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Recurrently coupled oscillators that are sufficiently heterogeneous and/or randomly coupled can show an
asynchronous activity in which there are no significant correlations among the units of the network. The
asynchronous state can nevertheless exhibit a rich temporal correlation statistics that is generally difficult to
capture theoretically. For randomly coupled rotator networks, it is possible to derive differential equations that
determine the autocorrelation functions of the network noise and of the single elements in the network. So
far, the theory has been restricted to statistically homogeneous networks, making it difficult to apply this
framework to real-world networks, which are structured with respect to the properties of the single units and
their connectivity. A particularly striking case are neural networks for which one has to distinguish between
excitatory and inhibitory neurons, which drive their target neurons towards or away from the firing threshold.
To take into account network structures like that, here we extend the theory for rotator networks to the case of
multiple populations. Specifically, we derive a system of differential equations that govern the self-consistent
autocorrelation functions of the network fluctuations in the respective populations. We then apply this general
theory to the special but important case of recurrent networks of excitatory and inhibitory units in the balanced
case and compare our theory to numerical simulations. We inspect the effect of the network structure on the
noise statistics by comparing our results to the case of an equivalent homogeneous network devoid of internal
structure. Our results show that structured connectivity and heterogeneity of the oscillator type can both enhance
or reduce the overall strength of the generated network noise and shape its temporal correlations.
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I. INTRODUCTION

Groups of interacting oscillators are capable of the promi-
nent phenomenon of synchronization: famous text books have
been devoted to the topic [1,2]. A broad literature identi-
fied conditions under which oscillators rotate to some degree
in synchrony and explored how this is affected by the dis-
tribution of eigenfrequencies, by disorder in the coupling
coefficients, or by dynamical noise (see, e.g., [3–7]). However,
interacting oscillators can also be in an asynchronous state
which is far from being a trivial counterpart of the synchro-
nized case; it is both important in many applications as well
as mathematically challenging to describe, and it is what we
focus on in this article.

In neuroscience, networks of interest consist of excitatory
and inhibitory neurons that are sparsely coupled to each other
via chemical synapses [8,9]. In theoretical studies, networks
with sparse random recurrent connectivity display distinct
states of activity, among them prominently the asynchronous
state, in which the firing of one neuron is not or only very
weakly correlated to the firing of other neurons [10–13].
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Interestingly, this type of state is often observed in cortical
networks of animals in the attentive state [14,15].

In the asynchronous state of neural networks, the main
statistics of interest is the mean activity and the temporal
correlation of spikes within the spike train of a single cell; as
different neurons are not correlated by definition of this state,
their cross correlations can be neglected. We note that early
theories of recurrent networks often focused predominantly
on the mean activity (the firing rate), employing a coarse Pois-
son (white-noise) approximation for the network-generated
fluctuations seen by the single cell [16–18]. However, it has
been shown that the generated network noise is white only in
the limiting case of very weak activity [19,20] and displays,
in general, pronounced correlations, in particular, if realistic
synaptic coupling strengths are taken into account [13,21,22].

What makes the second problem of the output’s autocorre-
lations mathematically tricky is their self-consistency [19,20]:
The correlations in the output of one cell (output correlation)
constitute the input-noise correlation for another cell that re-
ceives input from this very neuron. One may naively hope
that the input correlations will wash out into a temporally
uncorrelated (Poissonian) total input when we sum over the
many statistically independent input spike trains arriving at
the synapses of the considered neuron, but it is relatively easy
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to show that this is not the case [23]. Hence, when considering
spike generation for a neuron embedded in the recurrent net-
work, we do not know the statistics of the network noise that
this neuron is subject to, we only know that this input noise
should have the same correlation function, or equivalently, the
same power spectrum as the spike train (the output) generated
by the very same neuron. This problem of determining self-
consistently the correlation statistics in recurrent networks of
neural oscillators has been pursued in three different ways in
the past.

First, we can turn the condition of self consistence into
an iterative single-neuron simulation scheme [19,20,24–26]
in which we replace the recurrent input by a surrogate Gaus-
sian noise. In contrast to the diffusion approximation, which
employs white Gaussian noise [16–18], here temporal corre-
lations of the input noise are taken into account by changing
iteratively the power spectrum of the input noise according
to the output spectrum of the previous iteration. This can be
repeated until the input and output spectra match to some de-
gree of accuracy. The simplest version of this procedure works
only for a homogeneous network [19,20] but it can be gen-
eralized to heterogeneous setups as well [22]. This approach
provides efficient numerical schemes to generate spike trains
with power spectra that are in many cases indistinguishable
from those measured in large recurrent networks. However,
it does not give us an analytical theory of the self-consistent
autocorrelations as the scheme ultimately requires stochastic
simulations.

Second, it is possible to extend the classical diffusion
approximation via the Fokker-Planck approach for recurrent
networks of integrate-and-fire neurons. In a more accurate
description of the network noise, additional variables via a
Markovian embedding account for the self-consistent correla-
tions of the input noise [27]. The white noise is here replaced
by a multidimensional Ornstein-Uhlenbeck process the coef-
ficients of which have to be found from the self-consistency
condition for the autocorrelations of the spike train. The re-
sulting high-dimensional Fokker-Planck equation is difficult
to treat both analytically and numerically.

