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Supporting Information Text11

1. Theoretical derivations12

Preliminary details about the derivations. To make this document self-contained, we briefly summarize the most important13

properties of the mathematical objects dealt with in the paper. Throughout the document we make the following assumptions:14

1. We assume our stochastic oscillator can be described by a Langevin equation15

dx
dt

= f(x) + g(x)ξ(t), x ∈ R, [1]16

where f is a is an n-dimensional vector, g is an n × n matrix, and ξ is n-dimensional white noise with uncorrelated17

components, so it satisfies, 〈ξi(t)ξj(t′)〉 = δ(t− t′)δi,j . Moreover, we interpret Eq. (1) in the Itô sense for its mathematical18

convenience. We remark that choosing between the Itô or the Stratonovich interpretation will not change our framework,19

which is based on the uniquely defined Kolmogorov’s forward and backward operator (1) that we introduce next.20

The process described by Eq. (1) is a n-dimensional Markov process, that is uniquely determined by the transition probability21

density P (x, t | x0, s) (for t > s). This central statistics satisfies both the forward Kolmogorov (or “Fokker-Planck”)22

equation (1, 2)23

∂P

∂t
= L[P ] = −∇x ·(f(x)P ) +

∑
i,j

∂2

∂xixj
(Dij(x)P ) , [2]24

where D = 1
2gg

ᵀ. Here the functional L acts with respect to the x coordinates. P (x, t | x0, s) also obeys the backward25

Kolmogorov equation (1, 2)26

− ∂P

∂s
= L†[P ] = f(x0)·∇x0 (P ) +

∑
i,j

Dij(x0) ∂2P

∂x0,ix0,j
, [3]27

where the operator L† acts with respect to the x0 coordinates. We note that L†, which is also known as the generator of28

the Markov process, is the formal adjoint of the forward operator L. Generally speaking, the domain of L is restricted to29

integrable (L1) functions, while the domain of L† is restricted to bounded (L∞) functions.∗30

2. We assume a discrete set of eigenvalues λ = µλ + iωλ with corresponding forward (L) and backwards (L†) eigenfunctions31

L[Pλ] = λPλ, L†[Q∗λ] = λQ∗λ, [4]32

where the smallest eigenvalue is λ0, corresponds to the stationary state, which we denote P0(x) and assume to be unique.33

Under the natural inner product we have the biorthogonality condition34

〈Qλ′ | Pλ〉 =
∫
dxQ∗λ′(x)Pλ(x) = δλ′λ, [5]35

where we remark that here, 〈Qλ′ | Pλ〉 refers to the inner product of the backward and forward eigenfunctions Qλ′ and Pλ,36

respective. This notation should not be confused with the ensemble average notation 〈·〉 used later.37

3. We assume that there is a pair of complex eigenvalues, referred to as λ1 = µ1 + iω1, λ
∗
1 = µ1 − iω1, with least negative real38

part µ1 (cf. main text for how this eigenvalue is related to the definition of a robustly oscillatory system); the corresponding39

eigenfunctions are denoted compactly by Q∗1(x) and Q1(x), respectively.40

The Eq. (5) implies a vanishing stationary mean value for Q∗λ(x) with λ 6= 0:41

〈Q∗λ(x)〉 =
∫
dxQ∗λ(x)P0(x) = 0, (λ 6= 0), [6]42

and also allows us to write the probability density as43

P (x, t|x0, s) = P0(x) +
∑
λ 6=0

eλ(t−s)Pλ(x)Q∗λ(x0), for t > s. [7]44

Furthermore, we normalize the nontrivial backwards eigenfunctions Q∗λ(x) such that they satisfy45 〈
|Q∗λ(x(t))|2

〉
=
∫
dx |Q∗λ(x)|2P0(x) = 1, (λ 6= 0). [8]46

We note that in the trivial case λ = 0, we have Q∗0(x) ≡ 1 and thus a non-vanishing mean value of one and a vanishing variance.47

∗ In the paper we focus on the case of stochastic processes of diffusion type, in which L and L† are second-order differential operators; in this case we further restrict their domain of action to
twice-differentiable functions.

2 of 13 Alberto Pérez-Cervera, Boris Gutkin, Peter J. Thomas and Benjamin Lindner



Specifically, if we perform the nonlinear transformation of the system’s variable x(t) to our new variable, Q∗λ(x(t)), then, 48

this new variable has zero mean and a variance of one. 49

Another property of the eigenfunctions that will be repeatedly used here is the effect of the evolution operator on the 50

forward eigenfunction (cf. (2), Eq. (6.30)): 51

eL(x)τPλ(x) =
[
I + L(x)τ + L

2(x)τ2

2 + ...

]
Pλ(x), =

[
I + τλ+ λ2τ2

2 + ...
]
Pλ(x), = eλτPλ(x). [9] 52

In this document we will use the following convention for the finite-time-window Fourier transform of a time (generally 53

complex-valued) series z(t) 54

z̃(ω) =
∫ T

0
dt z(t)e−iωt. [10] 55

The power spectrum of z(t) and cross-spectra between two time series z1(t) and z2(t) are then given by 56

Szz(ω) = lim
T→∞

〈|z̃|2〉
T

, S12(ω) = lim
T→∞

〈z̃1z̃
∗
2〉

T
. [11] 57

In simulations, we cannot take the limit T →∞ but have to use a sufficiently long time window such that a further enlargement 58

of it does not change the spectral densities anymore. 59

Derivation of the cross-correlation functions and cross-spectra of the backward eigenfunctions Q∗λ(x). Let us consider two 60

eigenfunctions Q∗λ(x(t+ τ)), Qλ′(x(t)) for τ > 0 in the stationary state. The correlation function depends only on the time 61

difference τ and can be expressed by 62

Cλ,λ′(τ) = 〈Q∗λ(x(τ))Qλ′(x(0))〉 =
∫
dx
∫
dx0 Q

∗
λ(x)Qλ′(x0)P (x, τ |x0, 0)P (x0), [12] 63

where 〈·〉 denotes the ensemble average under stationary conditions. If we express in the conditional density as in Eq. (7), we 64

find (for τ > 0) 65

Cλ,λ′(τ) =
∫
dx
∫
dx0 Q

∗
λ(x)Qλ′(x0)P (x, τ |x0, 0)P0(x0)

=
∫
dx
∫
dx0 Q

∗
λ(x)Qλ′(x0)

(∑
λ̄=0

Q∗λ̄(x0)Pλ̄(x)eλ̄τ
)
P0(x0)

=
∑
λ̄=0

eλ̄τ
∫
dx Q∗λ(x)Pλ̄(x)

∫
dx0 Q

∗
λ̄(x0)Qλ′(x0)P0(x0)

= 〈Q∗λ(x0)Qλ′(x0)〉 eλτ .

