
Eur. Phys. J. E          (2023) 46:108 
https://doi.org/10.1140/epje/s10189-023-00371-x

THE EUROPEAN
PHYSICAL JOURNAL E

Regular Article - Living Systems

Detecting a periodic signal by a population of spiking
neurons in the weakly nonlinear response regime
Maria Schlungbaum1,2,a and Benjamin Lindner1,2,b

1 Physics Department, Humboldt University Berlin, Berlin, Germany
2 Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany

Received 30 August 2023 / Accepted 20 October 2023
© The Author(s) 2023

Abstract Motivated by experimental observations, we investigate a variant of the cocktail party problem:
the detection of a weak periodic stimulus in the presence of fluctuations and another periodic stimulus
which is stronger than the periodic signal to be detected. Specifically, we study the response of a population
of stochastic leaky integrate-and-fire (LIF) neurons to two periodic signals and focus in particular on
the question, whether the presence of one of the stimuli can be detected from the population activity.
As a detection criterion, we use a simple threshold-crossing of the population activity over a certain
time window. We show by means of the receiver operating characteristics (ROC) that the detectability
depends only weakly on the time window of observation but rather strongly on the stimulus amplitude.
Counterintuitively, the detection of the weak periodic signal can be facilitated by the presence of a strong
periodic input current depending on the frequencies of the two signals and on the dynamical regime in which
the neurons operate. Beside numerical simulations of the model, we present an analytical approximation
for the ROC curve that is based on the weakly nonlinear response theory for a stochastic LIF neuron.

1 Introduction

The detection of a weak signal in the presence of a much
stronger signal is an interesting problem that arises
in several natural situations for living organisms, most
prominently in auditory perception where it is known
as the cocktail party problem [1]. Detection is compli-
cated by nonlinearity in the sensory apparatus (see e.g.
[2]) and by different noise sources [3], so studying very
simple models can help us to better understand this
problem.

The basic problem has been thoroughly investigated
in the stochastic processes community with respect
to beneficial effects that noise can have in nonlinear
dynamical systems. It is well-known that the detec-
tion and transmission of a weak signal can be improved
by a finite amount of fluctuations by the mechanism
of stochastic resonance as reviewed and critically dis-
cussed in Refs. [4–8]. Different stochastic resonance
effects have been shown to occur in theoretical mod-
els like point processes [9,10], simple threshold systems
[11–15], bistable [16–24], and excitable systems [25–30].
This theoretical research was stimulated by experimen-
tal demonstrations of stochastic resonance in electronic
circuits [31], laser systems [32], ion channels in biologi-
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cal membranes [33], neural receptors [34–36], and spa-
tially extended neural systems [37,38] to name but a few
examples. More recent contributions in the context of
neuroscience discuss in particular the role of the intrin-
sic noise in neural systems [39–43] and their interplay
with abundant mechanisms of adaptation in neural sys-
tems [44–46]. Generally, how neural populations of spik-
ing neurons respond to time-dependent stimuli has been
addressed with different theoretical approaches [43,47–
52].

An intriguing example of a signal detection task can
be found in the courtship behavior of weakly elec-
tric fish. It has been observed that a resident male is
able to detect a distant male intruder while courting a
female [53]. This represents an instance of the aforemen-
tioned cocktail party problem: a comparatively weak
low-frequency signal (the distant intruder) has to be
detected in the presence of another time-dependent
input, coming from the nearby female, a strong high-
frequency stimulus. The detection of this faint signal
is a fascinating problem that involves many levels of
neural processing and is additionally complicated by
the movements of the participating fish [53], by the
change of their frequencies (known as jamming avoid-
ance response) [54], and by different adaptation mech-
anisms (starting with a pronounced spike-frequency
adaptation in the sensory receptor cells, the P-units)
[55].

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1140/epje/s10189-023-00371-x&domain=pdf
http://orcid.org/0009-0002-2698-1620
mailto:maria.schlungbaum@bccn-berlin.de
mailto:benjamin.lindner@physik.hu-berlin.de


  108 Page 2 of 14 Eur. Phys. J. E          (2023) 46:108 

Here, we take the specific experimental observation
of an intruder detection as an inspiration to study
a generic detection problem of how one periodic sig-
nal can be detected in the presence of another one
by a population of stochastically spiking neurons. The
generic scheme may also be applicable to other sen-
sory modalities in which concurring periodic signals are
present (the sense of hearing would be an obvious case).
Our interest lies in the first stage of signal process-
ing (neglecting possible filters or optimized detectors
on higher levels), where we analyze how different time-
dependent stimuli are present in the output of uncou-
pled noisy cells. We would like to stress that our simple
detection scheme is not supposed to account for the
observed detection performance in weakly electric fish.
(None of the above-mentioned complications is taken
into account.) However, to the best of our knowledge,
even this simple model, that allows for some analytical
insights, has not been studied yet. The key questions
that we will be interested in here are: Under which
conditions is the periodic signal easier to detect—in
the presence or the absence of the second (strong peri-
odic) background stimulus? Which role is played by the
stochastic firing regime of the neurons in the popula-
tion (mean- or fluctuation-driven regime) and by the
response regime (linear or weakly nonlinear)? Are there
specific frequency combinations of the two stimuli that
make the weaker signal better detectable?

