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Abstract

Hippocampal ripple oscillations have been implicated in important cognitive functions such

as memory consolidation and planning. Multiple computational models have been proposed

to explain the emergence of ripple oscillations, relying either on excitation or inhibition as the

main pacemaker. Nevertheless, the generating mechanism of ripples remains unclear. An

interesting dynamical feature of experimentally measured ripples, which may advance

model selection, is intra-ripple frequency accommodation (IFA): a decay of the instanta-

neous ripple frequency over the course of a ripple event. So far, only a feedback-based inhi-

bition-first model, which relies on delayed inhibitory synaptic coupling, has been shown to

reproduce IFA. Here we use an analytical mean-field approach and numerical simulations of

a leaky integrate-and-fire spiking network to explain the mechanism of IFA. We develop a

drift-based approximation for the oscillation dynamics of the population rate and the mean

membrane potential of interneurons under strong excitatory drive and strong inhibitory cou-

pling. For IFA, the speed at which the excitatory drive changes is critical. We demonstrate

that IFA arises due to a speed-dependent hysteresis effect in the dynamics of the mean

membrane potential, when the interneurons receive transient, sharp wave-associated exci-

tation. We thus predict that the IFA asymmetry vanishes in the limit of slowly changing drive,

but is otherwise a robust feature of the feedback-based inhibition-first ripple model.

Author summary

The hippocampus plays a central role in the acquisition and consolidation of explicit

memories. During sleep or rest, hippocampal neurons replay recently acquired memories,

while the neuronal network exhibits high-frequency oscillations, so-called ripples. To

study the potential function of ripples, their generation mechanism needs to be clarified.

Here we analyze a model network of inhibitory interneurons as a potential ripple pace-

maker. We derive an analytical approximation of the ripple dynamics that explains why
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the ripple frequency tends to decay over the course of an event (intra-ripple frequency

accommodation, IFA). Studying dynamical phenomena such as IFA advances model

selection and enables an understanding of how rhythmic brain activity contributes to cog-

nitive functions.

Introduction

Sharp wave-ripples (SPW-R) are a prominent rhythmic signature of neuronal activity in the

hippocampus. Hippocampal SPW-Rs are embedded in a larger system of thalamo-cortical

rhythms [1, 2] and have been associated with the replay of behaviorally relevant neuronal

activity [3–5]. SPW-Rs may thus be important for cognitive functions such as memory consoli-

dation [6–11] and planning [4, 12–14]. To probe their potential functional role, we first need

to understand the generation mechanism of SPW-Rs.

SPW-Rs are brief (50–100 ms) periods of elevated, highly synchronized neuronal activity,

which can be measured in the local field potential (LFP) of the hippocampus in vivo [15–17],

as well as in vitro [18–22]. In CA1 the LFP sharp wave (SPW) is most prominent in layer stra-
tum radiatum and is thought to reflect a current sink due to elevated excitatory synaptic trans-

mission from the CA3 Schaffer collaterals. The LFP ripple oscillation (150–250 Hz in vivo,

[16]; 210 ± 16 Hz in vitro, [19]) is strongest in stratum pyramidale of CA1 and is thought to

reflect inhibitory synaptic currents, and potentially rhythmic excitatory action potentials [23,

24]. It is believed that the local CA1 network can generate ripples in isolation [19, 25, 26].

Various computational models have been put forward to explain ripple generation, relying

either on excitation or inhibition as the main pacemaker (see Discussion for A note on mixed
models). Excitation-first models assume that SPW and ripple oscillations are generated jointly

by the sparsely connected pyramidal cell network, either via axonal gap junctions and anti-

dromic spike propagation [27, 28] or via supralinear dendritic integration [29].

Inhibition-first models posit that the interneuron network (e.g. in CA1) produces ripples in

response to transient excitatory input due to a SPW event, which is generated by a separate

mechanism upstream (e.g. in CA3) [30–32]. Inhibition-first models can be further subdivided

into two classes, which we will call here feedback-based and perturbation-based, hinting at the

mechanism by which ripples emerge: In the feedback-based models [16, 33–40] the recurrent

synaptic coupling between interneurons is strong such that for sufficiently strong excitatory

drive the network undergoes a bifurcation and can, in theory, produce sustained ripple oscilla-

tions as long as the drive remains strong enough. The perturbation-based model [41], on the

other hand, assumes weak coupling and cannot produce sustained oscillations. Here ripples

emerge as a transient ringing effect in response to a perturbation in the external drive.

Experiments remain inconclusive as to which of the proposed mechanisms is the most plau-

sible for ripple generation [17, 20, 42]. Previous analyses have focused on the average fre-

quency and duration of ripple events as well as their dependency on pharmacological or

optogenetic manipulation [17, 21, 43]. We propose that taking into account the transient
dynamical features of spontaneous ripples can advance model selection. The instantaneous

ripple frequency typically decays over the course of a ripple event. This intra-ripple frequency
accommodation (IFA) has been observed in vivo and in vitro and across different animals,

brain states, and measurements [9, 25, 37, 43–46]. It is therefore an interesting question which

of the proposed ripple models can account for IFA, and under which assumptions.

So far, only the feedback-based inhibition-first ripple model has been shown to reproduce

IFA in exemplary numerical simulations [37]. Here we use a theoretical mean-field approach
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and extensive numerical simulations to explain the mechanism of IFA, show that IFA is robust

with respect to parameter variation, and predict that IFA depends on the time course of the

external, SPW-associated drive. These insights about IFA can be used to distinguish between

the feedback-based and the perturbation-based inhibition-first ripple mechanisms.

Results

The feedback-based inhibitory ripple model assumes that a network of synaptically coupled

CA1 interneurons, such as parvalbumin-expressing (PV+) basket cells, acts as a delayed nega-

tive feedback loop and thus creates fast ripple oscillations when stimulated with excitatory,

sharp wave-associated drive from CA3. This idea was first expressed by [16, 33], and has been

formally studied in computational models of varying complexity [34–39]. Simulations of a bio-

physically detailed version of this model by [37] revealed that it can reproduce intra-ripple fre-

quency accommodation (IFA) in response to time-dependent, sharp wave-like drive.

To explain the mechanism of IFA analytically, we first demonstrate that IFA is preserved in

a spiking network model of reduced complexity (the network used in [34] with all-to-all cou-

pling). We then turn to a mean-field approximation of the network dynamics, which enables

us to study the ripple dynamics and IFA as a function of the time course of the excitatory

sharp wave-like drive.

Ripples and IFA in a spiking neural network model

We model the CA1 interneuron network as a homogeneous network of N leaky integrate-and-

fire (LIF) neurons with membrane time constant τm, capacitance C, and resting potential Eleak.

The membrane potential vi of a unit i is given by the following stochastic differential equation:

tm _vi ¼ � vi þ Eleak þ
tm

C
IextðtÞ � tm

J
N

XN

j¼1

X

k

d t � tk
j � D

� �
þ

ffiffiffiffiffiffiffiffi
2tm

p
sVxiðtÞ ð1Þ

where the derivative with respect to time t is abbreviated by a dot: _vi ¼
dvi
dt . Whenever the mem-

brane potential crosses a spike threshold Vthr, a spike is emitted and the membrane potential is

reset instantaneously to a reset potential Vreset. For simplicity there is no absolute refractory

period. All interneurons receive the same external, excitatory drive Iext(t) and an independent

Gaussian white noise input ξi(t), with zero mean hξi(t)i = 0 and unit noise intensity hξi(t)ξj(t0)i
= δijδ(t − t0), scaled by the noise strength parameter σV. The network is fully connected via

inhibitory pulse coupling of strength J and with a synaptic delay Δ (see Methods for details and

default values of parameters).

The empirical population activity rN(t) in a small time interval [t, t + Δt) is defined as the

number of spikes nspk(t, t + Δt) emitted by the population (Methods, Eq (15)), divided by the

size of the population and the time step Δt:

rNðtÞ≔
nspkðt; t þ DtÞ

NDt
: ð2Þ

For plotting purposes, rN is smoothed with a narrow Gaussian kernel (Methods, Eq (16)). In

the following, we will illustrate that the key network dynamics in response to constant drive

Iext and time-dependent, sharp wave-like drive Iext(t), as presented by [37], are preserved in

this model, i.e., there are fast oscillations in the ripple range and there is IFA.

Dynamics for constant drive. The network dynamics for constant drive Iext are illustrated

in Fig 1. At low Iext, the network is in a steady-state with units firing asynchronously and irregu-

larly at an overall low rate funit (Fig 1A, left). As Iext increases, the network activity begins to
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exhibit coherent oscillations (Fig 1A, middle). In the following, we will refer to the dominant fre-

quency of this population oscillation as the network frequency fnet (Methods, black triangle

markers in Fig 1B). For a biologically reasonable set of parameters (Methods) the network fre-

quency lies within the ripple range for a large range of external drives (Fig 1B, gray band). For

0.3 nA≲ Iext ≲ 0.9 nA, the unit activity underlying the network ripple oscillation is sparse and

irregular, i.e. the average unit firing rate funit is lower than the frequency fnet of the network oscil-

lation (saturation s = funit/fnet < 1) and the coefficient of variation (CV) of interspike intervals is

around 0.5 (Fig 1B, bottom panels). We hence refer to this state as sparse synchrony [37, 47].

Fig 1. Constant-drive dynamics of the spiking network. (A) Four dynamical regimes depending on the external

drive: asynchronous irregular state, sparse synchrony, full synchrony, multiple spikes (left to right, N = 10, 000). Top:

population rate rN, middle: raster plot showing spikes of 30 example units, and histogram of membrane potentials v
(normalized as density, threshold and reset marked by horizontal dashed lines), bottom: power spectral density of the

population rate. (B) Top: network frequency fnet (black) and mean unit firing rate funit (blue) for a range of constant

external drives Iext. Grey band marks approximate ripple frequency range (140–220 Hz). Red markers indicate the

critical input level Icritext (Hopf bifurcation) and the associated network and unit frequency, as resulting from linear

stability analysis, see section Linear Stability Analysis in Methods, Eq (70), and [34]. Linestyle indicates network size (N
2 [102, 103, 104]). Middle: saturation s = funit/fnet. Bottom: coefficient of variation of interspike intervals, averaged

across units.

https://doi.org/10.1371/journal.pcbi.1011886.g001
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In the mean-field limit N!1, the transition to this oscillatory state is sharp (a supercriti-

cal Hopf bifurcation) and the transition point can be determined by a linear stability analysis

of the stationary state [34]. In a simulated spiking network of finite size, the transition to the

oscillatory state is not perfectly sharp because of inevitable fluctuations. Nevertheless, at the

bifurcation point, both the network frequency and the unit firing rate are well predicted by the

mean-field theory if the network is large enough (Fig 1B, red markers: Icritext ¼ 0:19 nA with fnet

= 305 Hz, funit = 16 Hz, s = 0.05).

For some sufficiently strong drive, the network reaches a state of full synchrony (s� 1),

with units firing regularly and at the same average frequency as the population rhythm (Fig

1A, “full synch”). If the drive increases beyond this level, units spike several times per cycle

(s> 1, Fig 1A, “multiple spikes”)), which increases the CV of interspike intervals. Since the fir-

ing rates in that regime are too high to be biologically plausible, we focus in the following on

the dynamical regime between the onset of oscillations (bifurcation point) and the point of full

synchrony (Fig 1).

We note that in this reduced model (and also in [34]) the network frequency is a decreasing

function of the external drive (Fig 1B). It is generally not straight-forward to infer how the net-

work frequency changes with the external drive Iext: On the one hand, individual neurons

reach the spiking threshold faster when the drive is stronger. On the other hand, the resulting

increase in spiking activity leads to a stronger delayed feedback inhibition that pushes all mem-

brane potentials further away from the threshold. The network frequency thus results from a

self-consistency condition. In fact, the shape of the network frequency curve can be different

(increasing or even non-monotonic) depending on the details of the model network architec-

ture (see also Discussion and Fig A in S2 Appendix). The mechanism of IFA that we demon-

strate in the following is independent of the shape of the network frequencies under constant

drive.

Dynamics for time-dependent drive. During a sharp wave (SPW) event, which is thought

here to be generated in CA3 (cf. models introduced by [30–32]), pyramidal cells in CA3 tran-

siently increase their firing rates [43, 48]. Here we model the resulting feedforward input Iext(t)
to the CA1 interneuron network in a simplified form: as a symmetric, piecewise linear double

ramp (Fig 2A, bottom; see also Eq (17) in Methods, and Discussion). This SPW-like drive elic-

its a transient ripple event in the network (Fig 2A). We measure the instantaneous frequency

of the population activity, either by taking a windowed Fourier transform (wavelet spectro-

gram) and finding the peak in power in each time step, or by taking the inverse of the distances

between consecutive peaks in the population activity providing frequencies for a discrete set of

time points (Fig 2A, top, solid line vs white dots).

There is no established definition of IFA. The central aspect of IFA is the decrease (accom-
modation) of the instantaneous frequency. Over the course of an experimentally measured rip-

ple event (20–100 ms) the instantaneous ripple frequency typically decreases by about 10–60

Hz (rough visual estimate of peak-to-trough distances seen in [9, 25, 37, 43–46]), correspond-

ing to linear slopes of about −0.1 to −3 Hz/ms. We observe such a decreasing trend of the

instantaneous frequency in the model even though the external stimulus is perfectly symmetric

(Fig 2A, top, see also [37]), i.e. the network exhibits intra-ripple frequency accommodation

(IFA). We quantify IFA by linear regression over the discrete instantaneous frequency esti-

mates (Fig 2A, white dots). This quantification of IFA is applied to results from many simula-

tions with different noise realizations and the same SPW-like drive (Fig 2B; Methods, Eq (18)).

A negative regression slope (here χIFA = −3.01 Hz/ms) indicates IFA.

In the model, the decrease in instantaneous frequency is not strictly linear over the entire

event. In the central portion of the simulated ripple event, where power in the ripple band is

large, the ripple frequency decreases monotonically. At the end of the event, however, we
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observe a small increase of the frequency, albeit with low power (the underlying peaks in the

population rate are small) (Fig 2A and 2B top). Similar non-monotonic trajectories of the rip-

ple frequency have been observed in experimentally measured ripples and still been classified

as exhibiting IFA [44].

The transient dynamics of the instantaneous frequency in this model can be understood

best by comparing it to the asymptotic frequency that the network would settle into if the drive

remained constant at the instantaneous value of the drive (Fig 2B, grey dots vs black line). Nat-

urally, this asymptotic frequency follows the same symmetry as the external drive and thus

provides a useful reference frame. For our double ramp drive (Methods, Eq (17)), we observe

that during the plateau phase (i.e. constant drive) the instantaneous frequency quickly

Fig 2. Transient dynamics of the spiking network and IFA. (A) Example simulation showing a transient ripple with IFA. From bottom to top: SPW-

like drive (Eq (17)); histogram of membrane potentials (normalized), horizontal dotted lines: threshold and reset potential; raster plot showing spike

times of 10 example units; population rate exhibiting transient ripple oscillation; wavelet spectrogram indicating instantaneous power (blue-yellow

colorbar) for a frequency range of 0–400 Hz. Solid curve: continuous estimate of instantaneous frequency based on wavelet spectrogram with gray scale

indicating maximal instantaneous power. Dotted line: cutoff frequency for peak detection fmin = 70Hz. Red lines in scalebars: power threshold (see

Methods). White dots: discrete estimate of instantaneous frequency based on peak-to-peak distance in population rate. Network size N = 10, 000. (B)

Quantification of IFA. Top: Grey dots: discrete instantaneous frequency estimates from 50 repetitions of the simulation shown in (A) with different

noise realizations. Grey line: linear regression line with negative slope (χIFA = −3.04 Hz/ms) indicating IFA (see Methods, Eq (18)). Black line:

asymptotic frequencies (cf. Fig 1B, top). Bottom: The same SPW-like drive was applied in all 50 simulations. Network size N = 10, 000. (C) Dependency

of IFA slope χIFA on the slope of the external drive for different network sizes (color coded). (D) Instantaneous (dots) vs asymptotic (black lines)

network frequencies (top) for piecewise linear drives (bottom) of decreasing slopes (left to right). Color/linestyle indicates network size N. Thin, colored

linear regression lines illustrate decreasing strength of IFA for shallower drive (regression slopes summarized in C). Asymptotic network frequencies

are derived via interpolation of the constant-drive results shown in Fig 1B, top. The asymptotic frequencies f1net for N = 103 and N = 104 are nearly

identical (dash-dotted and solid lines). Note that the drive is identical in panels A, B, and in the left panel of D.

https://doi.org/10.1371/journal.pcbi.1011886.g002
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approaches the asymptotic frequency. However, during the rising phase of the drive the instan-

taneous frequency tends to be higher than the asymptotic reference. During the falling phase it

is lower, thus creating the overall IFA asymmetry.

Varying the slope of the external double ramp drive we see that the IFA asymmetry is

speed-dependent (Fig 2C and 2D): If the external drive changes more slowly (smaller slope),

the network frequency response becomes more symmetric; for very small slopes the instanta-

neous frequencies approach the symmetric, asymptotic reference frequencies, and IFA

vanishes.

