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ABSTRACT

Despite the incredible complexity of our brains’ neural networks, theoretical descriptions of neural dynamics have led to profound insights
into possible network states and dynamics. It remains challenging to develop theories that apply to spiking networks and thus allow one to
characterize the dynamic properties of biologically more realistic networks. Here, we build on recent work by van Meegen and Lindner who
have shown that “rotator networks,” while considerably simpler than real spiking networks and, therefore, more amenable to mathematical
analysis, still allow one to capture dynamical properties of networks of spiking neurons. This framework can be easily extended to the case
where individual units receive uncorrelated stochastic input, which can be interpreted as intrinsic noise. However, the assumptions of the
theory do not apply anymore when the input received by the single rotators is strongly correlated among units. As we show, in this case, the
network fluctuations become significantly non-Gaussian, which calls for reworking of the theory. Using a cumulant expansion, we develop a
self-consistent analytical theory that accounts for the observed non-Gaussian statistics. Our theory provides a starting point for further studies
of more general network setups and information transmission properties of these networks.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0096000

Not surprisingly, networks of recurrently connected neurons,
such as, e.g., found in the human cortex, are capable to support
a very rich repertoire of dynamical states. A remarkable feature
of such networks is that they can exhibit asynchronous, irreg-
ular activity even in the case of deterministic dynamics, where
the disorder due to the random connectivity between neurons
gives rise to temporal fluctuations of their activity. Understand-
ing the statistics and dynamical properties of network states by
mathematical analysis of models of recurrent networks remains
a challenging problem, especially for networks of spiking neu-
rons, for which analytical expressions, e.g., for the network-noise
autocorrelation function, are hard to obtain. For these reasons,
we investigate here a much simpler model class of recurrently
connected oscillators that nevertheless has been shown to give a
reasonable account of the statistics of spiking networks and that
allows one to obtain in comparison much simpler self-consistent
equations for the network statistics. Using this model, we study
the effects of intrinsic noise uncorrelated among oscillators and

shared common noise. Interestingly, we find that in the presence
of common noise, the network fluctuations become non-Gaussian
even if both the self-generated network noise in the absence of
noise and the additional common noise are Gaussian. To account
for the non-Gaussian statistics, we develop a self-consistent the-
ory that includes higher cumulants of the network fluctuations.
Our theory provides a satisfactory description of the observed
power spectra and autocorrelation functions of the network fluc-
tuations and rotator dynamics and can serve as a starting point
for further investigations of networks in which non-Gaussian
statistics due to input correlations might play a role.

I. INTRODUCTION

Networks of recurrently coupled oscillators have been studied
in a wide variety of contexts, representing spatially inhomogeneous
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chemical reactions,1 neural networks,2–4 or power grids.5 A clas-
sic paradigm has been and continues to be the Kuramoto model,
which allowed many analytical insights, e.g., in the synchronization
dynamics, depending on the disorder in the system.1,6,7 More gen-
erally, networks of recurrently connected units can be in a regime
where they exhibit apparently noisy dynamics despite being entirely
deterministic, a feature that has received much attention in the con-
text of neural networks.8–16 While such noisy dynamics can easily be
observed, e.g., in spiking network models where it manifests itself
in the “asynchronous state,”17 it is considerably harder to analyti-
cally determine the effective noise characteristics for such models.
In order to thoroughly characterize the internally generated noise as
a function of network parameters and understand its impact, e.g., on
the statistics of individual units in the network, it seems important
to have models at one’s disposal that capture the phenomenon while
still allowing one to gain analytical insights.

Recently, van Meegen and Lindner14 introduced the so-called
“rotator network” of recurrently coupled rotators, in which the cou-
pling between the oscillating units is an arbitrary function of the
“presynaptic” oscillator phases. Despite being a strongly simplified
description of real spiking networks, the authors showed that the
model still allows one to capture dynamical properties of model net-
works of spiking neurons. Importantly, for the rotator network, one
can self-consistently calculate the statistics of the internally gener-
ated fluctuations (network noise). Here, we will build upon this work
to investigate the influence of additional intrinsic noise sources at
the level of the individual units as well as shared common input.
The additional input leads to modifications of the self-consistent
equation for the autocorrelation function of the network noise and
impacts the individual units’ statistics. When the external inputs
are uncorrelated across the units, the required modifications of the
theory are straightforward. However, if there are substantial corre-
lations in the input across units, basic assumptions of the existing
theory break down and require a more substantial revision with
regard to the non-Gaussian statistics of the network noise. Extend-
ing the theory accordingly, we aim to go a step further toward
increased biological realism in the context of neural networks while
maintaining the analytical tractability of the model.

After briefly introducing the basic model and reviewing previ-
ous results in Sec. II, we extend the rotator network model to the
case where individual units are subject to additional intrinsic noise
in Sec. III. Intrinsic noise can, e.g., be caused by stochastic ion chan-
nel openings in the case of neural networks or by fluctuating inputs
or loads in power grids. In Sec. IV, we discuss the effect of shared
external input on all units. Whereas the internally generated net-
work noise remains Gaussian in the presence of intrinsic noise only,
it becomes non-Gaussian in the presence of correlated inputs. This
is captured by a modified self-consistent equation that takes into
account higher cumulants of the internally generated noise. We con-
clude in Sec. V with a summary of our results and a brief discussion
of their implications.

II. PREVIOUS RESULTS: NETWORK DYNAMICS

WITHOUT EXTERNAL INPUTS

In a previous study, van Meegen and Lindner introduced a sim-
ple model of a recurrent rotator network, where individual units are

described as phase variables θm, each driven by an intrinsic oscilla-
tion frequency ωm and receiving input from the other units in the
network,

θ̇m = ωm +
∑

n

Kmnf(θn), (1)

where the recurrent input is specified by the matrix of connec-
tion weights Kmn between units n and m and the coupling function
f(·) that depends only on the “input phases” θn. To be specific,
we will assume Kmn to be a Gaussian random matrix with 〈Kmn〉

= 0 and 〈KmnKm′n′ 〉 = K2

N
δmm′δnn′ unless specified otherwise, but see

Sec. V for a discussion of other choices for the connectivity. Based
on dynamical mean-field theory, Eq. (1) can be interpreted as a
stochastic dynamics for θm with an internally generated network
noise ξm,

ξm =
∑

n

Kmnf(θn), (2)

the statistics of which has to be determined self-consistently. The
relative simplicity of the model allows one to derive an analytical
solution for the noise autocorrelation function Cξ (τ ) ≡ 〈ξm(t)ξm

(t + τ)〉. To this end, following van Meegen and Lindner, we intro-
duce the auxiliary function

3(τ) =

∫ τ

0

dt(τ − t)Cξ (t), (3)

which implies

Cξ (τ ) = 3̈(τ ). (4)

In the case of the autonomous network described by Eq. (1), the
function 3(τ) is a solution of the ordinary differential equation,

3̈(τ ) = K2
∑

l

|Al|
28(lτ) exp[−l23(τ)]. (5)

Here, Al are the coefficients of a Fourier expansion of the cou-
pling function, f(θ) =

∑

l Al exp[ilθ], and 8(x) = 〈exp[iωnx]〉ωn is
the characteristic function of the intrinsic frequencies. The above
equation for 3 follows from a self-consistency condition for the
noise autocorrelation, where the average is taken over realizations
of the connectivity matrix Kmn, intrinsic frequencies ωn, initial
conditions, and the effective noise ξm in a self-consistent manner.

We would like to emphasize that, while the relations of 3(τ)

in Eqs. (3) and (4) hold true throughout this paper, the dynamical
equation that one obtains for 3 will depend on the situation con-
sidered (the absence or presence of intrinsic and/or common noise)
and, for the most involved case of common noise, on the level of
approximation used. It would be possible to add a label to the func-
tion 3 that would distinguish these different cases, but we abstain
from doing so for the ease of notation.

We quickly recapitulate the derivation of van Meegen and
Lindner for reference also because our new results will be obtained
along similar lines. Using the Gaussian statistics when averaging
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over the connectivity matrix, one first obtains

Cξ (τ ) =
∑

n,n′

〈KmnKmn′ f(θn(t))f(θn′(t + τ))〉K,ω,θ0
(6a)

=
∑

n,n′

〈KmnKmn′ 〉K〈f(θn(t))f(θn′(t + τ))〉K,ω,θ0
(6b)

=
K2

N

∑

n

〈f(θn(t))f(θn(t + τ))〉K,ω,θ0
. (6c)

Note that the disorder of the connectivity matrix, in principle, still
contributes to the fluctuating dynamics of θn(t). The self-consistency
ansatz for statistics of the internally generated network fluctua-
tions now consists of considering the effective stochastic dynamics
θ̇m = ωm + ξm for the rotators in the network and to average over
realizations of the network noise ξm(t) in the following. Using the

Fourier expansion of f(·) and θm(t) = θm(t0) +
∫ t

t0
dt′θ̇m(t′), one thus

obtains

Cξ (τ )

K2/N
=
∑

n

∑

l,l′

AlAl′

〈

eilθn(t)+il′θn(t+τ)
〉

ξ ,ω,θ0

(7a)

=
∑

n

∑

l,l′

AlAl′

〈

ei(l+l′)θn(t0)
〉

θ0

〈

e
il
∫ t
t0

dt′ θ̇n(t′)+il′
∫ t+τ
t0

dt′θn(t′)
〉

ξ ,ω

(7b)

=
∑

n

∑

l

|Al|
2〈eilωnτ 〉ω

〈

eil
∫ t+τ
t dt′ξn(t′)

〉

ξ
(7c)

=
∑

n

∑

l

|Al|
28(lτ)

〈

eilyn(τ ;t)
〉

(7d)

=
∑

n

∑

l

|Al|
28(lτ) e− l2

2 〈yn(τ ;t)2〉 (7e)

= N
∑

l

|Al|
28(lτ) e−l2

∫ τ
0 dt′(τ−t′)Cξ (t′). (7f)

A few remarks are in order: To ensure that the result does not
depend on a particular initialization, one can average over the abso-
lute phases θn(t0) at a given (arbitrary) reference time t0 and require
that this average can be taken independently of the average over the
ξn. For uniformly distributed phases θn(t0), one immediately obtains

〈ei(l+l′)θn(t0)〉θn(t0) = δl,l′ . We furthermore introduced the new variable

yn(τ ; t) =
∫ t+τ

t
dt′ξn(t

′). In the limit of a large network (N � 1), one
can assume that ξn is Gaussian distributed, and thus, that yn(τ ; t)

obeys the relation 〈eilyn 〉 = e−l2〈y2
n〉/2. The second moment 〈y2

n〉 can
be found according to

〈yn(τ ; t)2〉 =

∫ t+τ

t

dt1

∫ t+τ

t

dt2 〈ξn(t1)ξn(t2)〉

= 2

∫ τ

0

dt(τ − t)Cξ (t) (8)

after a change of variables and using the symmetry of Cξ (t) around
the origin. Since all units are statistically equivalent and their cor-
relation functions are the same, the sum over n then becomes
trivial.