Assuming a simple detection scheme based on spike
counts, we want to explore the roles of linear and non-
linear responses in the stochastic dynamics of the single
cell. We hypothesize that the weakly nonlinear response
may play a beneficial role in the detection task and
that also the presence of the strong periodic background
stimulus (i.e., the female courtship input in the above
example of weakly electric fish) does not have to be
necessarily detrimental for the detection but, on the
contrary, may facilitate the detection. We would like to
emphasize that this beneficial effect is unrelated to the
vibrational resonance effect emerging in systems driven
by multiple periodic signals (see discussion below).

Our paper is organized as follows: First, we introduce
the model and sketch how we perform the measure-
ment process and how the detector functions. We then
present our analytical approximation of the receiver
operating characteristic (ROC) which quantifies the
detection performance. We investigate the influence of
variations of the simulation and detection parameters
in the detectability of the periodic signal and focus in
particular on the detection time window, the strength
of the signal amplitude, and the frequency combina-
tions. We consider two operating regimes of the neuron
model, the mean-driven and the excitable regimes and
ask in all situations whether the presence of a strong
periodic background stimulus can be beneficial for the
detection task.

2 Model and methods

2.1 Population model and single-neuron model

We consider a population of spiking neurons that are
not connected but driven by a common periodic signal
and individual noise. In the example of weakly elec-
tric fish, the neurons would correspond to the P-units
in the electric fish and the periodic input signal would
contain components stemming from the nearby female
fish and from the intruder to be detected. The scenario
of a population of uncoupled noisy neurons that trans-
mit information of periodic input stimuli is, however,
more general and for instance also encountered in the
auditory periphery.

The dynamics of the i-th spiking neuron is given by a
leaky integrate-and-fire (LIF) model driven by an exter-
nal signal s(t):

v̇i(t) = −vi(t) + μ + εs(t) +
√

2Dξi(t), (1)
with i = 1, . . . , Npop.

Here, vi(t) is the membrane voltage, μ is the mean input
current, ξi(t) is white Gaussian noise with zero mean
〈ξi(t)〉 = 0 and correlation function 〈ξi(t)ξi(t′)〉 = δ(t−
t′) and D is the noise intensity. Whenever vi(t) hits
the threshold vT , a spike is registered for that time and
vi(t) is reset to vR. In our non-dimensional model, time
is measured in units of the membrane time constant,
the voltage in multiples of threshold-reset difference,
and we set vR = 0 and vT = 1 (cf. [56]). In our setup,
the sensory stimulus, common to all Npop units in the
population, reads

s(t) = as cos(ωst + ϕs) + ab cos(ωbt + ϕb) . (2)

It is given by the sum of two cosine functions with dif-
ferent frequencies ωs,b = 2πfs,b (we will use both the
regular frequencies fs,b and circular frequencies ωs,b),
relative amplitudes as,b and phase offsets ϕs,b; the total
signal s(t) enters the dynamics scaled by a global ampli-
tude ε. The two terms represent the total stimulus, con-
sisting of a strong background stimulus ab cos(ωbt+ϕb)
and the weak signal as cos(ωst + ϕs), the presence of
which has to be detected from the output of the pop-
ulation. We will consider situations in which the weak
signal is absent (as = 0) or present (as > 0) and will
ask how the presence of this signal can be detected.
We will also inspect how the detectability of the signal
depends on the presence (ab > 0) or absence (ab = 0)
of the background periodic stimulus.

For the numerical simulations of Eq. (1), we use the
Euler–Maruyama method, operating in discrete time
steps t = t0 + �Δt
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vi

(
t0 + (� + 1)Δt

)
= vi(t0 + �Δt) (1 − Δt) + μΔt

+εs(t0 + �Δt)Δt +
√

2DΔtϑ� .

(3)

Here, ϑ� are independent Gaussian numbers drawn
from a normal distribution with zero mean 〈ϑ�〉 = 0
and unit variance 〈ϑ�ϑk〉 = δ�k. For all numerical exam-
ples in this paper, we use an integration time step of
Δt = 10−3.

We consider a neuron population of Npop = 103 in
all simulations. We analyze the time-dependent count
statistics of the population for the different signal com-
binations in order to test a specific idea how the pres-
ence of the weak periodic signal may be detected (for
details see below). To determine the time-dependent
spike count N(t), we discretize the time axis into bins
Δtbin = 0.05 (significantly larger than our integration
time step) and count all the spikes fired by all neurons
within this bin:

N(t) =
Npop∑

i=1

Ni[t, t + Δtbin] . (4)

Dividing this by the size of Δtbin and an additional trial
average yields an approximation of the instantaneous
firing rate

r(t) ≈
Npop∑

i=1

〈Ni[t, t + Δtbin]〉ξi

ΔtbinNpop
, (5)

where 〈·〉ξi
indicates an ensemble average over realiza-

tions of the intrinsic noise ξi(t) (the common signal is
always the same in all these realizations).

2.2 Detection process

Our approach here is similar in spirit to the recent
study by Bernardi and Lindner [57] of the detection
of a static signal embedded in an Ornstein–Uhlenbeck
process; however, there are also important differences
(see below).