In what follows, we aim at understanding the mechanism behind the observations illus-

trated for constant drive in Fig 1 and time-dependent drive in Fig 2. Further simulations indi-

cate that the network dynamics varies only little when the network size is varied by two orders

of magnitude (Figs 1B, 2C and 2D). We hence hypothesize that IFA is preserved in the mean-

field limit of an infinitely large network, and will use a mean-field approach to explain the gen-

erating mechanism of IFA.

Gaussian-drift approximation of ripple dynamics in the mean-field limit

To facilitate notation in the mathematical analysis, we rescale all voltages to units of the dis-

tance between threshold and rest such that the new spiking threshold is at VT = 1 and the rest-

ing potential is at EL = 0. The single unit stochastic differential equation (previously Eq (1))

then reads

tm
_V i ¼ � Vi þ IEðtÞ �

Ktm

N

XN

j¼1

X

k

dðt � tk
j � DÞ þ

ffiffiffiffiffiffiffiffiffiffiffi
2Dtm

p
xiðtÞ ; ð3Þ

with rescaled external excitatory current IE, inhibitory synaptic strength K, and noise intensity

D; see also section Dimensionless equations in the Methods, Eqs (20)–(22); there we provide

details on the rescaling and values of default parameters.

In the mean-field limit N!1, the dynamics of the density of membrane potentials p(V, t)
is described by the Fokker-Planck equation (FPE)

tm@tpðV; tÞ ¼ � @V

h
ðIðtÞ � VÞpðV; tÞ

i
þ D@2

VpðV; tÞ ð4Þ

IðtÞ ¼ IEðtÞ � IIðtÞ ¼ IEðtÞ � Ktmrðt � DÞ ð5Þ

rðtÞ ¼ �
D
tm
@VpðV �T ; tÞ ð6Þ

(see Methods, Eq (23) for details). The population rate r(t) defined in Eq (6) represents the

mean-field limit of the population activity rN(t) in Eq (2) of the spiking neural network. Com-

pared to the classical application of the FPE [49, 50] there are two essential differences: First,

the FPE is nonlocal because of the resetting rule. This rule imposes an absorbing boundary

condition at the threshold (Eq (23e)) and a source of probability at the reset point; the latter

source can be imposed by a jump condition for the derivative of the density at the reset point

(Eq (23g)) that matches the derivative at the threshold point, see e.g. [51–55]. Secondly, the

FPE (4) is nonlinear because the current I(t) depends on the probability density p(V, t) through

the population rate r(t) in Eq (6).

Stable stationary solutions of this nonlocal, nonlinear FPE correspond to asynchronous

irregular spiking [34, 51]. It has been shown that an oscillatory (i.e. periodic) solution r(t)
emerges via a supercritical Hopf bifurcation when the external drive IE exceeds a critical value
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[34, 51]. This network oscillation well reproduces the coherent stochastic oscillation of the

population activity rN(t) in the finite-size spiking neural network (Fig 1). The network fre-

quency at the onset of oscillations (i.e. at the Hopf bifurcation, where the stationary solution

looses stability) is well predicted analytically by a linear stability analysis [34] (see also Meth-

ods, Eq (70) and Fig 1B, red markers). However, this analytical prediction quickly breaks

down further away from the bifurcation where the oscillation dynamics becomes strongly non-

linear (see power spectral densities with higher harmonics in Fig 1A). In this regime neither an

exact periodic solution of the FPE nor an approximation of its frequency is known. We will

thus introduce a simplified approach that allows us to approximate the network frequencies at

strong drive beyond the bifurcation.

Our approach can be motivated by two observations from the spiking network simulations:

(a) In the relevant regime between sparse and full synchrony, units spike at most once per

cycle of the population rhythm (funit� fnet, Fig 1B). This property will allow us to approximate

the time course of a population spike in rN(t) using a first-passage-time ansatz, neglecting the

reset mechanism. (b) In between population spikes, the population rate rN(t) is close to zero,

and the strong inhibitory feedback pushes the bulk of the membrane potential distribution sig-

nificantly below threshold (Fig 1A). In those periods the absorbing boundary condition at

threshold does not have any significant impact on the dynamics of p(V, t). Observation b) is

illustrated in more detail in Fig 3A, which shows the spiking network simulations from Fig 1

(Iext = 0.55 nA) with rescaled voltages.

These two observations motivate a considerable simplification of the mean-field dynamics:

Without the boundary conditions at threshold and reset, the FPE (4) can be solved analytically.

In the long-time limit its solution becomes a simple Gaussian—independent of the initial con-

dition (Methods, Eq (24)). We thus approximate the density of membrane potentials as a

Gaussian

pðV; tÞ �
1
ffiffiffiffiffiffiffiffiffi
2pD
p exp �

ðV � mðtÞÞ2

2D

� �

ð7Þ

(see Fig 3B), and the only time-dependent quantity is the mean membrane potential μ(t),
which evolves according to

_mðtÞ ¼
1

tm
I tð Þ � m tð Þð Þ¼

ð5Þ 1

tm
IEðtÞ � Ktmrðt � DÞ � mðtÞð Þ ð8aÞ

(see Fig 3Bi and 3Bii, black lines, cf. Methods Eq (25)). Because in the considered regime spikes

are mainly driven by the mean input rather than membrane potential fluctuations, the popula-

tion rate can be well approximated by the drift part of the probability current across the thresh-

old, while diffusion-mediated spiking is ignored (Methods, Eqs (28) and (29); see also [56–

59]):

rðtÞ ¼ ½ _mðtÞ�
þ
pðVT; tÞ ¼

½ _mðtÞ�
þffiffiffiffiffiffiffiffiffi

2pD
p exp �

ðVT � mðtÞÞ
2

2D

� �

: ð8bÞ

Thus, in our approximate dynamics without reset, the population rate r(t) is given by the

membrane potential density at threshold, scaled by the speed _m at which the mean membrane

potential approaches the threshold. Whenever the mean membrane potential is decreasing

( _m < 0), the drift current at the threshold is negative, and hence, the rate is clipped to 0 ([x]+

≔ (x + |x|)/2, see Fig 3Bi and 3Bii, top).

Because the single-neuron dynamics of integrate-and-fire neurons includes a reset mecha-

nism after the spike-threshold has been reached, we add a phenomenological account for such

PLOS COMPUTATIONAL BIOLOGY Ripple oscillations in interneuron networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011886 February 20, 2024 8 / 50

https://doi.org/10.1371/journal.pcbi.1011886


a reset to our population-level description: At the end of a population spike

(r � ½ _m�
þ
¼ 0; m̈< 0) the mean membrane potential is pushed down (“reset”) by an amount

that is proportional to the fraction of neurons that have participated in the population spike

(Fig 3Biii, t = 3.62 ms; see Methods Eq (49) for details).

The two coupled Eqs (8a) and (8b) are equivalent to a single delay differential equation

(DDE; Methods, Eq (31)). This DDE (including the reset condition) governs the dynamics of

the mean of the Gaussian membrane potential distribution, and the resulting drift-based popu-

lation rate. In the following, we will therefore refer to the DDE dynamics (with the phenome-

nological reset condition) as the Gaussian-drift approximation.

The main differences between the spiking network model (or the exact mean-field dynam-

ics given by the FPE (4)) and the Gaussian-drift approximation are illustrated in Fig 3 for the

case of constant drive. In the spiking network model, the membrane potential density p(V, t) is

not strictly Gaussian (Fig 3Aiii). Because of the fire-and-reset mechanism, p(V, t) changes in

shape during the oscillation cycle, becoming at times even bimodal (Fig 3Aiii vs Fig 3Biii).

Still, we see that our Gaussian assumption (b) is justified: Whenever the membrane potential

Fig 3. Illustration of the Gaussian-drift approximation. Comparison of oscillation dynamics in the spiking network simulation (A) and the Gaussian-

drift approximation (B) at constant drive (IE = 4.24). (Ai) Spiking network simulation. Empirical population rate rN (top), and density of membrane

potentials (bottom, dimensionless voltage), exhibiting coherent stochastic oscillations with (weak) finite size fluctuations. (Aii) The average cycle of the

oscillation dynamics in Ai (computed for 21 bins of 0.24 ms each). Top: population rate; middle: density of membrane potentials, orange marker: local

minimum of mean membrane potential; bottom: standard deviation of membrane potential distribution, dashed line: theoretical asymptote
ffiffiffiffi
D
p

in the

absence of boundary conditions (Eq (26)). (Aiii) Snapshots of the membrane potential density over the course of the average cycle shown in (Aii). (Bi)

Gaussian-drift approximation (numerical integration of DDE (8) with reset condition). Top: population rate, bottom: mean membrane potential μ(t)
(black line) with Gaussian density of membrane potentials p(V, t) painted on in the background for better comparison with Ai. (Bii) Zoom into one

oscillation cycle (black bar in Bi). Top: population rate r, middle: density of membrane potentials p(V, t) with mean μ(t), bottom: constant standard

deviation
ffiffiffiffi
D
p

. The mean membrane potential μ(t) (black line) starts in each cycle at μmin (orange) and rises up until μmax (cyan) at time toff, at which

point the population spike ends. In a phenomenological account for the single unit reset, μ is reset instantaneously to μreset (yellow). From there μ
declines back towards μmin. (Biii) Snapshots of the membrane potential density p(V, t) over the course of one cycle (Bii). Colors mark t = 0* T
(orange), and t = toff (cyan/yellow). Dotted lines in all voltage panels mark spike threshold VT = 1 and reset potential VR = 0. Note that in the theoretical

approximation the spike threshold VT = 1 is no longer an absorbing boundary.

https://doi.org/10.1371/journal.pcbi.1011886.g003
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density is subthreshold in between population spikes, it becomes more Gaussian, and its stan-

dard deviation approaches
ffiffiffiffi
D
p

(Fig 3Aii, bottom, and Fig 3Aiii, first 3 snapshots).

The advantage of our Gaussian-drift approximation is that it reduces the FPE with complex

boundary conditions to a simpler DDE with oscillatory solutions that can be studied analyti-

cally. In the following, we will first consider the dynamics for constant drive, then extend the

Gaussian-drift approximation to understand the transient response to time-dependent drive,

and hence explain the emergence of IFA.

Analysis of oscillation dynamics for constant drive. A T-periodic solution of the Gauss-

ian-drift model, Eq (8), must have a mean membrane potential μ(t) = μ(t + T) that oscillates

between two local extrema μmin and μmax (Fig 3Bi). Whenever the mean membrane potential

increases, a positive population rate r is produced; when the mean membrane potential

decreases the population rate is clipped to 0 (Eq (8b)). Let us consider a single cycle of this

oscillatory dynamics (Fig 3Bii): The moment when μ reaches its local maximum μmax (Fig 3Bii,

cyan circle) is of special importance as it marks the end of the population spike. We will refer

to this time as toff:

mðtoffÞ ¼ mmax ; rðtoffÞ ¼ 0 :

Since the inhibitory feedback II(t) = −Kτmr(t − Δ) is proportional to the population rate with a

delay of Δ (Eq (8a)), it follows that this feedback ceases exactly Δ after the end of the population

spike, i.e. II(toff + Δ) = 0. It is convenient to define this time as the end of a cycle, i.e. the begin-

ning of the next one. The mean membrane potential at this time is close to its local minimum

(see Methods, Step 2) and will be denoted as μmin ≔ μ(toff + Δ). The period T can then be split

into the upstroke time toff needed for the mean membrane potential to rise from μ(t = 0) = μmin

towards μ(toff) = μmax, and the downstroke time Δ during which the mean membrane potential

is pushed back down to μ(T) = μmin due to the delayed inhibitory feedback (Fig 3Bii). In Meth-

ods we derive, through a series of heuristic approximations, analytical expressions for the local

extrema μmax (Eq (38)) and μmin (Eq (50)) of the mean membrane potential oscillation as a

function of the external drive IE. Using these expressions, we obtain an analytical formula for

toff (Eq (47)) and hence for the network frequency:

fnet ¼ T � 1 ¼ ðtoff þ DÞ
� 1
: ð9Þ

Apart from the network frequency, the Gaussian-drift approximation also allows an intuitive

understanding of the mean unit firing rate. When the population spike ends at time toff, the

suprathreshold portion of the Gaussian density corresponds to the fraction of units that have

spiked in the given cycle (the saturation s, Methods, Eq (48)). The mean unit firing rate can

thus be inferred as:

funit ¼ sfnet : ð10Þ

In the following, we compare our analytical Gaussian-drift approximations for the network

frequency and mean membrane potential dynamics to the spiking network simulations for a

range of external drives IE.

Performance evaluation of the Gaussian-drift approximation. Our theory captures the

dependence of the network frequency fnet and the mean unit firing rate funit on the external

drive IE, including the transition from sparse to full synchrony for increasing external drive

(Fig 4, top). Our analytically derived expression for the saturation s predicts this transition (Fig

4, middle), since s is a monotonically increasing function of μmax (Eq (48)), which monotoni-

cally increases as a function of the external drive IE (Eq (38), Fig 4, bottom). We can also esti-

mate analytically the point of full synchrony, i.e. the amount of external drive IfullE that is
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required for single units to fire approximately at the frequency of the network rhythm

(sðIfullE Þ � 1; Methods, Eq (51); Fig 4, vertical dashed line). The Gaussian-drift approximation

slightly overestimates the point of full synchrony, but correctly predicts its parameter depen-

dencies: For stronger coupling and/or larger noise, stronger external drive is required to reach

full synchrony (Fig B in S1 Appendix).

The theory shows that the amplitude μmax − μmin of the oscillatory mean membrane poten-

tial grows with increasing drive (Fig 4, bottom). This is mainly due to a strong decrease of the

periodic minimum μmin (Fig 4, bottom, solid orange line), which we also observe in the spiking

network simulation (Fig 4, bottom, dashed orange line): stronger external drive increases the

amplitude of the population spikes (Fig 1A), resulting in stronger recurrent inhibitory feed-

back and thus a stronger hyperpolarization of the membrane potentials. The quantities μmax

and μreset are pertinent to the Gaussian-drift approximation and have no direct counterpart in

the spiking neural network model.

Fig 4. Analytical approximation of the oscillation dynamics for constant drive. Comparison of dynamics in theory

(full lines) and spiking network simulation (dashed lines, N = 10, 000). Top: Network frequency (black triangles) and

mean unit frequency (blue circles). Red markers: Hopf bifurcation. Vertical lines indicate the range ½IminE ; ImaxE ¼ IfullE �
for which the theory applies (see Methods, Eq (52)). Middle: Saturation s increases monotonically with the drive (Eq

(48)). Bottom: characterization of the underlying mean membrane potential dynamics via local maximum μmax (cyan,

Eq (38)), local minimum μmin (orange, Eq (50)) and population reset μreset (yellow, Eq (49)). Default parameters (see

Methods).

https://doi.org/10.1371/journal.pcbi.1011886.g004
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The range of applicability of our theory is defined by our two assumptions (see Methods for

details, Eq (52)): (a) units should spike at most once per cycle (i.e. IE � IfullE ), (b) in between

population spikes the bulk of the membrane potential distribution should be subthreshold (i.e.

mminðIEÞ þ 3
ffiffiffiffi
D
p
� VTÞ. The resulting range ½IminE ; ImaxE � for the external current IE covers the

large part of the regime of sparse synchrony up to the point of full synchrony (Fig 4, here

ImaxE ¼ IfullE ). We confirmed with numerical simulations that for strong enough drive the Gauss-

ian-drift approximation works for a wide parameter regime w.r.t. noise, coupling strength,

and synaptic delay (S1 Appendix).

At low drive (IE < IminE ) this theory breaks down (see also Methods, section Numerical anal-
ysis of oscillation dynamics). This is to be expected from a purely drift-based approximation.

The dynamics of the spiking network close to its supercritical Hopf bifurcation is largely fluc-

tuation-driven. Such dynamics cannot be captured by focusing only on the oscillation of the

mean membrane potential, which has vanishing amplitude as the drive approaches its critical

value. This limitation of the theory does not pose a problem, since (a) the fluctuation-driven

dynamics around the Hopf bifurcation has already been studied in depth by [34] and (b) our

main goal here is to explain the IFA dynamics, which happens in the strongly mean-driven

regime IEðtÞ � IminE .

So far we have studied the case of constant drive describing the asymptotic dynamics of sus-

tained ripple oscillations observed in the long-time limit, after initial conditions have been for-

gotten. This will be emphasized from here on by adding a superscript “1”. The simulations in

Fig 2 already suggested that IFA emerges due to a deviation of the transient dynamics from

these asymptotic dynamics. We will now use the established Gaussian-drift approximation to

understand why. In a first step we will maintain the assumption of constant drive and study

the transient dynamics that can be induced by perturbations of the initial condition (Fig 5A

and 5B). With piecewise constant drive as a simplistic model of a SPW-like drive we then dem-

onstrate the core mechanism of IFA: a hysteresis of the mean membrane potential dynamics

(Fig 5B and 5C). We then extend the same formalism to piecewise linear drive, as a more real-

istic approximation of SPW-like drive, and in order to demonstrate that the IFA asymmetry is

preserved even when the drive is fully symmetric (Fig 6). The Gaussian-drift approximation

for linear drives allows us to study the dependence of IFA on the slope of the drive. We dem-

onstrate that the hysteresis effect causing IFA is speed-dependent (Fig 7)—a novel, testable pre-

diction of the feedback-based inhibition-first ripple model matching the simulation results

from the spiking network (Fig 2D).