The differential equation for 3 [Eq. (5)] is eventually obtained
with the substitution Eq. (3), and the noise autocorrelation follows as

Cξ (τ ) = K2
∑

l

|Al|
28(lτ) exp[−l23(τ)]. (9)

The autocorrelation function Cxm(t) of the pointer xm(t)
= eiθm(t) for a given rotator m is then rather straightforwardly
obtained as

〈xm(t)∗xm(t + τ)〉 =
〈

ei(θm(t+τ)−θm(t))
〉

= eiωmτ
〈

ei
∫ t+τ
t dt′ξm(t′)

〉

= eiωmτ−3(τ).

Of note, Cxm(t) explicitly depends on the particular intrinsic fre-
quency ωm of the rotator m. Averaged over all rotators, the auto-
correlation becomes Cx(t) = 8(τ) e−3(τ).

III. ROTATOR NETWORK WITH INDIVIDUAL NOISE

SOURCES

Focusing on recurrent input, van Meegen and Lindner did not
address the effect of external inputs or other noise sources acting on
individual units. Typically, however, in many applications, e.g., in
biological neural networks, the single units are subject to intrinsic
noise, e.g., channel noise or unreliable synaptic transmission in the
case of neural networks.18–20

It seems important to understand the degree to which these
additional inputs may shape the dynamics of the network and indi-
vidual units. There is a rich literature on the Kuramoto model driven
by individual and common noise beginning with Kuramoto himself,
see, e.g., Refs. 1, 21, and 22, but how noise affects the rotator dynam-
ics considered here is not known. In this section, we will consider
the case of intrinsic noise sources ηm that are uncorrelated between
different units (correlated inputs will be addressed in Sec. IV). The
model then reads

θ̇m = ωm +
∑

n

Kmnf(θn) + ηm, (10)

the recurrent input again being specified by the connectivity matrix
Kmn and coupling function f(·). We consider the intrinsic fluctu-
ations to be independent Gaussian noise sources with 〈ηm〉 = 0,
〈ηm(t)ηn(t + τ)〉 = δmnCη(τ ).

A. Derivation of the self-consistent correlation

functions in the presence of intrinsic noise

We aim to determine how the presence of additional noise may
shape the rotator autocorrelation function Cxm(τ ) of rotator m, the
effective stochastic dynamics of which is given by

θ̇m = ωm + ξm + ηm, (11)

where the statistics of the network noise ξm is still to be determined.
First of all, it is not difficult to show that the network noise is not
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correlated with the external noise, as seen as follows:

〈ξm(t)ηm(t′)〉 =
∑

n

〈Kmn〉K〈f(θn(t))ηm(t′)〉 = 0 (12)

since 〈Kmn〉K = 0.
We now turn to the problem of calculating the autocorrela-

tion function of the network noise. When all rotators are subject
to intrinsic noise, we find a modified self-consistency condition for
Cξ (t) as follows. Along the lines of the derivation in the case without
noise, Eq. (7c) now becomes

Cξ (τ )

K2/N
=
∑

n

∑

l

|Al|
2
〈

eilωnτ
〉

ω

〈

eil
∫ t+τ
t dt′[ξn(t′)+ηn(t′)]

〉

ξ ,η

=
∑

n

∑

l

|Al|
28(lτ)〈eilyn(τ ;t)〉, (13)

where we redefined the variable

yn(τ ; t) =

∫ t+τ

t

dt′[ξn(t
′) + ηn(t

′)]. (14)

Assuming that yn(τ ; t) is Gaussian, we now find

〈eilyn(τ )〉 = e− l2

2 〈yn(τ )2〉 (15a)

= e−l2
∫ τ
0 dt(τ−t)〈[ξn(t′)+ηn(t′)][ξn(t′+t)+ηn(t′+t)]〉 (15b)

= e−l2
∫ τ
0 dt(τ−t)[Cξ (t)+Cη(t)]. (15c)

Putting everything together, one obtains

Cξ (τ ) = K2
∑

l

|Al|
28(lτ) exp

(

−l2[3(τ) + 3η(τ )]
)

. (16)

Here, 3η(τ ) =
∫ τ

0
dt(τ − t)Cη(t) is given by the autocorrelation

function Cη(t) of the intrinsic noise sources,23 and the function
3(τ) =

∫ τ

0
dt(τ − t)Cξ (t), defined as before, now obeys the ordi-

nary differential equation,

3̈(τ ) = K2
∑

l

|Al|
28(lτ) exp

(

−l2[3(τ) + 3η(τ )]
)

. (17)

Once we have calculated 3(t), we know the autocorrelation
function of the network noise Cξ (t) via Eq. (16) but can now also
determine the autocorrelation function Cxm(t) of the mth oscillator
(the complex pointer xm = eiθm ),

Cxm(τ ) = exp
[

iωmτ − 3(τ) − 3η(τ )
]

. (18)

Similarly to the case without intrinsic noise, this can be derived

using θm(t) = θm(t0) +
∫ t

t0
dt′θ̇m(t′) with Eq. (11) and using Eq. (15)

for l = 1. Equations (16)–(18) constitute the theory for the self-
consistent correlation functions for a rotator network with individ-
ual intrinsic Gaussian noise.

So far, we have not made any assumptions about the temporal
correlations of the intrinsic noise; i.e., our theory holds for general
colored noise ηm(t). For our numerical examples, in the following,
we consider for simplicity Gaussian white noise, for which Cη(τ )

= 2Dηδ(τ ), implying 3η(τ ) = Dητ .

B. Effects of intrinsic white noise on the rotator

autocorrelation

In order to test our theory, we simulated the rotator network
with additional intrinsic white noise for various combinations of
noise intensity Dη and coupling strength K. The corresponding the-
oretical predictions for Cxm(t) obtained from Eqs. (17) and (18) are
nicely confirmed for all combinations used, see Fig. 1, although the
number of units in the network (N = 100) is not excessively large.
For a white noise, Eq. (18) reads

Cxm(τ ) = exp
[

iωmτ − 3(τ) − Dητ
]

, (19)

from which we can expect damping of the autocorrelation function
with increasing noise strength Dη . This is indeed observed in the case
of both weak [Fig. 1(a)] and strong [Fig. 1(b)] network noise.

The network-mediated influence of the intrinsic noises ηn,
n 6= m, on the autocorrelation function of rotator m enters the

FIG. 1. Rotator autocorrelation function Cxm
in the presence of intrinsic noise for

weak (a) and strong (b) recurrent connection strengths. Theoretical results (solid
lines) and stochastic network simulations (crosses) are shown for coupling func-
tion f(θ) = sin(2θ) + cos(3θ) and parameters ω0 = 1, σω = 0; (a) K = 0.5.
(b) K = 2. The size of the simulated networks was N = 100. Simulations were
carried out with a time step dt = 0.01, stationary initial conditions (i.e., uniformly
distributed phases), for a total duration of T = 25T0 with T0 = 2500, and 10
different realizations of Kmn. Statistics were computed for bouts of length T0

of the phase trajectories and averages subsequently taken over bouts, network
realizations, and rotators. The theory was evaluated with a time step dt = 0.001.
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expression for Cxm(t) via the modified network-noise autocorre-
lation function Cξ (t). In order to assess this indirect effect of the
intrinsic noise, we compare our result to the case where only a spe-
cific, single unit m receives additional intrinsic noise ηm according
to Eq. (10), while all other units of the network evolve according to
Eq. (1). For the particular rotator m that is subject to intrinsic noise,
Cxm(t) is then still given by Eq. (18) with the exponential damping
term e−Dη t, but where the network-noise autocorrelation Cξ (t) is the
“intrinsic-noise free” version Cξ (t) = 3̈(t) with 3 obeying Eq. (5).

Stochastic network simulations and theoretical predictions for
Cx(t) again nicely agree (not shown) but look very similar to the case
where all units are subject to intrinsic noise shown in Fig. 1. We nev-
ertheless identify two distinct effects due to the network-mediated
influence of the other intrinsic noise sources, as shown in Fig. 2:
For weak network noise [Fig. 2(a)], we find that the intrinsic noise
on the other units in the network further decorrelates oscillator m
relative to the case of a single noisy unit with “intrinsic-noise free”
recurrent input. Interestingly, in the case of strong network noise

FIG. 2. The network-mediated effect of noise in “background” units on rotator
autocorrelation function Cxm

of noisy unitm (solid lines) can be assessed by com-
parison with the autocorrelation function Cxm

of unit m in the case where only
unit m is subject to noise (dashed lines). The autocorrelation in the absence of
any noise is also shown (thin lines). (a) Intermediate noise level with K = 0.5,
Dη = 0.2. (b) Strong noise level with K = 2, Dη = 0.5. All curves are obtained
from the theory, with dt = 0.001.

[Fig. 2(b)], the opposite effect can be observed, as the autocorrela-
tion of the specific rotator m decays faster in the case where it is the
only one subject to intrinsic noise, while the rest of the network does
evolve without additional intrinsic noise.

IV. ROTATOR NETWORK WITH COMMON EXTERNAL

INPUT

So far, we extended the rotator network model of Ref. 14 to
the case where individual units are subject to intrinsic noise and
assumed independence of the noise sources for different units. In
the context of neural networks, possible origins of such a noise term
could be the neurons’ stochastic ion channel kinetics and sponta-
neous release of neurotransmitters,18 for which the assumption of
independence seems clearly satisfied. Another possible interpreta-
tion of the noise term ηm is that it results from external (as opposed
to recurrent) synaptic inputs that are uncorrelated across units.

More generally, however, neurons may also receive correlated
external inputs, which could stem, e.g., from other brain areas that
project broadly to a local recurrently connected network. Here, we
will thus relax the assumption that any additional inputs to the indi-
vidual units are independent and study the potential effects on the
network dynamics. Regarding the theory, one might be tempted
to think that it can be extended to this new case without major
changes and that its main assumptions, e.g., the Gaussian distribu-
tion of the network noise, are still valid. We will show, however,
that the network noise ceases to be Gaussian distributed if the exter-
nal noise is significantly correlated across units. Consequently, the
self-consistent theory of Ref. 14 cannot easily be extended to this
case. Instead, we have to more substantially rework the theory. By
taking higher-order correlation functions of the network noise into
account, we can arrive at an approximate theory that captures the
resulting non-Gaussian network statistics surprisingly well.