[13] 66

Note that in the third equality we have used the biorthogonality condition 〈Qλ′ | Pλ〉 = δλ,λ′ in Eq. (5) to get rid of the sum 67

and then we simply express the second integral as 〈Q∗λ(x0)Qλ′(x0)〉, thus showing it corresponds exactly with the co-variance 68

between Qλ and Q′λ. For negative times, τ < 0, we can use the following expression 69

Cλ,λ′(τ) = 〈Q∗λ(x(τ))Qλ′(x(0))〉 =
∫
dx
∫
dx0 Q

∗
λ(x0)Qλ′(x)P (x, 0|x0, τ)P (x0). [14] 70

After performing similar computations, we obtain 71

Cλ,λ′(τ) =
∫
dx
∫
dx0 Q

∗
λ(x0)Qλ′(x)

(∑
λ̄=0

Q∗λ̄(x0)Pλ̄(x)e−λ̄τ
)
P0(x0)

=
∑
λ̄=0

e−λ̄τ
∫
dx Qλ′(x)Pλ̄(x)

∫
dx0 Q

∗
λ̄(x0)Q∗λ(x0)P0(x0)

= 〈Q∗λ(x0)Qλ′(x0)〉 e−τλ
′∗
,

[15] 72

where in the second equality we used Qλ′ = Q∗λ′∗ . For the autocorrelation function, we obtain due to the unit variance of the 73

eigenfunctions (cf. Eq. (8)), a simple exponential function; specifically, for the eigenfunction Q∗1(x(t)) the above formulas yield 74

the correlation function, Eq. [13] in the main text. 75

With the expressions for the cross-correlation, we use the Wiener-Khinchin theorem to obtain the cross-spectrum 76

Sλ,λ′(ω) =
∫ ∞
−∞
dτ Cλ,λ′(τ)e−iωτ = 〈Q∗λQλ′〉

(∫ 0

−∞
dτ e−(λ′∗+iω)τ +

∫ ∞
0
dτ e(λ−iω)τ

)
= −〈Q∗λQλ′〉

(
1

λ′∗ + iω
+ 1
λ− iω

)
. [16] 77
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a)

b)

Fig. S1. Eigenvalue spectra (left panels) and cross-spectra (middle and right panels) of the backwards eigenfunctions Sλ,λ′ (ω) for the noisy SNIC system (Eqs.[11] in the
main text). a: Parameters m = 1.216, n = 1.014, D1 = D2 = 0.0119 (deterministic model would be in the oscillatory limit-cycle regime) leading to the eigenvalues (see
also left panel) λ1 = −0.048 + 0.697i, λ2 = −0.182 + 1.42i, λ3 = −0.383 + 2.17i and the covariances 〈Q∗1Q2〉 = −0.106 + 0.11i, 〈Q∗1Q3〉 = 0.022− 0.03i.
Cross-spectrum between the first and the second slowest decaying eigenfunctions (middle panel) and between the first and the third slowest decaying eigenfunctions
(right panel). b: Parameters m = 0.99, n = 1, D1 = D2 = 0.01125 (excitable regime with noise-induced oscillations) resulting in eigenvalues (see also left panel)
λ1 = −0.168 + 0.241i, λ2 = −0.423 + 0.638i, λ3 = −0.728 + 1.109i and co-variances 〈Q∗1Q2〉 = −0.416 + 0.35i, 〈Q∗1Q3〉 = 0.07− 0.23i. Cross-spectrum
between the first and the second slowest decaying eigenfunctions (middle panel) and the cross-spectrum between the first and the third slowest decaying eigenfunctions (right
panel). In all middle and right panels, stochastic simulation results in red (blue) correspond to the real (imaginary) part of Sλ,λ′ (ω); theory is indicated by black lines.

Fig. S1 illustrates this result by means of the cross-spectra between the first and the second (middle panel) and the first and the78

third (right panel) backward eigenfunction for one of our example systems, the noisy SNIC system, for two different parameter79

sets (top and bottom rows). As can be expected, the exact result, Eq. (16), is in excellent agreement with the simulation80

results.81

From Eq. (16) which we can straightforwardly obtain the power spectrum82

Sλ(ω) = 2|µλ|
µ2
λ + (ω − ωλ)2 . [17]83

For the special case λ = λ1 (with µλ = µ1 and ωλ = ω1), we obtain the Lorentzian power spectrum (Eq.[14] in the main text)84

of the new variable Q∗1(x(t)).85

Derivation of the linear response and susceptibility functions. Lets consider now the case in which an external time dependent86

input is applied to the system87

dx
dt

= f(x) + εp(t)e + g(x)ξ(t), x, e ∈ Rn, [18]88

because of the input, the Fokker-Planck equation is now modified and reads89

∂tP = −∇x · ([f(x) + εp(t)e]P ) + ∂2
xi,xj (Dij(x)P ) = −∇x · (f(x)P ) + ∂2

xi,xj (Dij(x)P )− εp(t)e · ∇xP

= L(x)[P ] + εp(t)Le(x)[P ],
[19]90

where Le(x) is given by91

Le(x) = −e · ∇. [20]92

Since the input is weak (|ε| � 1), we can make the usual linear-response ansatz (cf. (2)) and linearise the density93

P (x, t) = P0(x) + εPe(x, t) +O(ε2). [21]94

Upon inserting this ansatz in the Fokker-Planck Eq. (19), we find that, to first order in ε, the density has to satisfy95

∂tPe(x, t) = L(x)[Pe(x, t)] + p(t)Le(x)[P0(x)], [22]96

the (formal) solution of which is given by97

Pe(x, t) =
∫ t

−∞
dt′ p(t′)eL(x)(t−t′)

[
Le(x)[P0(x)]

]
. [23]98
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Here the operator eL(x)(t−t′) acts on the product within the square brackets. We can now use this general result to calculate 99

the time-dependent mean value of the eigenfunction Q∗λ(x(t)) in response to the perturbation and obtain for λ 6= 0 100

〈Q∗λ(x(t))〉 =
∫
dxP (x, t)Q∗λ(x) =

∫
dx
(
P0(x) + εPe(x, t)

)
Q∗λ(x) = 〈Q∗λ(x)〉0 + ε

∫
dxPe(x, t)Q∗λ(x) = ε

∫ t

−∞
dt′p(t′)Ke,λ(t− t′),

[24] 101

where in the last step we have used Eq. (6) and also introduced the linear response function Ke,λ(t− t′) as 102

Ke,λ(t− t′) =
∫
dx Q∗λ(x)eL(x)(t−t′)