Analysis of oscillation dynamics for piecewise constant, sharp wave-like drive. Even

for constant drive, there is transient dynamics if the initial mean membrane potential deviates

from the asymptotic minimum m1min. Let us assume that a cycle starts with an initial mean

membrane potential mmin 6¼ m
1
minðIEÞ. We only require that μmin be sufficiently subthreshold,

such that the initial population rate is close to zero. What will be the period of the first cycle

and how long does it take until the asymptotic dynamics is reached?

First we note that, independent of μmin, the mean membrane potential will rise towards the

asymptotic m1maxðIEÞ, which can be shown to be independent of the initial condition (Methods,

Eq (38)). Thus, only the duration of the first upstroke will be influenced by the initial condi-

tion, and the asymptotic dynamics is reached immediately thereafter (Fig 5Ai and 5Aii).

The duration of the first upstroke depends on the distance that the mean membrane poten-

tial has to travel, from its initial value μmin to the next peak m1maxðIEÞ. For mmin ¼ m
1
minðIEÞ the

upstroke has length t1offðIEÞ and hence the length of the first cycle is equal to the asymptotic

period T1. Correspondingly, the instantaneous frequency is equal to the asymptotic network

frequency, f instnet ¼ f1net ¼ 1=T1 (Fig 5Aiii, middle). The upstroke takes less time, if the mean
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membrane potential starts at a higher value (mmin > m1minðIEÞ, Fig 5Ai and 5Aiii, left), and more
time otherwise (Fig 5Aii and 5Aiii, right). Hence the period of the first cycle will be either

shorter or longer, which can be rephrased as an instantaneous frequency f instnet that is higher or

lower than the asymptotic f1netðIEÞ. Fig 5B illustrates the instantaneous frequency of the first

cycle for different combinations of (constant) drive IE and initial condition μmin (red: instanta-

neous frequency is higher than asymptotic frequency; blue: instantaneous frequency is lower).

Once the mean membrane potential has reached its first peak, it will follow the asymptotic

dynamics, settling into m1minðIEÞ at the end of the first cycle, and all subsequent cycles will come

at the asymptotic frequency f1netðIEÞ associated to the external drive IE (Fig 5Ai and 5Aii, con-

vergence indicated by arrows in Fig 5B). A change of initial condition can thus only introduce

Fig 5. Transient dynamics and IFA for piecewise constant external drive. (Ai, Aii) Dynamics under constant drive depending on the initial mean

membrane potential. Top: Population rate. Bottom: Constant external drive (green) and mean membrane potential (gray) with initial value μmin

(orange marker). Dotted horizontal lines mark spike threshold VT = 1 and reset potential VR = 0. (Aiii) Direct comparison of the first oscillation cycles

in Ai/Aii (gray shaded area) with the asymptotic cycle dynamics. Orange and cyan horizontal lines mark the asymptotic values for m1minðIEÞ and m1maxðIEÞ,
respectively. Left: shorter cycle for mmin > m1minðIEÞ. Middle: asymptotic period for mmin ¼ m

1
minðIEÞ. Right: longer cycle for mmin < m1minðIEÞ. The color of

the population rate curve (left, right) expresses the difference in cycle length as a difference in instantaneous frequency (colorbar in B). (B) Difference

between the instantaneous frequency of a cycle with constant drive IE and initial condition μmin, and the asymptotic frequency f1netðIEÞ for a range of

external drives IE and initial mean membrane potentials μmin. Black line: asymptotic m1minðIEÞ (cf. Fig 4, bottom, orange line). Markers indicate example

cycles shown in C. Arrows indicate convergence to the asymptotic dynamics after one cycle. If the drive changes after each cycle (dotted lines), the

seven examples lead to the trajectory shown in C. Cycles 2 and 6 are also shown in Aiii (left, right), together with their common asymptotic reference

dynamics. ȈFA for piecewise constant drive with symmetric step heights. Shaded areas mark oscillation cycles. Bottom: The external drive is increased

step-wise, up to the point of full synchrony IfullE � 8:9 (green staircase). As in A, lines in all panels indicate the asymptotic dynamics associated to the

external drive of the respective cycle. Circular markers indicate transient behavior. Cyan: μmax. Orange: μmin. Reset not marked to enhance readability.

Gray line: trajectory of the mean membrane potential. Middle: Population rate. Top: the instantaneous network frequency (markers) is first above and

then below the respective asymptotic network frequencies (black line). Same colorbar as B. All quantities are derived analytically from the Gaussian-

drift approximation. Vertical axis labeled “voltage, drive” in panels A and C applies to membrane potential and external drive.

https://doi.org/10.1371/journal.pcbi.1011886.g005
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a transient deviation from the asymptotic dynamics in a single cycle. In particular, this implies

that stimulation with a square pulse cannot induce IFA in this model (see also Discussion and

Fig A in S2 Appendix, panels a5–d5).

What if we change the external drive after each cycle (green line in Fig 5C)? Then the initial

mean membrane potential of each cycle i will be the asymptotic minimum associated to the

drive of the previous cycle:

mi
min ¼ m

1

minðI
i� 1

E Þ

i.e. the mean membrane potential dynamics exhibits a history dependence (or hysteresis). Now

recall that the asymptotic minimum m1minðIEÞ is a monotonically decaying function of the drive

(except for very strong drive close to IfullE , Fig 5B, black line). Thus, if the external drive

increases stepwise, each cycle starts with an initial mean membrane potential above the asymp-

totic minimum associated to that cycle’s drive, hence the instantaneous frequency is above its

asymptotic value (Fig 5B, trajectory through red area: f inst;inet > f1netðI
i
EÞ 8i). Vice versa, if the

external drive decreases stepwise, each cycle starts with an initial mean membrane potential

below the asymptotic minimum associated to that cycle’s drive, hence the instantaneous fre-

quency is below its asymptotic value (Fig 5B, trajectory through blue area: f inst;inet < f1netðI
i
EÞ 8i). In

summary:

Ii
E > Ii� 1

E ) mi
min ¼ m

1
min

�
Ii� 1
E

�
> m1min

�
Ii
E

�
) f inst;inet > f1net

�
Ii
E

�

Ii
E < Ii� 1

E ) mi
min ¼ m

1
min

�
Ii� 1
E

�
< m1min

�
Ii
E

�
) f inst;inet < f1net

�
Ii
E

�

Thus, if we approximate the transient change in drive during a sharp wave as a simple,

piecewise constant function that first increases after each cycle, and then decreases (Fig 5C,

green line), we observe IFA: The asymptotic network frequency associated to the drive in each

cycle describes a reference curve that follows the same symmetry as the drive (Fig 5C, top,

solid black line). However, the instantaneous network frequency (Fig 5C, top, round markers)

is asymmetric over time, as it is above the asymptotic network frequencies during the rising

phase of the external drive, and below during the falling phase. The theory thus describes the

relationship between instantaneous and asymptotic frequencies that was already described for

the spiking network simulations in Fig 2D.

The piecewise constant shape of the drive may not be realistic, but serves to illustrate the

core mechanism of IFA: a hysteresis in the oscillation amplitude of the mean membrane

potential. A drawback is that this simple model for SPW-like drive is not symmetric in time,

since the drive changes after each cycle, and the cycle length increases due to IFA. To show

that the IFA asymmetry does not rely on an asymmetry in the drive, we adapted the Gaussian-

drift approximation to incorporate time-dependent linear drive.

Analysis of oscillation dynamics for piecewise linear, sharp wave-like drive. Following

the same approach as before, we approximate the transient dynamics of the mean membrane

potential in a cycle i with initial value mi
min and a drive that changes linearly around a level Î i

E

with slope m:

�
Î i
E; m

i
min;m

�
7!
�

f inst;inet ; f
i
unit; t

i
off ; m

i
max; m

i
reset; m

iþ1

min

�
ð11Þ

The dynamics is quantified in terms of the peak of the mean membrane potential mi
max, its reset

value mi
reset, and the value miþ1

min that is reached at the end of cycle i (and may thus be the initial

membrane potential of the next cycle i + 1). Most importantly, the duration of the upstroke ti
off
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is inferred, and from that the instantaneous network frequency f inst;inet ¼ ðt
i
off þ DÞ

� 1
(see Meth-

ods, Eqs (56)–(66)). In agreement with our theoretical approximation, which is anchored to

the end of the population spike, the reference drive Î i
E is chosen such that Î i

E ¼ IEðti
offÞ, i.e.

IEðtÞ ¼ Î i
E þmðt � ti

offÞ : ð12Þ

The analysis is now a little more complex, since each cycle depends on three parameters

(Î i
E; m

i
min;m), in contrast to only two parameters ðIi

E; m
i
minÞ for piecewise constant drive. We will

demonstrate, however, that the essential findings from the basic case of piecewise constant

drive still hold, i.e. that IFA is generated by the same hysteresis in the transient dynamics of

the mean membrane potential that we have uncovered before (Fig 5 vs Fig 6). To illustrate this

by an example, we fix the slope of the linear drive to m = ±0.4/ms. We then compare how the

transient dynamics deviates from the asymptotic dynamics, depending on whether the drive is

increasing (m = +0.4/ms) or decreasing (m = −0.4/ms) (Fig 6).

Fig 6. Transient dynamics and IFA for piecewise linear external drive. (A) Exemplary transient dynamics during rising vs falling phase of the

external drive (“up” vs “down”), given fixed Î E ¼ IEðtoffÞ ¼ 5 (green dot). Bottom: external drive (green lines), and trajectories of mean membrane

potential (gray lines) depending on initial conditions (orange dots). Dotted horizontal lines mark reference drive Î E, spike threshold VT = 1, and reset

potential VR = 0. Top: Population rate. Color (colorbar in B) indicates the difference in cycle length (shaded area) compared to the asymptotic reference

(middle panel). Left: shorter cycle for m> 0 and initial mmin � m1minðÎ EÞ (orange dot vs orange line). Middle: asymptotic period for constant drive

(IE � Î E; m ¼ 0) and initial mmin ¼ m
1
minðÎ EÞ. Right: longer cycle for m< 0 and initial mmin < m1minðÎ EÞ. (B) Difference between instantaneous and

asymptotic frequency for a range of reference drives Î E and initial mean membrane potentials μmin. Left: linearly increasing drive with slope m = +0.4/

ms. Right: linearly decreasing drive with slope m = −0.4/ms. Black line: asymptotic m1minðÎ EÞ for constant drive. White line: initial membrane potential

μmin for which f instnet ¼ f1netðÎ EÞ. Stars mark the examples shown in A for Î E ¼ 5. Round markers and arrows indicate the trajectory shown in C for

piecewise linear drive, numbered by cycle. White space where either: no asymptotic oscillations occur (IE < IminE ; mmin > VT � 3
ffiffiffiffi
D
p

), or (bottom left):

no transient solution exists (see Methods, Eq (64)). (C) IFA for symmetric, piecewise linear (SPW-like) drive. Shaded areas mark oscillation cycles.

Bottom: The external drive is increased up to the point of full synchrony IfullE � 8:9 (green line). Colored lines indicate asymptotic dynamics. Gray line:

mean membrane potential trajectory μ(t). Markers quantify transient behavior. Cyan: μmax. Orange: μmin. Reset not marked to enhance readability.

Middle: Population rate. Top: the instantaneous network frequency (markers) is first above, then below the resp. asymptotic network frequencies (black

line). Same colorbar as B. Dashed lines: plateau phase of variable length with IE � IfullE , during which the network settles into the asymptotic dynamics.

The IFA slope χIFA was derived for an assumed plateau length of 20 ms (as in Fig 2). All quantities are derived analytically. Vertical axis labeled “voltage,

drive” in panels A and C applies to membrane potential and external drive.

https://doi.org/10.1371/journal.pcbi.1011886.g006
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The principal insight from the case of constant drive still holds for the case of time-

dependent drive, except for a small range of initial values mi
min: If the initial mean membrane

potential mi
min is (sufficiently) larger than the asymptotic reference m1minðÎ

i
EÞ, the period is

shorter than the asymptotic reference T1, hence f inst;inet > f1netðÎ
i
EÞ (Fig 6A, left; Fig 6B, red

area). In contrast, if mi
min is smaller than the asymptotic reference m1minðÎ

i
EÞ, the period is lon-

ger than the asymptotic reference T1, hence f inst;inet < f1netðÎ
i
EÞ (Fig 6A, right; Fig 6B, blue

area). Exceptions from this “rule” (Fig 6B, area between black and white lines) occur

because for time-dependent drive an asymptotic initial value mi
min ¼ m

1
minðÎ

i
EÞ (black line) no

longer implies the asymptotic period T1 and frequency f inst;inet ¼ f1netðÎ
i
EÞ (white line, see

Methods for details). We note, however, that these exceptions from the rule occur only in a

small portion of the state space that is rarely visited in a given ripple event, as we will see in

the following.

What can we say about the dynamics of consecutive cycles i, i + 1, . . . that occur if the drive

rises or falls continuously with slope m? At the end of each cycle the mean membrane potential

is close to the asymptotic reference m1minðÎ
i
EÞ (Methods, Eq (66)). Thus we observe the same hys-

teresis as before: if the drive increases (m> 0, Fig 6B, left), trajectories of consecutive cycles

will lie in the upper right half of the parameter space, where every cycle starts with an initial

mean membrane potential that is higher than its asymptotic reference

(mi
min ⪆ m1minðÎ i� 1

E Þ > m1minðÎ
i
EÞ), and hence has an instantaneous frequency that is (mostly)

higher than the asymptotic reference (red color code). Vice versa, as the drive decreases
(m< 0, Fig 6B, right), trajectories will lie in the lower left half (mi

min ≲ m1minðÎ i� 1
E Þ < m1minðÎ

i
EÞ)

where instantaneous frequencies are mostly lower than their asymptotic reference (blue color

code). Hence even a symmetric, piecewise linear double ramp drive (Methods, Eq (17)),

induces the IFA asymmetry (Fig 6C): During the rising phase of the drive the instantaneous

frequencies are above the asymptotic reference, and during the falling phase they lie below (Fig

6C, top: markers vs black line; note cycle 5 as the only exception from the above “rule”). The

IFA asymmetry thus does not rely on asymmetry in the input. Linear regression over the

(semi-)analytically estimated instantaneous frequencies yields an IFA slope of −2.6 Hz/ms

which is close to the spiking network simulation (Fig 2B).

Interestingly, the last cycle i = 7 in Fig 6C has a reference drive for which the constant-drive

theory no longer applies (Î 7
E ¼ 1:7 < 2:85 ¼ IminE ), hence there is no asymptotic reference for

the network frequency (empty marker, Fig 6C, top). This means that at the end of the sharp

wave the network can sustain one more ripple cycle at a level of drive that in the beginning

would be insufficient to trigger ripples (see cycle 1 in Fig 6C). The transient ripple is thus not

only asymmetric in its instantaneous frequency (IFA), but also with respect to the level of

drive at which it starts and ends.

We have established that IFA occurs in response to transient, sharp wave-like drive, inde-

pendent of its symmetry, due to a hysteresis effect in the amplitude of the oscillatory mean

membrane potential. Varying the slope m in our double ramp model for SPW-like drive

(Methods, Eq (17)) we find that this hysteresis is speed-dependent (Fig 7): If the drive changes

more slowly, the transient dynamics approaches the asymptotic dynamics, and the IFA asym-

metry is reduced (χIFA! 0 for |m|! 0, Fig 7A–7C; Methods, Eqs (56)–(66)). The theory thus

explains the speed-dependence of IFA that we already observed in the spiking network simula-

tions (Fig 2D). The theoretically predicted instantaneous frequencies and IFA slopes are in

excellent agreement with the corresponding observations in the spiking neural network simu-

lation if the slope is sufficiently strong (Fig 7Aii and 7Bii, colored vs grey markers, average rela-

tive error �: 11–13%, Table 1). The discrepancies between theory and simulation for slow drive
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(Fig 7Cii, colored vs grey markers) are mainly due to the discrepancies in the estimate of the

asymptotic reference frequencies for constant drive (Fig 4).

The speed-dependence of IFA is an important prediction of the feedback-based inhibitory

ripple model that can be tested in experiments: Optogenetic stimulation of PV+ basket cells

can trigger ripple oscillations in the LFP [21] or induce ripple-modulated spiking activity [43].

Increasing and decreasing the intensity of the light pulse could mimick the piecewise linear,

Fig 7. IFA is speed-dependent. Transient dynamics for SPW-like drive with slope m = ±0.4/ms (A, cf. Fig 6), m = ±0.2/ms (B), or m = ±0.1/ms (C).