Specifically, we will analyze two time series for dif-
ferent experiments, i.e., spike count modulations N(t)
in the presence or absence of the signal. We will carry
out this numerical experiment for the two distinct sit-
uations when the strong periodic background signal is
present (ab = 1 in Eq. (2)) or not (ab = 0 in Eq. (2)).
We measure the time-dependent counts in a very long
time window that is split into NT smaller detection
windows Tj of length T = KΔtbin and short pauses
of length Δtoff cf (Fig. 1). The NT time windows serve
as trials—this is somewhat different to the procedure in
[57], where trials result from the repetition of the same
experiment. At the same time the averaging over sub-
sequent time windows implies an automatic averaging
over the initial phases of the periodic signals (as long
as the time window is not a multiple of one the driving

Fig. 1 Illustration of the measurement process. One spike
count modulation N(t) in the presence of the signal (blue)
and one in absence of the signal (red) are shown as well
as the first three detection windows. In all visible trials,
the chosen threshold θ is exceeded by the blue trajectory
implying a registration of a correct detection event for these
trials. The red trajectory reaches θ only in T2, i.e. we record
a false-positive event for T2 but not for T1 or T3. Remaining
parameters: ab = 1.0, fs = 0.1, fb = 0.33, ε = 0.05, Δtbin =
0.05, μ = 1.1, D = 0.001

signal’s period, a non-generic case that we exclude in
the following by Δtoff).

We assume that the detection of an event takes place
whenever the spike count of the population crosses a
threshold θ (green dashed horizontal line in Fig. 1).
In two distinct numerical simulations of our popula-
tion model, the count in the presence (blue) and in
the absence of the signal (red) is measured, respec-
tively. When the blue time series crosses θ at least
once within the corresponding time window, a correct-
detection is registered for that trial. In analogy to this,
a false-positive event is recorded when the red time
series exceeds the threshold at least once. The correct
detection (CD) and false-positive (FP) rates are then
obtained by averaging over all NT trials. Varying the
threshold yields the two rates as functions of θ.

In Fig. 2 a few examples for the FP and CD rates vs
threshold θ for different values of the signal amplitude
as are shown in (a) together with the corresponding
ROC curves in (b). The latter are obtained by plot-
ting the CD rate as a function of the FP rate. A low
θ corresponds to a very high detector sensitivity and is
indicated by the upper right corner in Fig. 2b, and a
high θ is represented by the lower left range. The exam-
ple curves are taken for ab = 1, which means in the
presence of the strong periodic background stimulus.

We first focus on the CD (blue) and FP (red) rates
as functions of the threshold θ in Fig. 2a. At small θ,
the probability of the measured spike count N(t) to
be above the threshold at least once within the time
window is close to one and decreases with increasing
θ toward zero. For a weak signal, as = 0.20, the CD
and FP rates are very close to each other implying that
the detection of the signal is difficult. Boosting the sig-
nal amplitude leads to a higher spike count, thus the
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Fig. 2 a FP rates X (θ) and CD rates Y(θ) obtained from
simulations for different values of the signal amplitudes as
indicated in each subplot title, b corresponding ROC curves.
Remaining parameters: ab = 1, same as in Fig. 1

CD rate starts to decrease for higher threshold values,
while the FP rate remains the same. As a consequence,
the horizontal distance between the CD and FP rates
is increasing for higher signal amplitudes and detec-
tion becomes a simpler task as can be expected. The
improved detectability for larger as is also apparent in
the ROC curves in Fig. 2b. For a weak signal amplitude
(as = 0.2, green), the distance to the diagonal (gray
solid line, representing chance level) is small. Enlarging
the signal amplitude yields a growing distance from the
diagonal. In the present examples, the ROC curve of
the signal amplitude as = 0.8 (pink) is already close to
that of an ideal detector, i.e. a detector with a 100%
CD rate at all FP rates.

2.3 Analytical approximation of the ROC

To derive an analytical description of the ROC curve,
we make two assumptions for the count in a short time
bin (Δtbin � 〈I〉, where I denotes the interspike inter-
val of a single stochastic LIF neuron):

1. The spike count distribution follows a Poisson dis-
tribution P〈Nk〉(N);

2. spike counts in each time bin are independent.

The first assumption is well-justified for a sufficiently
small time bin (see e.g. [58]). The second assumption is
certainly an approximation, as the sum of independent
non-Poissonian spike trains do not converge to a Pois-
son process [59]. Assuming a Poisson count statistics
has the great advantage that we just need to know the
mean spike count 〈Nk〉 to determine the distribution
completely. The basic idea is identical to the procedure
in the numerical case: We want to estimate the proba-
bility to be at least once in the detection window above
a certain threshold θ.

We first determine the probability for the spike count
N in a time bin Δtbin to be below or at most at the

threshold θ. This is given by the sum over all possible
values of N ∈ N up to �θ	, the largest integer smaller
than or equal to θ:

prob (N ≤ θ) =
�θ�∑

N=0

P〈Nk〉(N) = e−〈Nk〉
�θ�∑

N=0

〈Nk〉N

N !

=
Γ (1 + �θ	, 〈Nk〉)

�θ	! ≈ Γ (1 + θ, 〈Nk〉)
Γ(1 + θ)

.

(6)

In the last line, we used the incomplete Gamma func-
tion Γ(a, x) =

∫ ∞
x

dt ta−1e−t [60] and furthermore pro-
vided in the last step an approximate expression that
interpolates between integer values of θ (at the latter,
the two expressions coincide). In the following, we will
use for simplicity only the latter expression.