A third approach to the problem of the self-consistent
correlations of neural oscillators is a radical simplification of
the neuron model. Instead of an integrate-and-fire model as
used in most of the aforementioned papers, one can, e.g., use
rate units as done in the pioneering study by Sompolinsky,
Crisanti, and Sommer [28] and derive a single differential
equation giving access to the self-consistent autocorrelation
function of the units (as comprehensively explained in [29]).
This ansatz was more recently generalized to take into account
heterogeneity in the network [30–32].

Another approach employing a simplified model was sug-
gested by van Meegen and Lindner [33] who studied a
randomly connected network of phase rotators and derived
equations for the autocorrelation function of the network noise
and of the single units. We, quite recently, extended their the-
ory to the case of additional (common or individual) dynamic
noise [34]. In both studies, the model was restricted to have
a homogeneous random connectivity, a setting in which it is
not possible to strictly define excitatory and inhibitory units.
Here we present another extension of the theory, namely,
for networks comprising populations of phase rotators with

distinct properties. We test the theory for the important special
case of recurrent networks of excitatory and inhibitory units,
a network of two populations that differ in their statistics of
eigenfrequencies and connectivity. We discuss how the het-
erogeneity of the network affects the temporal correlations of
the network noise and the correlations of the single units and
compare specifically to the case of a homogeneous network.

Our paper is organized as follows. In the next section, we
introduce the model for a network of multiple populations of
rotators and develop the general theory for the network noise
correlation functions. In Sec. III we apply this general theory
to the case of excitatory-inhibitory networks in the balanced
state and highlight the differences for the correlation statis-
tics (correlation functions and power spectra) to the statistics
that would be observed in a homogeneous network with sta-
tistically identical but randomized (unstructured) single-unit
properties and connectivities. Finally, in Sec. IV we summa-
rize our results and discuss open problems for future research.

II. GENERAL THEORY FOR MULTIPLE POPULATIONS

We consider the following dynamical equation for phase
variables θα

m of P distinct populations α ∈ P = {A, B, . . .},
m ∈ Nα = {1, . . . , Nα}:

θ̇ α
m = �α

m +
∑
β∈P

∑
n∈Nβ

Kαβ
mn Fαβ

[
θβ

n (t )
]
, (1)

where, in all generality, also the coupling functions Fαβ

may depend both on pre- and postsynaptic populations. This
amounts to a total number of N = ∑

α Nα equations for the N
neurons in the heterogeneous network.

We assume that all values of intrinsic frequencies �α
m and

the coupling coefficients Kαβ
mn are independently drawn for all

N units and N (N − 1) connections between distinct neurons,
respectively, excluding self-connections. The heterogeneity of
the network is captured by potentially distinct statistics of the
underlying distributions, for each population α in the case of
the intrinsic frequencies and for pairs of populations αβ in
the case of the coupling coefficients. Note that the block ma-
trices Kαβ

mn together contain the N × N recurrent connections
among all neurons (the self-connections being set to zero). We
furthermore take into account the potential heterogeneity in
the coupling functions Fαβ between (not necessarily distinct)
populations β and α.

Specifically, we consider the intrinsic frequencies to be
Gaussian distributed with respective mean values 〈�α

m〉 = �α
0

and variances 〈(�α
m − �α

0 )2〉 = σ̃ 2
α . For the theory, we do not

have to assume a particular distribution for the coupling co-
efficients Kαβ

mn but characterize them exclusively by their first-
and second-order statistics〈

Kαβ
mn

〉 = κ
αβ

1 , (2a)〈
Kαβ

mn Kγ δ
op

〉 = κ
αβ

1 κ
γ δ

1 + κ
αβ

2 δαγ δβδδmoδnp, (2b)〈
(Kαβ

mn )2
〉 = (

κ
αβ

1

)2 + κ
αβ

2 . (2c)

Here and in the following, the angular brackets represent av-
erages over different realizations of the network, the intrinsic
frequencies, and initial conditions. Specific choices for the
coupling matrices are introduced and discussed further below.
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In the following, we will assume that the presynaptic
phases are uniformly distributed, as can be expected for an
asynchronous state. We can then introduce shifted intrinsic
frequencies ωα

m and coupling functions fαβ to absorb any finite
mean input. With

Fαβ (θ ) =
∑

l

Aαβ

l eilθ = Aαβ

0 + fαβ (θ ), (3a)

fαβ (θ ) =
∑
l �=0

Aαβ

l eilθ , (3b)

we obtain

θ̇ α
m = ωα

m +
∑
β∈P

∑
n∈Nβ

Kαβ
mn fαβ

[
θβ

n (t )
]
, (4)

where 〈
ωα

m

〉 = �α
0 +

∑
β∈P

∑
n∈Nβ

κ
αβ

1 Aαβ

0 ≡ ωα
0 , (5a)

〈(
ωα

m − ωα
0

)2〉 = σ̃ 2
α +

∑
β∈P

∑
n∈Nβ

κ
αβ

2

(
Aαβ

0

)2 ≡ σ 2
α . (5b)

Of particular importance is the so-called balanced state in
which the recurrent input to the single unit does not diverge in
the limit of an infinite network [35]. A simple choice for such
a scenario is a vanishing mean value. From the above it can be
seen that the recurrent input vanishes when∑

β∈P

∑
n∈Nβ

κ
αβ

1 Aαβ

0 =
∑
β∈P

Nβκ
αβ

1 Aαβ

0 ≡ 0. (6)

These P equations impose constraints on the parameters Nβ ,
κ

αβ

1 , and Aαβ

0 . A typical choice is to scale the κ
αβ

1 with inverse
powers of Nβ ; the above constraints allow to have a finite
(in fact vanishing) mean value for infinite populations even
when the individual terms Nβκ

αβ

1 Aαβ

0 would diverge [10].
Note that because the units in the network are not pulse-
coupled, the analogy to the balanced state applies above all
to this particular scaling of the synaptic weights that result
in a finite network noise even in the thermodynamic limit;
more specifically, our model does not allow us to assess “dy-
namical balance” discussed in the context of balanced spiking
networks [10,35].