Top panels (i): difference between instantaneous and asymptotic network frequency for the possible combinations of external reference drive Î E and

initial mean membrane potential μmin, shown separately for positive (top) and negative (bottom) slope of the drive. Trajectories shown in (ii) are

overlaid. Bottom panels (ii): Example trajectories through the space shown in (i) for consecutive cycle under SPW-like drive with slope ±m. Top:

instantaneous (colored markers) vs asymptotic (black solid line) network frequency as predicted by the theory. Grey dots indicate instantaneous

frequencies in spiking network simulations (cf. Fig 2D, N = 10, 000). Black dashed line illustrates asymptotic network frequencies from spiking network

simulations (cf. Fig 1B, N = 10, 000). See Table 1 for a quantitative comparison of simulation and theory. Middle: population rate as predicted by the

Gaussian-drift approximation. Bottom: instantaneous vs asymptotic μmin (orange) and μmax (cyan). Gray line: trajectory of mean membrane potential μ
(t). Green lines show SPW-like external drive (Eq (17)), green dots mark reference drive Î E of each cycle. The difference between instantaneous and

asymptotic network frequencies (IFA) becomes less pronounced for smaller slope (C vs A, see also Table 1).

https://doi.org/10.1371/journal.pcbi.1011886.g007

Table 1. IFA in theory and simulation. Quantification of the IFA slope χIFA in the spiking network simulations and

the theoretical approximations shown in Fig 7Aii–7Cii for different slopes m of the external SPW-like drive. The error

� (Eq (67)) quantifies the average relative deviation of the theoretically predicted instantaneous network frequencies

(colored markers in Fig 7) from the simulation results (grey dots in Fig 7).

slope of SPW-like drive [1/ms] m = ±0.4 m = ±0.2 m = ±0.1

IFA slope χIFA (Hz/ms, simulation) – 3.04 – 0.74 – 0.29

IFA slope χIFA (Hz/ms, theory) – 2.60 – 1.45 – 0.51

error � in instantaneous frequency 11% 13% 13%

https://doi.org/10.1371/journal.pcbi.1011886.t001
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double ramp drive studied here. The model predicts that the IFA asymmetry is reduced if the

optogenetic light stimulus changes more slowly.

Discussion

We studied the dynamics of hippocampal ripple oscillations in a feedback-based inhibition-

first model. By reducing the model complexity we derived an analytical approximation of the

mean-field dynamics in the regime of strong drive and strong coupling. For constant drive,

our theory (i) yields an approximation of the asymptotic network frequencies and mean unit

firing rates far beyond the Hopf bifurcation, (ii) captures the transition from sparse to full syn-

chrony, and (iii) reveals an increase of the mean membrane potential oscillation amplitude for

increasing levels of external drive. For a fast changing, sharp-wave like drive we then show that

a speed-dependent hysteresis effect in the trajectory of the mean membrane potential produces

an IFA-like asymmetry of the instantaneous ripple frequency compared to the asymptotic fre-

quencies. Our analytical approach presents a substantial advancement over previous, exem-

plary, numerical demonstrations of IFA [37] as it allows a mechanistic understanding of the

phenomenon and its parameter dependencies. Our derivation shows that IFA is an intrinsic

feature of the feedback-based inhibitory ripple model and that IFA occurs for any fast-enough

sharp wave-like drive, independent of other parameter choices. The speed-dependence of IFA

is a new prediction that can be tested experimentally.

Simplifying assumptions

To achieve an analytical treatment of the spiking network dynamics, we have made a number

of simplifying assumptions. Our resulting reduced model with full recurrent connectivity is a

special case of the network analyzed in [34] with sparse recurrent connectivity. We demon-

strate in Figs 1 and 2 that the reduced model exhibits ripples and IFA similar to a biologically

more realistic model [37] that includes random sparse connectivity, correlations in the back-

ground noise, synaptic filtering, absolute refractoriness, local pyramidal cells, and conduc-

tance-based synapses. Let us discuss these differences in more detail:

Pyramidal cells. Inhibition-first models posit that the interneuron network generates ripple

oscillations and entrains the spiking of local CA1 pyramidal cells. Thus we neglect pyramidal

cells in our reduced model—we regard them as a non-essential ingredient. We have no a priori
reason to believe that the dynamics of IFA would be qualitatively altered by the presence of

pyramidal cells: Numerical simulations of the feedback-based model including pyramidal cells

have shown that (i) the inhibitory network can entrain the local pyramidal cell network, and

(ii) IFA can occur in the spiking activity of both the excitatory and inhibitory population [37].

The influence of pyramidal cells is most relevant when it comes to determining the boundaries

between the parameter spaces for ripple and gamma oscillations [37], or the relation between

neuronal spiking activity and LFP [24, 38].

Absolute refractoriness. If an absolute refractory period is added to the reduced model in its

default parameter setting (Table 2), the membrane potential distribution becomes bimodal

and the network activity oscillates with alternating clusters of active neurons [60]—a state that

is beyond the scope of our theory. Unimodality of the membrane potential distribution can

easily be recovered by increasing the noise intensity. In the regime of sparse synchrony the net-

work frequency is then virtually independent of the refractory period [60]. The refractory

period only leads to a slight delay of the point of full synchrony, which also occurs at a lower

network frequency due to the decrease in mean unit firing rate.

Conductance-based synapses. A noteworthy qualitative difference in the network dynamics

of our reduced model compared to the model in [37] comes from the use of current-based
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instead of conductance-based synapses. In our network with current-based synapses, an

increase in external drive, and thus recurrent feedback, leads to an increase of the hyperpolari-

zation of the membrane potentials, and the achieved membrane voltages can be quite low

(< −100 mV in Fig 1A; μmin in Fig 4). In contrast, in a network with conductance-based synap-

ses, the decrease in μmin would still be monotonic, but bounded by the inhibitory reversal

potential, and thus confined to a biologically more realistic range. Moreover, inhibitory feed-

back in a conductance-based model compresses the membrane potential distribution around

the reversal potential. To accurately capture the resulting oscillation dynamics, it would thus

be necessary to capture not only the first, but also the second moment of the moving mem-

brane potential distribution. We developed such an extension of the Gaussian-drift approxi-

mation for a toy model of pulse-coupled oscillators with linear phase-response curve, which

mimicks the effect of an inhibitory reversal potential [60]. We find again that IFA is caused by

a hysteresis effect, but now with respect to two variables: the mean and the variance of the

membrane potential distribution. However, a direct analytical treatment of the conductance-

based LIF network of [37] is difficult and may be an interesting subject for future

investigations.

Short term plasticity and adaptation. There are many more biological complexities that are

neglected not only in our reduced model, but also in the reference simulations by [37]. There

is evidence that PV+ interneurons in CA3 exhibit short-term synaptic depression [61]. In prin-

ciple, short term depression or facilitation could easily be incorporated in our Gaussian-drift

approximation by making the synaptic strength K cycle-dependent. Spike frequency adapta-

tion would be another factor relevant for ripple dynamics. However, PV+ interneurons in CA1

—some of the prime candidates for a potential inhibition-first ripple generator—do not exhibit

strong adaptation [62].

Performance and limitations of the Gaussian-drift approximation

Our reduced network model allows a Gaussian-drift approximation of its oscillation dynamics

that can be treated analytically. We added a new phenomenological account for the reset

mechanism on the population level, which improves the accuracy and range of applicability of

the Gaussian-drift approximation (Fig 9A vs 9B). We would like to stress that this phenomeno-

logical reset is not necessary to capture the most important qualitative features of the network,

Table 2. Default parameters for the spiking network.

Parameter Value Definition

N 10,000 Number of interneurons

τm 10 ms Membrane time constant

C 100 pF Membrane capacitance

Eleak -65 mV Resting potential

Vthr -52 mV Spike threshold

Vreset - 65 mV Reset potential

J 65 mV Inhibitory coupling strength

Δ 1.2 ms Synaptic delay

σV 2.62 mV Standard deviation of Gaussian white noise input

VT 1 Spike threshold, dimensionless

VR 0 Reset potential, dimensionless

K 5 Inhibitory coupling strength, dimensionless

D 0.04 Variance of Gaussian white noise input, dimensionless

https://doi.org/10.1371/journal.pcbi.1011886.t002
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namely the transition from sparse to full synchrony for constant drive and the hysteresis effect

leading to IFA for time-dependent drive.

The differences between the simulations of spiking units and the theory have been analyzed

in detail for the case of constant drive (S1 Appendix): there was a good quantitative match for

a large parameter range, and a slight decrease in performance towards high noise intensities.

For a slow-enough time-dependent drive, any approximation error in the asymptotic frequen-

cies at constant drive (Fig 7Cii, top, solid vs dashed line) also contributes to an error in the

instantaneous frequencies (Fig 7Cii, top, colored vs gray markers). Furthermore, the trajectory

of the instantaneous frequencies in the spiking network simulations is influenced by the non-

gaussian shape of the membrane potential distribution, which cannot be captured by the the-

ory. An example is the “wiggle” (local maximum) in the simulated instantaneous network fre-

quencies during the falling phase of the drive as seen e.g. in Fig 7Bii and 7Cii (top, gray

markers): It reflects a single cycle of reduced period that occurs, with some phase jitter, in each

of the 50 simulations pooled together in the plot. Inspection of the membrane potential distri-

bution during this cycle revealed a significant reset-induced bimodality (S1 Fig). Such details

of the transient dynamics cannot be captured by the theory, but are also not crucial to the IFA

phenomenon.

Since our approximation is purely drift based, it is not well behaved in the limit of low drive

(called “pathological oscillation” in Fig 8). In that sense our approach is truly complementary

Fig 8. Dynamical states of the DDE system. Numerical integration of the DDE system (without phenomenological reset) demonstrating 4 distinct

dynamical regimes for increasing external drive IE (bottom axis). Blue: Stable fixed point with zero rate. Red: Pathological, fast oscillations. Yellow:

Period-2 oscillations. Green: Regular period-1 oscillations. Top: Numerically integrated trajectories of population rate r and mean membrane potential

μ over time. Note the changes in scale for the population rate. Bottom: Phase space showing the trajectory (μ(t), r(t)) and the fixed point (IE, 0), which is

only stable in the first case (black circle) and unstable otherwise (empty circle). The horizontal colored bar shows the full range of (relevant) drives from

0 to the point of full synchrony IfullE . The boundaries between the four dynamical regimes were approximated numerically. Black triangles mark the

levels, for which the above example dynamics are shown.Extra ticks indicate: critical drive IcritE � 1:48, for which the spiking network undergoes a Hopf

bifurcation (see section Linear Stability Analysis); lower bound IminE introduced for our theory to ensure that we only consider non-pathological

dynamics (see paragraph Range of applicability).

https://doi.org/10.1371/journal.pcbi.1011886.g008
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to previous linear (or weakly nonlinear) analyses around the bifurcation, which break down at

strong drive [34]. A theory that can describe the dynamics of recurrent spiking networks both

in the drift- and diffusion-dominated regimes, as well as capture the transitions in between,

would be desirable. In the context of escape noise models, various approaches have been put

forward to approximate the combined effect of drift- and diffusion-mediated spiking [56–59,

63–65]. The rate expression in our Gaussian-drift approximation (Eq (8b)) is equivalent to the

drift-based hazard function derived by [56, 58].

Our approach for analyzing the population rate dynamics in response to strong voltage

transients may also be relevant in other contexts, such as gamma oscillations [66, 67], or prop-

agation of synchronous neural activity in synfire-chains [29, 68]. A hysteresis effect similar to

IFA was recently observed in optogenetically evoked gamma oscillations in cat visual cortex

[69]. It may be an interesting subject for future research to extend the present Gaussian-drift

approximation to gamma rhythms in E-I networks.

The shape of the asymptotic network frequency curve as a function of the

external drive

A hallmark of the feedback-based inhibition-first ripple model is its state of sparse synchrony,

where, for a wide range of external drives, the collective population activity exhibits oscillations

in the ripple range, while individual neurons fire sparsely and irregulary at lower firing rates

(Fig 1). In this state the asymptotic network frequency is not necessarily proportional to the

external, excitatory drive, as is the case in networks at full synchrony or in clustered states [67,

70, 71].

In our reduced model, the asymptotic network frequency decreases with increasing external

drive (Fig 1B). In the vicinity of the Hopf bifurcation and in the limit of small synaptic delay

such a frequency decrease was shown analytically in [34]. In biologically more realistic model

networks with an absolute refractory period and/or conductance-based synaptic coupling, the

shape of the asymptotic network frequency curve can be quite different (see Fig A in S2

Appendix, panels a1–d1). Qualitatively, the hysteresis mechanism of IFA that we have uncov-

ered here is preserved in all network architectures (Fig A in S2 Appendix, panels 2–4).

The shape of IFA

Our theory predicts that instantaneous ripple frequencies for a changing drive are different

from the asymptotic frequencies for constant drive: If the drive increases the instantaneous fre-

quencies are higher than the asymptotic frequencies, and if the drive decreases the instanta-

neous frequencies are lower. For a symmetric time course of the drive, this asymmetry

immediately implies IFA with a negative regression slope χIFA approximately equal to the

regression slope over the deviations between instantaneous and asymptotic frequencies (see

Methods, Eq (19)). For asymmetric drive, the IFA slope χIFA may be slightly stronger or

weaker, depending on the covariance of the asymptotic reference frequencies with time (see

Methods, Eq (19)). In general, the shape of the instantaneous ripple frequency curve over time

thus depends both on the shape of the drive, and on the shape of the asymptotic frequency as a

function of the external drive (Fig A in S2 Appendix). In our reduced model (Fig A in S2

Appendix, panel d) the asymptotic frequency decreases for increasing values of the constant

drive. Thus it is possible for the instantaneous frequencies in the second half of the ripple

event (when the external drive decreases) to lie below the asymptotic reference while actually

increasing as a function of time (Figs 2D and 7Aii–7Cii, Fig A in S2 Appendix, panels d2, d3).

Interestingly, such a switch from decreasing to increasing frequency at the end of the ripple

event was also found in some experimental data [44]. Others have reported an almost
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monotonic decrease or even a small peak in the beginning of the event [25, 37, 43, 45]. In the

reduced model, IFA gets stronger (more negative χIFA) if the peak of the drive is asymmetri-

cally shifted to the right (Fig A in S2 Appendix, panel d4). If we incorporate into the model an

absolute refractory period (Fig A in S2 Appendix, panel c) or conductance-based synaptic cou-

pling (Fig A in S2 Appendix, panels a,b) the shape of the asymptotic frequency curve changes

such that the strongest IFA is achieved with a left-shifted stimulus (Fig A in S2 Appendix, pan-

els a3, b3). It is only for rare combinations of model architecture and stimulus profile that the

described asymmetry between instantaneous and asymptotic network frequencies does not
imply IFA in the sense of χIFA < 0: If a network with asymptotic frequencies that increase

strictly monotonically with the drive is stimulated with a strongly right-shifted stimulus (Fig A

in S2 Appendix, panel b4), the resulting ripple does not exhibit IFA. Our theory still correctly

predicts this response: the instantaneous frequencies are first above, then below the asymptotic

reference.

Modeling sharp wave-like drive to CA1 interneurons

Square pulse. One may argue that a square pulse is the simplest possible model for the sharp

wave-associated momentary increase in drive to CA1 interneurons (SPW-like drive). Our

analysis, however, showed that transients under constant drive due to perturbations of initial

conditions are short-lived (*one cycle in theory, Fig 5). This implies in particular that a

square pulse cannot account for IFA (Fig A in S2 Appendix).

Note that there is a subtlety when comparing the simulation of the reduced model under a

square pulse (panel d5 of Fig A in S2 Appendix) with the theoretical analysis for piecewise con-

stant drive in Fig 5: in Fig 5 we analyze the network response to stepwise changes in the drive

that occur when the network is already in an oscillatory state (i.e. mmin < VT � 3
ffiffiffiffi
D
p

is suffi-

ciently subthreshold, otherwise the drift-based theory does not apply). In that case, an upwards

step in the drive always corresponds to the red regime of Fig 5B, where the instantaneous fre-

quency is higher than the asymptotic frequency. In Fig A in S2 Appendix, on the other hand, a

square pulse is delivered to the network in the non-oscillatory steady-state. The stationary

mean membrane potential in that state hovers just below the threshold (i.e.

mmin > VT � 3
ffiffiffiffi
D
p

). If we apply the Gaussian-drift approximation nevertheless, this corre-

sponds to a starting distribution of membrane potentials with a significant portion already

above threshold. In that case a square pulse triggers a first population spike starting with a

high, non-zero rate, that silences itself as soon as the inhibitory feedback starts (toff = Δ). Due

to the strong inhibitory feedback this cycle can end with a mean membrane potential below
the asymptotic m1min associated to the amplitude of the square pulse. The next cycle thus starts

in the blue regime of Fig 5B and is longer than the asymptotic period, before the system settles

into the asymptotic dynamics. This explains the slight tendency for positive IFA slopes χIFA

(Fig A in S2 Appendix, panel d5).

Most importantly, however, the network settles into the asymptotic dynamics very quickly

(|χIFA|* 0), so stimulation with a square pulse cannot account for realistic IFA in the feed-

back-based inhibition-first model.

In experiments, an optogenetic square pulse stimulation of CA1 pyramidal cells has been

found to elicit IFA in the local field potential [9, 43]. An extension of the present model,

including pyramidal cells and a proxy for the LFP, would be needed to determine the compati-

bility of the feedback-based inhibition-first model with these findings. It is plausible that a

square pulse stimulation of pyramidal cells yields a non-square, double ramp-like drive to

locally connected interneurons (see the ramp-like evolution of the evoked firing rates of pyra-

midal cells in Fig 2E of [9]). As our analysis emphasizes, any such fast-changing double ramp
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drive to CA1 interneurons is likely to induce IFA. For a direct square-pulse stimulation of

interneurons, on the other hand, the present reduced model predicts no IFA in the inhibitory

population activity. This prediction could be tested in future experiments.