To be specific, we consider the following model, where ηc is the
additional input common to all units:

θ̇m = ωm +
∑

n

Kmnf(θn) + ηm + ηc. (20)

We assume that ηc is a Gaussian noise which is uncorrelated with
the intrinsic noise ηm of each unit m, 〈ηc(t)ηm(t + τ)〉 ≡ 0, and
that its temporal statistics are described by the autocorrelation func-
tion 〈ηc(t)ηc(t + τ)〉 = Cc(τ ). Furthermore, along the same lines as
sketched for the intrinsic noise ηm, Eq. (12), we note that ηc is uncor-
related with the network noise ξm, 〈ηc(t)ξm(t + τ)〉 = 0, by virtue of
the averaging properties of Kmn.

To develop the theory for the case with common input, we start
again by expressing the autocorrelation 〈ξm(t)ξm(t + τ)〉 in terms
of the connectivity matrix Kmn, coupling function f(·), and rotator
phases θm. The additional average over independent realizations of
the common noise ηc is the only departure from the case considered
in Sec. III and does not interfere with the initial steps of Eqs. (6)
and (7), which now lead to

Cξ (τ ) =
K2

N

∑

N

∑

l

|Al|
2
〈

eilωnτ 〉ω〈eil
∫ t+τ
t dt′[ξn(t′)+ηn(t′)+ηc(t

′)]
〉

ξ ,η,ηc

.

(21)
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By redefining the variable yn(τ ; t) according to

yn(τ ; t) =

∫ t+τ

t

dt′[ξn(t
′) + ηn(t

′) + ηc(t
′)] (22)

and noting that 〈eilωnτ 〉ω = 8(lτ), expression (21) can again be
written more conveniently as

Cξ (τ ) =
K2

N

∑

n

∑

l

|Al|
28(lτ)〈 eilyn(τ ;t)〉ξ ,η,ηc . (23)

A naïve generalization of our previous approach would yield
a simple modification of Eqs. (16)–(18). Under the assumption
that yn(τ ; t) was still Gaussian-distributed, it would follow that the
respective expressions hold with the autocorrelation function Cη(τ )

of the intrinsic noise simply being replaced by the sum of the noise
autocorrelation functions Cη(τ ) + Cc(τ ). Consider the special sit-
uation in which intrinsic noise and common noise share the same
autocorrelation function and we can describe by a parameter c how
much of the input noise is common, i.e., Cη(τ ) = (1 − c)Ctot(τ )

and Cc(τ ) = cCtot(τ ). In this case, the output statistics would not
depend on c, implying that the network statistics is unaffected by the
presence or absence of correlations among the additional stochas-
tic forcings of the rotators. However, this lack of dependence is
not observed in stochastic network simulations of Eq. (20), demon-
strating that the naïve generalization sketched above indeed fails to
account for the effective stochastic dynamics of the system.

In order to derive a correct self-consistent expression for
the network-noise autocorrelation function Cξ (τ ), we thus need
to determine the only remaining unknown term 〈eilyn(τ ;t)〉ξ ,η,ηc in
Eq. (23). Let us consider the general case of a stochastic variable y.
By definition of the cumulant-generating function, we have

〈eily〉y = exp

(
∞
∑

k=1

(il)k

k!
κk

)

. (24)

Here, κk are the cumulants of y, which we can calculate as a function
of its moments 〈yj〉y, j ≤ k. If y is zero-centered and Gaussian-

distributed, one immediately finds 〈eily〉y = e−l2κ2/2 = e−l2〈y2〉y/2,
which led to the results obtained in Secs. II and III. We will see
that, while yn(τ ; t) as defined in Eq. (22) still has a vanishing mean
value in the presence of common input, it is no longer Gaussian-
distributed and higher cumulants need to be taken into account.

Assuming that the deviations from Gaussian statistics are small,
our strategy is the following: First, we approximate the average 〈eily〉y

by taking only the first few cumulants according to Eq. (24) into
account, i.e.,

〈eily〉y ≈ exp
(

−l2
κ2

2
− il3

κ3

6
+ l4

κ4

24

)

. (25)

Here, the higher-order cumulants κ3 and κ4 are finite only in the
presence of correlations between the inputs of different units and
should vanish with vanishing correlations. As we will show, these
higher-order cumulants have in turn themselves Gaussian and non-
Gaussian contributions in a sense that will be made explicit below.
In line with our assumption of a small departure from Gaussian
statistics, we thus, in a second approximation, calculate each of these

cumulants to zeroth order, that is, assuming purely Gaussian statis-
tics of composite variables of the type yn + ηc and yn + ym. This
strategy allows us to obtain a self-consistent equation for Cξ (τ ) in
the presence of common input that reproduces measured autocorre-
lation functions as well as higher-order cumulants of yn in stochastic
network simulations.

A. Calculation of the cumulants of yn(τ ;t )

The first cumulant is identical to the first moment and van-
ishes,

〈yn(τ ; t)〉 =

t+τ∫

t

dt′[〈ξn(t
′)〉 + 〈ηn(t

′)〉 + 〈ηc(t
′)〉] = 0, (26)

as 〈ξn〉 = 0 because of the average over Knn′ and 〈ηn〉 = 〈ηc〉 = 0 by
definition. If the first moment vanishes, the second cumulant κ2, i.e.,
the variance, is identical to the second moment. Its calculation is
analogous to the case of purely intrinsic noise discussed above and
given by

〈yn(τ )2〉 =

τ∫

0

dt(τ − t)[Cξ (t) + Cη(t) + Cc(t)]. (27)

The new non-trivial contributions in this theory will be the third
and fourth cumulants, which can also be expressed in terms of the
moments; in the following, we will calculate and use

κ3 = 〈y3
n〉,

κ4 = 〈y4
n〉 − 3〈y2

n〉
2

to approximate the characteristic function in Eq. (23).

1. Third cumulant

Inserting the definition of yn, we obtain for the third cumulant

κ3(τ ) = 〈y3
n(τ ; t)〉

=

〈
3
∏

j=1

t+τ∫

t

dtj[ξn(tj) + ηn(tj) + ηc(tj)]

〉

. (28)

Note that κ3 does neither depend on t nor on any neuron index n,
as these dependences disappear after averaging over uniform ini-
tial conditions for the phases and the disorder of the connectivity,
respectively.

Before evaluating the triple integral, we consider separately the
different contributions that arise from the correlator of the differ-
ent noise sources, such as 〈ξn(t1)ηn(t2)ηc(t3)〉 or 〈ξn(t1)ξn(t2)ηc(t3)〉.
Because ηn and ηc are Gaussian and uncorrelated by construction,
all terms in which only these two appear vanish. Furthermore, aver-
aging over the zero-centered, Gaussian Kmn implies that all terms
with odd powers of ξn must also vanish; see, e.g., Eq. (12). As all
three integrals in Eq. (28) cover the same domain, we can arbi-
trarily permute the variables tj and retain the following remaining
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contributions:

〈
3
∏

j=1

[ξn(tj) + ηn(tj) + ηc(tj)]

〉

/3

= 〈ξn(t1)ξn(t2)ηn(t3)〉 + 〈ξn(t1)ξn(t2)ηc(t3)〉, (29)

where the equality holds under the triple integral of Eq. (28).
We next aim to express both contributions in terms of the cor-

relation functions Cξ , Cη , and Cc, where the latter two are known and
Cξ remains to be determined self-consistently. To be specific and in
line with our treatment of ηm in Sec. III, we will consider both ηm and
ηc to be Gaussian white noises with respective intensities Dη and Dc

for the remainder of this section. The correlation functions are then
given by Cη(τ ) = 2Dηδ(τ ), Cc(τ ) = 2Dcδ(τ ), which decidedly sim-
plifies calculations. Using the definition of ξm, we can expand the
first contribution of Eq. (29) as

〈ξm(t1)ξm(t2)ηm(t3)〉

=
∑

n,n′

〈KmnKmn′ f(θn(t1))f(θn′(t2))ηm(t3)〉

=
∑

n,n′

〈KmnKmn′ 〉K〈f(θn(t1))f(θn′(t2))ηm(t3)〉

=
K2

N

∑

n

〈f(θn(t1))f(θn(t2))ηm(t3)〉. (30)

Again, along the lines of Eqs. (6) and (7) but with θ̇m = ωm + ξm

+ ηm + ηc, we now obtain

〈ξm(t1)ξm(t2)ηm(t3)〉 =
K2

N

∑

n

∑

l

|Al|
28(l(t2 − t1))

× 〈eilyn(t2−t1 ;t1)ηm(t3)〉ξ ,η,ηc. (31)

Instead of the characteristic function 〈eilyn 〉, we now need to find an
expression for the average 〈eilynηm〉.

We can distinguish the cases n 6= m and n = m. When
n 6= m, 〈yn(t2 − t1)ηm(t3)〉 = 0 since ξn, ηn, and ηc are all uncorre-
lated with ηm; therefore, 〈eilyn(t2−t1 ;t1)ηm(t3)〉 = 〈eilyn(t2−t1 ;t1)〉〈ηm(t3)〉
= 0. When n = m, the correlation 〈eilyn(t2−t1 ;t1)ηn(t3)〉 does not van-
ish but should remain bounded for large N. We thus expect that,
according to Eq. (31), 〈ξn(t1)ξn(t2)ηn(t3)〉 scales like 1/N and van-
ishes for N → ∞. Hence, we are allowed to neglect the first term on
the r.h.s. of Eq. (29).