To develop a self-consistent theory for coupled populations
of neurons, we rewrite the recurrent input and the governing
equations for the phases as follows:

θ̇ α
m = ωα

m + ξα
m, (7a)

ξα
m =

∑
β∈P

ξαβ
m , ξαβ

m =
∑

n∈Nβ

Kαβ
mn fαβ

[
θβ

n (t )
]
. (7b)

In line with previous theories [28,33] (but see [34]), we will
now assume that in the asynchronous state the ξαβ

m can be
approximated as stochastic noise processes with Gaussian
statistics and given temporal correlations. Exactly these statis-
tics, captured by the correlation functions of the ξαβ

m , will be
determined self-consistently, which eventually will allow us
to describe the statistics of the network without solving the
full (deterministic) N equations of the network. The following
derivations, shown for completeness and to make our presen-
tation self-contained, are similar in spirit to what was done in

[33,34] and we refer the interested reader to these works for
more detailed discussions of the steps involved. The results
become exact in the limit Nα → ∞ for all populations α while
the number of populations P remains finite.

We first note that the autocorrelation function Cα
ξ (τ ) =

〈ξα
m (t + τ )ξα

m (t )〉 of the combined input ξα
m to population α

is given by a simple sum over the autocorrelation functions
Cαβ

ξ (τ ) = 〈ξαβ
m (t + τ )ξαβ

m (t )〉 of the individual inputs ξαβ
m .

According to Eq. (7b),

Cα
ξ (τ ) =

∑
β∈P

∑
γ∈P

〈
ξαβ

m (t + τ )ξαγ
m (t )

〉

=
∑
β∈P

〈
ξαβ

m (t + τ )ξαβ
m (t )

〉 =
∑
β∈P

Cαβ

ξ (τ ) ; (8)

in the second line, we used additionally that the sum over γ

reduces to one term because for β �= γ〈
ξαβ

m (t + τ )ξαγ
m (t )

〉
=

∑
n∈Nβ

∑
n′∈Nγ

〈
Kαβ

mn Kαγ

mn′ fαβ

[
θβ

n (t + τ )
]

fαγ

[
θ

γ

n′ (t )
]〉

=
∑

n∈Nβ

∑
n′∈Nγ

〈
Kαβ

mn Kαγ

mn′
〉〈

fαβ

[
θβ

n (t + τ )
]〉〈

fαγ

[
θ

γ

n′ (t )
]〉

=
∑

n∈Nβ

∑
n′∈Nγ

κ
αβ

1 κ
γ δ

1 · 0 · 0 = 0, (9)

where 〈 fαβ (θβ
n )〉 = 0 follows from averaging over random,

uniformly distributed θβ
n (note that fαβ (θ ) = ∑

l �=0 Aαβ

l eilθ ).

Turning to the correlation functions Cαβ

ξ (τ ), we find〈
ξαβ

m (t + τ )ξαβ
m (t )

〉
=

∑
n∈Nβ

∑
n′∈Nβ

〈
Kαβ

mn Kαβ

mn′ fαβ

[
θβ

n (t + τ )
]

fαβ

[
θ

β

n′ (t )
]〉

=
∑

n∈Nβ

∑
n′∈Nβ

〈
Kαβ

mn Kαβ

mn′
〉〈

fαβ

[
θβ

n (t + τ )
]

fαβ

[
θ

β

n′ (t )
]〉

=
∑

n∈Nβ

〈
Kαβ

mn
2〉〈

fαβ

[
θβ

n (t + τ )
]

fαβ

[
θβ

n (t )
]〉

(2c)= Nβ

[(
κ

αβ

1

)2 + κ
αβ

2

]〈
fαβ

[
θβ

n (t + τ )
]

fαβ

[
θβ

n (t )
]〉
. (10)

As above, terms with n′ �= n drop out, assuming that θβ
n (t1),

θ
β

n′ (t2) are uncorrelated since we consider an asynchronous
state.

Using the Fourier representation of fαβ and expressing the
phases as integrals of the respective inputs

θβ
n (t ) = θβ

n (t0) +
∫ t

t0

dt ′θ̇ β
n (t ′)

= θβ
n (t0) + ωβ

n (t − t0) +
∫ t

t0

dt ′ξβ
n (t ′), (11)

one eventually obtains for the remaining average in Eq. (10)〈
fαβ

[
θβ

n (t + τ )
]

fαβ

[
θβ

n (t )
]〉

=
∑
l �=0

∑
l ′ �=0

Aαβ

l Aαβ

l ′
〈
eilθβ

n (t+τ )eil ′θβ
n (t )

〉
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=
∑
l �=0

∑
l ′ �=0

Aαβ

l Aαβ

l ′ 〈ei(l+l ′ )θβ
n (t0 )〉︸ ︷︷ ︸

δl,−l′

〈
eil

∫ t+τ

t0
dt ′ θ̇ β

n (t ′ )eil ′
∫ t

t0
dt ′ θ̇ β

n (t ′ )〉

=
∑
l �=0

∣∣Aαβ

l

∣∣2〈
eiωβ

n lτ
〉〈

eil
∫ t+τ

t dt ′ξβ
n (t ′ )〉

=
∑
l �=0

∣∣Aαβ

l

∣∣2

β (lτ )e− l2

2 〈[yβ
n (τ )]2〉. (12)

In the last step, we introduced the characteristic function of
the distribution over the (effective) intrinsic frequencies ωβ

n of
population β,


β (lτ ) = 〈eiωβ
n lτ 〉, (13)

and assumed that the integrated recurrent input (or integrated
network noise)

yβ
n (τ ; t ) =

∫ t+τ

t
dt ′ξβ

n (t ′) (14)

is Gaussian-distributed with zero mean, which implies

〈eilyβ
n (τ )〉 = e− l2

2 〈[yβ
n (τ )]2〉.