Double ramp. For most of the manuscript we used a double ramp drive as the simplest

model of SPW-like drive that can account for IFA. We chose a symmetric double ramp to

highlight that the asymmetric phenomenon of IFA does not depend on asymmetry in the

input. Our derivation emphasizes that the only necessary requirement for IFA is an external

drive that changes sufficiently fast and first rises, then decays. Thus we predict that IFA in the

feedback-based model will occur for a wide range of such SPW-like external drives, even when

their time courses are weakly asymmetric (Fig A in S2 Appendix, panels 2–4).

IFA in other ripple models

In the introduction we motivated IFA as a means of dissociating the present feedback-based

model from the perturbation-based, inhibition-first model. Indeed, the perturbation-based
inhibitory model [41] makes different predictions with respect to IFA: In the perturbation-
based model, ripples can emerge only transiently, when a sudden increase in drive synchro-

nizes the interneurons; furthermore, there is no sparse synchrony but all neurons fire in all rip-

ple cycles until the neurons desynchronize: The network frequency during this transient ripple

event reflects the momentary unit firing rate and is thus set directly by the strength of the

external drive; a symmetric “up-down” drive thus creates a symmetric instantaneous fre-

quency response that first rises and then decays (no IFA). Since the oscillation power in this

perturbation-based model decays monotonically over the course of the ripple event, the initial

phase of rising frequency even dominates over the subsequent decay (“anti-IFA”). The pertur-

bation-based model thus predicts that IFA only occurs in response to asymmetric drive (e.g. a

sudden step up, followed by a ramp down). Excitatory currents measured during spontaneous

SPW-Rs can exhibit some asymmetry due to synaptic filtering [26], but generally have a non-

zero rise time (CA3 PV+ BC: [21, 72]; CA1 pyramidal cell: [26, 37]). Alternatively, the pertur-
bation-based model could account for IFA under a step-current input, by assuming strong

spike frequency adaptation. However, experimental evidence suggests that PV+ interneurons

—likely candidates for inhibition-first ripple generation in CA1 [73–78]—do not exhibit

strong spike frequency adaptation [62]. This speaks more in favor of the feedback-based inhib-

itory model, which can account for IFA occuring independently of the exact (a)symmetry of

the SPW-associated drive (Fig A in S2 Appendix), and without assuming high interneuron fir-

ing rates with strong spike frequency adaptation.

In both excitation-first ripple models, the ripple frequency depends on the average spike

propagation delay among pyramidal cells—either orthodromically via supralinear dendrites

[29, 79] or antidromically via axo-axonal gap junctions [27, 28]. These models may be able to

account for IFA by assuming an increase in the spike propagation delay over the course of a

ripple event. Such an increase in latency might occur due to increasing somatic depolarization

which has been shown to decrease the action potential amplitude [80, 81]. Future work should

investigate in more depth whether and under which conditions excitation-first models can

generate IFA.

A note on mixed excitatory-inhibitory models for ripple generation

Computational models for ripple generation that combine excitatory and inhibitory popula-

tions (mixed, excitatory-inhibitory ‘E-I’ network models) are sometimes listed as a third class

of ripple models in the literature [36, 38, 43]. Because CA1 contains both excitatory and inhibi-

tory neurons, any “complete” in silico ripple model would need to incorporate both. In the
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present work, however, we use the term model to distinguish different generation mechanisms

of ripple oscillations. To the best of our knowledge, there is no evidence that an E-I network

model can produce oscillations in the ripple range in the absence of recurrent inhibitory cou-

pling if biologically realistic parameters of delays and time constants are used. On the contrary,

both theoretical [35] and numerical [37, 39] analyses suggest that the presence of a disynaptic

E-I loop promotes network frequencies that are well below the ripple range, which is why E-I

network models are typically used in the context of gamma oscillations [66, 82, 83]. We thus

posit that, mechanistically, all currently known ripple models can be categorized into either

inhibition-first or excitation-first (a potential special case is the model by [84] relying on an

excitatory effect of GABAergic synaptic transmission). The respective other cell type can have

a modulatory influence, and such modulations have been studied (interneurons in excitation-

first models: [28, 29]; pyramidal cells in inhibition-first models: [35–41, 43]): Changes in the

recruitment of CA1 interneurons (feedforward via CA3, or local via CA1) or in the balance of

feedforward drive to CA1 interneurons and pyramidal cells have been suggested to mediate

transitions between ripple and gamma network states [37, 39]. Furthermore, there is evidence

that ripple phase-locked action potentials of pyramidal cells may increase the ripple power in

the local field potential [24].

Measurement and quantification of ripple oscillations: Population activity

or local field potential?

Understanding ripple oscillations requires not only understanding their generating mecha-

nism but also the origin of the signal that is used to detect them. Typically, ripple oscillations

are quantified using the local field potential (LFP). The LFP is traditionally believed to reflect

synaptic currents [23, 85], but modeling studies have suggested that action potentials of pyra-

midal cells can also contribute when occurring locked to a ripple rhythm [24, 38]. In fact, the

participation of pyramidal cells in the ripple rhythm may be crucial for the detectability of rip-

ple power in the LFP [43].

In the present work, we used the population activity of interneurons as a proxy for the LFP

signal. The relation between interneuron population activity and LFP in the feedback-based

inhibition-first model was partially explored by [37] using numerical simulations: They found

that for bandpass-filtered (120–300 Hz) average inhibitory currents as a simple model of the

CA1 LFP, IFA in the inhibitory population activity translates into IFA in the LFP. Simulations

of the feedback-based inhibition-first model including pyramidal cells [36–38] have shown

that the inhibitory network can pace pyramidal cell spikes to occur phase-locked to the ripple

rhythm. Furthermore, IFA can occur in the spiking activity of both excitatory and inhibitiory

populations [37]. It may therefore be reasonable to assume that even in a more complex model

of the LFP, taking into account both inhibitory synaptic currents and excitatory action poten-

tials, IFA in the inhibitory population activity may translate into IFA in the LFP.

Note that all proposed ripple models focus on explaining ripple generation in the spiking

activity of the respective pacemaker population (excitatory or inhibitory). A detailed model of

the CA1 LFP and additional numerical simulations will be needed to confirm, for each of the

models, whether they yield a ripple signature in the LFP that is consistent with experimental

data.

Conclusion

In conclusion: The feedback-based inhibition-first ripple model can account naturally for IFA

without adding further parameter constraints. A deepened understanding of the transient rip-

ple dynamics in each of the proposed models together with extensive experimental testing of
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the various predictions will hopefully advance our understanding of the generating mechanism

of ripple oscillations and enable us to study their potential role in memory consolidation.

Methods

The following section on the Methods of this paper is written to be self-contained. Thus, some

of the equations shown in the Results will be reprinted here in the Methods for better

readability.

Spiking neural network simulations

Network architecture. To model ripples in a spiking neural network, we consider a fully-

connected inhibitory network of noisy leaky integrate-and-fire (LIF) neurons. Each neuron’s

membrane potential vi (for i = 1, . . ., N) is given by the following stochastic differential equa-

tion (SDE):

tm _vi ¼ � vi þ Eleak þ
tm

C
IextðtÞ � tm

J
N

XN

j¼1

X

k

dðt � D � tk
j Þ þ

ffiffiffiffiffiffiffiffi
2tm

p
sVxiðtÞ ; ð13Þ

see also Results, Eq (1). Whenever the membrane potential reaches a threshold of Vthr = −52

mV, a spike is recorded and the membrane potential is reset to Vreset = −65 mV. For simplicity

there is no absolute refractory period. We choose a membrane time constant τm = 10 ms, rest-

ing membrane potential Eleak = −65 mV and membrane capacitance C = 100 pF as used by

[37]. All default parameter values are summarized in Table 2.

In our model, Eq (13), each unit receives a common excitatory drive Iext(t) and a common

inhibitory synaptic input in form of a sum of presynaptic Dirac-delta spikes from all neurons

in the network. Spikes occur at times ftk
j g

k¼1;2;...

j¼1;...;N , where tk
j denotes the k-th spike time of neuron

j. They are transmitted to all neurons in the network and arrive at the postsynaptic neurons

after a synaptic delay of Δ = 1.2 ms. The amplitude of the inhibitory postsynaptic potential elic-

ited by one input spike is determined by the synaptic strength J = 65 mV. Our default network

has N = 10, 000 units.

To account for noisy background activity, every unit receives independent Gaussian white

noise ξi(t) with hξi(t)i = 0, hξi(t)ξj(t0)i = δi,jδ(t − t0). The strength of the noise is determined by

the parameter σV = 2.62 mV, which can be interpreted as the long-time standard deviation of

the membrane potential in the absence of a threshold.

In simulations of the spiking network with a finite temporal resolution (Δt = 0.01 ms), we

define the empirical population activity as

rNðtÞ ¼
nspkðt; t þ DtÞ

NDt
ð14Þ

(see also Results, Eq (2)), where

nspkðt; t þ DtÞ ¼
Z tþDt

t

XN

i¼1

X

k

d
�

s � tk
i

�
ds ð15Þ

denotes the total number of spikes that were emitted from the population in the time interval

[t, t + Δt]. The empirical population activity has units of spikes per second and can also be

interpreted as the instantaneous firing rate of single neurons in our homogeneous network

[86].
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For plotting purposes the empirical population activity is smoothed with a Gaussian win-

dow g of standard deviation σt = 0.3 ms:

rplotN ðtÞ ¼ g ∗ rNð ÞðtÞ ; gðtÞ ¼
1
ffiffiffiffiffiffi
2p
p

st

exp �
t2

2s2
t

� �

: ð16Þ

To facilitate notation we omit the superscript “plot” in all Figures.

For constant drive, we simulate 5.05 s (time step Δt = 0.01 ms). The initial membrane

potentials are drawn randomly from a uniform distribution between the reset and threshold

potentials. The initial 50 ms are excluded from analysis, because we are not interested in the

initial transient but in the asymptotic network dynamics. The remaining 5 s are sufficient for a

basic spectral analysis.

For time-dependent drive, we first simulate the network for 200 ms with a constant baseline

drive of IcritE =2 (see section Linear stability analysis), followed by the time-dependent, sharp
wave-like stimulus, which we model as a piecewise linear double ramp of slope ±m with a pla-

teau phase of arbitrary length in between (here 20 ms):

IextðtÞ ¼

Icritext =2; 0 � t � t1 ¼ 200ms

Icritext =2þmðt � t1Þ; t1 < t � t2 ¼ t1 þ
Ifullext � Icritext =2

m

Ifullext ; t2 < t � t3 ¼ t2 þ 20ms

Ifullext � mðt � t3Þ; t3 < t � t4 ¼ t3 þ
Ifullext � Icritext =2

m

8
>>>>>>>><

>>>>>>>>:

ð17Þ

During the plateau phase the drive is at the approximate point of full synchrony Ifullext for the

respective spiking network, as determined by a range of constant-drive simulations.

Simulations of the LIF network model have been performed using the Brian2 simulator

[87]. Data storage and parallelization of simulations for large parameter explorations were

done using the Python toolkit pypet [88].

Frequency analysis. The network frequency at constant drive is defined as the location of

the dominant peak in the power spectral density of the population activity rN(t). The saturation

(average fraction of neurons firing in one cycle of the population rhythm) is computed by

dividing the mean unit firing rate by the network frequency.

To define the instantaneous network frequency in response to time-dependent drive, we

use frequency estimates both in continuous time and for a discrete set of time points. The con-

tinuous estimate is derived from the wavelet spectrogram (windowed Fourier transform) of

the population activity, which indicates instantaneous power in the frequency band from 0 to

350 Hz over time; the instantaneous frequency at each point in time is defined as the frequency

above 70 Hz, that has maximal instantaneous power. The lower limit is introduced to exclude

the low-frequency contribution due to the sharp wave. The instantaneous frequency is consid-

ered significant, whenever the corresponding instantaneous power exceeds a power threshold.

The power threshold is chosen as the average instantaneous power at 0 Hz during the initial

200 ms baseline window, plus 4 standard deviations.

An alternative estimate of the instantaneous frequency is given by the inverse of the

peak-to-peak distances in the (smoothed) population rate. We consider only peaks that are

more than 4 standard deviations above the average rate during baseline stimulation. This

procedure delivers a discrete set of frequency estimates associated with a discrete set of time

points. In this paper we mostly rely on this “discrete” estimate of instantaneous frequency

since its parameter-dependencies (minimal height of oscillation peaks) are more transpar-

ent than the ones of the continuous-time estimate (size of time window for windowed
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Fourier transform, power threshold). Furthermore it is better suited for comparison with

the theory which also describes instantaneous frequency as a discrete measure per cycle (see

Eq (65)).

To quantify the network’s instantaneous frequency response to a SPW-like drive (Eq (17)),

we perform 50 independent simulations of the network model with the same drive but differ-

ent noise realizations. Linear regression over the discrete instantaneous frequency estimates

ðt̂ i; f̂ iÞi¼1;...;‘
from ℓ discrete oscillation cycles, pooled together from all 50 simulations, yields

the average change of the instantaneous frequency over time:

f instnet ðtÞ � wIFA � t þ const: ; wIFA ¼
Cov

�
f̂ ; t̂
�

Varð̂tÞ
ð18Þ

A negative slope χIFA < 0 indicates IFA.

Note that for our symmetric model of SPW-like drive (Eq (17)), the regression slope χIFA is

approximately equal to the slope resulting from linear regression over the deviations of the

instantaneous network frequencies f̂ i from the symmetric, asymptotic reference frequencies

f1netðIextðt̂ iÞÞ (except for small effects of asymmetric sampling over time):

wIFA ¼
Cov

h
f̂ � f1net

�
Iextðt̂Þ

�
; t̂
i

Varð̂tÞ
þ
Cov

h
f1net
�

Iextðt̂Þ
�
; t̂
i

Varð̂tÞ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

�0

�
Cov

h
f̂ � f1net

�
Iextðt̂Þ

�
; t̂
i

Varð̂tÞ ð19Þ

For asymmetric drive, the covariance Cov
h
f1net
�

Iextðt̂Þ
�
; t̂
i

needs to be taken into account,

when inferring the IFA slope χIFA from our analysis of the asymmetry between instantaneous

and asymptotic frequencies.

The point of full synchrony. We estimate the point of full synchrony in the spiking net-

work by interpolating the simulated saturation curve and estimating the level of drive for

which it becomes 1.

Extracting the average oscillation cycle. For constant drive, we split the spiking network

simulation into individual cycles based on the Hilbert transform of the mean membrane

potential. We take a sufficient number of equally spaced samples from each cycle (here 21) and

average them across cycles to derive the average trajectory of the population rate and the mem-

brane potential histogram over the course of a ripple cycle. For each of the 21 sample times we

can calculate the average membrane potential, which will be used for comparison with the

theory.

Mean-field approximation

Dimensionless equations. To facilitate notation in the theoretical part of this paper, we

shift and rescale all voltages, such that the spiking threshold becomes VT = 1 and the resting

potential is EL = 0. This corresponds to measuring voltage in units of the distance from the

resting potential to the spike threshold. The single unit SDE then reads

tm
_V i ¼ � Vi þ IðtÞ þ

ffiffiffiffiffiffiffiffiffiffiffi
2Dtm

p
xiðtÞ

ð20Þ

IðtÞ ¼ IEðtÞ � IIðtÞ ð21Þ
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(see also Results Eq (3)), where now

Vi ¼
vi � Eleak

Vthr � Eleak
;

IEðtÞ ¼
tm

CðVthr � EleakÞ
IextðtÞ ;

IIðtÞ ¼ Ktm
1

N

XN

i¼1

Xnj

k¼1

dðt � D � tk
j Þ ;

K ¼
J

Vthr � Eleak
;

ffiffiffiffi
D
p

¼
sV

Vthr � Eleak
;

VR ¼
Vreset � Eleak
Vthr � Eleak

ð22Þ

are all dimensionless quantities.