[
Le(x)[P0(x)]

]
. [25] 103

Note that, because of causality, the linear response function satisfies Ke,λ(t− t′) = 0 for t′ > t. Often, the susceptibility, i.e. 104

the Fourier transform of Ke,λ(t), is considered: 105

χe,λ(ω) =
∫ ∞
−∞

dt Ke,λ(t)e−iωt. [26] 106

Eq. (24) reads then in the Fourier domain by a simple multiplication instead of a convolution: 107

〈Q̃∗λ(ω)〉 = χe,λ(ω)p̃(ω). [27] 108

Finally, by expanding Le(x)[P0(x)] in the basis of forward eigenfunctions 109

Le(x)[P0(x)] =
∑
λ′

βe,λ′Pλ′(x), [28] 110

we can simplify both the response function Ke,λ(t) 111

Ke,λ(τ) =
∫
dx Q∗λ(x)eL(x)τ

[
Le(x)[P0(x)]

]
=
∑
λ′

βe,λ′

∫
dx Q∗λ(x)eL(x)τ

[
Pλ′(x)

]
=
∑
λ′

βe,λ′e
λ′τ

∫
dx Q∗λ(x)Pλ′(x) = βe,λe

λτ ,

[29] 112

and the susceptibility 113

χe,λ(ω) =
∫ t

−∞
dt′ Ke,λ(t− t′)e−iω(t−t′) = βe,λ

∫ ∞
0

dτ e(λ−iω)τ = βe,λ

λ− iω e
(λ−iω)τ

∣∣∣∣∞
0

= − βe,λ

λ− iω , [30] 114

where the coefficient βe,λ can be obtained by multiplying Eq. (28) with Q∗λ, integrating over x and using the biorthogonality 115

relation Eq. (5) to obtain 116

βe,λ =
∫
dx Q∗λ(x)Le(x)[P0(x)]. [31] 117

A better interpretation for the role of βe,λ can be given for the cases in which the stationary density P0(x) and also its products
with the backward eigenfunctions, Q∗λ(x)P0(x), vanish at ±∞. In this case, because∫

dx ∂i(Q∗λ(x)P0(x)) =
∫
dx ∂i(Q∗λ(x))P0(x) +

∫
dx Q∗λ(x)∂i(P0(x)) = 0,

we find 118

βe,λ = −
∫
dx Q∗λ(x)[e · ∇P0(x)] =

∫
dx P0(x)[e · ∇Q∗λ(x)] = e · 〈∇Q∗λ(x)〉 , [32] 119

that is, the response of a given eigenfunction is proportional to the mean change of Q∗λ(x) in the direction of the perturbation. 120

As a final remark, notice that since Q∗0(x) = 1, then, βe,0 ≡ 0. 121

Fluctuation-dissipation theorem for the backwards eigenfunctionsQ∗λ(x). From the already found expressions for the response 122

function Ke,λ(τ) in Eq. (29) and the autocorrelation function Cλ(τ) (Eq. [11] in the main manuscript) it is easy to derive the 123

following fluctuation-dissipation relationships for the backwards eigenfunctions Q∗λ(x) 124

Ke,λ(τ) = βe,λCλ(τ), τ > 0. [33] 125

Moreover, using the expressions for the power spectrum Sλ(ω) in Eq. (17) and the susceptibility χe,λ(ω) in Eq. (30) we can 126

write this result in the frequency domain as follows: 127

S1(ω) = 2|µλ|
=[βe,λ]µλ + <[βe,λ](ω − ωλ)=[χe,λ(ω)]. [34] 128

Alberto Pérez-Cervera, Boris Gutkin, Peter J. Thomas and Benjamin Lindner 5 of 13



This result is not equal but resembles somewhat the classical result for a system in thermodynamic equilibrium (3)129

Sxx = 2kBT
ω
=[χx,F (ω)], [35]130

where kB is the Boltzmann constant, T is absolute temperature and χx,F is the susceptibility with respect to a mechanical131

perturbation by a weak force F (t). Note that one of our example systems, the harmonic oscillator, can be regarded as a system132

at thermodynamic equilibrium. Still, even for this system, the two equations above are not equivalent, because the new variable133

Q∗1(x) constitutes a linear combination of position and velocity variables, whereas Eq. (35) applies to the position variable only.134

We would like to emphasize that our general FDT does not require thermodynamic equilibrium nor Markovian dynamics135

for Q∗1(x(t)) [only the full system x(t) is supposed to follow a Markovian dynamics]; this observation holds true also for the136

classical generalizations of FDT.137

Derivation of the spectral density equations in the coupled case. As we state in the main document, we denote the two138

oscillator dynamics with x and y, couple them with scalar functions of particular forms, Hx(x,y) = Hxx(x) +Hyx(y) and139

Hy(x,y) = Hxy(x) + Hyy(y) along the directions ex and ey, and scale the coupling terms by a small parameter ε. The140

equations for the coupled system read141

ẋ = fx(x) + εex[Hxx(x) +Hyx(y)] + gx(x)ξx(t),
ẏ = fy(y) + εey[Hxy(x) +Hyy(y)] + gy(y)ξy(t).

[36]142

Here, ξx(t) and ξy(t) are independent vectors of white Gaussian noise. We note that the particular shape of the coupling143

function includes a simple diffusive coupling between the oscillators, e.g. a weak spring coupling between two harmonic144

oscillators of the form ε(y − x). Formally, it would be possible in Eq. (36) to lump the terms εexHxx(x) and εeyHyy(y) into145

the respective drift terms fx(x) and fy(y), leaving only perturbations of the respective other variables in the two equations.146

This kind of ansatz will be presented below as an alternative perturbation calculation. The disadvantage of the procedure is147

that a change in the drift terms implies a (ε-dependent) change of the Q∗1 functions of the single systems. For the calculation148

in the following, we regard all terms proportional to ε as perturbations of the isolated oscillator dynamics.149

The new system of coupled oscillators is much more complicated than the dynamics of the single systems, and it is not150

obvious how we can describe it in terms of the eigenfunctions of the isolated oscillators, i.e. by the functions that have been so151

helpful in simplifying the description of the single oscillator’s spontaneous and externally perturbed activity. We can, however,152

achieve a likewise striking simplification of the correlation statistics of weakly coupled oscillators in terms of the Q∗1 functions153

by a particular ansatz for the coupled system. To this end, we use the response functions Eq. (25) in a realisation-wise version154