In order to calculate the last remaining term 〈ξn(t1)ξn(t2)ηc(t3)〉
of Eq. (29), we need to find the average 〈eilynηc〉 in analogy to Eq. (31)
for ηc. We exploit the following relation for stochastic variables a
and b:

〈eiab〉 = −i

(
d

dr

〈

ei(a+rb)
〉
)

r=0

. (32)

In our case, a = lyn(t2 − t1), b = ηc(t3). In Eq. (32), the expectation
〈eiab〉 is expressed as the derivative of a characteristic function 〈eiuz〉z

evaluated at u = 1, where z = a + rb. This characteristic function

can again be expressed in terms of the cumulants of z,

〈eiuz〉z = exp

(
∞
∑

k=1

(iu)k

k!
κ̂k

)

, (33)

where κ̂k are the cumulants of z. The first cumulant κ̂1 of z van-
ishes. The second cumulant can be calculated from the variances and
covariances of yn and ηc. Above, we assumed that yn is (weakly) non-
Gaussian in the presence of common input and, therefore, in turn,
z cannot be Gaussian either. However, we make here a Gaussian
approximation and neglect higher-order cumulants of z, as these
appear as the corrections to the corrections in Eq. (25). We then find

〈eiuz〉z ≈ exp

(

−
u2

2

(

〈a2〉 + 2r〈ab〉 + r2〈b2〉
)
)

(34)

and consequently for the required expression

〈eilynηc〉 ≈ il〈ynηc〉 e−l2〈y2
n〉/2. (35)

This term can now be inserted in the analogous version of Eq. (31)
for ηc,

〈ξm(t1)ξm(t2)ηc(t3)〉 =
K2

N

∑

n

∑

l

|Al|
28(l(t2 − t1))

× 〈eilyn(t2−t1 ;t1)ηc(t3)〉ξ ,η,ηc

≈ K2
∑

l

|Al|
2il8(l(t2 − t1))〈yn(t2 − t1)ηc(t3)〉

× e−l2〈yn(t2−t1)2〉/2. (36)

Here, we furthermore used that 〈eilynηc〉 does not depend on neuron
index n, and therefore, all n terms of the sum contribute equally. The
covariance of yn and ηc can be calculated directly using the definition
of yn in Eq. (22) and is given by

〈yn(t2 − t1)ηc(t3)〉 = 2Dc2(t3 − t1)2(t2 − t3). (37)

We can now evaluate the triple integral of Eq. (28) to calculate
the third cumulant κ3(τ ), which based on the above can be expressed
as

κ3(τ ) ≈ 12DcK
2
∑

l

|Al|
2il

t+τ∫

t

dt1

t+τ−t1∫

0

dτ ′τ ′

× 8(lτ ′) exp(−l2〈yn(τ
′)

2
〉/2). (38)

Here, we furthermore used that t1 and t2 can be permuted to con-
strain the integral over t2 to t2 ≥ t1, which gives additional factor 2
and introduced the variable τ ′ = t2 − t1. By changing the order of
integration, we can eliminate the integral over t1, and using also the
result for the second moment of Eq. (27) with the by now familiar
definition 3(τ) =

∫ τ

0
dt(τ − t)Cξ (t), we eventually obtain

κ3(τ ) ≈ 12DcK
2
∑

l

|Al|
2il

τ∫

0

dτ ′(τ − τ ′)τ ′

× 8(lτ ′) exp(−l2[3(τ ′) + (Dη + Dc)τ
′]). (39)
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In order to facilitate the numerical calculations and to avoid
evaluating the integral over τ ′, we follow a similar strategy as in
the cases without common noise and compute the second time
derivative of κ3(τ ),

κ̈3(τ ) ≈ 12DcK
2
∑

l

|Al|
2ilτ8(lτ) e−l2[3(τ)+(Dη+Dc)τ ], (40)

which can be used to calculate κ3(τ ) along with 3(τ) by integrat-
ing numerically the coupled ordinary differential equations for both
quantities. To be precise, if we stopped our approximation for 〈eilyn 〉
at the third cumulant, Eq. (23) would become

3̈(τ ) ≈ K2
∑

l

|Al|
28(lτ) e−l2[3(τ)+(Dη+Dc)τ ]− il3

6 κ3(τ ). (41)

Equations (40) and (41) together with the initial conditions
κ3(0) = κ̇3(0) = 3(0) = 3̇(0) = 0 [found from Eqs. (39) and (3)]
would then constitute the self-consistent theory for the autocor-
relation function of the network noise Cξ (τ ) = 3̈(τ ) up to third
order.

2. Fourth cumulant

In order to improve our description of the non-Gaussian statis-
tics of yn(τ ), we also consider the fourth cumulant in the approxi-
mation of the average 〈eilyn 〉; see Eq. (25). The fourth cumulant of
yn(τ ) is given by

κ4(τ ) = 〈y4
n(τ ; t)〉 − 3〈y2

n(τ ; t)〉2. (42)

We first focus on the fourth moment

〈y4
n(τ ; t)〉 =

〈
4
∏

j=1

t+τ∫

t

dtj[ξn(tj) + ηn(tj) + ηc(tj)]

〉

. (43)

Following the same reasoning as above for our calculation of
the third cumulant, several terms below the quadruple integral can
be discarded. First, all terms with odd powers of ξn have to vanish
because of the averaging properties of the connectivity matrix Kmn.
In addition, all terms 〈η

p
nη

q
c 〉, p + q = 4, either vanish for odd powers

p and q or are exactly compensated by the corresponding terms in
the expression 3〈y2

n(τ )〉2. (Note that ηn and ηc are Gaussian variables
for which the fourth cumulant vanishes.) The remaining terms that
potentially contribute to the fourth cumulant, therefore, are

〈ξn(t1) · · · ξn(t4)〉,

〈ξn(t1)ξn(t2)ηn(t3)ηn(t4)〉,

〈ξn(t1)ξn(t2)ηc(t3)ηc(t4)〉,

〈ξn(t1)ξn(t2)ηn(t3)ηc(t4)〉.

(44)

We will briefly sketch the calculation for these terms but spare the
reader rather laborious calculations and refer to the Appendix for
details.

First, we use again that ξn can be expressed in terms of the
rotator phases,

ξn(t) =
∑

p,k

Knp|Ak|
2 exp(ikθp(t)), (45)

and that θp(t) = θp(t0) +
∫ t

t0
dt′(ωp + ξp + ηp + ηc). For all corre-

lators containing the product ξn(ti)ξn(tj), one eventually obtains
expressions that involve the integrated input to the rotators
yp(tj − ti), giving rise to averages of the type 〈eikyp(t2−t1) eilyq(t4−t3)〉,

〈eikyp(t2−t1)ηn(t3)ηn(t4)〉, 〈e
ikyp(t2−t1)ηc(t3)ηc(t4)〉, and 〈eikyp(t2−t1)ηn(t3)

ηc(t4)〉, respectively. For the last three contributions, we next use a
similar identity as used above for the third cumulant [cf. Eq. (32)],

〈eiabc〉 = −

(
d

dr

d

ds

〈

ei(a+rb+sc)
〉
)

r=0,s=0

. (46)

For the calculation of all four terms listed in Eq. (44), we, therefore,
have to evaluate averages 〈eiz〉, where z = kyp(t2 − t1) + lyq(t4 − t3)

for the first and z = a + rb + sc with a = kyp(t2 − t1) and b =
ηn/c(t3),
c = ηn/c(t4) for the last three contributions. To compute these aver-
ages, we then make the second simplifying approximation discussed
at the beginning of this section, effectively assuming Gaussian
statistics for the stochastic variable z. In this approximation, 〈eiz〉

≈ e−〈z2〉/2, where only variances and covariances of yp, yq, ηn, and ηc

appear in 〈z2〉 depending on the contribution we consider. For the
last three terms, the Gaussian approximation directly leads to

〈eiabc〉 ≈
(

〈bc〉 − 〈ab〉〈ac〉
)

e−〈a2〉/2 (47)

following relation (46), with appropriately chosen a, b, and c.
Let us consider the first contribution, 〈ξn(t1) · · · ξn(t4)〉, for

which we have

〈z2〉 = k2〈y2
p(t2 − t1)〉 + 2kl〈yp(t2 − t1)yq(t4 − t3)〉 + l2〈y2

q(t4 − t3)〉.

(48)

For p 6= q, the covariance 〈yp(t2 − t1)yq(t4 − t3)〉 scales with Dc and
vanishes in the absence of common input,

〈yp(t2 − t1)yq(t4 − t3)〉 = 2Dc

t2∫

t1

dt′
t4∫

t3

dt′′δ(t′′ − t′). (49)

For p = q, one can show that the covariances 〈yp(t2 − t1)yq(t4 − t3)〉
do not contribute to the final expression for 〈ξn(t1) · · · ξn(t4)〉 as
the average 〈ei(yp+yq)〉 appears in a double sum over p and q and
eventually scales with 1/N; see the Appendix.

Eventually, the first contribution can be written as

〈ξn(t1) · · · ξn(t4)〉 ≈ 3K4
∑

k,l

gk(t2 − t1)gl(t4 − t3)

× exp(−2klDc

t2∫

t1

dt′
t4∫

t3

dt′′δ(t′′ − t′)), (50)

where we used the definition

gk(τ ) = |Ak|
28(kτ) e−k2[3(τ)+(Dη+Dc)τ ] (51)

Chaos 32, 063131 (2022); doi: 10.1063/5.0096000 32, 063131-8

Published under an exclusive license by AIP Publishing

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

to simplify the expression. For the fourth cumulant, we are eventu-
ally interested in the (integrated) difference,

κ4,I =

t+τ∫

t

dt1 · · ·

t+τ∫

t

dt4 (〈ξn(t1) · · · ξn(t4)〉

−3〈ξn(t1)ξn(t2)〉〈ξn(t3)ξn(t4)〉) . (52)

After a somewhat lengthy calculation (see the Appendix), we obtain
an expression for the second derivative of κ4,I that can be used for
the computation of the fourth cumulant,

d2

dτ 2
κ4,I = 24K4

∑

k,l







τ∫

0

dt(τ − t)gk(τ )gl(t)
[

e−2klDct − 1
]

+

τ∫

0

dta

τ∫

τ−ta

dtbgk(ta)gl(tb)
[

e−2klDc(ta+tb−τ) − 1
]






.

(53)

Although not as conveniently integrated as the expression for the
third cumulant, it still allows a numerical solution.

