra
between Q∗1 and its neighboring modes (Right panel), and
these contributions have to be taken into account in the
theory.

Summary and Discussion

In this paper, we have developed a simplifying framework for
stochastic oscillators that can be described by systems of stochastic
differential equations. By mapping the system’s n-dimensional
state vector to a complex-valued oscillator given by the eigenfunc-
tion Q∗1 (x) of the backward Kolmogorov operator to the eigen-
value λ1 = µ1 + iω1 with the least negative real part, we achieve
a significant reduction in complexity. By using the transformed
variable Q∗1 (x), i.e., the pair (<[Q∗1 (x(t))],=[Q∗1 (x(t))]), we
accomplish three major simplifications. First, we can describe
the single oscillator’s spontaneous activity by a simple correlation
function consisting of a single exponential, or, equivalently, by
a Lorentzian power spectrum with frequency ω1, half-width
µ1, and quality factor |ω1/µ1|. Second, we can quantify the
response to an external stimulus with a simple linear response
function of the form K (τ ) ∝ 2(τ ) exp(λ1τ ), a function that is
related to the correlation function by a simple proportionality.
This result constitutes a fluctuation–dissipation theorem for a
nonequilibrium system that is distinct from other theorems that
have been derived in the past (e.g., refs. 72, 73, and 75). Third, by
mapping the oscillator state to theQ∗1 (x) function, we can predict
the form of the cross-correlations of coupled noisy oscillators.

We illustrated the working of the general theory by three
models that have distinct mechanisms for generating stochastic
oscillations; mathematically speaking, these were a linear system
with a stable focus driven by fluctuations, the canonical model
for a supercritical Hopf bifurcation endowed with noise, and a

system with a saddle-node on invariant circle bifurcation likewise
with uncorrelated noise. It is important to note that the first
and the third example would not perform any oscillations (at
least in the long-time limit) in the absence of noise. These
oscillations are noise generated in both cases, though by different
mechanisms. The second system constitutes a limit-cycle system
perturbed by noise, and thus, here, the effect of the fluctuations
is easier to grasp: More noise will reduce the phase coherence of
the oscillation. Although the three systems are very different in
their dynamical mechanism, they become similar and, moreover,
comparable when viewed through the lens of theQ∗1 (x) function.
Even in our framework, we still see characteristic aspects of the
system, when we look at their response to external stimuli or the
cross-correlation statistics for coupled systems.

While results on the theory of the single power spectrum and
the linear response are exact, the case of coupled stochastic oscilla-
tors required an additional idea for the analytical calculation; we
used an ansatz that employs linear response theory (proceeding
as if the dynamics in the variables Q∗1,x and Q∗1,y were linear). We
illustrated the resulting expressions for a number of numerical
examples: for the three models, for identical and nonidentical
oscillators, for rather coherent, and for more noisy oscillators. In
all cases and for sufficiently weak coupling, we found excellent
agreement between the predicted and the simulated cross-spectra
of the Q∗1 variables of the two systems. We take this as an
indication that the true dynamics of the variables Q∗1,x and Q∗1,y
are effectively linear. The reasons why this is so merit further
exploration.

The universal description of stochastic oscillations put forward
here may also be used to better highlight the characteristic
differences between the different systems. Given that two
oscillators have the same λ1 (i.e., the same quality factor), what
sets them apart? Should we combine the information for the
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leading complex-valued eigenvalue and its eigenfunction with
that of the first purely real-valued eigenvalue and the associated
eigenfunction, which can be used to define the stochastic limit
cycle (80)? Or should we rather compare the higher oscillatory
modes Q∗

λ′
(with |<(λ′)| > |µ1| and =(λ′) 6= 0), that play such

a prominent role in our theory of coupled oscillators? It seems to
us that both comparisons offer a novel perspective for the finer
categorization of stochastic oscillators.