Q∗λx = Q∗λx,0 + ε

∫ t

−∞
dt′Kex,λx (t− t′)[Hxx(x(t′)) +Hyx(y(t′))],

Q∗λy = Q∗λy,0 + ε

∫ t

−∞
dt′Key,λy (t− t′)[Hxy(x(t′)) +Hyy(y(t′))],

[37]155

where we have introduced the notation Q∗λx = Q∗λ(x), identifying the eigenfunctions of the x-unit in Eq. (36) (similarly,156

we introduce Q∗λy = Q∗λ(y)). The functions Q∗λx,0 and Q∗λy,0 in Eq. (37) denote the spontaneous activity of the uncoupled157

oscillator, respectively. By making the above ansatz, we implicitly assume that the effect of the coupling and the intrinsic158

noise can be subdivided into independent parts, which does not appear very plausible when the dynamics of the system is159

strongly nonlinear (as for our example systems of the noisy Stuart-Landau model and SNIC model). Nevertheless, in all tested160

cases (linear and nonlinear systems, more coherent and less coherent cases, identical oscillators and detuned oscillators), the161

cross-spectra and cross-correlation functions that can be analytically calculated using the ansatz Eq. (37) agree excellently162

with numerical simulation results. Indeed, as pointed out in the main text, this approximation, using the response function for163

the time-dependent mean value to approximate the realization-wise response of the system, was also successfully applied in the164

past to stochastic models in neuroscience (4, 5).165

We expand the coupling functions into the backward eigenfunctions as follows166

Hxx(x) +Hyx(y) =
∑
λ′x

γλ′xQ
∗
λ′x

+
∑
λ′y

αλ′yQ
∗
λ′y
,

Hxy(x) +Hyy(y) =
∑
λ′x

αλ′xQ
∗
λ′x

+
∑
λ′y

γλ′yQ
∗
λ′y
,

[38]167

which, upon insertion into Eq. (37), leads to168

Q∗λx = Q∗λx,0 + ε

(∑
λ′x

γλ′x

∫ t

−∞
dt′Kex,λx (t− t′)Q∗λ′x (x(t′)) +

∑
λ′y

αλ′y

∫ t

−∞
dt′Kex,λx (t− t′)Q∗λ′y (y(t′))

)
,

Q∗λy = Q∗λy,0 + ε

(∑
λ′x

αλ′x

∫ t

−∞
dt′Key,λy (t− t′)Q∗λ′x (x(t′)) +

∑
λ′y

γλ′y

∫ t

−∞
dt′Key,λy (t− t′)Q∗λ′y (y(t′))

)
.

[39]169
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The coefficients αλ′x , αλ′y , γλ′x , γλ′y are given by

αλ′x =
∫
dx Pλ′x (x)Hxy(x), αλ′y =

∫
dy Pλ′y (y)Hyx(y), γλ′x =

∫
dx Pλ′x (x)Hxx(x), γλ′y =

∫
dy Pλ′y (y)Hyy(y).

Eq. (39) attains a simpler form in the Fourier domain, where convolutions turn into multiplications with the respective 170

susceptibilities: 171

Q̃∗λx (ω) = Q̃∗λx,0(ω) + εχex,λx (ω)
(∑

λ′x

γλ′xQ̃
∗
λ′x

(ω) +
∑
λ′y

αλ′yQ̃
∗
λ′y

(ω)
)
,

Q̃∗λy (ω) = Q̃∗λy,0(ω) + εχey,λy (ω)
(∑

λ′x

αλ′xQ̃
∗
λ′x

(ω) +
∑
λ′y

γλ′yQ̃
∗
λ′y

(ω)
)
.

[40] 172

Multiplying both equations by Q̃λ′′x and averaging yields 173

〈Q̃∗λxQ̃λ′′x 〉 = 〈Q̃∗λx,0Q̃λ′′x 〉+ εχex,λx

(∑
λ′x

γλ′x〈Q̃
∗
λ′x
Q̃λ′′x 〉+

∑
λ′y

αλ′y〈Q̃
∗
λ′y
Q̃λ′′x 〉

)
,

〈Q̃∗λyQ̃λ′′x 〉 = 〈Q̃∗λy,0Q̃λ′′x 〉+ εχey,λy

(∑
λ′x

αλ′x〈Q̃
∗
λ′x
Q̃λ′′x 〉+

∑
λ′y

γλ′y〈Q̃
∗
λ′y
Q̃λ′′x 〉

)
,

[41] 174

and, similarly, multiplying with Q̃λ′′y and averaging gives 175

〈Q̃∗λxQ̃λ′′y 〉 = 〈Q̃∗λx,0Q̃λ′′y 〉+ εχex,λx

(∑
λ′x

γλ′x〈Q̃
∗
λ′x
Q̃λ′′y 〉+

∑
λ′y

αλ′y〈Q̃
∗
λ′y
Q̃λ′′y 〉

)
,

〈Q̃∗λyQ̃λ′′y 〉 = 〈Q̃∗λy,0Q̃λ′′y 〉+ εχey,λy

(∑
λ′x

αλ′x〈Q̃
∗
λ′x
Q̃λ′′y 〉+

∑
λ′y

γλ′y〈Q̃
∗
λ′y
Q̃λ′′y 〉

)
.

[42] 176

Next, we study the ε-dependence of the terms in Eq. (41). For the term 〈Q̃∗λx,0Q̃λ′′x 〉, we can use Q̃λ′′x in Eq. (40) to obtain 177

〈Q̃∗λx,0Q̃λ′′x 〉 = 〈Q̃∗λx,0

(
Q̃λ′′x ,0 + εχ∗ex,λ′′x

(∑
λ′x

γ∗λ′xQ̃λ′x +
∑
λ′y

α∗λ′yQ̃λ′y

))
〉

= 〈Q̃∗λx,0Q̃λ′′x ,0〉+ εχ∗ex,λ′′x

(∑
λ′x

γ∗λ′x〈Q̃
∗
λx,0Q̃λ′x,0〉+

∑
λ′y

α∗λ′y〈Q̃
∗
λx,0Q̃λ′y,0〉

)
+O(ε2)

= 〈Q̃∗λx,0Q̃λ′′x ,0〉+ εχ∗ex,λ′′x

∑
λ′x

γ∗λ′x〈Q̃
∗
λx,0Q̃λ′x,0〉+O(ε2).