To estimate the probability p(θ, T ) to be not even
once above θ in the j-th detection window Tj , we mul-
tiply the probabilities Eq. (6) from all bins, exploiting
the assumption of statistical independence that holds
true for a Poisson process:

p(θ, T ) =
K−1∏

k=0

Γ (1 + θ, 〈N(tj;k)〉)
Γ (1 + θ)

. (7)

Here, we have used the population spike counts at times
tj,k = j(T + Δtoff) + kΔtbin.

The FP X (θ, 0, T ) and CD Y(θ, as, T ) rates are then
given by

X (θ, 0, T ) =
1

NT

NT −1∑

j=0

(

1 −

K−1∏

k=0

Γ (1+θ, 〈N(tj,k; as =0)〉)
Γ (1+θ)

)

, (8)

Y(θ, as, T ) =
1

NT

NT −1∑

j=0

(

1−

K−1∏

k=0

Γ (1+θ, 〈N(tj,k; as >0)〉)
Γ (1+θ)

)

, (9)

where we indicated the explicit dependence of the spike
count on the signal amplitude by a parametric argu-
ment. Furthermore, the above formulas also include the
trial average over the detection windows Tj (sum over
j).

With the obtained expression, we can proceed in
two different ways. Firstly, we can measure the time-
dependent mean spike count in simulations and use
these data in Eqs. (8) and (9). This will be referred
to as a semi-analytical theory in the following as it still
requires some numerical simulations. Secondly, we can
approximate the mean spike count using linear and non-
linear response theory for stochastic integrate-and-fire
neurons that are driven by periodic signals [61,62]. In
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the latter case, we will use Eq. (5) to estimate the mean
spike count via

〈N(tj;k)〉 ≈ r(tj;k)ΔtbinNpop . (10)

The instantaneous firing rate in the weakly nonlinear
regime (neglecting higher than second-order terms in ε)
can be approximated by [62]

r(t) ≈ r0 +
ε2a2

s

2
χ2 (ωs,−ωs) +

ε2a2
b

2
χ2 (ωb,−ωb)

+ ε
[
as |χ1(ωs)| cos

(
ωst + ϕs − φ1(ωs)

)

+ ab |χ1(ωb)| cos
(
ωbt + ϕb − φ1(ωb)

)]

LR

+
ε2

2

[
a2

s |χ2 (ωs, ωs)| cos
(
2ωst+2ϕs−φ2 (ωs, ωs)

)

+a2
b |χ2 (ωb, ωb)| cos

(
2ωbt+2ϕb−φ2 (ωb, ωb)

)]

HH

+ ε2asab

[
|χ2 (ωs, ωb)| ×

cos
(
(ωs + ωb) t + ϕs + ϕb − φ2 (ωs, ωb)

)

+ |χ2 (ωs,−ωb)| ×

cos
(
(ωs − ωb) t + ϕs − ϕb − φ2 (ωs,−ωb)

)]

MR
.

(11)

Here, we have included initial phases ϕs,b for both
periodic signals. The indices in the above expression
indicate distinct contributions to the response: the
steady state with an index 0, the linear response (LR),
the higher harmonics of the periodic driving (HH)
and the mixed response (MR) that emerges because
of the simultaneous presence of two signals (see [62]
for further discussion). All the firing and response
characteristics for the white-noise-driven LIF model,
r0, χ1(ω), χ2(ω1, ω2), are given in Appendix A.

The FP Xana(θ, 0, T ) and CD Yana(θ, as, T ) rates for
the analytical theory can then be expressed by

Xana(θ, 0, T ) =
1

NT

NT −1∑

j=0

(

1 −

K−1∏

k=0

Γ (1 + θ, r(tj,k; as = 0)ΔtbinNpop)
Γ (1 + θ)

)

,

(12)

Yana(θ, as, T ) =
1

NT

NT −1∑

j=0

(

1−

K−1∏

k=0

Γ (1 + θ, r(tj,k; as > 0)ΔtbinNpop)
Γ (1 + θ)

)

.

(13)

The FP rate in the absence of the strong periodic
background stimulus (ab = 0) can be simplified: In this

case, we also have for the signal amplitude as = 0,
so the instantaneous firing rate in Eq. (11) reduces to
r(t) ≈ r0, and we obtain

Xana(θ, T ) = 1 −
(

Γ (1 + θ, r0ΔtbinNpop)
Γ (1 + θ)

)K

. (14)

3 Results

In the following, we investigate the signal detection task
in two very different parameter regimes of the LIF neu-
rons: neurons of the population are either mean-driven
(μ = 1.1 > vT , D = 0.001) or in an excitable regime
(μ = 0.9 < vT , D = 0.005). We will see that the weakly
nonlinear response will have a very different impact in
the two regimes. We consider variations of the detection
and signal parameters for both regimes. We are particu-
larly interested in how the presence of the strong back-
ground stimulus affects the detectability of the weak
signal. Simulations were performed for a total number
of Npop = 103 LIF neurons, and to create the ROC
curves, NT = 103 detection windows have been used.