Using furthermore∫ t+τ

t
dt ′

∫ t+τ

t
dt ′′〈ξβ

n (t ′)ξβ
n (t ′′)

〉

= 2
∫ τ

0
dt (τ − t )

〈
ξβ

n (t + τ )ξβ
n (t )

〉

= 2
∫ τ

0
dt (τ − t )Cβ

ξ (t ), (15)

and the definition

�α (τ ) =
∫ τ

0
dt (τ − t )Cα

ξ (t ), (16)

we eventually obtain the following system of ordinary differ-
ential equations for the �α (τ ):

�̈α (τ ) =
∑
β∈P

Nβ

[(
κ

αβ

1

)2 + κ
αβ

2

] ∑
l �=0

∣∣Aαβ

l

∣∣2

β (lτ )e−l2�β (τ ),

(17)

the solutions of which give the network-noise autocorrelation
according to

Cα
ξ (τ ) = �̈α (τ ). (18)

Equation (17) is the key result of our paper. We reduced
the N equations for all the neurons in the nework to P coupled
second-order ordinary differential equations for the functions
�α (τ ) that provide the self-consistent network statistics. In
the previously considered case of a homogeneous network
with P = 1, the set of equations reduces to a single one that
was derived by van Meegen and Lindner [33]. The same
reduction applies when all statistics for the different subpop-
ulations are identical, i.e., all parameters become independent
of α and β (καβ

1 = κ1, . . .).
In addition to the correlation function of the network noise,

we can also determine the correlation statistics of the single
rotators. Using the phase evolution given by Eq. (7a), it is
relatively straightforward to calculate the correlation function
for the pointer xα

m(t ) = eiθα
m (t ) for rotator m of population α

with effective intrinsic frequency ωα
m. (Note that the dynam-

ics θ̇ = ω + ξ , where ξ is a noise, corresponds to the Kubo
oscillator [36], with the added complication that the noise
is determined self-consistently here.) Along the lines of the
derivation of Cα

ξ , we eventually obtain

Cxα
m
(τ ) = eiωα

mτ−�α (τ ). (19)

Often, it makes sense to pool the data of the rotators of one
type. This corresponds to an average over the autocorrelation
functions of the pointers xα

m(t ) of the specific subpopulation.
In the limit of large Nα , this approaches an average over the
frequencies ωα

m,

Cα
x (τ ) = 〈eiωα

mτ−�α (τ )〉ωα = 
α (τ )e−�α (τ ), (20)

where 
α (τ ) is the characteristic function of the effective
intrinsic frequency distribution of population α. We note that
this averaged correlation function is also proportional to the
autocorrelation function of a subpopulation activity

X α (t ) =
∑

n∈Nα

xα
n (t ), (21)

because for uncorrelated rotators, one finds readily

Cα
X (τ ) =

∑
n∈Nα

Cxα
n
(τ ) ≈ NαCα

x (τ ). (22)

Here, we used again that for large Nα the sampling over
distinct rotators corresponds to an ensemble average over the
effective frequencies.

Instead of correlation functions with pronounced oscil-
latory components, it can be instructive to consider the
power spectra of the observables. These are here obtained
by numerical Fourier transformation of the autocorrelation
functions, according to the Wiener-Khinchin theorem [36],
S(ω) = 2Re

∫ ∞
0 dτC(τ )e−iωτ .

III. APPLICATION TO AN EXCITATORY-INHIBITORY
NETWORK IN THE BALANCED STATE

As an example application, we consider an excitatory-
inhibitory (E -I) network comprising two populations P =
{E , I}. Units are connected with probability p and (if con-
nected) possess a fixed synaptic connection strength jαβ that
depends on pre- and postsynaptic neuron identity, where
jαE > 0 and jαI < 0 to reflect the excitatory and inhibitory
character of populations E and I , respectively. For uncon-
nected neurons, the coupling coefficients are set to zero. We
can then give the network statistics introduced above in terms
of the jαβ and p:

κ
αβ

1 = p jαβ, (23a)

κ
αβ

2 = p(1 − p) j2
αβ, (23b)〈(

Kαβ
mn

)2〉 = p j2
αβ. (23c)

The self-consistent equations (17) for the network-noise
statistics thus become

�̈α (τ ) =
∑
β∈P

pNβ j2
αβ

∑
l �=0

∣∣Aαβ

l

∣∣2

β (lτ )e−l2�β (τ ). (24)
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We remind the reader that the characteristic functions 
β

reflect the effective distributions of the intrinsic frequencies
taking into account the mean recurrent input, see the dis-
cussion surrounding Eqs. (5). In particular, we see that the
sign of the synaptic coupling does not influence the dynamics
directly as only j2