[43] 178

Here we have used in the last step, that the eigenfunctions of independent oscillators will be uncorrelated: 〈Q̃∗λx,0Q̃λ′y,0〉 = 179

〈Q̃∗λx,0〉〈Q̃λ′y,0〉 = 0. For the remaining terms in Eq. (41) and Eq. (42), we expand in a similar way to take only the leading 180

linear order of ε into account, which results in the following expression: 181

〈Q̃∗λxQ̃λ′′x 〉 = 〈Q̃∗λx,0Q̃λ′′x ,0〉+ ε
(
χ∗ex,λ′′x

∑
λ′x

γ∗λ′x〈Q̃
∗
λx,0Q̃λ′x,0〉+ χex,λx

∑
λ′x

γλ′x〈Q̃
∗
λ′x,0Q̃λ′′x ,0〉

)
+O(ε2). [44] 182

If we divide both sides by the time window T and take the limit T →∞, we arrive via Eq. (11) at spectral densities. Neglecting 183

furthermore the higher-order terms in ε, we obtain for the cross-spectra of the eigenfunctions of the x oscillator in the presence 184

of coupling (indicated here and below by a superscript c): 185

Sc
λx,λ′′x

= Sλx,λ′′x
+ ε
(
χ∗ex,λ′′x

∑
λ′x

γ∗λ′xSλx,λ′x
+ χex,λx

∑
λ′x

γλ′xSλ′x,λ′′x

)
. [45] 186

These functions are to lowest (zeroth) order in ε simply given by the cross-spectra for the uncoupled oscillator, and, in first 187

order of ε only affected by the self-coupling terms Hxx(x) and the related coefficient γ∗λ′x . 188

More interesting than the statistics of the single oscillator are the cross-spectra between the two oscillators. From previous 189

calculations, one obtains by the expansion in ε: 190

〈Q̃∗λyQ̃λ′′x 〉 = ε
(
χ∗ex,λ′′x

∑
λ′y

α∗λ′y〈Q̃
∗
λy,0Q̃λ′y,0〉+ χey,λy

∑
λ′x

αλ′x〈Q̃
∗
λ′x,0Q̃λ′′x ,0〉

)
+O(ε2). [46] 191
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Again, by dividing by the time window T , letting T →∞, and neglecting higher-order terms in ε, we obtain expressions for192

spectral densities. Specifically, the cross-spectrum between eigenfunctions of the two coupled oscillators reads193

Sc
λy,λ′′x

= ε
(
χ∗ex,λ′′x

∑
λ′y

α∗λ′ySλy,λ′y
+ χey,λy

∑
λ′x

αλ′xSλ′x,λ′′x

)
. [47]194

This result gives us the cross-spectrum of the two oscillators in terms of the susceptibilities of the two oscillators in the direction195

of the coupling force and in terms of the cross-spectra between the different modes in the single (uncoupled) stochastic oscillator.196

If we specifically choose the two eigenvalues λy and λ′′x to be the one with the least negative eigenvalue for the respective system197

(denoted by λ1x and λ1y), we obtain the key result, Eq. [32] in the main text, for the cross-spectrum of the new observables198

Q∗1x,(x(t)) and Q∗1y (y(t)).199

Similar calculations for the second pair of equations in Eq. (42) yield200

〈Q̃∗λxQ̃λ′′y 〉 = ε
(
χ∗ey,λ′′y

∑
λ′x

α∗λ′x〈Q̃
∗
λx,0Q̃λ′x,0〉+ χex,λx

∑
λ′y

αλ′y〈Q̃
∗
λ′y,0Q̃λ′′y ,0〉

)
+O(ε2),

〈Q̃∗λyQ̃λ′′y 〉 = 〈Q̃∗λy,0Q̃λ′′y ,0〉+ ε
(
χ∗ey,λ′′y

∑
λ′y

γ∗λ′y〈Q̃
∗
λy,0Q̃λ′y,0〉+ χey,λy

∑
λ′y

γλ′y〈Q̃
∗
λ′y,0Q̃λ′′y ,0〉

)
+O(ε2).

[48]201

The first equation, upon renaming the eigenvalues appropriately, is just the complex conjugated of Eq. (46), while the second202

equation captures the linear corrections to the cross- and power spectra for the different eigenfunctions of the y oscillator203

Sc
λy,λ′′y

= Sλy,λ′′y
+ ε
(
χ∗ey,λ′′y

∑
λ′y

γ∗λ′ySλy,λ′y
+ χey,λy

∑
λ′y

γλ′ySλ′y,λ′′y

)
, [49]204

which, we note, is the counterpart to Eq. (45).205

Alternative treatment of the coupling equations. As we have stated in the beginning of the section, there is an alternative206

treatment for this problem consisting in lumping the diagonal terms Hxx(x) and Hyy(y) into the drift terms fx(x) and fy(y),207

respectively. More precisely, one can compute the backwards eigenfunctions Q̂∗λ′x (x) of the following system208

ẋ = f̂x(x) + gx(x)ξx(t), f̂x(x) = fx(x) + εexHxx(x), [50]209

and similarly obtain and Q̂∗λ′y (y) from210

ẏ = f̂y(y) + gy(y)ξy(t), f̂y(x) = fy(y) + εeyHyy(y). [51]211

In this situation, the ansatz in Eq. (37) becomes212

Q̂∗λx = Q̂∗λx,0 + ε

∫ t

−∞
dt′K̂ex,λx (t− t′)Hyx(y(t′)),

Q̂∗λy = Q̂∗λy,0 + ε

∫ t

−∞
dt′K̂ey,λy (t− t′)Hxy(x(t′)).

[52]213

Put differently, the perturbation ansatz is now done only with respect to the true interaction between the oscillators. We note214

that, of course, also the response functions will now be modified (because they are calculated for the modified eigenfunctions215

Q̂∗λy,0) and are thus endowed with a hat.216

We can now repeat the entire calculations as above, leading to cross-spectra between the eigenfunctions of one oscillator that217

are no longer affected by ε (because we have taken the effect of the self-coupling terms already into account). More importantly,218

similarly to Eq. (46) we find,219

〈 ˜̂
Q∗λy

˜̂
Qλ′′x 〉 = ε

(
χ̂∗ex,λ′′x

∑
λ′y

α̂∗λ′y〈
˜̂
Q∗λy,0

˜̂
Qλ′y,0〉+ χ̂ey,λy

∑
λ′x

α̂λ′x〈
˜̂
Q∗λ′x,0

˜̂
Qλ′′x ,0〉

)
, [53]220

and hence, the cross-spectra of the eigenfunctions of the two oscillators are now given by221

Ŝc
λy,λ′′x

= ε
(
χ̂∗ex,λ′′x

∑
λ′y

α̂∗λ′y Ŝλy,λ′y
+ χ̂ey,λy

∑
λ′x

α̂λ′x Ŝλ′x,λ′′x

)
. [54]222

The hat on top of all parameters and functions is a reminder that these quantities have to be calculated for the modified drift223

terms f̂x and f̂y. A comparison between the original and the alternative theories for the spectral measures of the coupled224

oscillators will be done somewhere else.225
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2. Computations for the damped stochastic oscillator 226