Fokker-Planck equation. In the mean-field limit of an infinitely large interneuron popu-

lation (N!1) the evolution of the membrane potential density p(V, t) is described by the fol-

lowing Fokker-Planck equation (FPE) (see e.g. [34, 51]):

@tpðV; tÞ ¼ � @V
1

tm
I tð Þ � Vð ÞpðV; tÞ

� �

þ
D
tm
@

2

VpðV; tÞ ð23aÞ

IðtÞ ¼ IEðtÞ � IIðtÞ ¼ IEðtÞ � Ktmrðt � DÞ ; ð23bÞ

see also Results Eqs (4)–(5). The FPE can also be written as a continuity equation

@tpðV; tÞ ¼ � @VJðV; tÞ ð23cÞ

with a probability current

JðV; tÞ ¼
1

tm
I tð Þ � Vð ÞpðV; tÞ �

D
tm
@VpðV; tÞ : ð23dÞ

Since units are reset instantaneously as soon as they reach the spiking threshold, the FPE has

an absorbing boundary condition at threshold:

pðVT; tÞ ¼ 0 : ð23eÞ

The population rate r is given by the probability current through the threshold:

rðtÞ ¼ JðVT; tÞ ¼
ð23eÞ
�

D
tm
@VpðV; tÞjVT

; ð23fÞ

see also Results, Eq (6). The fire-and-reset mechanism introduces a derivative discontinuity at

the reset potential VR:

lim
�!0

@VpðVR þ �; tÞ � @VpðVR � �; tÞ½ � ¼ �
tm

D
rðtÞ ; ð23gÞ

see also [51–55]. The membrane potential density must decay to zero fast enough in the limit

of V! −1:

lim
V!� 1

pðV; tÞ ¼ lim
V!� 1

VpðV; tÞ ¼ 0 : ð23hÞ

As a probability density, p(V, t) obeys the normalization condition:

Z VT

� 1

pðV; tÞ dV ¼ 1 8 t: ð23iÞ
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Derivation of the Gaussian-drift approximation

Without the absorbing boundary at threshold and the source term due to the fire-and-reset

rule, the FPE has only natural boundary conditions and can be solved analytically. Its solution

pδ for an initial Dirac delta distribution pδ(V, 0) = δ(V − μ0), is a Gaussian density with time-

dependent mean μ(t) and variance σ2(t) [89]:

pdðV; tÞ ¼
1
ffiffiffiffiffiffi
2p
p

sðtÞ
exp �

ðV � mðtÞÞ2

2s2ðtÞ

� �

: ð24Þ

The mean membrane potential μ evolves according to the single unit ODE (Eq (20)) without

the noise term:

_mðtÞ ¼
1

tm
I tð Þ � m tð Þð Þ ; mð0Þ ¼ m0 ; ð25Þ

see also Results (8a). The variance of the membrane potential distribution, σ(t)2, approaches D
with a time constant of τm/2:

s2ðtÞ≔D
�

1 � e� 2t=tm

�
� !
t!1 D : ð26Þ

The solution for an arbitrary initial condition can be found by convolution of the initial condi-

tion with pδ. Hence in the long time limit (t!1) all solutions of the FPE with natural bound-

ary conditions tend towards a Gaussian with variance D—independent of the initial condition

(which has to satisfy the boundary conditions Eq (23)).

In our ripple-generating network, with strong drive and strong coupling, the bulk of the

membrane potential distribution is strongly subthreshold in between population spikes (i.e.

unaffected by the non-natural boundary conditions), and thus tends towards a Gaussian den-

sity. When the next population spike begins, we can hence approximate the membrane poten-

tial density as a Gaussian with fixed variance D:

pðV; tÞ �
1
ffiffiffiffiffiffiffiffiffi
2pD
p exp �

ðV � mðtÞÞ2

2D

� �

; ð27Þ

see also Results, Eq (7). This Gaussian approximation allows the derivation of a simple expres-

sion for the population rate under strong drive [56–58]:

rðtÞ ¼ JðVT; tÞ ¼
ð23hÞ

Z VT

� 1

@VJðV; tÞdV ¼
ð23cÞ

� @t

Z VT

� 1

pðV; tÞdV ¼
ð27Þ

_mðtÞ pðVT; tÞ : ð28Þ

The rate is given by the value of the Gaussian density at threshold, scaled by the speed at which

the mean membrane potential approaches the threshold. Since only upwards-threshold-cross-

ings should contribute to the rate, we add a sign-dependence:

rðtÞ ¼ ½ _mðtÞ�
þ
pðVT; tÞ ; ð29Þ

see also Results Eq (8b). The rate is clipped to 0 whenever the mean membrane potential

decays: ½ _mðtÞ�
þ
≔maxð0; _mðtÞÞ [56–58].

Numerical analysis of oscillation dynamics. In its derivation above, we formulated the

Gaussian-drift approximation in several equations, describing the membrane potential density

p (Eq (27)), mean membrane potential μ (Eq (25)) and population rate r (Eq (29)) separately.

Note however that the mean membrane potential μ is the only independent variable and thus

the Gaussian-drift approximation can be rephrased as a single delay differential equation
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(DDE):

_mðtÞ¼
ð25Þ 1

tm
I tð Þ � m tð Þð Þ ¼

ð23bÞ 1

tm
IE � tmKrðt � DÞ � mðtÞð Þ

ð30Þ

¼

ð29Þ

ð27Þ 1

tm
IE � tmK½ _mðt � DÞ�

þ

1
ffiffiffiffiffiffiffiffiffi
2pD
p exp �

ðVT � mðt � DÞÞ
2

2D

� �

� mðtÞ
� �

ð31Þ

We will nevertheless illustrate the solutions as two-dimensional trajectories of both μ(t) and

r(t) (Fig 8), since the population rate is our main variable of interest. The DDE can be inte-

grated numerically using a simple forward Euler method. We numerically explored the

dynamics for initial conditions μ(t� 0)� VT. Effectively, we assume that the Gaussian mem-

brane potential distribution is so far subthreshold that no spiking has occured before time 0 (r
(t) * p(VT, t)� 0 8t� 0). In that case, the intialization of _mðt � 0Þ, which only appears as a

second factor in the rate expression Eq (29), is irrelevant as long as it is finite. For constant

drive IE, we then find a range of potential dynamics (see Fig 8).

There is a large regime of sufficiently strong drive in which the solution μ exhibits persistent

period-1 oscillations (Fig 8, green). This is the regime that we are interested in and the dynam-

ics of which we will approximate in the following.

At lower levels of drive, there are three additional dynamical regimes that we will exclude

from analysis: At very low drive, the system has a stable fixed point ( _m ¼ 0) in (μ(t), r(t))� (IE,

0) (Eq (30), Fig 8, blue). The bifurcation at which the fixed point loses stability can be deter-

mined numerically (see Eq (38) for an analytical approximation). Immediately after the bifur-

cation, the DDE solution exhibits very fast oscillations at (2Δ)−1 * 417 Hz (Fig 8, red). The

oscillation amplitude of the mean membrane potential is very small, and a large portion of the

Gaussian potential density is suprathreshold at all times. We refer to this oscillation as “patho-

logical” since it is a direct result of the artificial clipping of the rate to 0 whenever the mean

membrane potential decays (Eq (29)). Increasing the drive further brings the system into a

state of period-2 oscillations where the Gaussian density gets pushed below threshold only

every other cycle (Fig 8, yellow).

These regimes of pathological high-frequency or period-2 oscillations exist due to our sim-

plifying assumptions capturing only the mean-driven aspects of the network dynamics. Both

regimes occur either shortly before or after the level of drive IcritE at which the original spiking

network undergoes a supercritical Hopf bifurcation (see tick mark in Fig 8). In the vicinity of

that bifurcation the spiking network dynamics are fluctuation-driven with either no (IE < IcritE )

or only small-amplitude (IE > IcritE ) oscillations in the mean membrane potential and popula-

tion rate. These cannot be captured without taking into account the absorbing boundary at

threshold and the non-Gaussian shape of the density of membrane potentials. We will exclude

these pathological dynamics from analysis by introducing a lower bound IminE for the theoreti-

cal approximations that we develop in the following (see tick mark in Fig 8).

Analytical approximation of oscillation dynamics for constant drive

For strong enough drive the mean membrane potential μ under the Gaussian-drift approxima-

tion oscillates periodically between two local extrema μmin and μmax (Fig 8, green regime, see

also Fig 9A). The population rate r(t) oscillates at the same frequency and is positive when the

mean membrane potential increases, i.e. _mðtÞ � 0, and 0 otherwise, c.f. Eq (29). The time

when the mean membrane potential reaches its local maximum μmax marks the end of the
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population spike and will be denoted as toff. The inhibitory feedback (Eq (23b)) thus ends at

time toff + Δ and we define μmin ≔ μ(toff + Δ) as the end of a cycle. This allows us to approxi-

mate the overall period as T = toff(μmin, μmax) + Δ. Here, we wrote toff(μmin, μmax) to emphasize

that toff is the rise time of the mean membrane potential from μmin to μmax (upstroke). Further-

more, Δ is the duration of the subsequent downstroke back to μmin. In the following, we will

approximate μmax (Step 1) and μmin (Step 2) and thus derive the network frequency as the

inverse of the period:

fnet ¼ T � 1 ¼ ðtoffðmmin; mmaxÞ þ DÞ
� 1 ð32Þ

(see also Results, Eq (9)).

Step 1. To find the local maximum μmax = μ(toff) we have to solve

0 ¼ _mðtoffÞ : ð33Þ

Since the dynamics of the mean membrane potential are given by a delay differential equation,

the term on the right-hand side is recurrent:

_mðtoffÞ¼
ð25Þ 1

tm
IðtoffÞ � mðtoffÞð Þ

From the yet unknown time toff we have to look back in time (in windows with length of the

delay Δ) at the history of the population rate r(t):

¼
ð23bÞ 1

tm
IE � tmKrðtoff � DÞ � mðtoffÞ
� �

which in turn depends on μ(t) and _mðtÞ:

¼
ð29Þ 1

tm

�
IE � tmK½ _mðtoff � DÞ�þ pðVT; toff � DÞ � mðtoffÞ

�

¼

ð25Þ

ð23bÞ 1

tm

�
IE � K½IE � tmKrðtoff � 2DÞ � mðtoff � DÞ�þpðVT; toff � DÞ � mðtoffÞ

�

¼ . . .

ð34Þ

We can resolve the recurrence since there is only a finite number of past time windows, during

which the population rate, and thus the delayed feedback inhibition II(t) = Kτmr(t − Δ), is sig-

nificantly above 0. In the first time window [toff − Δ, toff], right before the end of the upstroke,

we have to take inhibition into account, since this is what stops the upstroke. In the second

time window [toff − 2Δ, toff − Δ], further into the past, we will assume that the inhibitory feed-

back is negligible, i.e.

IðtÞ � IE 8 0 � t � toff � D:

This assumption implies that the population rate was negligible in the previous time window,

i.e.

rðtÞ � 0 8 0 � t � toff � 2D ðA1Þ

(Eq (23b), Fig 9A). Note that t here refers to time since the beginning of the cycle (t = 0). Since

the population spike ends at time toff, (A1) is equivalent to the assumption that the population

spike lasts at most 2Δ. Adding the subsequent downstroke time of Δ this amounts to an upper

bound for the oscillation period of around 3Δ, plus any additional upstroke time with r� 0,

which is a reasonable assumption for a feedback loop with delay Δ as argued already by [34].
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Fig 9. Illustration of analytical approximation of DDE dynamics. (A) One cycle of the oscillatory solution of the

DDE for IE = 3.6. Dotted lines for rate (top) and mean membrane potential (bottom) are the result of a numerical

integration of the DDE (Eq (31)). All other lines illustrate our analytical considerations. Top: population rate r(t)
(black). Bottom: mean membrane potential μ(t) (full grey line: Eq (A2) during upstroke, Eq (39) during downstroke,

gray area: mðtÞ � 3
ffiffiffiffi
D
p

indicating the width of the Gaussian density p(V, t)). Constant external drive IE (green line),

total input I(t) = IE − II(t) (dashed line, Eq (42)). Local extrema of the mean membrane potential occur at the

intersections of μ and I: Cyan: local maximum μmax (Eq (38)). Orange: approximate local minimum μmin (Eq (43)).

Vertical dotted lines mark end of population spike toff as well as intervals toff + kΔ, k 2 {−2, −1, 1}. Arrows illustrate
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Under this assumption, we set r(toff − 2Δ) = 0 in Eq (34), and only a finite number of terms

remains:

0 ¼ _mðtoffÞ �
ðA1Þ 1

tm
IE � mðtoffÞ � K IE � mðtoff � DÞ½ �pðVT; toff � DÞ
h i

: ð58Þ ð35Þ

Note that the rectification [�]+ has been dropped in this equation because the mean membrane

potential can never be larger than the external drive. Furthermore, we assume that we can

approximate the past μ(toff − Δ) during the upstroke by only considering the excitatory drive,

I(t)� IE. Under this assumption, Eq (25) yields the exponential relaxation

mðtÞ � IE � ðIE � mminÞe� t=tm 8 0 � t � toff ð36Þ

Looking backwards from time toff, we can reformulate this assumption as:

mðtoff � xÞ � IE � ðIE � mmaxÞex=tm 8 x 2 ½0; toff � ðA2Þ

The resulting error is small since the exponential relaxation of the mean membrane potential

towards the total drive I(t) is governed by the membrane time constant (τm = 10 ms). The pop-

ulation spike on the other hand is quite synchronized (we assumed that it lasts less than 2Δ�
τm, (A1)). The time window right before toff, during which the units receive inhibitory feed-

back and the total drive deviates from IE, is thus small compared to the membrane time con-

stant and alters the trajectory of μ only slightly (Fig 9A, inset).

Eq (35) thus simplifies to

0 �
1

tm
IE � mmax � KðIE � mmaxÞe

D=tmpðVT; toff � DÞ
� �

, 0 �
ð27Þ

1 � KeD=tm
1
ffiffiffiffiffiffiffiffiffi
2pD
p exp �

ðVT � IE � ðmmax � IEÞeD=tmÞ
2

2D

� � ð37Þ

The simplified equation can be readily solved for μmax:

mmax � IE � e� D=tm IE � VT þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2D ln
K
ffiffiffiffiffiffiffiffiffi
2pD
p eD=tm
� �s" #

: ð38Þ

To ensure that the argument of the logarithm in Eq (38) is larger than 1, the coupling must be

sufficiently strong: K �
ffiffiffiffiffiffiffiffiffi
2pD
p

e� D=tm . For weaker coupling the inhibitory feedback is never

strong enough to counteract the external drive, hence no local maximum μmax exists. The exis-

tence of a lower bound on synaptic strength for the emergence of oscillations is in line with

previous analyses [34]. Furthermore, there is also a lower bound for the drive IE: if the drive is

simplifying assumption (A1). The beginning of the cycle (ton = 0) is determined by μmin. Horizontal gray bars mark the

length of one cycle (here T = toff + Δ = 3.44 ms (Eq (47)), corresponding to a network frequency of fnet = 290.7 Hz, (Eq

(32))). Inset: magnification highlighting the differences between numerical solution (dotted) and analytical

approximation (full line). Due to assumption (A2) μmax is slightly overestimated. Note that the second intersection of μ
and I occurs shortly before time toff + Δ. Hence μmin is slightly larger than the true local minimum. (B) Same as A, but

with an account for the reset on the population level. At the end of the population spike, μ is reset instantaneously from

μmax to μreset (Eq (49)) (yellow marker). This leads to a lower μmin (Eq (50)) and hence a slightly longer period (T = 4.24

ms), i.e. lower network frequency (fnet = 235.8 Hz). (C) Illustration of phenomenological reset. Cyan: density of

membrane potentials p(V, toff) at the end of the population spike, centered at μmax (before reset). Cyan hatched area:

fraction of active units (saturation, Eq (48)). Grey hatched area: resetting the active portion of p. Yellow: p(V, toff) after

reset, centered at μreset. The reset value μreset is calculated as the average of the density that results from summing the

grey-dashed (active units) and cyan-non-hatched (silent units) density portions (Eq (49)). Default parameters (see

Table 2).

https://doi.org/10.1371/journal.pcbi.1011886.g009
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too weak, i.e. IE < VT �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2D ln Kffiffiffiffiffiffi
2pD
p eD=tm
h ir

, the term inside the square brackets in Eq (38) is

negative and we find μmax > IE. But then μmax cannot be reached; instead, the mean membrane

potential simply settles into its fixed point IE (Fig 8, blue dynamics). Eq (38) thus yields an ana-

lytical approximation of the bifurcation point where the DDE fixed point loses stability and

oscillations emerge (numerical, Fig 8, blue to red: IE * 0.61; analytical, Eq (38): IE * 0.56, for

default parameters, Table 2). For strong enough coupling and a strong enough external drive a

well-defined local maximum μmax < IE exists. Note that μmax does not depend on the initial

voltage μmin. This makes sense intuitively for any μmin that is sufficiently smaller than μmax,

since the “turning point” of the mean membrane potential depends only on the feedback inhi-

bition resulting from the immediate history shortly before μmax is reached (t 2 [toff − 2Δ, toff]).

Step 2. We will now approximate the trajectory of the mean membrane potential during

its inhibition-induced downstroke and infer μmin = μ(toff + Δ), which corresponds to both the

end and the starting value of each cycle of a periodic solution.

Note that while μmin is close to the periodic local minimum of the mean membrane poten-

tial, it is a slight overestimation: The local extrema of the mean membrane potential μ occur at

its intersections with the total drive I(t) (see Eq (33), Fig 9A). At time toff the mean membrane

potential reaches its local maximum and becomes larger than the total drive I(t) (Fig 9A).

Since the population spike ends at time toff, the delayed inhibitory feedback II(t) will stop at

time toff + Δ: The total drive at this point will equal the external drive (I(toff + Δ) = IE); note

that the mean membrane potential μ can never be larger than the external drive IE. Hence, if μ
becomes larger than I at time toff and is smaller than I at time toff + Δ, μ must intersect with I(t)
and reach its local minimum slightly before time toff + Δ (see Fig 9A, inset). What we define as

the initial/final membrane potential of a cycle (μmin ≔ μ(toff + Δ)) is thus close to but slightly

larger than the periodic local minimum. This does not affect our estimate of the period.