The relation between our universal description of stochastic
oscillators and the classical phase description of deterministic
oscillators bears further discussion. Recall that, in deterministic
limit-cycle systems, the phase can be obtained from the argument
of the principal eigenfunction of the Koopman operator with
purely imaginary eigenvalue (81, 82). Upon introducing noise
into the system, this eigenvalue develops a negative real part.
Indeed, it becomes λ1, and its associated eigenfunction becomes
Q∗1 . This connection between the deterministic phase and the
Q∗1 function in the noise vanishing limit is not coincidental
since the Kolmogorov backward operator L† corresponds to
the stochastic version of the Koopman operator (83). Indeed,
the relationship between the stochastic asymptotic phase (the
complex argument of Q∗1 ) and the deterministic phase in the
limit D → 0 has already been noted (54, 64, 84, 85).
Hence, our transformation also embraces the deterministic case
and connects cleanly with the well-established deterministic
Koopman-operator framework (86).

Returning to the specific results of our paper, we note that
they can be generalized in different directions. First of all, even if
our general setup includes multiplicative noise, for simplicity,
we restricted all of our examples to Langevin systems with
additive white Gaussian noise. Nothing keeps us from finding the
eigenfunction to the eigenvalue with the least negative real part
and to make the transformation to this complex-valued variable in
a system with multiplicative noise. Likewise, we are not restricted
to systems with Gaussian white noise but can also apply the
method to Markov processes described by a master equation (for
which there exist also a backward operator with eigenfunctions;
one such example has been already treated in ref. 54 for the
extraction of the asymptotic phase of a stochastic neuron model
with discrete channel noise). More generally even, any jump-
drift-diffusion process (62) described by a master equation (with
additional drift and diffusion terms) that shows the hallmarks of
robust stochastic oscillations, can be captured by our universal
description in terms of the Q∗1 (x) function. Our formulas for
the main characteristics will not change, and, for instance, the
power spectrum of such systems in the variable Q∗1 will still be
a pure Lorentzian, the response function a pure exponential,
etc. Another straightforward generalization concerns the external
perturbation: This could (and will in certain cases) also depend
on the state of the system. This will mainly affect the definition
of the complex-valued coefficient β that appears in the response
function.

An exciting challenge is to extend our analysis of two coupled
oscillators to the general case ofN weakly coupled oscillators with
their obvious applications to neural (87–89), mechano-sensory
(90–92), genetic (1, 93), metabolic (94), and energy supply
networks (95), to name but a few examples. Because our analytical
approach can be generalized to this case, different scenarios of
connectivity (sparse, random, or structured) and heterogeneity
(in the single oscillator properties or in the connections) can be
studied analytically. Moreover, the summed activity of subgroups
of oscillators at the mesoscopic level can be calculated from the
cross-spectral statistics of single stochastic oscillators.

Our theory was here applied to stochastic models, but
applications to data are conceivable. In ref. 54, it was
demonstrated how the stochastic asymptotic phase (the complex
argument of the function Q∗1 ) can be extracted from data. In
the same way, the function Q∗1 itself can be found, provided
the data are consistent with a robustly oscillatory Markov
process. We suggest that if one were to propose a method for
extracting either Q∗1 , or higher modes Q∗λ , our results offer a test:
whether the resulting power spectra fit simple Lorentzians at
the respective eigenfrequencies. Thus, in light of the direct link
between the Kolmogorov backward operator and the stochastic
Koopman operator, our work may help advance methods for
extracting Koopman eigenfunctions from data (96–99), as well
as for providing physical interpretations of particular modes
(54, 58).

Our framework also offers a test of a key assumption,
namely that the stochastic oscillation arises from a Markov
process. Markovianity is an important characteristic of stochastic
processes, and different methods to test for it are currently under
debate (see, e.g., refs. 76, 100, and 101). For the important class
of stochastic oscillators, computing the statistics of Q∗1 (x(t)),
and specifically probing for a purely Lorentzian line shape, may
provide another independent tool to test for Markovianity.

In summary, there are many open problems that can be studied
within the framework put forward here.
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