3.1 Change of the detection time window

Firstly, we would like to study the impact of the detec-
tion time window T in the excitable regime. Figure 3
shows the ROC curves for a relatively weak signal
(as = 0.2), in the presence (Fig. 3a, ab = 1) and absence
(Fig. 3b, ab = 0) of the strong periodic background
stimulus. Figure 3c, d show the differences of the CD
and FP rates as a function of the FP rate, which is
referred to as the effect size [63,64]. The different val-
ues of T are given in multiples of the period of the
signal Ts and are represented by different symbols and
colors as indicated in the legend. The solid lines repre-
sent the analytical theory for the ROC curves (Eq. (13)
plotted vs Eq. (12)). Three observations can be made.
First of all, for the parameters chosen, the theory is in
good agreement with the simulation results. Secondly,
the effect of increasing the time window is very weak:
a tenfold increase in the detection time window does
not even lead to a doubling of the effect size, i.e. in the
detectability of the signal. Thirdly, there is not much
of a difference in the detectability introduced by the
presence of the background stimulus.

Next, we look at the same statistics for a larger signal
amplitude (cf. Fig. 4); the general effect of as will be
inspected in the next subsection. The effect size is gen-
erally larger than before, i.e. the ROC curves are further
away from the diagonal (see panels (a), (b)). The full
analytical theory still works and the effect of enlarging
the time window is still weak. If we compare the detec-
tion in the presence and in the absence of the back-
ground stimulus, we find that its presence can diminish
the detection performance slightly. In panel (e) we show
the FP and CD rates as functions of the threshold in
the absence and the presence of the background stimu-
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Fig. 3 Excitable regime: ROC curves for different lengths
of the detection window T in the presence (a) and absence
(b) of the background stimulus. The length is given in multi-
ples of the period of the signal Ts as indicated in the legend.
Symbols are numerical simulations, and solid lines represent
the analytical theory of the ROC curves. c, d show the effect
size as a function of the FP rate. Parameters: fs = 0.1,
fb = 0.33, as = 0.2

lus for the detection window of T = 5Ts; the main effect
of the background stimulus is to shift the rates to higher
thresholds, which has no effect on the ROC curves.

We now turn to the mean-driven regime. The ROC
curves and corresponding effect sizes in the presence
and absence of the strong background stimulus for a
signal amplitude of as = 0.2 are shown in Fig. 5. In
marked contrast to the excitable case, we find that the
detector benefits from the presence of the background
stimulus; there is a significant boost in the detectability
of the weak periodic signal going from panel (d) to panel
(c). Indeed, without the background stimulus, the ROC
curves are practically on the diagonal and detection is
nearly impossible.

Like in the excitable regime, the effect of enlarging
the detection time window is weak. Furthermore, we
notice that the analytical theory (solid lines) differs
somewhat from the simulation results. This begs the
question which part of our approximate calculation is
responsible for this deviation. In order to answer this,
we have determined by many simulations of the same
periodic stimulus the time-dependent mean spike count
that is the crucial input to the semi-analytical theory,
Eq. (8), and Eq. (9). If we use these simulated mean
count data (dashed lines in Fig. 5), the agreement is
again very good. This means that the noticeable devia-
tions of the full theory are due to the limitations of the
weakly nonlinear response theory: taking only the terms
up to the second-order in ε does not reproduce the fir-
ing rate correctly. To obtain a better approximation of

Fig. 4 a–d Same as Fig. 3 but for an signal amplitude of
as = 0.5, e FP (red) and CD (blue) rates in presence (solid
lines) and absence (dashed lines) of the background stimulus

the firing rate and therefore also a good agreement of
the analytical theory with the simulation results, one
has to take higher order terms into account (see [65] for
such a computation).

Next, we look at the effect of using a larger sig-
nal amplitude in the mean-driven regime (cf. Fig. 6).
As in the excitable regime, the effect size is generally
larger than before. We again find that the analytical
theory differs noticeable from the simulation results but
that the use of the numerically determined mean spike
counts restores a good agreement. We also note that in
the absence of the background stimulus, our full ana-
lytical theory works well.

Additionally, we show in Fig. 6e the FP and CD
rates as functions of the threshold. In contrast to the
excitable case, in the presence of the background stim-
ulus (ab > 0), the two rates are clearly further apart
which improves detectability.

3.2 Dependence on the signal amplitude

The detection problem is, obviously, particularly inter-
esting for weak to moderate signal amplitudes, which
we now explore in more detail. We again start with the
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Fig. 5 Mean-driven regime: ROC curves for different
lengths of the detection window T in the presence (a) and
absence (b) of the background stimulus. The length is given
in multiples of the period of the signal Ts as indicated in
the legend. Symbols are numerical simulations, solid lines
represent the analytical theory, and dashed lines the semi-
analytical theory of the ROC curves. c, d show the effect
size as a function of the FP rate. Parameters: fs = 0.1,
fb = 0.33, as = 0.2

excitable regime and consider in Fig. 7 the ROC curves
for a range of amplitudes.

Referring to our three observations of the first sub-
section, we firstly notice that the full analytical theory
is still in good agreement with our simulation results for
all values of as in the presence and absence of the back-
ground stimulus. Secondly, increasing the signal ampli-
tude has a strong effect on the detectability, which is
not surprising. But in contrast to enlarging the detec-
tion time window, a doubling of the value of as may
also lead to a doubling in the effect size in both cases
(see panels (c) and (d)). Thirdly, for weak signal ampli-
tudes (as ≤ 0.2) we observe again not much of a differ-
ence induced by the presence of the background stim-
ulus. For relatively strong values of as, i.e. as ≥ 0.5,
the detectability of the signal seems to be better in the
absence of the background stimulus, indicated by an up
to 10% higher effect size.