The definition of a fixed downstroke duration Δ allows us to find μmin directly by integrat-

ing the mean membrane potential ODE Eq (25) up to time toff + Δ, starting from the initial

value μ(toff) = μmax:

mðtÞ ¼ mmax e� ðt� toff Þ=tm þ
1

tm

Z t

toff

IðsÞe� ðt� sÞ=tm ds for t � toff : ð39Þ

It follows for μmin = μ(toff + Δ) with initial condition μ(toff) = μmax:

mmin ¼ mmaxe� D=tm þ
1

tm

Z D

0

Iðtoff þ tÞe
� ðD� tÞ=tm dt ð40Þ

Again, the total current I(toff + τ) with τ 2 [0, Δ], has a recurrent dependency on the past

dynamics, which can be seen by repeated application of Eqs (23b), (29), (25):

Iðtoff þ tÞ ¼ IE � K
�

IE

� K
h
Iðtoff � ð2D � tÞÞ � mðtoff � ð2D � tÞÞ

i
pðVT; toff � ð2D � tÞÞ

� mðtoff � ðD � tÞÞ
�

pðVT; toff � ðD � tÞÞ

As before we assume that the current I at time toff − (2Δ − τ)� toff − Δ is given exclusively by
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the excitatory drive (A1), which truncates the infinite recurrent expression above to:

Iðtoff þ tÞ �
ðA1Þ

IE � K½IE � K½IE � mðtoff � ð2D � tÞÞ�pðVT; toff � ð2D � tÞÞ

� mðtoff � ðD � tÞÞ�pðVT; toff � ðD � tÞÞ
ð41Þ

We are left with a finite number of terms that depend on the trajectory of μ(t) during the

upstroke. Again, we approximate μ(toff − x), x� 0 assuming exponential relaxation towards

only the external drive, i.e. ignoring inhibition (A2). This abolishes all dependencies on the yet

unknown time toff of the end of the population spike:

Iðtoff þ tÞ �
ðA2Þ

IE � KðIE � mmaxÞeðD� tÞ=tm pðVT; toff � ðD � tÞÞ

þ K2ðIE � mmaxÞeð2D� tÞ=tmpðVT; toff � ð2D � tÞÞpðVT; toff � ðD � tÞÞ
ð42Þ

Inserting this approximation (Eq (42)) into the expression for μmin (Eq (40)) yields:

mmin � mmax e� D=tm þ
1

tm
e� D=tmIE

Z D

0

et=tm dt

�
1

tm
KðIE � mmaxÞ

Z D

0

p VT; toff � ðD � tÞð Þ dt

þ
1

tm
K2ðIE � mmaxÞe

D=tm

Z D

0

p VT; toff � ð2D � tÞð Þp VT; toff � ðD � tÞð Þ dt

The integrals can be solved analytically, if we approximate the past trajectory of μ linearly

within the Gaussian expressions p:

mðtoff � xÞ⪅
ðA2Þ

mmax � ðIE � mmaxÞ
x
tm

; 0 � x � 2D� tm ðA3Þ

Hence,

pðVT; toff � ðkD � tÞÞ �
1
ffiffiffiffiffiffiffiffiffi
2pD
p exp �

VT � mmax þ ðIE � mmaxÞ kD� t
tm

� �2

2D

2

6
4

3

7
5:

Using this expression, we obtain

mmin � mmaxe
� D=tm

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
initial condition

þ IE 1 � e�
D
tm

� �

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
excitatory drive

�
1

2
K erf � 0ð Þð Þ � erf � Dð Þð Þ
h i

� K
1
ffiffiffiffiffiffiffiffiffi
2pD
p e� c

2D
e
D

tm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

e
2D

tm þ 1

q erf c Dð Þð Þ � erf c 0ð Þð Þ
h i

2

6
4

3

7
5

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
inhibitory feedback

;

ð43Þ
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where

�ðtÞ ¼
VT � mmax þ ðIE � mmaxÞ D� t

tmffiffiffiffiffiffi
2D
p ð44Þ

cðtÞ ¼
� ðIE � mmaxÞ e

2D
tm þ 1

� �
ðtm þ D � tÞ þ tmðIE � VTÞ e

D
tm þ 1

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2D e
2D
tm þ 1

� �r

tm

ð45Þ

c ¼
ðVT � IEÞ

2

�

1 � e
D

tm

�2

e
2D
tm þ 1

:
ð46Þ

Although lengthy, this expression can be easily evaluated numerically.

The local “minimum” μmin is not only the final but also the initial mean membrane poten-

tial of each cycle. The length of the upstroke can thus be approximated as the time it takes for

the mean membrane potential to rise from μmin to μmax, based on exponential relaxation

towards only the excitatory drive IE (A2):

toff �
ðA2Þ

tm ln
IE � mmin
IE � mmax

� �

ð47Þ

Together with the assumed downstroke duration of Δ we arrive at an analytical estimate for

the oscillation period T and hence the network frequency fnet (see Eq (32)). Overall we have

derived analytical expressions for μmax, μmin, toff, fnet as functions of the external drive IE,

which characterize the oscillatory dynamics. To evaluate the accuracy of our analytical approx-

imation we integrate the DDE numerically (Eq (31), Fig 8, green regime of period-1 oscilla-

tions) and determine μmax, μmin and fnet. We find that the errors introduced by our simplifying

assumptions (A1)–(A3) are small (Fig 10, dashed lines vs square markers).

Accounting for the reset mechanism. The quantitative accuracy of our Gaussian-drift

approximation with respect to the original spiking network can be increased by adding a

phenomenological account for the reset on the population level. During the population spike

(t< toff) the single unit reset has little influence on the population rate dynamics, since units

spike at most once per cycle. At time toff the population spike ends and the integral over the

suprathreshold portion of the Gaussian density of membrane potentials corresponds to the

fraction of units that have spiked (the saturation):

s≔
Z 1

VT

pðv; toffÞ dv ¼
ð27Þ 1

2
1 � erf

VT � mmaxffiffiffiffiffiffi
2D
p

� �� �

ð48Þ

(see Fig 9C, cyan hatched area). Taking into account the reset mechanism at this point would

mean shifting the suprathreshold portion of p(V, toff) downwards by an amount VT − VR (Fig

9C, gray hatched area), essentially splitting the voltage distribution into two pieces, corre-

sponding to silent units (Fig 9C, non-hatched area under cyan Gauss) and units that have

spiked and been reset (Fig 9C, gray hatched area). To preserve our simplified framework of a

unimodal, Gaussian voltage distribution, we will instead assume that the Gaussian voltage dis-

tribution is reset as a whole, to a new mean membrane potential μreset given by the average of
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the two distribution pieces (“silent” and “spike+reset”):

mreset ≔
Z VT

� 1

vpðv; toffÞdvþ
Z 1

VT

½v � ðVT � VRÞ�pðv; toffÞdv

¼

Z 1

� 1

vpðv; toffÞdv � ðVT � VRÞ

Z 1

VT

pðv; toffÞdv

¼ mmax � ðVT � VRÞs

ð49Þ

This phenomenological account for the reset contains the implicit assumption that in between

population spikes the membrane potential distribution “spends enough time” subthreshold

that the bimodality created by the reset mechanism vanishes due to diffusion and the distribu-

tion becomes roughly Gaussian again. This assumption is satisfied for a relatively large portion

of the parameter space spanned by noise intensity, coupling strength, and reset potential (see

S1 Appendix). The introduction of the population-reset requires an adjustment of the defini-

tion of μmin (Eq (40)): Instead of using μmax as the initial value when integrating the feedback

inhibition during the downstroke, we will now use the reset potential: mðtþoffÞ ¼ mreset. There-

fore, the membrane potential μmin = μ(toff + Δ) at the end of the cycle is given by

mmin ¼ mresete
� D=tm

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
initial condition

þ IE 1 � e�
D
tm

� �

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
excitatory drive

�
1

2
K erf � 0ð Þð Þ � erf � Dð Þð Þ
h i

� K
1
ffiffiffiffiffiffiffiffiffi
2pD
p e� c

2D
e
D
tm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

e
2D

tm þ 1

q erf c Dð Þð Þ � erf c 0ð Þð Þ
h i

2

6
4

3

7
5

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
inhibitory feedback

:

ð50Þ

Except for the initial condition term, all other terms remain unchanged (cf. Eq (43)). Since

μreset < μmax (Eq (49)), the introduction of the reset decreases our estimate of the local mini-

mum μmin. This leads to an increase of the upstroke time toff required for the mean membrane

potential to rise from μmin to μmax (Eq (47)), and hence to a decrease in the network frequency

(Eq (32), see Fig 10).

Note that when the reset is incorporated in the numerical integration of the DDE (31) (e.g.

Fig 9B, dotted lines), the population rate after time toff needs an additional artificial clipping to

zero, since the slope _mðtÞ will briefly become positive again after the reset

( _mðtþoffÞ � IðtoffÞ � mreset > IðtoffÞ � mmax ¼ 0).

The point of full synchrony. Our analytical ansatz allows for a straightforward prediction

of the point of full synchrony and its parameter dependencies. As mentioned before, the inte-

gral over the suprathreshold-portion of the membrane potential density at the end of the popu-

lation spike corresponds to the fraction s of active units (saturation, Eq (48)). In the strict sense

of

s ¼
Z 1

VT

pðv; toffÞdv ¼ 1

full synchrony can never be reached, since the Gaussian probability density p approaches zero

only in the limit v! ±1. We can however define approximate full synchrony as the state

where only the 0.13th percentile of the distribution remains subthreshold:

s ¼
Z 1

VT

pðv; toffÞdv ¼ 0:9987 , mmax � 3
ffiffiffiffi
D
p
� VT
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Using our mapping from external drive to μmax (Eq (38)), we can derive a closed-form expres-

sion for the external drive that is required to achieve full synchrony:

IfullE ¼ VT þ
ffiffiffiffi
D
p

3þ e� D=tm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 ln
K
ffiffiffiffiffiffiffiffiffi
2pD
p eD=tm
� �s

1 � e� D=tm

ð51Þ

Range of applicability of the Gaussian-drift approximation. There are two main con-

straints on the applicability of our theory:

(a) Since we assume that units spike at most once per cycle, the theory is only valid up to

the point of full synchrony IfullE where network frequency and mean unit firing rate coincide.

(b) The assumption of a unimodal distribution of membrane potentials is only valid if, in

between population spikes, the bulk of the membrane potential distribution is pushed suffi-

ciently below threshold such that it can diffuse back to approximately Gaussian shape. We will

Fig 10. Analytical vs numerical evaluation of oscillatory solutions in the Gaussian-drift approximation. Network

frequency (top) and dynamics of the mean membrane potential (bottom) quantified in terms of its periodic local

minimum μmin (orange) and local maximum μmax (cyan) for different levels of external drive IE. The analytical

approximations (solid lines: with reset, dashed lines: without reset) are very close to the results of numerical integration

of the DDE Eq (31) (round markers: with reset, square markers: without reset). Including the reset does not affect μmax

but leads to a decrease in μmin (Eqs (50) vs (43)) and thus a decrease in network frequency. Results are shown in the

relevant range of external drives ½IminE ; IfullE � (vertical dotted lines). For parameters see Table 2.

https://doi.org/10.1371/journal.pcbi.1011886.g010
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thus require that at its lowest point the Gaussian density is almost entirely subthreshold:

Z VT

� 1

pðv; tonÞdv ¼ 0:9987 , mminðIEÞ þ 3
ffiffiffiffi
D
p
�
!

VT ð52Þ

Criteria (a) and (b) yield a finite range ½IminE ; ImaxE � of external drives for which the theory

applies. Since for most parameter settings μmin is an almost monotonically decaying function

of the drive (see Fig 10 and Results), constraint (b) is usually only relevant for the lower bound-

ary IminE of the drive, while the upper boundary is determined by constraint (a): ImaxE ¼ IfullE (Fig

10). For extreme combinations of high noise and weak coupling, however, μmin rises again for

high drive, so constraint (b) also sets the upper boundary ImaxE < IfullE (see Fig Ad in S1 Appen-

dix, bottom right panel, corresponding to the three crossed-out parameter settings in Fig B in

S1 Appendix: no valid theoretical estimate of the network frequency at full synchrony, since

ImaxE < IfullE ).

Quantifying performance. We quantify the performance of our Gaussian-drift approxi-

mation across the range of drives for which

(a). the theory applies (IE 2 ½IminE ; ImaxE �)

(b). the spiking network has not crossed the point of full synchrony (IE � IfullE ; sim)

The size of this regime varies for different parameter settings. To ensure comparability we

interpolate the results of all spiking network simulations to the same fine resolution:

Ii
E ¼ IminE þ 0:1i ; Ii

E 2

�

IminE ;min
�

ImaxE ; Ifull;simE

��

:

We then compute the average relative error of the estimated network frequencies for each

parameter setting:

werr ≔
1

n

X

i

�
�
� f simnet ðI

i
EÞ � f theorynet ðIi

EÞ

�
�
�

f simnet ðIi
EÞ

2 ½0; 1� ð53Þ

We introduce a second score to quantify what portion of the relevant range of spiking network

dynamics (from the Hopf bifurcation, Icrit;simE , to the point of full synchrony, Ifull;simE ) is covered

by the theory:

wappl≔
min

�
ImaxE ; Ifull;simE

�
� IminE

Ifull;simE � Icrit;simE

2 ½0; 1� ð54Þ

We define an overall performance index as

wp≔ wapplð1 � werrÞ 2 ½0; 1� ð55Þ

The larger the performance index χp the better the Gaussian-drift approximation captures the

spiking network dynamics. A systematic evaluation of the performance of the Gaussian-drift

approximation for different network parameters and levels of drive can be found in S1

Appendix.
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Analytical approximation of oscillation dynamics for linear drive

We want to characterize the transient dynamics of any cycle i with initial mean membrane

potential mi
min and linear drive IEðtÞ ¼ Î i

E þmðt � ti
offÞ by deriving functions

�
Î i
E; m

i
min;m

�
7!
�

f inst;inet ; f
i
unit; t

i
off ; m

i
max; m

i
reset; m

iþ1
min

�
: ð56Þ

Here miþ1
min refers to the mean membrane potential reached at the end of cycle i, which poten-

tially serves as the initial condition for the next cycle.

Step 1. The local maximum of the mean membrane potential mi
max can be found with the

same ansatz that was used for constant drive:

0 ¼ _mðti
offÞ ¼

1

tm
Î i
E � Ktmrðti

off � DÞ � m
i
max

� �

¼
ð29Þ 1

tm

�

Î i
E � m

i
max � Ktm½ _mðt

i
off � DÞ�þ pðVT; t

i
off � DÞ

�

¼
ð25Þ 1

tm

h
Î i
E � m

i
max

� K½IEðti
off � DÞ � Ktmrðti

off � 2DÞ
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

�0;ðA1Þ

� mðti
off � DÞ�þpðVT; ti

off � DÞ
i

Again we truncate the recurrent expression for the total current two Δ-time windows before

the end of the population spike (A1):

�
ðA1Þ 1

tm
Î i
E � m

i
max � K Î i

E � mD � mðti
off � DÞ

� �
pðVT; t

i
off � DÞ

� �
: ð57Þ

Again we approximate the trajectory of μ during the upstroke based on relaxation towards

only the excitatory drive, which is now a linear function of time (cf. (A2)). Using the beginning

of cycle i as the time origin t = 0, we obtain

mðtÞ �
ð25Þ
mi
mine

� t=tm þ
1

tm

Z t

0

e� ðt� �tÞ=tmIEð�tÞ�t ¼ IEðtÞ � mtm þ
�

mtm þ m
i
min � IEð0Þ

�
e� t=tm ð58Þ

Under this approximation mi
max can be written as

mi
max ¼ mðt

i
offÞ �

ð58Þ

Î i
E � mtm þ ðmtm þ m

i
min � IEð0ÞÞe

� tioff=tm ð59Þ

and the trajectory before time ti
off (x� 0) can be approximated as:

mðti
off � xÞ ¼ð58ÞIEðt

i
off � xÞ � mtm þ

�
mtm þ m

i
min � IEð0Þ

�
e� ðtioff � xÞ=tm

¼
ð59Þ
�
mi
max � Î i

E þmtm

�
ex=tm þ IEðt

i
off � xÞ

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
¼Î i
E � mx

� mtm

¼ Î i
E þ

�
mi
max � Î i

E

�
ex=tm þm

�
tmex=tm � ðxþ tmÞ

�

ð60Þ
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Inserting the above expression in the local maximum condition (Eq (57)) yields:

0 � Î i
E � m

i
max �

K
�

ðÎ i
E � m

i
maxÞe

D=tm � mtm

�
eD=tm � 1

��

ffiffiffiffiffiffiffiffiffi
2pD
p

� exp �

�

VT � Î i
E �

�
mi
max � Î i

E

�
eD=tm � m

�
tmeD=tm � ðDþ tmÞ

��2

2D

2

6
6
6
4

3

7
7
7
5

ð61Þ

For constant drive (m ¼ 0; IEðtÞ � Î i
E) we recover Eq (37), and thus the asympotic solution

m1max. For m 6¼ 0, we can solve Eq (61) for small m. To this end, we insert the perturbation series

mi
max ¼ m

1
maxðÎ

i
EÞ þ m̂mþ Oðm2Þ and only keep the terms linear in m. Using Eq (37), we obtain

to first order in m

mi
max � m

1

maxðÎ
i
EÞ þmm̂

with

m̂ �
tmð1 � e� D=tmÞ

IE � VT½ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

D ln
Kffiffiffiffiffiffi
2pD
p eD=tm
h ir

þ 2 ln Kffiffiffiffiffiffi
2pD
p eD=tm
h i � ½tm � ðDþ tmÞe

� D=tm �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

>0

ð62Þ

Since the drive is strongly superthreshold (Î i
E � VT) the first order deviation mm̂ of mi

max from

its asymptotic value m1maxðÎ
i
EÞ is generally very small. For biologically plausible parameters (e.g.

a synaptic delay Δ that is not too small), the second term of Eq (62) is slightly larger than the

first. Thus, sgnðmm̂Þ ¼ � sgnðmÞ, i.e. mi
max is slightly smaller than its asymptotic value for line-

arly increasing drive, and slightly larger otherwise (see Fig 6C, cyan dots vs line).