αβ enters Eq. (24). To distinguish excitation
and inhibition in the framework of our model, we thus need
coupling functions Fαβ with nonvanishing Fourier compo-
nents Aαβ

0 > 0, giving rise to nonvanishing mean synaptic
inputs. We adopted here the view that the net effect of the
presynaptic unit over one period is the meaningful quantity to
consider. Alternatively, we could require Fαβ (θ ) > 0 for all θ ,
and accordingly Aαβ

0 > maxθ | fαβ (θ )|. As different values of
Aαβ

0 could be absorbed in the weights Kαβ
mn , we consider in the

following without loss of generality that Aαβ

0 = 1. Requiring
Fαβ (θ ) > 0 would then become a constraint on the Aαβ

l , l �= 0,
to satisfy maxθ | fαβ (θ )| < 1, without changing any of the
results below.

A. Simplification of the two-population theory resulting
from the balance condition

As can be seen from the products pNβ j2
αβ appearing in each

term of Eq. (24), the network noise can be expected to be finite
and nonzero in the limit of large N if the synaptic strengths jαβ

scale with the average number of connections according to

jαβ = Jαβ√
pNβ

. (25)

We then have

ωα
0 = �α

0 +
√

pNE JαE +
√

pNI JαI (26)

for the mean effective intrinsic frequency of population α. To
ensure that the intrinsic frequencies remain finite in the limit
of large N and constant p, we choose the case of balanced
input, i.e.,

JαI = −JαE

√
NE/NI . (27)

The spread of the intrinsic frequencies due to the random
connectivity remains finite and is in this case given by

σ 2
α = σ̃ 2

α + (1 − p)J2
αE (1 + NE/NI ). (28)

Note that the effective spread of the frequencies depends on
our choice of the connectivity, here of the Erdos-Rényi type.
If, for instance, we chose a balanced networks with a fixed
in-degree, the intrinsic frequencies would not be affected by
the (otherwise random) recurrent connections, in contrast to
Eq. (28).

Let us furthermore assume that the coupling functions only
depend on the presynaptic identity, i.e.,

fαβ (θ ) ≡ fβ (θ ) or AαE
l ≡ AE

l , AαI
l ≡ AI

l . (29)

For the balanced network, we can then further simplify the
equations for �α with the substitutions

�α (τ ) = J2
αEλ(τ ), (30)

giving rise to a single ordinary differential

equation for λ(τ ):

λ̈(τ ) ≡ �̈α (τ )

J2
αE

=
∑
β∈P

J2
αβ

J2
αE

∑
l �=0

∣∣Aαβ

l

∣∣2

β (lτ )e−l2�β (τ )

=
∑
l �=0

∣∣AE
l

∣∣2

E (lτ )e−l2J2

EE λ(τ ) + NE

NI

∑
l �=0

∣∣AI
l

∣∣2

× 
I (lτ )e−l2J2
IE λ(τ ). (31)

Remarkably, this means that for a balanced network, the the-
ory for a two-population system is almost as simple as the
theory for a single homogeneous population. Notably, the
correlation functions CE

ξ (τ ) and CI
ξ (τ ) of the network input to

populations E and I , respectively, are simply scaled versions
of each other.

B. Comparison to an unstructured network and the
corresponding single-population theory

The theory for the balanced E -I network derived
above takes into account the particular structure of the
network, which is comprised of two distinct popula-
tions with specific input noise statistics. We can now
ask how well such a network would be described by
the original theory of van Meegen and Lindner de-
veloped for networks devoid of internal structure, i.e.,
for a homogeneous network. This begs the question of
how such a comparison can be meaningfully conceived.
We consider here for comparison a randomized version
of the original, structured network where all connec-
tion strengths Kmn, with m, n = 1, . . . , N , are drawn from
the combined and properly weighted distributions of the
Kαβ

mn , with m = 1, . . . , Nα , n = 1, . . . , Nβ , and α, β ∈ P .
Since in the theory for homogeneous networks the cou-
pling functions between units were assumed to be the
same for all connections, we will restrict the compari-
son further to the case where fE (θ ) = fI (θ ) ≡ f (θ ) for
all θ .

To apply the single-population theory and assess the effect
of network structure by comparison, we thus consider the
effective “single-population” network

θ̇m = ωm + ξm, (32a)

ξm =
∑

n

Kmn f (θm), (32b)

where m, n are now indices that run over all N = NE + NI

units. We consider the effective distribution of the intrin-
sic frequencies of the homogeneous network to be given
by peff (ω) = NE

N N (ωE
0 , σE ) + NI

N N (ωI
0, σI ), that is, by the

weighted combination of the frequency distributions of the
original populations E and I , where we take into account
the additional broadening due to the recurrent input expected
for each population, see Eq. (28). Note that one could also
consider instead the broadening that would be expected from
the unstructured recurrent input

∑
n KmnF (θn) on rotators with

intrinsic frequencies �m; however, we choose here to restrict
our comparison to the effects related to the self-generated
network noise.
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For an unstructured network, the network-noise correlation
function Cξ (τ ) = 〈ξm(t + τ )ξm(t )〉 is given by

Cξ (τ ) = �̈(τ ), (33a)

�̈(τ ) = K2
∑
l �=0

|Al |2
(lτ )e−l2�(τ ), (33b)

according to van Meegen and Lindner [33]. Here, K2 is related
to the variance of the connectivity matrix Kmn that contains
the recurrent synaptic weights of all N units and 
(t ) is the
characteristic function of the distribution of effective intrinsic
frequencies for both populations combined. With the synaptic
weights between populations given above, one finds for the
variance of the connectivity matrix