Based on relation (47), we quickly discuss the three remain-
ing contributions in Eq. (44). For 〈ξn(t1)ξn(t2)ηn(t3)ηn(t4)〉 since
〈ypηn〉 = 0 for p 6= n [the covariances 〈ab〉 and 〈ac〉 of Eq. (47)], one
can show that this term actually does not contribute to the fourth
cumulant as it is exactly canceled by its “counterpart” in 3µ2

2; see
the Appendix. The average 〈ξn(t1)ξn(t2)ηn(t3)ηc(t4)〉 does not have a
corresponding term in 3µ2

2 but vanishes nevertheless, as 〈ypηn〉 = 0
for p 6= n [the covariance 〈ab〉 of Eq. (47)] and in addition 〈ηnηc〉
= 0 [the covariance 〈bc〉 of Eq. (47)]. Thus, the only remaining

contribution to the fourth cumulant comes from 〈ξn(t1)ξn(t2)ηc(t3)

ηc(t4)〉, for which we have to sum over terms of the type

(

〈ηc(t3)ηc(t4)〉 − k2〈yp(t2 − t1)ηc(t3)〉〈yp(t2 − t1)ηc(t4)〉
)

× e−
k2〈y2

p(t2−t1)〉

2 ; (54)

see Eq. (47). While the first term with the covariance 〈ηc(t3)ηc(t4)〉
is exactly canceled by the corresponding product in 3µ2

2, the second
term does contribute to the fourth cumulant. After another some-
what lengthy calculation (see the Appendix), the second derivative
of this contribution to κ4 is eventually found to be

d2

dτ 2
κ4,II = −48Dc

2K2
∑

k

k2τ 2gk(τ ). (55)

As expected, this contribution vanishes in the absence of common
noise (Dc = 0), consistent with deviations from Gaussian statis-
tics being induced solely by input common to all units. The initial
conditions for each of the two contributions to the fourth cumu-
lant, κ4,I(0) = 0 and κ4,II(0) = 0, can be deduced from the defining
quadruple integral; the first time derivatives of κ4,I and κ4,II vanish as
well for τ = 0; see the Appendix.

For the convenience of the reader, we provide below the
final set of equations that define the self-consistent theory for
the network-noise autocorrelation function, including approximate
corrections for non-Gaussian statistics up to the fourth cumulant,

3̈(τ ) = K2
∑

l

gl(τ ) exp

(

−
il3

6
κ3(τ ) +

l4

24
κ4(τ )

)

, (56)

FIG. 3. Rescaled cumulants s3 (blue), s4 (orange), and s5 as a function of time τ for the case of common noise (solid lines) and purely individual noise (dotted lines) obtained
from network simulations, shown together with the theoretical prediction for s3 and s4 the case of common noise (dashed black lines). Parameter values for K and D are
indicated in the respective panels; other parameter values are ω0 = 1 and σω = 0, and a simple sine coupling f(θ) = sin θ was used. The size of the simulated networks
was N = 200; further numerical parameters were as in Fig. 1 except that 30 networks were simulated for a duration of 10T0 each.
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κ̈3(τ ) = 12DcK
2
∑

l

ilτgl(τ ), (57)

κ̈4(τ ) = 24K4
∑

k,l







τ∫

0

dt(τ − t)gk(τ )gl(t)
[

e−2klDct − 1
]

+

τ∫

0

dta

τ∫

τ−ta

dtbgk(ta)gl(tb)
[

e−2klDc(ta+tb−τ) − 1
]







− 48Dc
2K2

∑

k

k2τ 2gk(τ ), (58)

with the short-hand notation and initial conditions, respectively,

gl(τ ) = |Al|
28(lτ) exp

(

−l2[3(τ) + (Dη + Dc)τ ]
)

, (59)

3(0) = 3̇(0) = κ3(0) = κ̇3(0) = κ4(0) = κ̇4(0) = 0. (60)

The network-noise autocorrelation is then given as before by
Cξ (τ ) = 3̈(τ ); see Eq. (3).

FIG. 4. The maximum rescaled skewness max τ |s3(τ )| obtained from network
simulations (a) and from our theory (b) as a function of coupling strength K and
common noise strength D. Other parameters as in Fig. 3. Crosses indicate the
parameter values used in the different panels of Fig. 3.

B. Effects of common Gaussian white noise

We now turn to the effects that are specific to the common
noise and are captured with our modified theory. For a fixed total
noise intensity Dη + Dc = D = const, we thus compare the cases of
purely intrinsic noise (Dη = D, Dc = 0) and purely common noise
(Dc = D, Dη = 0). We will restrict ourselves to a pure sine cou-
pling f(·) = sin(·) and vary the coupling strength K and total noise
intensity D.

1. Common Gaussian white noise induces
non-Gaussian network fluctuations

We have already seen in our calculation that the network fluc-
tuations cannot be any longer assumed to be Gaussian in the pres-
ence of input shared among the different units. In Fig. 3, we confirm
this theoretical finding by numerical simulations and also illustrate
that our approximations for the third and fourth cumulants work
reasonably well for the considered parameters. The cumulants are
functions of the time argument τ and are shown in Fig. 3 in a
rescaled version that capture the deviation from Gaussianity relative

to the (time-dependent) standard deviation σ(τ) = κ
1/2
2 (τ ) of the

FIG. 5. The maximum rescaled excess kurtosis max τ |s4(τ )| obtained from net-
work simulations (a) and from our theory (b) as a function of coupling strength K
and common noise strength D. Other parameters as in Fig. 3. Crosses indicate
the parameter values used in the different panels of Fig. 3.
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distribution of the yn. This corresponds to rewriting the expansion
Eq. (24) as

〈eilyn(τ )〉 = exp

(
∞
∑

k=1

(ilσ(τ))
ksk

)

,

where sk = κk/(κ
k/2
2 k!) are the rescaled cumulants shown in Fig. 3.

Because 〈yn〉 = 0 and by the definition of the variance, we have
s1 ≡ 0 and s2 ≡ 1/2. For k > 2, sk can be thought of as generaliza-

tions of the skewness κ3/κ
3/2
2 and excess kurtosis κ4/κ

2
2 to higher

orders, weighted by 1/k! with which the kth cumulant enters the
series Eq. (24). For common noise, s3(τ ), s4(τ ), and s5(τ ) (solid
lines) are different from zero, illustrating that the deviation from
Gaussianity is significant. However, they remain always small com-
pared to s2 ≡ 1/2, and, in particular, s5 is small. This lends further
support to the basic idea of our approximation, i.e., the expansion
around the Gaussian case and the neglect of even higher cumulants.

For purely intrinsic noise, the magnitudes of the rescaled
higher-order cumulants (dotted lines in Fig. 3) are extremely
small—expected fluctuations due to finite-size effects cannot even
be resolved on the scale of this figure and are zero for all practical

purposes. This is a striking confirmation of our assumption of
Gaussian network-noise statistics for the case of purely individual
noise.

Our theory that involves a number of approximations provides
a quantitatively reasonable description of the numerically measured
cumulants for a variety of parameters, irrespective of the intensity
of the common noise D and the strength of the coupling K (Fig. 3).
In particular, the theory reproduces the pronounced oscillations at
low total noise [e.g., K = 0.5 and D = 0.05 of Fig. 3(e)] and the
respective maxima of the time-dependent functions at all parameters
considered. Small deviations are observed at intermediate times.

To provide a more comprehensive overview of the dependence
on the parameters, we plot the maxima of |s3(τ )| and |s4(τ )| as
functions of K and D in Figs. 4 and 5, respectively. The quality of
our approximation becomes apparent from the comparison of the
simulation results [panel (a)] and the theoretical predictions [panel
(b)]. Remarkably, these functions display global maxima at non-
vanishing but finite values of K and D, indicating a maximal devi-
ation from Gaussianity at this parameter combination (Kmax ≈ 0.6
and Dmax ≈ 0.1 within our resolution for both |s3(τ )| and |s4(τ )| and
both simulations and theory). Specifically, s3 and s4 seem to vanish

FIG. 6. Power spectra Sξ and Sx of the network noise ξm [(a) and (c)] and the rotators xm [(b) and (d)], respectively, for purely common (c = 1, i.e., Dc = D,Dη = 0) and
purely intrinsic (c = 0, i.e., Dc = 0,Dη = D) noise. (a) and (b) K = 0.8, D = 0.2. (c) and (d) K = 0.5, D = 0.1. Network simulations (solid lines) are compared with the
theoretical prediction (dashed and dotted lines). The power spectra for the theory were computed from the numerical solution until tnum = 125. Other parameters as in Fig. 3.
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for all limiting cases of vanishing or infinite K or D, which is consis-
tent with the integrated input yn becoming effectively Gaussian. In
the following, we argue why this is so.

For D → 0, yn becomes Gaussian because here, the system
approaches the previously studied purely autonomous network, in
which fluctuations are Gaussian.14 For K → 0, the integrated input
yn is completely dominated by the common noise that is Gaus-
sian by assumption. Thus, it is also plausible that the cumulants
vanish in this limit. For D → ∞ at fixed K, a similar argument
holds true: The common noise will dominate the integrated input,
in which the network noise is limited in amplitude; hence, also in
this limit, the fluctuations will be Gaussian. Finally, for K → ∞ at
fixed D, the dynamics of the network approaches that of a purely
autonomous network without external input, simply because the
network fluctuations are orders of magnitude stronger than the
common noise.

In summary, significantly non-vanishing values of s3 and s4

appear as predicted by the theory when the network is subject to
a common noise, whereas purely individual noise cannot evoke
any non-Gaussian features of the network fluctuations. Our theory
captures the non-Gaussian statistics reasonably well.

2. Common Gaussian white noise increases spectral
low-frequency power and shifts peaks to higher
frequencies

We can use the computed cumulants to obtain the correlation
functions and, by an additional Fourier transform, the power spec-
tra of the network noise ξi and the individual pointers xi. We look at
those statistics for two selected points in the parameter plane (K,D),
respectively (0.8, 0.2) and (0.5,0.1); see Fig. 6. Two effects of the
common noise can be observed if we compare to the case of purely
individual noise of the same strength. First, there is an increase of
power around zero frequency, both for the network fluctuations
ξm(t) (left) and the individual rotators xm (right). This increase is
roughly a factor of two for K = 0.5, D = 0.1, but smaller for the
other set. Because the external noise has power for all frequen-
cies, this increase in low-frequency power is a non-trivial prediction
of our theory that is confirmed in the simulations. Power at low
frequencies corresponds to slow fluctuations, which thus seem to
become more important in the presence of common noise. The
described effect stands in marked contrast to that observed in popu-
lations of spiking neurons with global inhibition, in which common
noise can induce a spectral peak at non-vanishing frequencies and a
reduction of power around zero frequency.24,25

There is a second effect of the common noise on the spectra.
For K = 0.8, D = 0.2, we observe that the main spectral peak is
shifted from the intrinsic rotator frequency ω0 to a somewhat higher
frequency; the same effect is, in principle, also present at the other
parameter set but much weaker. The increase in frequency corre-
sponds to a slightly faster oscillation of the units. It is also predicted
by our theory and confirmed by the simulations.