Eigenvalue, eigenfunction, and susceptibility of the single oscillator. A one-dimensional harmonic oscillator with unit mass†
227

which is subject to Stokes friction and white Gaussian noise obeys the following equations 228

ẋ = v, v̇ = −γv − ω2
0x+

√
2Dξ(t). [55] 229

For an oscillator in thermodynamic equilibrium, the noise intensity would be related to the dissipation strength via D = γkBT 230

with kB being the Boltzmann constant and T absolute temperature; we will, however, use only the noise intensity in the 231

following. 232

The associated Fokker-Planck equation 233

∂tP (x, v, t) = −v∂xP (x, v, t) + ∂v
(
γv + ω2

0x+D∂v
)
P (x, v, t), [56] 234

has the well-known Maxwell-Boltzmann distribution as its stationary solution 235

P0(x, v) = γ

2πω0D
exp
[
−ω

2
0x

2 + v2

2D/γ

]
. [57] 236

We will assume an oscillator in the underdamped regime (γ < 2ω0); in the absence of noise, the time evolution is then described 237

by two complex conjugated eigenvalues: 238

λ1 = µ1 + iω1 = −γ2 + i

√
4ω2

0 − γ2

2 , λ∗1 = µ1 − iω1. [58] 239

As our notation suggests, λ1 happens to be the eigenvalue with the least negative real part for the Fokker-Planck equation (2). 240

The linear change of variables 241(
x
v

)
=
(

2 0
−γ −

√
4ω2

0 − γ2

)(
z
u

)
, [59] 242

transforms Eq. (55) to another two-dimensional Ornstein-Uhlenbeck process 243(
ż
u̇

)
=
(
µ1 −ω1
ω1 µ1

)(
z
u

)
− 1

2ω1

(
0

εp(t) +
√

2Dξ(t)

)
, [60] 244

that has the same eigenvalues in the deterministic case and the same eigenvalue spectrum in the stochastic case. According to 245

(6), the slowest decaying complex eigenfunction attains the simple form: 246

Q∗1(z, u) =

√
4|µ1|ω2

1
D

(z + iu), [61] 247

(where the prefactor ensures the condition
〈
|Q∗1(x(t))|2

〉
= 1 is met). Inverting the change of variables in Eq. (59), we recover 248

an expression for Q∗1 in the x, v variables (see also chap. 10.2.2 in the textbook by Risken (2)) 249

Q∗1(x, v) =

√
|µ1|
D

(ω1x+ i (µ1x− v)) . [62] 250

The complex argument of this function is easily computed 251

ψ(x, v) = arctan
(
µ1x− v
ω1x

)
, [63] 252

and has been plotted in Fig. 1a and Fig. 2a of the main text. 253

As we now know Q∗1(x, v) and λ1, it is simple to find the expression for the susceptibility in the v-direction with e = (0, 1)T 254

using Eq. (30) and Eq. (32) 255

χ(ω) =
i
√
|µ1|/D

µ1 + i(ω1 − ω) . [64] 256

†The dependence on the mass could be easily restored by using parameters γ̂ = γ/M and D̂ = D/M2 in place of γ andD, respectively.
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Two weakly coupled damped stochastic oscillators. We now consider the case of two identical harmonic oscillators that are257

weakly coupled (|ε| � 1) by a spring258

ẍ+ γẋ+ ω2
0x = ε(y − x) +

√
2Dξx(t),

ÿ + γẏ + ω2
0y = ε(x− y) +

√
2Dξy(t).

[65]259

First, we compute for this linear system the cross-spectrum between the position variables x and y. To this end, if we consider260

a single unit (ε = 0, which is equivalent to considering Eq. (55)) and take the Fourier transform; we obtain261

x̃ =
√

2D
ω2

0 − ω2 − iγω ξ̃x = ω2
0 − ω2 + iγω

(ω2
0 − ω2)2 + (γω)2

√
2Dξ̃1 = χ(ω)

√
2Dξ̃x, [66]262

and similarly for ỹ. For this linear system, the response to an external perturbation is similar to the response to the noise and263

we can identify the susceptibility χ(ω) from the above relation (in nonlinear stochastic systems, the susceptibility will also264

depend on the level of background noise and has to be calculated by a perturbation calculation of the Fokker-Planck equation).265

Considering now the coupled system, we may write266

x̃ = χ(ω)
(
ε(ỹ − x̃) +

√
2Dξ̃x

)
,

ỹ = χ(ω)
(
ε(x̃− ỹ) +

√
2Dξ̃y

)
.

[67]267

This linear system can be easily solved by Rice method for the matrix of cross-spectra (see (2)); however, because for weak268

coupling we are only interested in the lowest order term in ε, we use the above equations recursively and omit high order terms.269

By doing so, we obtain270

x̃ =
√

2D
[
χ(ω)ξ̃x + εχ2(ω)ξ̃y − εχ2(ω)ξ̃x

]
+O(ε2),

ỹ =
√

2D
[
χ(ω)ξ̃y + εχ2(ω)ξ̃x − εχ2(ω)ξ̃y

]
+O(ε2),

[68]271

from which we can calculate the cross-spectrum (using that the noise sources in x and y are uncorrelated, 〈ξ̃xξ̃∗y〉/Tw = δx,y):272

Sxy(ω) = 〈x̃ỹ
∗〉

Tw
≈ 2Dε|χ|2

(
χ+ χ∗

)
= 4Dε<

(
|χ|2χ∗

)
. [69]273

It is instructive to compare this cross-spectrum of the original variables to the one for the transformed variables that we are274

going to calculate now.275

In order to obtain the cross spectrum Sc
1,xy of system Eq. (65) for the eigenfunctions Q∗1x , Q

∗
1y , we first notice that we can276

take advantage of the analytical expression for Q∗1(x) (see Eq. (62)), to find that the coupling function is exactly given by a277

linear combination of Q∗1(x) and Q1(x). Indeed,278

Hxy(x) = x =
√

D

4|µ1|ω2
1

(
Q∗1x +Q1x

)
, Hyx(y) = y =

√
D

4|µ1|ω2
1

(
Q∗1y +Q1y

)
, [70]279

and, in consequence the α coefficients of the expansion Eq. (38) (those which are relevant for the cross-spectrum between the280

oscillators, Eq. (47)) are known:281

α1 = α1∗ =
√

D

4|µ1|ω2
1
, αλ′ = 0 for λ′ 6= {λ1, λ

∗
1}, [71]282

and in consequence, from Eq. (47) we obtain that the cross-spectrum can be expressed as283

Sc
1y,1x = ε

(
χ∗ex

∑
λ′y

α∗λ′yS1y,λ′y
+ χey

∑
λ′x

αλ′xSλ′x,1x

)
= ε

√
D

|µ1|ω2
1
<
(
χ∗e[S1 + S1,1∗ ]

)

= 2ε
ω1
<

(
i

|µ1|+ i(ω1 − ω)

[
|µ1|

µ2
1 + (ω1 − ω)2 − 〈Q

∗
1Q
∗
1〉

λ1

(µ1 + i(ω1 + ω))(µ1 + i(ω1 − ω))

])
.