In the mean-driven regime, cf. Fig. 8, we have a clear
beneficial role of the background stimulus in the detec-
tion task. The deviations of the analytical theory to
our simulation results in presence of the background
stimulus are small and using the numerically deter-
mined mean spike count (semi-analytical approach)
leads again to an excellent agreement.

How does the beneficial effect of the background
stimulus come about? To answer this question, we
take a closer look at the firing rate in Eq. (11), espe-

Fig. 6 a–d Same as Fig. 5 but for an signal amplitude of
as = 0.5, e FP (red) and CD (blue) rates in presence (solid
lines) and absence (dashed lines) of the background stimulus

cially at the influence of response terms of the first
(linear response) and second order (higher harmon-
ics and mixed response). Figure 9 shows the numeri-
cally obtained firing rate with and without the signal,
with and without the background stimulus and in both
excitable and deterministic firing regimes. In all panels,
we also plot the full response up to the second order of
the firing rate (solid black lines) as well as the response
of the firing rate up to the linear order (dashed green
lines).

We find, at least for the chosen frequencies, that the
nonlinear response leads to a modestly increased rate
modulation in the excitable regime if both background
stimulus and signal are present (see panel (a)), whereas
the nonlinear response has little effect on the rate in
the absence of the signal. In marked contrast to this,
in the mean-driven regime, we observe a strong boost
of the firing rate modulation by the nonlinear response
(see the pronounced difference between the black and
green lines in panel (e)). A stronger rate modulation
in the presence of the signal and the background stim-
ulus plausibly enhances the detectability of the signal.
Closer inspection of the single contributions of the non-
linear response reveals that the mixed response (MR
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Fig. 7 Excitable regime: ROC curves for different
strengths of the signal amplitude as in the presence (a) and
absence (b) of the background stimulus. c, d show the effect
size as a function of the FP rate. Parameters: fs = 0.1,
fb = 0.33, T = 10

Fig. 8 Same as Fig. 7 but in the mean-driven regime

term in Eq. (11)) is responsible for the beneficial boost
of the rate modulation.

3.3 Change of the frequencies of the periodic
signals

So far, we have used a fixed combination of the frequen-
cies of the two periodic signals. Now, we investigate how

the detectability of the signal depends on these frequen-
cies.

For a better visualization we use as a measure of
detection performance the area under the curve (AUC):
For each frequency combination, we measure the area
enclosed by the ROC curve and the diagonal (c.f
Fig. 10). If for instance the ROC curve falls on the diag-
onal, the performance measure is zero and detection
is impossible. Systematic deviations from the diagonal
indicate detectability beyond the chance level.

The AUC measure allows us to identify conditions
under which the presence of the background stimulus is
beneficial for the detection of the weak periodic signal.
We investigate this first for a comparatively weak signal
(as = 0.2) and in the excitable regime, see Fig. 11a–
c. We subtract the performance in the absence of the
background stimulus (panel (b)) from the performance
in its presence (panel (a)); the difference is shown in
panel (c). First of all, the detectability seems to be best
for a slow signal (see reddish part on the left in panel
(a)); generally, the detectability is not very high in the
excitable case for all frequency combinations. It is some-
what better if the background stimulus is absent (panel
(b)), and the difference between the two cases (panel
(c)) is either close to zero or slightly negative (vertical
stripes and scattered blue and red points in panel (c)
are measurement artifacts). This coincides with the spe-
cial case investigated above: for neurons in the excitable
regime, the presence of a strong background stimulus is
detrimental for the detection of a faint signal.

In the mean-driven regime (c.f Fig. 11d–f), the situa-
tion becomes more interesting. Turning first to the case
where the background stimulus is absent (see panel (e)),
we observe a nearly perfect detection of the signal for a
frequency of fs = 0.42 and find a good performance for
close-by frequencies (note the red vertical stripe around
this frequency). The spontaneous firing rate of the neu-
ron population with the used parameters (mean input
μ and noise intensity D, see Eq. (A2)) is r0 ≈ 0.42, so
the detectability can be highly improved when the fre-
quency of the driving signal either matches or is close
to the spontaneous firing rate of the LIF neurons. Fur-
thermore, the detection performance increases also for
fs ≈ 2r0 but the effect is much weaker (note the fainter
red vertical stripe around fs = 2r0).