〈
K2

mn

〉 = 1

N

(
J2

EE

NE

NI
+ J2

IE

)
. (34)

Our approximation of a two-population network would thus
become

�̈(τ ) = K2
∑
l �=0

|Al |2
(

NE

N

E (lt ) + NI

N

I (lt )

)
e−l2�(τ ),

(35)

with K2 = J2
EE NE/NI + J2

IE .
From the solution of Eq. (35), we obtain the correlation

function of the pointer xm(t ) = eiθm (t ) of rotator m with effec-
tive intrinsic frequency ωm according to

Cxm (τ ) = eiωmτ−�(τ ). (36)

[Note that the network-noise autocorrelation function Cξ (t ) is
directly given by Eq. (33a).] In a strict sense, the theory for an
unstructured network does not permit to consider correlation
functions at the level of distinct populations. To compare
the population-averaged rotator autocorrelation functions pre-
dicted by the two-population theory to the “unstructured”
network, we can, however, average over the effective intrinsic
frequency distributions of populations E and I , respectively,
such that

CE ,I
x (τ ) = 
E ,I (τ )e−�(τ ). (37)

Thus comparing the two-population theory to the equivalent
“unstructured” network allows one to assess the importance
of having a correct description of the self-generated network
noise at the level of the individual populations, whereas the
first-order effect due to the spread of intrinsic frequencies is
taken into account also in the one-population theory.

Let us finally consider the specific case where the con-
nection strengths Jαβ do not depend on the postsynaptic
identity, i.e., JEE = JIE ≡ J (and consequently JEI = JII =
−J

√
NE/NI ). For the structured network, with �(τ ) =

J2λ(τ ), we have

CE
ξ (τ ) = CI

ξ (τ ) = �̈(τ ), (38)

and with K2 = J2N/NI the two-population theory reduces to

�̈(τ ) = K2
∑
l �=0

|Al |2
(

NI

N

E (lτ ) + NE

N

I (lτ )

)
e−l2�(τ ),

(39)

which indeed is very similar to the single-population theory
Eq. (35) but interestingly does not exactly correspond to that
result. This difference can be understood as follows. Whereas
in the unstructured network [Eq. (35)], the characteristic func-
tions of each population are weighted with the population
size, they contribute in the actual two-population network
[Eq. (39)] with a weight that scales with the synaptic strength.
For a typical value of g ≡ NE/NI = 4, the balance condition
implies that albeit the inhibitory population is smaller in size,
its characteristic function influences the dynamics of the self-
generated noise more strongly.

C. Comparison to network simulations

Even though we consider the balanced case of an E -I
network, we still have some freedom in choosing the synaptic
coupling strengths for the distinct connections. In the follow-
ing, we separately study three such choices that differ in the
overall scaling of the synaptic inputs to the inhibitory popula-
tion compared to the inputs to the excitatory population. For
simplicity, we consider the coupling function f (θ ) = sin θ for
our simulations and the numerical evaluation of Eqs. (31)
and (35), but in principle also more complicated coupling
functions with a finite number of Fourier coefficients can be
used.

1. Strong input to the inhibitory population

We start with the case illustrated in Fig. 1 on the left: both
excitatory and inhibitory inputs to the inhibitory population
are chosen to be very strong compared to the inputs to the
excitatory population, i.e., JIE > JEE and |JII | > |JEI |, where
the latter follows directly from the first with the balance condi-
tion (27). First of all, we remark that all measured correlation
functions and power spectra (blue and orange for the E and
I populations, respectively) are well described by our two-
population theory (the dashed and dotted black lines), see
Figs. 1(a) to 1(f).

As expected, for our choice of input amplitudes, the net-
work noise for neurons in the I population (orange) is stronger
than for neurons in the E population (blue), indicated by
a larger network-noise correlation function [Fig. 1(a)] and
power spectrum [Fig. 1(b)]; in fact, according to our theory
and as confirmed by our simulations, the correlation function
of the network noise for the I units is just an upscaled version
of that for the E units. In particular, this implies that CE

ξ (τ )
and CI

ξ (τ ) share the same time dependence. We can also com-
pare the network noise correlation functions to the prediction
of the single-population theory (gray line), which does not
share this time course. We note that in the considered case the
single-population theory provides correlation functions and
power spectra that are in between the corresponding statistics
for the E and I populations. This seems to be plausible but has
not necessarily to be the case (see below).

Turning to single-rotator statistics, we show the correla-
tion functions [Fig. 1(c)] and power spectra [Fig. 1(d)] for
specific rotators, one from each population (blue and or-
ange lines for the E and I units, respectively), and use their
eigenfrequencies ωi to calculate the corresponding theoretical
predictions (the dashed and dotted black lines, respectively).
While these statistics clearly indicate the presence of intrinsic
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(a) (b)

(c) (d)

(e) (f)

FIG. 1. Network statistics for a balanced E-I network with strong input to the inhibitory population. Left: Sketch of the network with
excitatory and inhibitory populations and corresponding connection strengths. Right: Measured (a,c,e) correlation functions and (b,d,f) power
spectra for (a,b) network noise, (c,d) single rotators, and (e,f) population-averaged rotators. Network parameters: NE = 800, NI = 200, p = 0.2,
JEE = 0.5, JIE = 2, �E

