
Furutsu-Novikov–like Cross-Correlation–Response Relations
for Systems Driven by Shot Noise

Jakob Stubenrauch * and Benjamin Lindner
Bernstein Center for Computational Neuroscience Berlin,

Philippstraße 13, Haus 2, 10115 Berlin, Germany
and Physics Department of Humboldt University Berlin, Newtonstraße 15, 12489 Berlin, Germany

(Received 29 February 2024; revised 22 May 2024; accepted 7 October 2024; published 18 November 2024)

We consider a dynamic system that is driven by an intensity-modulated Poisson process with intensity
ΛðtÞ ¼ λðtÞ þ ενðtÞ. We derive an exact relation between the input-output cross-correlation in the
spontaneous state (ε ¼ 0) and the linear response to the modulation (ε > 0). If ε is sufficiently small,
linear-response theory captures the full response. The relation can be regarded as a variant of the Furutsu-
Novikov theorem for the case of shot noise. As we show, the relation is still valid in the presence
of additional independent noise. Furthermore, we derive an extension to Cox-process input, which provides
an instance of colored shot noise. We discuss applications to particle detection and to neuroscience. Using
the new relation, we obtain a fluctuation-response relation for a leaky integrate-and-fire neuron. We also
show how the new relation can be used in a remote control problem in a recurrent neural network. The
relations are numerically tested for both stationary and nonstationary dynamics. Lastly, extensions to
marked Poisson processes and to higher-order statistics are presented.
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I. INTRODUCTION

Numerous systems in nature generate random sequences
of events, which, in turn, drive other systems. For instance,
the photocurrent in a detector [1], the spontaneous vacuum
current in an electrode [2], neural firing driven by other
neurons’ spikes [3], and an economy subject to the effect of
seismic events [4] are all examples for systems driven by
random point processes.
A first approach to quantify the relation of a driving

process and an observable of the system is to compute the
cross-correlation function. Cross-correlations quantify the
similarity of fluctuations in the drive and the observable,
yet they cannot be straightforwardly used to predict the
response to systematic perturbations of the drive. The latter
can be quantified by linear-response functions.
If the driving process is colored Gaussian noise, the

two important statistics, cross-correlation functions and
linear-response functions, are linearly related by the
Furutsu-Novikov theorem (FNT) [5,6], also known as

Gaussian integration by parts [7]. The relation has been
frequently applied to study wave propagation in random
media [8], turbulent flow [7,9,10], neural systems [11–13],
and general stochastic processes [14–17]. In the neural
context, the FNT is particularly interesting: In the absence
of an external stimulus, neurons in the cortex are not silent
but spike spontaneously [18,19]; when a weak stimulus is
applied, the neurons respond linearly [19–23]. As one of us
showed [11] using the FNT, spontaneous fluctuations and
linear response can be connected in a fluctuation-response
relation (FRR). Yet, since the FNT relies on Gaussian noise,
shot-noise-driven systems such as the systems mentioned
above are not captured by this approach.
Modeling shot noise as Gaussian noise, known as the

diffusion approximation [3], is justified due to the central
limit theorem only if the intensity of events is high and their
amplitude is low. However, for pyramidal neurons, as few
as two input spikes can be sufficient to trigger an output
spike [24,25], which renders results based on the diffusion
approximation inaccurate [26]. Also for the broad problem
of particle detection, the shot-noise character of the input
cannot be neglected in many cases of interest. To extend the
theory of stochastic processes from a Gaussian description
to a true shot-noise description, an important stepping
stone is to find an analog of the FNT for shot-noise-driven
systems. Such an analog must attribute input-output
cross-correlations of a shot-noise-driven black box to the
response functions of the black box.
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In this paper, we first consider an arbitrary system driven
by an inhomogeneous Poisson process and derive a relation
between its spontaneous input-output cross-correlation and
its response to a time-dependent modulation of the input
intensity. This cross-correlation–response relation (CRR)
can be regarded as a shot-noise analog of the original FNT.
Although all necessary tools to do so are known [27], such
a relation has to our knowledge not been reported yet. We
then discuss the impact of additional noise and derive an
extension to the case where the input is correlated shot
noise. Next, we test the CRR for a minimal model of a
particle detector and for a leaky integrate-and-fire neuron.
For the leaky integrate-and-fire neuron, we leverage the
CRR and the method of Ref. [11] to derive an FRR
between the spontaneous output fluctuations of a shot-
noise-driven neuron and its systematic response to a time-
dependent intensity modulation. We numerically test the
CRR and the FRR in the commonly studied stationary
case but demonstrate that the validity of the CRR extends
to a nonstationary scenario. Furthermore, we show how
the CRR can be applied to the problem of remote control
in a recurrent neural network. Lastly, we present exten-
sions to Poissonian input with random amplitudes and to
nonlinear response functions.