In the presence of the background stimulus (panel
(d)), we also have an excellent detection of the weak
signal for a signal frequency of fs ≈ r0 and for almost
all frequencies of the background stimulus (again,
there is a pronounced vertical stripe around this fre-
quency). However, much more striking is the improved
detectability on certain diagonal lines on which either
fs +fb ≈ r0 or |fs − fb| ≈ r0. These contributions arise
due to the weakly nonlinear response of the neurons in
the considered dynamical regime. The sum and differ-
ence of the two frequencies appear as contributions in
the mixed response in Eq. (11) and lead to the beneficial
role of the background stimulus in the detection of the
faint signal, which becomes clear when considering the
difference of the detectability measure in the presence
and absence of the background stimulus (red areas in
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Fig. 9 Firing rates obtained from simulations in the pres-
ence (blue) and absence (red) of the signal and also the
strong background stimulus in the excitable (a–d) and

mean-driven (e–h) regime. Black solid lines show the nonlin-
ear response of the firing rate, green dashed lines the linear
response

Fig. 10 Visualization of the measure of detection perfor-
mance. ROC curves above the diagonal will lead to a posi-
tive AUC value, below to a negative one

panel (f)). We note that in the motivating example of
intruder detection in the courtship situation of weakly
electric fish, the detection benefits for the behaviorally
relevant frequency combinations, i.e. for fs < fb and for
fs � r0—conditions that are a consequence of the dis-
tinct distributions of self-generated frequencies for male
and female weakly electric fish [53] (fs and fb are the
beating frequencies, i.e. they result from the difference
of self-generated frequencies of interacting fish).

Last we want to address the question, how the detec-
tion performance and the nonlinear response, especially
the second-order susceptibility χ2(f1, f2), are related.
For this purpose, we use the analytical expression for
χ2(f1, f2) in combination with the expression for the

firing rate modulation and our theory (Eq. (12) and
Eq. (13)) to compute ROC curves for a broad range
of frequency combinations f1, f2. Figure 12 shows the
absolute value of the second-order susceptibility (panel
(a)) and the AUC measure of the analytically obtained
ROC curves (panel (b)).

Firstly, we observe a very good agreement of the ana-
lytically determined AUC measure (Fig. 12b) with the
numerically obtained one (Fig. 11d). The small devi-
ations of our analytical theory from the simulation
results in the ROC curves found in the previous sec-
tions result in slightly different AUC values for some
frequency combinations; however, the general structure
of the detection performance is the same. Secondly, the
absolute value of χ2(f1, f2) has some symmetry prop-
erties (for a detailed discussion, see [62]) which the
AUC does not share due to the unequal roles of the
two frequencies fs and fb. Despite this lack of com-
plete symmetry in the AUC, there are still similari-
ties but also characteristic differences to |χ2(f1, f2)|.
The most prominent similarities are the strong maxi-
mum around f1 = r0 (fs = r0) and the other max-
imum around the antidiagonal line (highlighted by a
green ellipse in Fig. 12 both in (a) and (b)) for which
f1 + f2 = r0 (fs + fb = r0). The most striking dif-
ferences are that |χ2(f1, f2)| is large around the hor-
izontal line f2 = r0, where the AUC is small and
that the AUC is large around the two diagonals on
which |fs − fb| = r0 (one of them emphasized by a
dashed turquoise ellipse in panel (b)) where the nonlin-
ear response is very small (dashed blue ellipse in panel
(a)). The difference between the AUC on the vertical
line fs = r0 and the horizontal line fb = r0 is clear
evidence of the unequal roles of the two frequencies.
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Fig. 11 AUC measure in the excitable (a–c) and mean-
driven regime (d–f) for ROC curves obtained from simula-
tions. a and d in presence of the strong background stim-
ulus, b and e in its absence, c and f show the beneficial

effect of the strong background stimulus (red areas). Note
that the colorbar in c and f is restricted to make the red
areas more visible

Fig. 12 a Absolute value of the second-order susceptibil-
ity χ2(f1, f2), b AUC measure in the presence of the back-
ground stimulus in the mean-driven regime for ROC curves
obtained from weakly nonlinear response theory

To understand why on the horizontal line the detection
performance is not good it suffices to take into account
that for fb close to the r0, the firing rate is strongly
modulated both in presence and absence of the signal,
which makes it harder to detect a faint signal.

How can we explain the diagonal lines around
|fs − fb| = r0 that appear in panel (b) but not in panel
(a) for f1, f2 > 0 (fs, fb > 0)? Turning once again to
Eq. (11), we note that the mixed response consists of
two parts: (i) a term proportional to |χ2(fs, fb)|—this
contribution is strong when the condition fs+fb ≈ r0 is
fulfilled (antidiagonal highlighted by the green ellipses);
(ii) a term proportional to |χ2(fs,−fb)|. The latter
is just the mirrored diagonal line around the f1−axis
of |χ2(f1, f2)| (compare the dashed turquoise to the
solid turquoise ellipse), where the absolute value of the
second-order susceptibility is again comparably high.
This leads to a strong mixed response not only for
frequency combinations around fs + fb = r0 but also
around |fs − fb| = r0 in the firing rate modulation and
thus in the AUC.

4 Summary and conclusions

In this paper, we considered a homogeneous popula-
tion of LIF neurons driven by two periodic stimuli, one
playing the role of a strong periodic background and the
other one that of a faint signal to be detected. We inves-
tigated the detection performance in the excitable and
mean-driven regimes and varied the signal and detec-
tion parameters. We developed an analytical frame-
work to calculate ROC curves for the population activ-
ity approximately and demonstrated that our formulas
which use the linear and the weakly nonlinear response
of the instantaneous firing rate work reasonably well.