0 = 1, �I
0 = 3, σ̃E = σ̃I = 0, f (θ ) = sin θ ; simulation parameters: time step dt = 0.01, simulation length T = n0T0 with

time window T0 = 1000 and n0 = 10, repeated for nr = 12 network realizations with newly drawn connectivity matrices; numerical integration
parameters: time step dt = 0.01, T = 1000.

oscillations, a pronounced damping of the correlation func-
tion [Fig. 1(c)] and, equivalently, a considerable width of the
spectral peak [Fig. 1(d)] is apparent. The damping of the
correlation function is related to the phase diffusion of the
stochastic oscillator, which in turn is entirely driven by the
network noise [see, e.g., Eq. (7a)]. Consistent with our choice
of strong synaptic couplings onto the I population and, in
consequence, a stronger network noise for the units in that
population, this damping is considerably stronger for those
units. Of note, this difference in damping cannot be captured
by the equivalent one-population theory (the dashed and dot-
ted gray lines for the E and I units, respectively), as only a
single “aggregate” network noise is described by this theory,
see also Figs. 1(a) and 1(b).

We finally show the population-averaged correlation func-
tions [Fig. 1(e)] and power spectra [Fig. 1(f)] of the rotators.
The intrinsic eigenfrequencies of the rotators differ signif-
icantly even within population [according to Eq. (28), for
the excitatory units the standard deviation σE = 1 is as
large as the mean frequency �E

0 = 1; for inhibitory units,
the spread is even larger (σI = 4, �I

0 = 3)]. For this rea-
son, the intrinsic oscillations are much less apparent in the
correlation functions, see Fig. 1(e). The power spectra are
peaked at the respective mean frequencies of both popu-
lations, see Fig. 1(f), where the spectral width is now a
combined effect of the spread of the intrinsic frequencies

and the network noise. For the population-averaged rotator
statistics, the single-population theory for the equivalent ho-
mogeneous network (dashed and dotted gray lines) is closer
to the network simulation and two-population theory than
for the single rotators [cf. Figs. 1(c) and 1(d)]. Notably, the
spectral widths of the peaks in the power spectra given by
the one-population theory are not identical for both popula-
tions [Fig. 1(f)]. We remind the reader that we incorporate
an explicit average over the correct intrinsic frequency distri-
bution of each population, see Eq. (37). Thus, the improved
correspondence of single-population theory for this specific
statistics indicates that these spectral widths are, to a sig-
nificant degree, determined by the spread of the effective
eigenfrequencies.

2. Weak input to the inhibitory population

We now discuss the opposite case, where the inputs to
the I population are chosen to be smaller than the inputs to
the E population, see the sketch of Fig. 2, left. Again, the
two-population theory (dashed and dotted black lines) nicely
captures all measured statistics of the network simulations
(blue and orange lines). Since we present the same statistics
(correlation functions and power spectra of network simula-
tions, the two-population theory, and the single-population
theory) as in the previous case, we will focus in the
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(a) (b)

(c) (d)

(e) (f)

FIG. 2. Network statistics for a balanced E-I network with weak input to the inhibitory population. Left: Sketch of the network with
excitatory and inhibitory populations and corresponding connection strengths. Right: Measured (a,c,e) correlation functions and (b,d,f) power
spectra for (a,b) network noise, (c,d) single rotators, and (e,f) population-averaged rotators. Parameters as in Fig. 1 except JIE = 0.2.

following on those observations that highlight the difference
of the present case from the previous one.

First of all, the network noise is now clearly stronger
for the excitatory population than for the inhibitory popu-
lation, see Figs. 2(a) and 2(b), consistent with a reversal of
“strong” and “weak” synaptic input compared to the situation
in Fig. 1. More interestingly, the network noise predicted
by the one-population theory exhibits a strong low-frequency
component and its statistics does not appear to be a simple
interpolation between the statistics of the network noise of
excitatory and inhibitory populations. A discrepancy between
the one-population theory and the network simulations is
again found in the statistics for single rotators [Figs. 2(c) and
2(d)], where the distinct spectral widths of both populations
cannot be captured by the approximation of the true network
by an unstructured network. We note that the two-population
theory describes very well the observed spectra including the
weak side peaks, see inset of Fig. 2(d). In line with the weak
network noise for the I population, the intrinsic oscillation of
the I unit is very weakly damped as indicated by the small
spectral width [Fig. 2(d)] and the persistent oscillations in the
correlation function [Fig. 2(c)]. For the population averages
of the single rotator statistics, the one-population theory again
fares better than for the statistics of an individual rotator.
However, in the present case of weak input to the inhibitory
population, the spread of the intrinsic frequencies of the I
population σI = 0.4 is considerably smaller than the mean
frequency �I

0 = 3, and the effect of the network noise is more
important than in the previous case. This explains the stronger

deviation of the population-averaged correlation function and
power spectrum predicted by the one-population theory for
the I population.

3. Inputs of similar strength for E and I units

As a last example, we consider the case where the synaptic
input strengths are the same for all units, i.e., JEE = JIE and
JEI = JII , see the sketch of Fig. 3, left. As predicted by our
two-population theory and confirmed by simulations, the net-
work noise statistics are then identical for E and I populations
[Figs. 3(a) and 3(b)].