For completeness, in Fig. 7, we show for the two param-
eter sets the self-consistent autocorrelation functions Cξ (τ ) of
the network fluctuations and Cx(τ ) of the rotators, which allow
for another comparison between theory and simulations. Indeed,
for both parameter sets, deviations of the simulations from the

FIG. 7. Correlation function Cξ (τ ) of the network noise ξm for strong (a) and
weak (b) noise. Line style, color code, and parameters as in Fig. 6. The solution
of the simpler system obtained when including only the third cumulant, Eqs. (40)
and (41), is additionally shown (thin gray line) for comparison.

theory appear to be minor, and taking into account only the first four
cumulants yields a good agreement. We also take the opportunity to
show how the theory would work if we would only include the third
cumulant. Deviations from the simulations are stronger when only
κ3 is used, and there is a clear benefit to include the fourth cumulant.

V. SUMMARY AND OUTLOOK

In this paper, we have studied a network of randomly cou-
pled phase oscillators, which are driven by intrinsic and external
(common) noise. We have generalized the theory of self-consistent
correlation functions developed in Ref. 14 for the case of the
autonomous network (i.e., in the absence of stochastic forcing). It
turned out that this generalization is rather straightforward in the
case of purely intrinsic (private) noise. Here, the network fluctu-
ations are still to a very good approximation Gaussian—in fact,
they approach Gaussian statistics in the strict thermodynamic limit
of an infinite network. Our theory works very well in describ-
ing the autocorrelation functions of the network noise and of the
individual rotators. Furthermore, we also compared the situations
in which all rotators receive private noise of a given intensity and
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in which only the observed rotator is subject to noise of that inten-
sity. The network-mediated effect of the private noise on all rotators
may have nontrivial consequences on the correlation statistics of the
observed rotator. The coherence of the oscillation may decrease or
increase by stochastic forcing of the rest of the network depending
on the chosen parameters and the coupling function.

When the rotators are subject to common noise, the picture
becomes more complicated. We have shown that, somewhat para-
doxically, the driving with a common Gaussian noise turns, Gaus-
sian network noise into a non-Gaussian one. This is reminiscent of
earlier observations made in the case of coupled chaotic maps, where
the mean-field ceases to be Gaussian in the thermodynamic limit,26,27

an effect that is reproduced when independent maps are subject to
common noise.28 For the rotator network, the non-Gaussian statis-
tics demand a serious revision of the theory developed by van Mee-
gen and Lindner.14 Here, we put forward a perturbative approach
based on a cumulant expansion around the Gaussian case that leads
to a system of few equations for the network-noise autocorrela-
tion and the third and fourth (time-dependent) cumulants of the
integrated network noise. The latter measure the deviations from
Gaussianity and vanish in the absence of common noise. We have
evaluated these equations for large ranges of coupling strength K
and noise intensity Dc for simple sine coupling. We have found that
our theory describes the network statistics in most cases surprisingly
well. Notably, looking at the temporal maximum of the absolute
values of third and fourth cumulants, we found non-monotonic
dependences of these statistics on K and Dc. Specifically, there are
non-vanishing values K∗ and Dc

∗ for which the rescaled skewness s3

and excess kurtosis s4 are maximal. Nonetheless, even in this case,
the non-Gaussian deviations are moderate and still captured by our
theory. We recall that the latter is based on two important assump-
tions: (i) We consider higher-order cumulants only up to the fourth
cumulant and (ii) assume Gaussian statistics in the calculations of
the (non-Gaussian) third and fourth cumulants of the integrated
network noise. In principle, it is possible to relax these assumptions
and to calculate the fifth cumulant and/or consider non-Gaussian
contributions in the calculation of the cumulants. However, the cal-
culations would become even more involved, and, at least for our
system, the agreement between predicted and measured correlation
functions (the actual statistics of interest) is already satisfactory with
the approximations made. We note in passing that the expansion in
cumulants we propose here is somehow remindful of the approach
presented in Refs. 29 and 30, where circular cumulants were used
to improve the prediction of the order parameter for Kuramoto
oscillators with intrinsic noise and Lorentz-distributed frequencies.
These works were not concerned with the statistics of the fluctuat-
ing “recurrent” input, however, and with the first Kuramoto order
parameter being finite, only the second cumulant was considered as
a correction in applications.

What are the effects of the non-Gaussian network fluctuations
induced by common noise at the level of the correlation functions
and power spectra? We found two effects on the spectra. For once,
the common noise may shift the main peak to higher frequencies.
Second, the common Gaussian white, i.e., temporally uncorrelated,
noise gives rise to increased low-frequency power in both network
noise and individual rotator spectra. Both of these effects are not
easily explained but are well captured by our self-consistent theory

of non-Gaussian fluctuations. It is still an open problem to extract
these features from our set of equations by analytical techniques,
e.g., by an appropriately simplified Fourier transformation of the
equations in simple limit cases as was done in Ref. 14. We note that
slow fluctuations have also been observed to arise spontaneously in
recurrent networks of LIF neurons with sufficiently strong (current-
based) synaptic coupling in the absence of common noise,13,31 and
one may speculate how common input may further increase low-
frequency power in those networks. On a different note, the increase
in low-frequency power in our system stands in marked contrast
to the reduction of low-frequency power due to common noise
in populations of integrate-and-fire neurons with global inhibitory
feedback.24,25

Our theory may serve as a template for calculations of the
self-consistent correlation statistics for other systems of interest. A
straightforward generalization of our results is possible, for instance,
if the common noise is temporally correlated, as characterized by a
correlation function Cc(τ ). More complicated will be the case of a
coupling matrix that respects Dale’s law, i.e., that a given unit j is
either excitatory (Kij > 0 for all i) or inhibitory (Kij < 0), possibly
combined with a given connection probability p between units. Pre-
liminary simulation results show that in this case, the statistics of
network fluctuations cease to be Gaussian. Given the importance of
this constraint in the neural context, a generalization of our theory
to this case is a particularly promising topic of future research.
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APPENDIX: DETAILED CALCULATION OF THE FOURTH

CUMULANT

Here, we aim to provide some details of the calculation of
the fourth cumulant κ4(τ ) of the stochastic variable yn(τ ). Since
〈yn(τ )〉 = 0, the fourth cumulant is given by κ4 = 〈y4

n〉 − 3〈y2
n〉

2. For
the fourth moment, we have
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〈y4
n(τ )〉 =

〈
4
∏

j=1

t+τ∫

t

dtj[ξn(tj) + ηn(tj) + ηc(tj)]

〉

=

t+τ∫

t

dt1 · · ·

t+τ∫

t

dt4





〈
4
∏

j=1

ξn(tj)

〉

+

〈
4
∏

j=1

ηn(tj)

〉

+

〈
4
∏

j=1

ηc(tj)

〉

(A1)

+ 12〈ξn(t1)ξn(t2)ηn(t3)ηc(t4)〉 + 6〈ξn(t1)ξn(t2)ηn(t3)ηn(t4)〉 + 6〈ξn(t1)ξn(t2)ηc(t3)ηc(t4)〉 + 6〈ηn(t1)ηn(t2)ηc(t3)ηc(t4)〉



 , (A2)

where we already used that odd powers of ξn vanish when averaging over the Gaussian, zero-centered connectivity matrix Kmn. [We also
used that 〈η3

nηc〉 = 〈η3
n〉〈ηc〉 = 0, 〈ηnη

3
c 〉 = 〈ηn〉〈η

3
c 〉 = 0 as both noise sources are uncorrelated by definition.] Of note, we can easily match

all terms but one to a corresponding term in 3〈y2
n〉

2,

3〈y2
n(τ )〉2 = 3

t+τ∫

t

dt1 · · ·

t+τ∫

t

dt4

〈
2
∏

j=1

[ξn(tj) + ηn(tj) + ηc(tj)]

〉 〈
4
∏

j=3

[ξn(tj) + ηn(tj) + ηc(tj)]

〉

=

t+τ∫

t

dt1 · · ·

t+τ∫

t

dt4



3

〈
2
∏

j=1

ξn(tj)

〉 〈
4
∏

j=3

ξn(tj)

〉

+ 3

〈
2
∏

j=1

ηn(tj)

〉 〈
4
∏

j=3

ηn(tj)

〉

+ 3

〈
2
∏

j=1

ηc(tj)

〉 〈
4
∏

j=3

ηc(tj)

〉

(A3)

+ 6〈ξn(t1)ξn(t2)〉〈ηn(t3)ηn(t4)〉 + 6〈ξn(t1)ξn(t2)〉〈ηc(t3)ηc(t4)〉 + 6〈ηn(t1)ηn(t2)〉〈ηc(t3)ηc(t4)〉



 . (A4)

For a process yn(τ ) with perfectly Gaussian statistics, this is exactly the expression the fourth moment would boil down to, and µ4 − 3µ2
2 = 0.

Here, we are looking for a difference arising in the fourth moment; this is slightly different from the third cumulant which—for a centered
process—is directly given by the third moment. All terms that only involve powers of ηn and ηc are purely Gaussian by definition, and the
differences of the corresponding terms vanish. We are left with four potentially finite contributions,

〈y4
n(τ )〉 − 3〈y2

n(τ )〉2 =

t+τ∫

t

dt1 · · ·

t+τ∫

t

dt4









〈
4
∏

j=1

ξn(tj)

〉

− 3

〈
2
∏

j=1

ξn(tj)

〉 〈
4
∏

j=3

ξn(tj)

〉

︸ ︷︷ ︸

I

+12 〈ξn(t1)ξn(t2)ηn(t3)ηc(t4)〉
︸ ︷︷ ︸

II

+ 6



〈ξn(t1)ξn(t2)ηn(t3)ηn(t4)〉 − 〈ξn(t1)ξn(t2)〉〈ηn(t3)ηn(t4)〉
︸ ︷︷ ︸

III





+ 6



〈ξn(t1)ξn(t2)ηc(t3)ηc(t4)〉 − 〈ξn(t1)ξn(t2)〉〈ηc(t3)ηc(t4)〉
︸ ︷︷ ︸

IV













, (A5)

which we discuss separately in the following. We just mention that we can in the following assume t2 > t1 for all terms without loss of

generality and consider the fourfold integral over the domain
t+τ∫

t

dt1

t+τ∫

t1

dt2

t+τ∫

t

dt3

t+τ∫

t

dt4 with the integrands being multiplied by two. For

term I, we can and will additionally assume t4 > t3 without loss of generality for the same symmetry reasons and accordingly multiply the
integrand by four.