[72]284

Finally we state how to obtain the covariance 〈Q∗1Q∗1〉 of a single unit (which is needed to compute the cross-spectrum S1,1∗ in
the above formula):

〈Q∗1Q∗1〉 = ω2
1
|µ1|
D

〈(
x+ i

(µ1x− v)
ω1

)(
x+ i

(µ1x− v)
ω1

)〉
= ω2

1
|µ1|
D

(〈
x2〉(1 + i

µ1

ω1

)2
−
〈
v2〉
ω2

1

)
= 1

2

(
ω2

1
ω2

0

(
1 + i

µ1

ω1

)2
− 1
)
,

where we have used 〈xv〉 = 0 and read off the variances
〈
x2〉 = D/(γω2

0) and
〈
v2〉 = D/γ from the stationary distribution285

Eq. (57).286
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3. Computations for the coupled Stuart-Landau model 287

Next, we consider two different noisy Stuart-Landau oscillators diffusively coupled by their first coordinates x1 and y1 288

ẋ1 = axx1 − x2 − ax(x2
1 + x2

2)(x1 + bxx2) +
√

2Dξx1 (t) + ε(y1 − x1),

ẋ2 = axx2 + x1 − ax(x2
1 + x2

2)(x2 − bxx1) +
√

2Dξx2 (t),

ẏ1 = ayy1 − y2 − ay(y2
1 + y2

2)(y1 + byy2) +
√

2Dξy1 (t) + ε(x1 − y1),

ẏ2 = ayy2 + y1 − ay(y2
1 + y2

2)(y2 − byy1) +
√

2Dξy2 (t).

[73] 289

As we state in the main text, we study two cases to inspect how inhomogeneities of the oscillators affect the cross-spectrum: 290

we set parameters in case (i) ax = 1, bx = −0.3, ay = 1, by = −0.25, D = 0.04, so both oscillators are slightly detuned 291

(λ1x = −0.048 + 0.698i, λ1y = −0.047 + 0.748i) and in case (ii) ax = 1, bx = −0.3, ay = 1, by = −0.1, D = 0.04, so the two 292

oscillators are more strongly detuned (λ1x = −0.048 + 0.698i, λ1y = −0.045 + 0.9i, note that the frequencies ω1x = 0.698 and 293

ω1y = 0.9 differ more than in case (i)). 294

As all quality factors in this example are small and the system is rotationally symmetric, we expect very few modes to 295

contribute. We check this hypothesis comparing the output of numerical simulations with the reduction of Sc
1,yx to the mere 296

power spectrum contribution 297

Sc
1,yx = ε

(
χ∗exα

∗
1yS1y + χeyα1xS1x

)
. [74] 298

To test this prediction, we first obtain numerically the necessary forward and backward eigenfunctions (see Section 4B for full 299

details of the procedure). We then use the forward eigenfunctions P1x (x), P1y (y) to compute the expansion coefficients 300

α1x =
∫
dx P1x (x)x1, α1y =

∫
dy P1y (y)y1, [75] 301

for the given parameters, this leads to the values α1x ≈ 0.497, α1y ≈ 0.4965 for the slightly detuned case (i) and α1x ≈ 302

0.497, α1y ≈ 0.4956 for the more strongly detuned case (ii). 303

Next, we use the numerically obtained backwards eigenfunctons Q∗1x (x), Q∗1y (y) to compute the susceptibility coefficients 304

β1x = −
∫
dx Q∗1x (x)∂x1P0(x), β1y = −

∫
dy Q∗1y (y)∂y1P0(y), [76] 305

finding the values β1x ≈ 0.55 − 0.153i, β1y ≈ 0.55 − 0.128i for the slightly detuned case (i) and β1x ≈ 0.55 − 0.153i, β1y ≈ 306

0.55− 0.05i for the more strongly detuned case (ii). 307

Once we have the necessary coefficients, we can compare Eq. (74) with numerical simulations. As we showed in the main 308

text, Eq. (74) agrees very well with numerical simulations for both cases. 309

4. Computations for the coupled SNIC system 310

We consider two identical SNIC systems diffusively coupled by their first coordinates x1 and y1 311

ẋ1 = nx1 −mx2 − x1(x2
1 + x2

2) + x2
2√

x2
1 + x2

2

+
√

2Dξx1 (t) + ε(y1 − x1),

ẋ2 = mx1 + nx2 − x2(x2
1 + x2

2)− x1x2√
x2

1 + x2
2

+
√

2Dξx2 (t),

ẏ1 = ny1 −my2 − y1(y2
1 + y2

2) + y2
2√

y2
1 + y2

2

+
√

2Dξy1 (t) + ε(x1 − y1),

ẏ2 = my1 + ny2 − y2(y2
1 + y2

2)− y1y2√
y2

1 + y2
2

+
√

2Dξy2 (t).

[77] 312

We test our theory here for the cases of two rather coherent oscillators with high quality factor (referred to as the coherent 313

case) and for two less coherent oscillators with a smaller quality factor, set in the excitable regime (the less coherent case). In 314

contrast to the previous subsection, here, the two coupled oscillators have each the same parameters. 315

A. The coherent case. First, we set parameters as follows: m = 1.216, n = 1.014, D = 0.01125 so the system is in the oscillatory 316

regime and the quality factor is high. In this case, the slowest decaying eigenvalue is given by λ1 = −0.048 + 0.698i. Similarly 317

to the previously studied Stuart-Landau case, we also expect very few modes to contribute and hence we start by comparing 318

the output of numerical simulations with the reduction of Sc
1,yx to the power spectrum contribution 319

Sc
1,yx = 2ε<

(
χeα1S1

)
, [78] 320

where for symmetry reasons, we drop the x,y indices and obtain a purely real-valued cross-spectrum. 321
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In line with the procedure in Section 3, we just need to compute numerically the following integrals322