In light of the identical network noise, one might be
tempted to think that for the considered situation the theory for
the equivalent “unstructured” network should give the same
results as the full theory. It is thus instructive to compare
the remaining differences between the full heterogeneous net-
work and the one-population theory. As can be seen from
Fig. 3 (gray lines), the one-population theory fails to describe
the observed network noise and rotator statistics correctly.
(i) In the network noise spectrum [Fig. 3(b)], we observe
increased power at low frequencies and the absence of a
spectral peak at a nonvanishing frequency, in marked contrast
to the two-population theory and the network simulations.
(ii) In the single-rotator correlation functions and power spec-
tra [Figs. 3(c) and 3(d)], the one-population theory predicts
a significantly stronger damping of the correlations, an effect
which is also reflected in the population-averaged correlation
functions and spectra [Figs. 3(e) and 3(f)].
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(a) (b)

(c) (d)

(e) (f)

FIG. 3. Network statistics for a balanced E-I network with equal input to the excitatory and the inhibitory populations. Left: Sketch of
the network with excitatory and inhibitory populations and corresponding connection strengths. Right: Measured (a,c,e) correlation functions
and (b,d,f) power spectra for (a,b) network noise, (c,d) single rotators, and (e,f) population-averaged rotators. Parameters as in Fig. 1 except
JIE = 0.5.

As already briefly mentioned [cf. discussion following
Eq. (39)], the remaining discrepancy between the “structured”
and the “unstructured” network is due to the difference in con-
nection weights JαE and JαI of excitatory and inhibitory units,
respectively, combined with the difference in intrinsic fre-
quencies. The remaining structure of the considered network
is that the faster oscillators (I units) still have much stronger
synaptic weight than the slower oscillators (E units): an ef-
fect that cannot be taken into account in the one-population
theory.

We further remark that in the case of identical couplings for
inhibitory and excitatory units, the contribution of recurrent
inputs to the spread of the intrinsic frequencies is the same for
both populations [Eq. (28)]. For our parameters, the total fre-
quency spread is thus identical (σE = σI = 1) as can also be
observed in the single-rotator statistics [Figs. 3(c) to 3(f)]. We
finally note that while in the present case the one-population
theory overestimates the phase diffusion of rotators, this is
not a general feature of our setup when coupling strengths
JEE = JIE are identical but other parameters can differ. If we,
for instance, switch the roles of the E and I units with respect
to their intrinsic frequencies, see Fig. 4, the predictions for
correlation functions and power spectra of the two-population
theory become exactly the ones of the one-population theory
of Fig. 3 and vice versa. In particular, the one-population the-
ory now underestimates the broadening of the single-rotator
power spectra [Figs. 4(d) and 4(f)].

IV. SUMMARY AND OUTLOOK

In this paper we developed a general theory for the correla-
tion functions of the self-generated network noise and single
units in a heterogeneous network of rotators. The hetero-
geneity was introduced by means of populations with distinct
properties of the single elements and distinct connectivities.
Our theory, which builds on the work by van Meegen and
Lindner, culminated in the system of equations (17), meaning
that in the end we reduced the problem of calculating the cor-
relations from simulating N = ∑P

α=1 Nα elements to solving
P ordinary differential equations.

Our results demonstrate, first of all, that the theory works.
Despite being strictly valid only in the limit of Nα → ∞ for
all α (due to the assumption of Gaussianity for network fluctu-
ations), it works already for comparatively small numbers of
units; in our test we used only NI = 200 inhibitory units. This
means that it can be applied for realistic numbers of oscillators
and is useful to capture finite-size effects of the network noise
even in cases in which a balance condition is not obeyed.

The theory introduced here could be further explored
and generalized in various directions. One could try to
solve the resulting differential equations analytically (for
example, in a homogeneous situation, see [33]), using
simplifying assumptions for the coupling statistics and fre-
quency distributions; explicit formulas for the correlation
functions and spectra may provide further insights into the
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(a) (b)

(c) (d)

(e) (f)

FIG. 4. Network statistics for a balanced E-I network with equal input to the excitatory and the inhibitory populations, with inverted in-
trinsic frequencies of excitatory and inhibitory units. Left: Sketch of the network with excitatory and inhibitory populations and corresponding
connection strengths. Right: Measured (a,c,e) correlation functions and (b,d,f) power spectra for (a,b) network noise, (c,d) single rotators, and
(e,f) population-averaged rotators. Parameters as in Fig. 1 except JIE = 0.5, �E

0 = 3, and �I
0 = 1.

effects of network heterogeneity on the generated network
noise.

Beyond the case of two distinct populations, one should ex-
plore networks with three or more populations. In particular,
the diversity of inhibitory cells in the cortex (see, e.g., [37])
suggests to study networks with one population of excitatory
(pyramidal) cells but two or more types of interneurons (see,
e.g., [38] for a recent computational study of such a network).

Another extension is to make the rotator coupling more
similar to the pulse coupling in recurrent networks of
integrate-and-fire models. For homogeneous networks such an
approach was suggested already in [33] and it was shown that
the self-consistent power spectra of single spike trains could
be well approximated if the single integrate-and-fire neurons

of the recurrent network operated in a strongly mean-driven
regime. We cannot think of a reason why the same approach
should not work for a heterogeneous network.

Furthermore, the inclusion of intrinsic noise sources as in
[34] and of external signals is certainly worth exploration,
but may require also complicated corrections to the Gaussian
theory put forward here. The inclusion of common stimuli
would be interesting also from an information-theoretic per-
spective. In addition to the autocorrelation functions of the
autonomous network activity, then the correlation between
information-carrying stimuli and the network activity may be
calculated permitting to quantify the information transmission
by the network. All of these are exciting topics for future
studies.
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