Since already the zeroth-order approximation m1maxðÎ
i
EÞ is close to the numerical solution

mi
max of Eq (61), and the reset mechanism remains unchanged, this implies that also mi

reset is

close to m1resetðÎ
i
EÞ.

The duration of the upstroke ti
off can be obtained from Eq (59) taking into account that

IEð0Þ ¼ Î i
E � mti

off :

ti
off ¼ � tmW

Î i
E � mtm � m

i
max

mtm
exp � 1þ

Î i
E � m

i
min

mtm

� �� �

þ
Î i
E � mtm � m

i
min

m
ð63Þ

where W is the Lambert W function, which has solutions for arguments> − exp(−1). For posi-

tive slope m> 0 and low drive (Î i
E � m

i
max < mtm) this introduces a constraint on the initial

value:

mi
min > Î i

E � mtm log �
mtm

Î i
E � mtm � m

i
max

 !

ð64Þ

(cf. Figs 6B and 7Ai).

The instantaneous frequency of the cycle follows as

f inst;inet ¼
�

ti
off þ D

�� 1

: ð65Þ
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Note that for linearly changing drive, the asymptotic initial value m1minðÎ
i
EÞ no longer implies

the asymptotic frequency f inst;inet ¼ f1netðÎ
i
EÞ. If the drive increases linearly with a positive slope

m> 0, the correct initial value mi
min leading to f1netðÎ

i
EÞ (Fig 6B, left, white line) is larger than

m1minðÎ
i
EÞ (Fig 6B, left, black line). Conversely, if the drive decreases linearly (m< 0), the correct

initial value mi
min leading to f1netðÎ

i
EÞ is smaller than m1minðÎ

i
EÞ (Fig 6B, right, white vs black line).

The correction of the initial condition can be understood as follows: if e.g. the slope is positive,

m> 0, the driving current IE(t) is smaller than Î i
E during the upstroke of μ(t), which lasts until

time ti
off (cf. Eq (12)) and Fig 6A, left). A smaller driving current results in a slower increase of

μ(t), (cf. Eq (8a)), and hence a longer rise time from mi
min to mi

max. In order to match the asymp-

totic frequency, the initial value must therefore be chosen larger than m1minðÎ
i
EÞ so as to compen-

sate the slower increase of μ(t) during the rising phase. A similar argument holds when the

driving current is decreasing (m< 0).

Step 2. We will now compute the mean membrane potential miþ1
min that is reached at the

end of a cycle i. Note that this step is technically not necessary to understand the instantaneous

frequency f inst;inet of an isolated cycle i, which we already derived above as a function of the refer-

ence drive Î i
E, the slope m, and an arbitrary initial condition mi

min (Eq (65)). It is however of

interest to demonstrate that the mean membrane potential miþ1
min at the end of the cycle is close

to the asymptotic reference m1minðÎ
i
EÞ, since it serves as the initial condition of the next cycle. It

is this property, together with the dependence of f inst;inet on the initial condition mi
min, that implies

the emergence of IFA under a piecewise linear drive that first increases, and then decreases

over multiple consecutive ripple cycles (cf. Results, Fig 6C).

We find miþ1
min by integrating the total current during the downstroke:

miþ1
min ¼ m

i
resete

� D=tm þ
1

tm

Z D

0

Iðsþ ti
offÞe

� ðD� sÞ=tmds ð66Þ

The total current I can be split into two parts: Istat, which is approximately equal to the feed-

back current for constant drive IE � Î i
E (Eq (41), except for slight deviations in mi

max), and an

additive new term Im caused by the linear change in the external drive:

Iðt þ ti
offÞ ¼ Istatðt þ ti

offÞ þ Imðt þ ti
offÞ

Istatðt þ ti
offÞ ¼ Î i

E � KpðVT; ti
off � ðD � tÞÞ

�
Î i
E � m

i
max

�
eðD� tÞ=tm

þ K2pðVT; ti
off � ðD � tÞÞpðVT; ti

off � ð2D � tÞÞ
�

Î i
E � m

i
max

�
eð2D� tÞ=tm

Imðt þ ti
offÞ ¼ m

�
t þ KpðVT; ti

off � ðD � tÞÞðD � tÞ

� K2pðVT; ti
off � ðD � tÞÞpðVT; ti

off � ð2D � tÞÞð2D � tÞ
�

For constant drive (m = 0) we recover the asymptotic solution m1minðÎ
i
EÞ (Eq (50)). For m 6¼ 0

we integrate Eq (66) numerically and find that miþ1
min is indeed close to the asymptotic solution

m1minðÎ
i
EÞ. One can infer intuitively, that the sign of the (small) deviation of miþ1

min from m1minðÎ
i
EÞ

equals the sign of the slope m: If the drive increases linearly, the drive during the upstroke of

the mean membrane potential (0 � t � ti
off) is below the reference drive Î i

E ¼ IEðti
offÞ (Eq (12)).

Thus μ rises towards a slightly smaller maximum mi
max (Eq (62)) and with slightly reduced

speed, which decreases the resulting population rate and thus the inhibitory feedback (Eqs

(29) and (23b)). Furthermore, the excitatory drive during the feedback-induced downstroke of

μ (t 2 ½ti
off ; t

i
off þ D�)) is stronger than the reference drive (Eq (12)). It follows that the
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downstroke of the mean membrane potential is reduced, and thus miþ1
min ⪆ m1minðÎ i

EÞ. The oppo-

site argument can be made for linearly decreasing drive.

At this point it is clear that a piecewise linear drive, that first increases and then decreases

over multiple ripple cycles (Eq (17)) will inevitably induce IFA. It is also clear, that this IFA

asymmetry will vanish in the limit of infinitely slow drive (|m|! 0).

Showing a concrete example of IFA under linear drive (Fig 6C) requires a forward integra-

tion of the network response over multiple cycles. Note that our analytical ansatz centered

around the reference point ÎE ¼ IEðti
offÞ (Eq (56)) focuses on isolated cycles. For any individual

cycle i—characterized by the drive Î i
E, the slope m and the initial condition mi

min—we can

(semi-)analytically calculate the frequency difference Dfi ¼ f inst;inet � f1netðÎ
i
EÞ (Eqs (65) and (32)).

The colorplots in Fig 6B show Δfi at a fine resolution on two hyperplanes in this three-dimen-

sional parameter space (drive with slope m = ±0.4/ms). In retrospect, the drive at the beginning

and end of any individual cycle can easily be inferred as IEðti
0
Þ ¼ Î i

E � mti
off and

IEðTiÞ ¼ Î i
E þmD. Thus, to approximate the ripple dynamics over multiple consecutive cycles

under linear drive (Fig 6B and 6C, circular markers) we search the previously explored param-

eter space and match cycles self-consistently such that the drive at the end of one cycle equals

the drive at the beginning of the next: Î i
E þmD ¼ Î iþ1

E � mtiþ1
off . For the double ramp examples

shown in Figs 6 and 7 we further restricted the search for trajectories during the upwards-

ramp to trajectories where the drive in the last cycle ends at the plateau level IfullE .

Comparing theory and simulation for piecewise linear drive. Since the theory provides

a discrete, cycle-wise estimate of the instantaneous network frequency, we compare the result

to the discrete estimate of instantaneous frequency in the simulations, based on the inverse of

the distances between consecutive peaks in the oscillatory population rate. In the spiking net-

work, SPW-like drive is modeled as a piecewise linear double ramp with an intermediate pla-

teau phase of 20 ms (Eq (17)). The Gaussian-drift approximation is used to estimate the

instantaneous network frequencies separately for the rising and falling phases of the drive (lin-

ear increase or decrease with slope ±m). The plateau phase is ignored, since the network fre-

quencies rapidly converge to the asymptotic frequency associated to the drive during the

plateau phase. In both simulation and theory IFA is quantified by computing a linear regres-

sion slope over the instantaneous frequencies. The theoretically estimated instantaneous fre-

quencies are shifted in time to account for a hypothetical plateau phase of 20 ms in between

up- and downstroke and allow full comparability with the simulation results.

For every theoretical instantaneous frequency estimate ðti; f insttheoryðtiÞÞ an error is calculated

relative to the average instantaneous frequencies observed in the spiking simulation around

the same time point (ti ± 1.5 ms):

f instsim ðtiÞ � hff instsim ðtÞgt2½ti � 1:5;tiþ1:5�i

The average relative error of the theoretical estimate, compared to the simulations, is then

computed as

�≔
1

n

X

i

�
�
�f insttheoryðtiÞ � f instsim ðtiÞ

�
�
�

f instsim ðtiÞ
2 ½0; 1� ; ð67Þ

see Table 1.
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Stationary solution and linear stability analysis of the Fokker-Planck

Equation

In what follows, we briefly summarize how we approximated the spiking network’s bifurcation

point in the mean-field limit as well as the network frequency and the mean unit firing rate in

the bifurcation (red triangle and circular marker in Fig 1B). This involves finding the station-

ary solution of the Fokker-Planck Equation (Eq (23)) and analyzing its linear stability with

respect to the external drive. These are standard procedures described in the literature [34, 51,

53, 90]. Here, for an easier reference, we reproduced these findings using the mathematical

symbols used throughout the manuscript.

Stationary solution. The stationary solution p0(V) of the FPE has been derived by [34]

(see also [51]). The constant population rate r0 and resulting total drive I0 in the stationary

state can be inferred self-consistently by solving:

I0 ¼ IE � Ktmr0

r0 ¼ fLIFðI0Þ

where

fLIFðIÞ ¼

 

tm

ffiffiffi
p
p
Z ðI� VRÞ=

ffiffiffiffi
2D
p

ðI� VT Þ=
ffiffiffiffi
2D
p
ex2erfcðxÞdxþ tref

!� 1

is the firing rate of an uncoupled LIF neuron receiving constant drive I and Gaussian white

noise of intensity D (f-I curve, [91]).

Linear stability analysis. For a given external drive IE one assumes a weak, periodic per-

turbation of the population rate around its stationary value:

rðtÞ ¼ r0ðIEÞ þ �r1ðtÞ ¼ r0ðIEÞ þ �e
iotþlt ð68Þ

The bifurcation where the stationary state loses stability corresponds to λ = 0. In the recur-

rently coupled network this perturbation of the rate translates into a perturbation of the input

current:

IðtÞ ¼ IE � Ktmr0ðIEÞ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
≕I0

� �Ktmr1ðt � DÞ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
≕� I1ðtÞ

ð69Þ

The linear response of the LIF units to this weakly modulated drive I(t) under Gaussian white

noise is given by convolution with the linear response function G:

rðtÞ ¼ r0ðIEÞ þ �
Z 1

0

Gðs; IEÞI1ðt � sÞs

This output rate must match the weakly periodically modulated rate r(t) that we assumed in

the beginning (Eq (68)):

r1ðtÞ ¼
Z 1

0

Gðs; IEÞI1ðt � sÞds ¼ð69Þ
� Ktm

Z 1

0

Gðs; IEÞr1ðt � D � sÞds

At the bifurcation (r1(t) = eiωt, Eq (68)) this self-consistent condition is equivalent to

1 ¼ � Ktm
~Gðo; IEÞe� ioD ,

1 ¼ Ktmj
~Gj ; amplitude condition

0 ¼ pþ argð~GÞ � oD ; phase condition

(

ð70Þ

where ~G denotes the Fourier transform of the linear response function (susceptibility). We use
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the exact expression for the susceptibility of an LIF unit under Gaussian white noise (more

specifically, the complex-conjugated of the expression derived by [53]):

~GðoÞ ¼
r0ffiffiffiffi
D
p

io
ioþ 1

D� io� 1

I0 � VTffiffiffi
D
p

� �
� edD� io� 1

I0 � VRffiffiffi
D
p

� �

D� io
I0 � VTffiffiffi

D
p

� �
� ede� iotrefD� io

I0 � VRffiffiffi
D
p

� � :

where D are parabolic cylinder functions and d ¼
V2

R � V2
Tþ2I0ðVT � VRÞ

4D (for an alternative expression

in terms of confluent hypergeometric functions, see [92]). We solve the amplitude and phase

condition (Eq (70)) numerically to find the critical drive IE≕ IcritE (at which the stationary state

loses stability) and the corresponding frequency ω of the emerging oscillation. The network

frequency and mean unit firing rate at the bifurcation are thus given by f critnet ¼ o=2p and

f critunit ¼ r0ðIcritE Þ. This approach is equivalent to the derivation by [34] via linear expansion of the

FPE solution (see also [71]).

Supporting information

S1 Appendix. Performance evaluation of the Gaussian-drift approximation for constant

drive. The Gaussian-drift approximation under constant drive is compared to spiking net-

work simulations for a range of noise intensities D and inhibitory coupling strengths K (Fig

A). The parameter dependencies of the point of full synchrony are captured well by the the-

ory (Fig B).

(PDF)

S2 Appendix. The influence of network architecture and the shape of the external drive on

the asymptotic and instantaneous ripple oscillation dynamics. A covariation of network

architecture and stimulus profile demonstrates that IFA is modulated by, but occurs largely

independent of, the shape of the asymptotic network frequency as a function of the external

drive (Fig A). Furthermore, we illustrate that a simple square pulse cannot elicit IFA in the

feedback-based inhibition-first model.

(PDF)

S1 Fig. Transient bimodality in the membrane potential distribution can affect instanta-

neous ripple frequency dynamics in the spiking network. (A) Same layout as in Fig 2A: Spik-

ing network response to an isolated downwards ramp stimulus with the same slope as in Fig

2D, middle, after time t> 10 ms (N = 10, 000). Note that units that participate in the third pop-

ulation spike tend not to spike in the fourth population spike (red lines in raster plot), which is

an indication of a residual bimodality in the membrane potential distribution from one cycle

to the next (only faintly visible in voltage plot, see red square). (B) Same layout as Fig 2B:

instantaneous network frequencies pooled together from 50 such ramp-down-only simula-

tions. What appears as a continuous non-monotonic “wiggle” in the instantaneous frequencies

of Fig 2D, middle (gray dots) is now clearly identifiable as a single outlier cycle (marked in

red).

(TIF)
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31. Levenstein D, Buzsáki G, Rinzel J. NREM sleep in the rodent neocortex and hippocampus reflects

excitable dynamics. Nat Commun. 2019; 10(1):1–12. https://doi.org/10.1038/s41467-019-10327-5

PMID: 31171779
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61. Kohus Z, Káli S, Rovira-Esteban L, Schlingloff D, Papp O, Freund TF, et al. Properties and dynamics of

inhibitory synaptic communication within the CA3 microcircuits of pyramidal cells and interneurons

expressing parvalbumin or cholecystokinin. J Physiol. 2016; 594(13):3745–3774. https://doi.org/10.

1113/JP272231 PMID: 27038232

62. Pawelzik H, Hughes DI, Thomson AM. Physiological and morphological diversity of immunocytochemi-

cally defined parvalbumin- and cholecystokinin-positive interneurones in CA1 of the adult rat hippocam-

pus. J Comp Neurol. 2002; 443(4):346–367. https://doi.org/10.1002/cne.10118 PMID: 11807843

63. Chizhov AV, Graham LJ. Efficient evaluation of neuron populations receiving colored-noise current

based on a refractory density method. Phys Rev E. 2008; 77(1):011910. https://doi.org/10.1103/

PhysRevE.77.011910 PMID: 18351879

64. Tchumatchenko T, Malyshev A, Geisel T, Volgushev M, Wolf F. Correlations and synchrony in thresh-

old neuron models. Phys Rev Lett. 2010; 104(5):058102. https://doi.org/10.1103/PhysRevLett.104.

058102 PMID: 20366796

65. Badel L. Firing statistics and correlations in spiking neurons: A level-crossing approach. Phys Rev E.

2011; 84(4):041919. https://doi.org/10.1103/PhysRevE.84.041919 PMID: 22181187

66. Börgers C. The PING Model of Gamma Rhythms. In: An Introd. to Model. Neuronal Dyn. Springer;

2017. p. 249–261.
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