α1 =
∫
dx P1(x)x1, β1 = −

∫
dx Q∗1(x)∂x1P0(x), [79]323

finding the values α1 ≈ 0.24− 0.284i, β1 ≈ 0.562 + 0.68i, to compare Eq. (78) with numerical simulations. As we showed in the324

main manuscript, Eq. (78) agrees very well with numerical simulations.325

B. The less coherent (excitable) case. If we set the parameters as follows m = 0.99, n = 1, D = 0.01125, the system is in the326

excitable regime and produces less coherent oscillation with a low quality factor. In this case, the slowest decaying eigenvalue327

is given by λ1 = −0.168 + 0.241i. As we discuss in the main text, if we were using just the power spectrum approximation328

in Eq. (78) with the coefficients from Eq. (79) thus obtaining α1 ≈ 0.158 − 0.21i, β1 ≈ 1.38 + 1.3i, this provides us with a329

quantitatively inaccurate approximation of the simulations output. It turns out that in this less coherent case we need to add330

more modes to the approximation331

Sc
1,yx = 2ε<

(
χ∗eα

∗
1S1 + χ∗e

∑
λ′∈Λ

α∗λS1,λ′

)
, for Λ = {λ∗1, λ2, λ3, λ4}. [80]332

Further inspection reveals that we need to take into account the following set of eigenvalues Λ = {λ∗1 = −0.168− 0.241i, λ2 =333

−0.423 + 0.638i, λ3 = −0.728 + 1.108i, λ4 = −1.074 + 1.63i} and thus compute for each of them the following integrals334

αλ =
∫
dx Pλ(x)x1, 〈Q∗1Qλ〉 =

∫
dx P0(x)Qλ(x)Q∗1(x), [81]335

in order to achieve a good agreement between simulations and theory. The numerical values that enter the theory are as follows:336

α1∗ = 0.158 + 0.21i, α2 = 0.218− 0.214i, α3 = 0.285− 0.193i, α4 = 0.343− 0.1417i and 〈Q∗1Q∗1〉 = −0.08 + 0.068i, 〈Q∗1Q2〉 =337

−0.416 + 0.355i, 〈Q∗1Q3〉 = 0.07− 0.23i, 〈Q∗1Q4〉 = 0.023 + 0.11i.338

5. Numerical computations339

A. Stochastic simulations. The stochastic simulations yielding the results in this manuscript were performed using the stochastic340

Heun method (7) with a time step h such that 10−2 < h < 10−3.341

B. Determination and normalization of the forward and backward eigenfunctions. To generate the numerical results in the342

main text, we followed the procedure in (8) (see also (9) and (10)). All our examples are two-dimensional n = 2. Given the343

eigenvalue equations in Eq. (5) for a function T (x1, x2) (which can be Q∗λ(x1, x2) or Pλ(x1, x2)) with the operators as implicitly344

defined in Eq. (2) and Eq. (3), we first chose a (finite) rectangular domain345

X = [x−1 , x
+
1 ]× [x−2 , x

+
2 ]. [82]346

Since the phase space for all the systems that we consider in this manuscript is unbounded, we consider a truncated domain X347

whose size is chosen large enough so that the probability for individual trajectories x(t) to reach the boundaries is very low‡.348

Then, we just need to discretise the domain X in N and M points such that ∆x1 = (x+
1 − x

−
1 )/N and ∆x2 = (x+

2 − x
−
2 )/M , to349

build L† (and/or L) by using a standard finite-difference scheme. In general, we used centered finite differences, for instance350

(∂x1T )i,j = Ti+1,j − Ti−1,j

2∆x1
, (∂x1x1T )i,j = Ti+1,j − 2Ti,j + Ti−1,j

(∆x1)2 , [83]351

and, as for boundary conditions, we used adjoint reflecting boundary conditions352 ∑
j=1,2

nj
∑
k=1,2

Djk∂xkT (x1, x2) = 0, [84]353

where n is the local unit normal vector at X boundaries and D = 1
2gg

ᵀ (see Eq. (2)).354

After diagonalizing the resulting (N ·M,N ·M) matrix, we obtain the eigenvalues and the associated eigenfunctions of L†355

(L). We recall that we are not interested in the complete spectrum of L† (L). For L† we just consider (and hence present in356

main text) the part of the spectrum which is relevant for our analysis. That is, we consider mainly the eigenvalue associated357

with the slowest decaying complex eigenfunction Q∗1(x) and a few higher backward modes (and its corresponding forward358

eigenmodes) to study the coupled case. For L we mainly consider the eigenmode associated with the eigenvalue λ = 0 which359

gives the stationary probability distribution P0 and a few forward eigenmodes for the coupled case.360

We finally state that we normalised each pair of eigenfunctions Q∗λ(x) and Pλ(x) such that they satisfy the previously361

mentioned conditions Eq. (5) and Eq. (8))362 ∫
dx |Q∗λ(x)|2P0(x) = 1,

∫
dx Q∗λ′(x)Pλ(x) = δλ′λ, [85]363

so, while the left integral fixes the normalisation of Q∗λ(x) up to an arbitrary complex factor, the second integral fixes the norm364

and phase of Pλ(x).365

‡See (8–10) for examples of application of this methodology in systems, as the noisy heteroclinic oscillator, in which the phase is not bounded.
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C. Computing the susceptibility functions. If we consider the effect of a weak external perturbation εp(t)e (with |ε| � 1) on 366

the SDE (1), 367

dx
dt

= f(x) + εp(t)e + g(x)ξ(t), x, e ∈ Rn, [86] 368

we can follow the well established linear response theory (see Eq. (18) to Eq. (27) and Risken Ch. 7 (2)). Specifically, the 369

evolution of the time-dependent mean value of a given observable Z(x(t)) is given by a convolution of the linear response 370

function with the perturbation (see e.g. eq.(19) in the main text). This convolution relation turns into a simple multiplication 371

in the Fourier domain 372

〈z̃〉 = χz(ω)p̃, [87] 373

where p̃ is the Fourier transform of the perturbation and χz(ω) is the susceptibility, i.e. the Fourier transform of the linear 374

response function. Considering a stochastic perturbation (that is unrelated to the intrinsic noise in the driven system), Eq. (87) 375

leads after mulitiplication with p̃ and averaging over both ensembles of intrinsic noise and stochastic perturbation to the 376

well-known relation between susceptibility and cross- and power spectra: 377

χz(ω) = Szp(ω)
Spp(ω) . [88] 378

In order to estimate the susceptibility numerically, we generated many trials of a bandpass-limited white Gaussian noise 379

process p(t) (11) (also explained in detail in (12)), apply it to the Langevin dynamics that is in each trial run with independent 380

realizations of intrinsic white noise, and measure the cross-spectra of the Q∗1 function and the weak perturbation. From Eq. (88) 381

we can then obtain the complex-valued susceptibility function. By repeating the whole procedure for different values of the 382

perturbation-amplitude, ε, we ensure that we are indeed in the linear-response regime, i.e. for sufficiently small values of the 383

amplitude there is no systematic dependence of the resulting susceptibility on ε. 384
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