1.
〈
∏4

j=1ξn (tj )
〉

− 3
〈
∏2

j=1ξn (tj )
〉 〈
∏4

j=3ξn (tj )
〉

By expressing the network noise again in terms of the couplings Kmn and phases θn based on the Fourier decomposition of the coupling
function,

ξn(t) =
∑

m

Knm

∑

l

Al e
ik
(

θp(t0)+
∫ t
t0

dt′ θ̇m(t′)
)

, (A6)
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we obtain the following expression for the first term:

〈ξn(t1) · · · ξn(t4)〉 =

〈

∑

m,o,p.q

KnmKnoKnpKnq

∑

k,l,r,s

AkAlArAse
ik
[

θm(t0)+
∫ t1
t0

dt′ θ̇m(t′)
]

· · · e
is
[

θq(t0)+
∫ t4
t0

dt′ θ̇q(t′)
]
〉

(A7)

=
∑

m,o,p,q

∑

k,l,r,s

AkAlArAs

〈

KnmKnoKnpKnq

〉

K

〈

e
ik
[

θm(t0)+
∫ t1
t0

dt′ θ̇m(t′)
]

· · · e
is
[

θq(t0)+
∫ t4
t0

dt′ θ̇q(t′)
]〉

. (A8)

We separately average over the disorder, which in the case of Gaussian couplings gives

〈

KnmKnoKnpKnq

〉

K
=

K4

N2

(

δmoδpq + δmpδoq + δmqδop

)

. (A9)

After eliminating the δ··δ·· by summing over two of the four corresponding indices m, o, p, and q and appropriate renaming of the remaining
indices, one thus obtains

〈ξn(t1) · · · ξn(t4)〉 =
K4

N2

∑

p,q

∑

k,l,r,s

AkAlArAs

[
〈

e
ik
[

θp(t0)+
∫ t1
t0

dt′ θ̇p(t′)
]

e
il
[

θp(t0)+
∫ t2
t0

dt′ θ̇p(t′)
]

e
ir
[

θq(t0)+
∫ t3
t0

dt′ θ̇q(t′)
]

e
is
[

θq(t0)+
∫ t4
t0

dt′ θ̇q(t′)
]〉

+
〈

e
ik
[

θp(t0)+
∫ t1
t0

dt′ θ̇p(t′)
]

e
il
[

θp(t0)+
∫ t3
t0

dt′ θ̇p(t′)
]

e
ir
[

θq(t0)+
∫ t2
t0

dt′ θ̇q(t′)
]

e
is
[

θq(t0)+
∫ t4
t0

dt′ θ̇q(t′)
]〉

+
〈

e
ik
[

θp(t0)+
∫ t1
t0

dt′ θ̇p(t′)
]

e
il
[

θp(t0)+
∫ t4
t0

dt′ θ̇p(t′)
]

e
ir
[

θq(t0)+
∫ t2
t0

dt′ θ̇q(t′)
]

e
is
[

θq(t0)+
∫ t3
t0

dt′ θ̇q(t′)
]〉
]

. (A10)

The three terms differ in their combinations of the time arguments t1, t2, t3, and t4 and, in principle, cannot be subsumed into a single term.
As they appear below a quadruple integral over all four time arguments, we can for the ease of notation and without loss of generality permute
time indices separately for the three terms, however, and consider

〈ξn(t1) · · · ξn(t4)〉 = 3
K4

N2

∑

p,...,s

AkAlArAs

〈

e
ik
[

θp(t0)+
∫ t1
t0

dt′ θ̇p(t′)
]

e
il
[

θp(t0)+
∫ t2
t0

dt′ θ̇p(t′)
]

· · · e
is
[

θq(t0)+
∫ t4
t0

dt′ θ̇q(t′)
]〉

= 3
K4

N2

∑

p,...,s

AkAlArAs

〈

ei(k+l)θp(t0) e
ik
∫ t1
t0

dt′ θ̇p(t′)
e

il
∫ t2
t0

dt′ θ̇p(t′)
ei(r+s)θq(t0) e

ir
∫ t3
t0

dt′ θ̇q(t′)
e

is
∫ t4
t0

dt′ θ̇q(t′)
〉

. (A11)

We next average over random initial phases θp(t0), θp(t0) at the reference time t0, with
〈

ei(k+l)θp(t0)
〉

θp(t0)
= δk,−l and the analogous relation

for θq(t0), leading to

〈ξm(t1) · · · ξm(t4)〉 = 3
K4

N2

∑

p,q

∑

k,l

|Ak|
2|Al|

2
〈

e
ik
∫ t2
t1

dt′ θ̇p(t′)
e

il
∫ t4
t3

dt′ θ̇q(t′)
〉

. (A12)

Using θ̇m = ωm + ξm + ηm + ηc and averaging separately over the intrinsic frequencies, 〈eixωi 〉ω = 8(x) being the characteristic function of
the ωi, one eventually obtains

〈ξm(t1) · · · ξm(t4)〉 = 3
K4

N2

∑

p,q

∑

k,l

|Ak|
2|Al|

2
〈

eikωp(t2−t1)
〉 〈

eilωq(t4−t3)
〉

Big〈e
ik
∫ t2
t1

dt′[ξp(t′)+ηp(t′)+ηc(t
′)]

e
il
∫ t4
t3

dt′[ξq(t′)+ηq(t′)+ηc(t
′)]
〉

(A13)

= 3
K4

N2

∑

p,q

∑

k,l

|Ak|
2|Al|

28(k(t2 − t1))8(l(t4 − t3))〈e
i[kyp(t2−t1 ;t1)+lyq(t4−t3 ;t3)]〉, (A14)

where we furthermore used the definition of Eq. (22) for the yp, yq that appear in the average in the last equation.

In principle, the average 〈ei[kyp(t2−t1 ;t1)+lyq(t4−t3 ;t3)]〉 can again be expressed in terms of the cumulants of z = kyp(t2 − t1; t1)

+ lyq(t4 − t3; t3), in perfect analogy to Eq. (24). However, we will make here again the second approximation of our theory and con-
sider only the second cumulant of z when evaluating the average 〈eiz〉, effectively assuming that the deviations from Gaussianity of the
yp and yq are small and can be neglected in the calculation of the higher-order corrections to the average 〈eiyn 〉, i.e., the third and fourth

cumulant of yn. This approximation allows one to express 〈ei[kyp(t2−t1 ;t1)+lyq(t4−t3 ;t3)]〉 only in terms of the variances and covariances of yp

and yq,

〈eiz〉 = e− l2

2 〈y2
p(t2−t1 ;t1)〉 e− k2

2 〈y2
q(t4−t3 ;t3)〉e−kl〈yp(t2−t1 ;t1)yq(t4−t3 ;t3)〉, (A15)
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which we can calculate within the self-consistent theory for the cor-
relation function of the network noise. In particular, the covariance
is given by

〈yp(t2 − t1; t1)yq(t4 − t3; t3)〉

=

t2∫

t1

dt′
t4∫

t3

dt′′〈[ξp(t
′) + ηp(t

′) + ηc(t
′)][ξq(t

′′) + ηq(t
′′) + ηc(t

′′)]〉

(A16)

=

t2∫

t1

dt′
t4∫

t3

dt′′
[

δpq

(

Cξ (t
′′ − t′) + Cη(t

′′ − t′)
)

+ Cc(t
′′ − t′)

]

.

(A17)

(Note that the cross correlation 〈ξp(t
′)ξq(t

′′)〉 vanishes for p 6= q, as
can be seen from

∑

m,n〈KpmKqnf(θm(t′))f(θn(t
′′))〉 =

∑

m,n〈KpmKqn〉
〈f(θm(t′))f(θn(t

′′))〉 and 〈KpmKqn〉 = 0 when p 6= q.)
The double sum over p and q of Eq. (A14) contains N

terms with p = q and N(N − 1) terms with p 6= q, while the sum
has a prefactor 1/N2. In the large-N limit, we neglect all con-
tributions that scale with 1/N and keep thus only the last term
in Eq. (A17). With Cc(t

′′ − t′) = 2Dcδ(t
′′ − t′) and 〈y2

{p,q}(τ , t)〉

= 23(τ) + 2(Dη + Dc)τ [see Eq. (27)], we thus obtain

〈ξn(t1) · · · ξn(t4)〉 = 3K4
∑

k,l

gk(t2 − t1)gl(t4 − t3)

× e
−2klDc

t2∫

t1

dt′
t4∫

t3

dt′′δ(t′′−t′)

, (A18)

where we used the definition for the gi(t) given by Eq. (51).
Along the same lines, it is straightforward to show that the

corresponding term from 〈y2
n(τ )〉2 is given by

〈ξn(t1)ξn(t2)〉〈ξn(t3)ξn(t4)〉 = K4
∑

k,l

gk(t2 − t1)gl(t4 − t3) (A19)

so that we eventually obtain the following expression for the first
contribution to the fourth cumulant:

κ4,I(τ ) =

t+τ∫

t

dt1 · · ·

t+τ∫

t

dt4





〈
4
∏

j=1

ξn(tj)

〉

− 3

〈
2
∏

j=1

ξn(tj)

〉〈
4
∏

j=3

ξn(tj)

〉




= 12K4
∑

k,l

t+τ∫

t

dt1

t+τ∫

t1

dt2

t+τ∫

t

dt3

t+τ∫

t3

dt4gk(t2 − t1)gl(t4 − t3)

×




e

−2klDc

t2∫

t1

dt′
t4∫

t3

dt′′δ(t′′−t′)

− 1




 . (A20)

With the variable transformations ta = t2 − t1, tb = t4 − t3, and
tc = t3 − t1, we can rewrite this expression as

κ4,I(τ ) = 12K4
∑

k,l

τ∫

0

dta

τ∫

0

dtb

τ−tb∫

ta−τ

dtc gk(ta)gl(tb)

×



e
−2klDc

ta∫

0
dt′

tc+tb∫

tc

dt′′δ(t′′−t′)

− 1





tupp(τ ,ta ,tb ,tc)∫

tlow(τ ,ta ,tb ,tc)

dt1, (A21)

where care has to be taken in identifying the correct integration lim-
its tlow(τ , ta, tb, tc) and tupp(τ , ta, tb, tc) for t1 when changing the order
of integration. Making first a case distinction for ta > tb and tb > ta,
respectively, and then considering tc relative to ta − tb and 0, we
eventually find

tupp(τ ,ta ,tb ,tc)∫

tlow(τ ,ta ,tb ,tc)

dt1

=









τ − ta + tc, ta − τ < tc < min(ta − tb, 0),

τ − max(ta, tb), min(ta − tb, 0) < tc < max(ta − tb, 0),

τ − tb − tc, max(ta − tb, 0) < tc < τ − tb.