In general, we found in both regimes that the effect
of enlarging the detection time window is very weak,
whereas increasing the signal amplitude leads to a
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strong improvement in the detectability of the faint
signal. For specific frequency combinations and in the
mean-driven regime, the detection benefits greatly from
the presence of the background stimulus: the detectabil-
ity of the weak signal increases for ab > 0. We showed
that this effect can be traced back to the weakly non-
linear response and in particular to the so-called mixed
response to two periodic signals. In marked contrast,
in the excitable case, the presence of the background
stimulus was only detrimental to the detection of a faint
signal.

The beneficial effect of the background periodic stim-
ulus bears some resemblance to vibrational resonance,
an effect observed in bistable [66] and excitable systems
[67]: a high-frequency (HF) signal can assist the trans-
mission of a weak low-frequency signal. Apart from the
occurrence of two periodic drivings, there are however
important differences of our problem to the setting in
which a vibrational resonance can be obtained. We con-
sider the detection and not the transmission of the weak
periodic signal and use all kinds of thresholds when cal-
culating the ROC curve. Vibrational resonance (similar
to stochastic resonance) is considered for systems with
an inherent threshold, and the resonance effect relies
on a suboptimal setting of this threshold. The bene-
ficial effect that we have found is not due to such a
suboptimal threshold but, as highlighted above, due to
the weakly nonlinear response of the single units in our
population model.

With respect to our motivating example, the intruder
detection in a courtship situation of weakly electric
fish, our modeling assumptions still have severe limita-
tions. Firstly, we assumed a homogenous population of
LIF neurons, although encoding populations in the sen-
sory periphery display a pronounced heterogeneity with
respect to mean activity (distributions of firing rates
are broad) and to variability (also the CV is broadly
distributed). For instance, the P-units in weakly elec-
tric fish possess firing rates between 50–400 Hz and
CV’s between 0.2−−0.9 [68]. Furthermore, many neu-
rons in the sensory periphery display a pronounced fir-
ing rate adaptation [69,70] that can be incorporated in
the integrate-and-fire framework with additional vari-
ables (see e.g. [71–75]). It is unclear how neural hetero-
geneity and adaptation will affect the detectability of a
weak stimulus. These are exciting problems for future
research.
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Appendix A: Weakly nonlinear response
theory

We briefly state the important measures needed for the
applied model (for details see [62]). Note that we here con-
sider the LIF model with white noise for a vanishing refrac-
tory period, which simplifies the analytical results given in
the following somewhat.

The response of the firing rate r(t) to a weak signal εs(t)
(ε � 1) can be approximated by the first terms of a Volterra
series

r(t) = r0 + ε

∫
dt′

1 K1(t
′
1)s(t − t′

1)

+ ε2

∫
dt′

2

∫
dt′′

2 K2(t
′
2, t

′′
2 )s(t − t′

2)s(t − t′′
2 )

+ O(ε3) . (A1)

Here, r0 is the spontaneous firing rate, i.e. if no signal
is present (ε = 0), K1 and K2 are the first-order and
second-order response kernels. For the white-noise-driven
LIF model, r0 is given by [76]

r0 =

[
√

π

∫ μ−vR√
2D

μ−vT√
2D

dx ex2
erfc(x)

]−1

. (A2)

In the frequency domain, Eq. (A1) reads

r̃(ω) = r0δ(ω) + εχ1(ω)s̃(ω)

+ ε2

∫
dω′ χ2(ω − ω′, ω′)s̃(ω − ω′)s̃(ω′)

+ O(ε3) , (A3)
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where χ1 and χ2 are the Fourier transforms of the respective
kernels

χ1(ω) =

∫
dt eiωt)K1(t) , (A4)

χ2(ω1, ω2) =

∫∫
dt1dt2 eiω1t1eiω2t2K2(t1, t2).

(A5)

In terms of the parabolic cylinder functions Dk(x) [60], the
linear response function χ1 [77] is given by

χ1(ω) =
r0iω√

D(iω − 1)

Diω−1

(
μ−vT√

D

)
− eΔDiω−1

(
μ−vR√

D

)

Diω

(
μ−vT√

D

)
− eΔDiω

(
μ−vR√

D

)
(A6)

with Δ =
[
v2

R − v2
T + 2μ(vT − vR)

]
/(4D); an equivalent

expression in terms of hypergeometric functions was given
by Brunel et al. [78] (for the equivalence of the expressions,
see [79]). The second-order nonlinear response function χ2

has been calculated by Voronenko and Lindner [62]:

χ2(ω1, ω2) =
r0(1 − iω1 − iω2)(iω1 + iω2)

2D(iω1 − 1)(iω2 − 1)
×

Diω1+iω2−2

(
μ−vT√

D

)
− eΔDiω1+iω2−2

(
μ−vR√

D

)

Diω1+iω2

(
μ−vT√

D

)
− eΔDiω1+iω2

(
μ−vR√

D

)

+
iω1 + iω2√

2D

(
χ1(ω1)
iω2−1 + χ1(ω2)

iω1−1

)
Diω1+iω2−1

(
μ−vT√

D

)

Diω1+iω2

(
μ−vT√

D

)
− eΔDiω1+iω2

(
μ−vR√

D

)

− iω1 + iω2√
2D

(
χ1(ω1)
iω2−1 + χ1(ω2)

iω1−1

)
eΔDiω1+iω2−1

(
μ−vR√

D

)

Diω1+iω2

(
μ−vT√

D

)
− eΔDiω1+iω2

(
μ−vR√

D

) .

(A7)
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