(A22)

While the numerical evaluation of the resulting triple inte-
gral is possible a priori, we try and simplify the expression fur-
ther by taking the second time derivative with respect to τ . For
the first time derivatives with respect to the integration limits
of the triple integral over ta, tb, and tc, one can see that they
vanish when we use the respective values for ta, tb, and tc with

Eq. (A22). The remaining time derivative of
∫ tupp

tlow
dt1 is surpris-

ingly simple and equal to 1, as can be seen as well from Eq. (A22).
Thus,

d

dτ
κ4,I(τ ) = 12K4

∑

k,l

τ∫

0

dta

τ∫

0

dtb

τ−tb∫

ta−τ

dtc gk(ta)gl(tb)

×
(

e−2klDcG(ta ,tb ,tc) − 1
)

, (A23)

where we furthermore introduced the short-hand notation

G(ta, tb, tc) =

∫ ta

0

dt′
∫ tc+tb

tc

dt′′δ(t′′ − t′). (A24)

Chaos 32, 063131 (2022); doi: 10.1063/5.0096000 32, 063131-16

Published under an exclusive license by AIP Publishing

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

The second time derivative is then given by

d2

dτ 2
κ4,I(τ )

= 12K4
∑

k,l

[∫ τ

0

dtb

∫ τ−tb

0

dtcgk(τ )gl(tb)
(

e−2klDcG(τ ,tb ,tc) − 1
)

+

∫ τ

0

dta

∫ 0

ta−τ

dtcgk(ta)gl(τ )
(

e−2klDcG(ta ,τ ,tc) − 1
)

+

∫ τ

0

dta

∫ τ

0

dtbgk(ta)gl(tb)
(

e−2klDcG(ta ,tb ,τ−tb) − 1
)

+

∫ τ

0

dta

∫ τ

0

dtbgk(ta)gl(tb)
(

e−2klDcG(ta ,tb ,ta−τ) − 1
)
]

. (A25)

Let us consider the four contributions separately.

(1) ta = τ : tc > 0, tc + tb < τ ⇒ G(τ , tb, tc) = tb

∫ τ

0

dtb

∫ τ−tb

0

dtcgk(τ )gl(tb)
(

e−2klDcG(τ ,tb ,tc) − 1
)

=

∫ τ

0

dtb(τ − tb)gk(τ )gl(tb)
(

e−2klDctb − 1
)

. (A26)

(2) tb = τ : tc < 0, tc + τ > ta ⇒ G(ta, τ , tc) = ta

∫ τ

0

dta

∫ 0

ta−τ

dtcgk(ta)gl(τ )
(

e−2klDcG(ta ,τ ,tc) − 1
)

=

∫ τ

0

dta(τ − ta)gk(ta)gl(τ )
(

e−2klDcta − 1
)

. (A27)

Note that this term is completely analogous to the previous one,
and because of the k, l symmetry, both can be combined by
simply computing one of them and taking it twice.

(3) tc = τ − tb : tc > 0, tc + tb > ta ⇒ G(ta, tb, τ − tb)

=

{

0 ta + tb < τ(tc > ta)

ta + tb − τ ta + tb > τ

∫ τ

0

dta

∫ τ

0

dtbgk(ta)gl(tb)
(

e−2klDcG(ta ,tb ,τ−tb) − 1
)

=

∫ τ

0

dta

∫ τ

τ−ta

dtbgk(ta)gl(tb)
(

e−2klDc(ta+tb−τ) − 1
)

. (A28)

(4) tc = ta − τ : tc < 0, tc + tb < ta ⇒ G(ta, tb, ta − τ)

=

{

0 ta + tb < τ(tc + tb < 0)

ta + tb − τ ta + tb > τ

∫ τ

0

dta

∫ τ

0

dtbgk(ta)gl(tb)
(

e−2klDcG(ta ,tb ,ta−τ) − 1
)

=

∫ τ

0

dta

∫ τ

τ−ta

dtbgk(ta)gl(tb)
(

e−2klDc(ta+tb−τ) − 1
)

. (A29)

This term is obviously identical to the previous one.

Based on the above, the four terms can be regrouped into a
simple integral from 0 to τ and a double integral,

d2

dτ 2
κ4,I(τ ) = 24K4

∑

k,l





τ∫

0

dtb(τ − tb)gk(τ )gl(tb)
(

e−2klDctb − 1
)

+

τ∫

0

dta

τ∫

τ−ta

dtbgk(ta)gl(tb)
(

e−2klDc(ta+tb−τ) − 1
)



 ,

(A30)

which is the first contribution to the expression given in Eq. (58).

2. 〈ξn(t1)ξn(t2)ηn(t3)ηc(t4)〉

We can express ξn(tj) in terms of the coupling matrix Knp and
the phases θp and arrive along the very same lines as above at the
following expression:

〈ξn(t1)ξn(t2)ηn(t3)ηc(t4)〉 =
K2

N

∑

p

∑

k

|Ak|
28(k(t2 − t1))

× 〈eikyp(t2−t1 ;t1)ηn(t3)ηc(t4)〉. (A31)

To evaluate the remaining average 〈eikyp(t2−t1 ;t1)ηn(t3)ηc(t4)〉, we
first use relation (46) to express it as a derivative with respect to r and
s of an average of the type 〈eiz〉, where z = yp(t2 − t1; t1) + rηn(t3)

+ sηc(t4). Here, we make again our second approximation and
neglect higher-order cumulants of z when evaluating 〈eiz〉, effec-
tively treating z as Gaussian for the calculation of the higher-order
cumulants of yn(τ ). We can than express 〈eikyp(t2−t1 ;t1)ηn(t3)ηc(t4)〉 in
terms of the variances and covariances of yp(t2 − t1; t1), ηn(t3), and
ηc(t4), see Eq. (47), and obtain

〈eikyp(t2−t1 ;t1)ηn(t3)ηc(t4)〉

=
(

〈ηn(t3)ηc(t4)〉 − k2〈yp(t2 − t1)ηn(t3)〉〈yp(t2 − t1)ηc(t4)〉
)

× e−
k2〈y2

p(t2−t1)〉

2 . (A32)

However, upon closer inspection, one finds that none of these terms
contributes in the large-N limit, as 〈ηn(t3)ηc(t4)〉 = 0 by definition
and

〈yp(t2 − t1)ηn(t3)〉 = δpn2Dη2(t3 − t1)2(t2 − t3). (A33)

The sum over p in Eq. (A31) thus reduces to a single term that scales
with 1/N,

〈ξn(t1)ξn(t2)ηn(t3)ηc(t4)〉 = 4DηDc

K2

N

∑

k

gk(t2 − t1)k
22(t3 − t1)

× 2(t2 − t3)2(t4 − t1)2(t2 − t4),
(A34)

and vanishes as N → ∞.

3. 〈ξn(t1)ξn(t2)ηn(t3)ηn(t4)〉 − 〈ξn(t1)ξn(t2)〉〈ηn(t3)ηn(t4)〉

We can directly apply the intermediate results from the pre-
vious contribution, in particular, relation (47) also discussed in the
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main text, and write

〈ξn(t1)ξn(t2)ηn(t3)ηn(t4)〉

=
K2

N

∑

p

∑

k

|Ak|
28(k(t2 − t1))〈e

ikyp(t2−t1 ;t1)ηn(t3)ηn(t4)〉

(A35)

=
K2

N

∑

p

∑

k

gk(t2 − t1) (〈ηn(t3)ηc(t4)〉

− k2〈yp(t2 − t1; t1)ηn(t3)〉〈yp(t2 − t1; t1)ηn(t4)〉
)

. (A36)

The first term is exactly canceled by 〈ξn(t1)ξn(t2)〉〈ηn(t3)ηn(t4)〉,
which we need to subtract to compute the cumulant. The averages
lryp(t2 − t1; t1)ηn(t3) contribute only for p = n as discussed above,
and we are left with

〈ξn(t1)ξn(t2)ηn(t3)ηn(t4)〉 − 〈ξn(t1)ξn(t2)〉〈ηn(t3)ηn(t4)〉

= −4D2
η

K2

N

∑

k

k2gk(t2 − t1)k
22(t3 − t1)2(t2 − t3)

× 2(t4 − t1)2(t2 − t4). (A37)

This term also vanishes in the limit of N → ∞ and does not
contribute to the fourth cumulant.

4. 〈ξn(t1)ξn(t2)ηc(t3)ηc(t4)〉 − 〈ξn(t1)ξn(t2)〉〈ηc(t3)ηc(t4)〉

This last term follows again straightforwardly from the pre-
vious contribution, where we have to simply replace ηn by ηc.
However, the averages 〈yp(t2 − t1; t1)ηn(tj)〉 contribute for each p in
the sum, which is the equivalent of Eq. (A36), and we eventually
obtain

〈ξn(t1)ξn(t2)ηc(t3)ηc(t4)〉 − 〈ξn(t1)ξn(t2)〉〈ηc(t3)ηc(t4)〉

= −4Dc
2K2

∑

k

k2gk(t2 − t1)2(t3 − t1)2(t2 − t3)

× 2(t4 − t1)2(t2 − t4). (A38)

The contribution to the fourth cumulant is accordingly given by

κ4,IV(τ ) = 6

t+τ∫

t

dt1 · · ·

t+τ∫

t

dt4 (〈ξn(t1)ξn(t2)ηc(t3)ηc(t4)〉

− 〈ξn(t1)ξn(t2)〉〈ηc(t3)ηc(t4)〉)

= −48Dc
2K2

∑

k

k2

t+τ∫

t

dt1

t+τ∫

t1

dt2gk(t2 − t1)(t2 − t1)
2.

(A39)

To further simplify the calculation of κ4,IV(τ ), we again take
the second time derivative with respect to τ . After the vari-
able substitution ta = t2 − t1 and changing the integration to

∫ t+τ

t
dt1

∫ t+τ−t1
0

dta, it is straightforward to obtain

d

dτ
κ4,IV(τ ) = −48Dc

2K2
∑

k

k2

τ∫

0

dt′gk(t
′)t′2, (A40)

where we furthermore used the substitution t′ = t + τ − t1. The
second time derivative then follows immediately as

d2

dτ 2
κ4,IV(τ ) = −48Dc

2K2
∑

k

k2gk(τ )τ 2, (A41)

which is the second contribution to the expression given in Eq. (58).
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