II. CROSS-CORRELATION–RESPONSE
RELATION

We denote a system’s observable x½ηð∘Þ; t� by a
functional of the entire input process ηð∘Þ. Both the
intrinsic time argument ∘ and the functional dependence
on η are hidden, whenever not explicitly required, to ease
the notation. The additional scalar dependence on the
observation time t must reflect causality. A simple example
is linearly filtered shot noise, xκðtÞ ¼

R
t dt0κðt − t0Þηðt0Þ;

however, the following applies to general functionals.
We consider inhomogeneous Poissonian input

ηðtÞ ¼
X
i

δðt − tiÞ; ð1Þ

where ti are Poisson events with intensity ΛðtÞ ¼ λðtÞ þ
ενðtÞ, λðtÞ is the baseline, and ενðtÞ is a modulation. We
denote the observable’s average over spontaneous (ε ¼ 0)
realizations of the input by hxðtÞi0; thus, the cross-
correlation function between the input events and the
output without modulation is

Cxηðt; t0Þ ¼ hxðtÞηðt0Þi0 − hxðtÞi0hηðt0Þi0: ð2Þ

If we switch on the modulation, the average effect on the
observable can be represented perturbatively by a linear-
response function K:

hxðtÞiε ¼ hxðtÞi0 þ ε

Z
dt0Kðt; t0Þνðt0Þ þOðε2Þ: ð3Þ

The Oðε2Þ corrections can be omitted for a sufficiently
weak modulation, and the linear-response function is given
by a functional derivative [28]

Kðt; t0Þ ¼ δ

δΛðt0Þ hxðtÞi0
����
Λ¼λ

; ð4Þ

where

δ

δfðtÞ g½f�≡
d
dh

g½fð∘Þ þ hδðt − ∘Þ�
����
h¼0

ð5Þ

captures the infinitesimal change of a functional due to an
infinitesimal perturbation at time t.
In the following, we express both the response- and the

cross-correlation functions by the characteristic functional
of the input process which leads us to the CRR.
Specifically, we represent x½η; t� by its functional Fourier
transform with respect to η:

x½η; t� ¼
Z

Duy½u; t�eiuTη; ð6Þ

where uTη≡ R
dtuðtÞηðtÞ and R

Du≡ limM→∞
R∞
−∞ du1…R∞

−∞ duM with ui ¼ uðtiÞ and ft1;…; tMg is an equi-
distant discretization of the interval ½0; T�. For in-
stance, an exponentiated linear filter xβ½η; t� ¼
exp ðR t dt0βðt − t0Þηðt0ÞÞ has the functional Fourier trans-
form y½u; t� ¼ δ½iuð∘Þ − βðt − ∘ÞΘðt − ∘Þ� with the func-
tional Dirac delta δ½fð∘Þ�≡ limM→∞

Q
M
i¼1 δ½fðtiÞ� and the

Heaviside function ΘðtÞ. Thus, in general, the functional
Fourier transform dissects functional maps η ↦ x½η; t� into
a linear combination of exponentiated linear filters. This is
useful, as it establishes a link to characteristic functionals,
as used below. The formal limit M → ∞ assumes con-
vergence of x upon decreasing the time step T=M, which is
also a requirement for Euler integration. For finite M,
Eq. (6) is the usualM-dimensional Fourier transform. For a
formal classification of the existence of the Fourier trans-
form of functionals of Poisson processes, see Lemma 18.4
in Ref. [27].
Plugging Eq. (6) into Eq. (4) yields

Kðt; t0Þ ¼
Z

Duy½u; t� δ

δΛðt0Þ
D
eiu

Tη
E
0

����
Λ¼λ

¼
Z

Duy½u; t�eiuðt0ÞZ½u� − hxðtÞi0; ð7Þ

where the characteristic functional of a Poisson process of
intensity λðtÞ is [29]

Z½u�≡
D
eiu

Tη
E
0
¼ e

R
λðtÞ½eiuðtÞ−1�dt: ð8Þ
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The cross-correlation Eq. (2) can be expressed by a
functional derivative of Z½u� as well:

Cxηðt; t0Þ ¼
Z

Duy½u; t� δ

δiuðt0ÞZ½u� − λðt0ÞhxðtÞi0

¼ λðt0Þ
�Z

Duy½u; t�Z½u�eiuðt0Þ − hxðtÞi0
�
: ð9Þ

Comparing this result with Eq. (7), we infer for arbitrary
systems driven by Poisson noise a CRR

Cxηðt; t0Þ ¼ λðt0ÞKðt; t0Þ: ð10Þ
Thus, irrespective of the details of the system, the input-
output cross-correlation, a measure of the spontaneous
fluctuations, can be fully attributed to the linear-response
function, which determines the leading-order deviations
away from the spontaneous mean. In particular, the cross-
correlation is unaffected by nonlinear response functions.
Equation (10) should be put in context with the original
FNT for Gaussian noise ξ [5,6]:

Cxξðt; t00Þ ¼
Z

dt0Cξðt00; t0ÞKxξðt; t0Þ; ð11Þ

where Cξ is the noise autocorrelation function and Kxξ is
the response of hxi to a modulation of the input mean
mðtÞ ¼ hξðtÞi. Remarkably, for white Gaussian noise
Cξðt; t0Þ ¼ λðt0Þδðt − t0Þ [recall that Poissonian noise is
white, Cηðt;t0Þ¼ λðt0Þδðt− t0Þ], Eq. (11) looks like Eq. (10),
if we naively identify K with Kxξ. However, there are
important differences between the two response functions.
Kxξ is the response function of the time-dependent mean
output, hxðtÞi, with respect to a modulation of the mean
input in the presence of Gaussian noise. The response
function K considers the same output statistics hxðtÞi but
with respect to a modulation of the intensity (the rate) of
the driving Poisson process, a modulation that affects not
only the mean value, but all higher cumulants of the driving
noise and, in particular, the noise intensity. An additional
difference is that K is also shaped by the type of back-
ground noise, which is here a Poisson process and not
Gaussian noise. Hence, there are two differences, and,
in general, Eqs. (10) and (11) constitute relations between
input-output cross-correlations and response functions for
two distinct settings (different background noise) and two
different types of response functions. Nevertheless, as we
show in Appendix B, the two relations become equivalent
in a diffusion limit.
Returning to the CRR Eq. (10), for a constant baseline

intensity λðtÞ≡ λ0 and stationary dynamics of the
driven system, we may define CxηðτÞ≡ Cxηðtþ τ; tÞ and
KðτÞ≡ Kðtþ τ; tÞ such that in frequency space we have

SxηðωÞ ¼ λ0χðωÞ; ð12Þ

where the cross-spectrum SxηðωÞ ¼ F ½Cxη�ðωÞ and sus-
ceptibility χðωÞ ¼ F ½K�ðωÞ are the Fourier transforms
F ½f�ðωÞ ¼ R

dteiωtfðtÞ of Cxη and K, respectively.
For the linearly filtered shot noise xκ introduced above,

Eq. (10) can be checked directly: Using the statistics
of Poisson processes [29], one gets Cxκηðt; t0Þ ¼ λðt0Þκðt −
t0ÞΘðt − t0Þ and Kðt; t0Þ ¼ κðt − t0ÞΘðt − t0Þ, which con-
firms the CRR. In Sec. III, we demonstrate the validity of
Eq. (10) for systems for which the explicit computation of
the statistics of interest is not feasible. Next, we present two
useful extensions of the CRR.

A. Extension: Additional noise

Here, we consider the prevalent situation in which the
shot-noise-driven system receives additional noise, for
instance, thermal noise or the input of other random forces.
The system’s output at observation time t may be an
arbitrary functional x̂½η; ξ; t� of both the Poissonian input η
and the additional random force ξ. Assuming statistical
independence of η and ξ, the ξ-averaged cross-correlation
between the Poissonian drive η and the output x̂ is

hCx̂ηðt; t0Þiξ ≡ hhx̂½η; ξ; t�ηðt0Þiη − hx̂½η; ξ; t�iηhηðt0Þiηiξ
¼ hhx̂½η; ξ; t�iξηðt0Þiη − hhx̂½η; ξ; t�iξiηhηðt0Þiη
≡ Chx̂iξηðt; t0Þ: ð13Þ

This is equal to the cross-correlation between the
Poissonian drive η and the ξ-averaged output hx̂iξ.
Furthermore, we may interchange the order of ξ averaging
and applying a linear differential operator; thus, the
ξ-averaged response of x̂ to modulations of the intensity
of η is�

δ

δΛðt0Þ hx̂ðtÞiη
����
Λ¼λ

�
ξ

¼ δ

δΛðt0Þ hhx̂ðtÞiξiη
����
Λ¼λ

: ð14Þ

When defining x½η; t�≡ hx̂½η; ξ; t�iξ, we are back at the case
without additional noise discussed above. Thus, for addi-
tional noise sources that are independent of the drive η, the
CRR Eq. (10) is still valid. For an experimenter, this means
that, for instance, uncontrolled thermal fluctuations are not
detrimental for the CRR and simply average out. This fact
is exploited in Sec. III A.

B. Extension: Shot noise with temporal correlations

The Poisson process considered so far is white noise
Cηðt; t0Þ ∝ δðt − t0Þ, and we assume knowledge of λðtÞ.
Both assumptions can, for instance, be problematic when
studying neural networks. A useful noise model solving
both problems is the Cox process, or doubly stochastic
Poisson process, where events are conditionally Poissonian
with intensity λðtÞ, but λðtÞ is itself a random process. Here,
we choose the intensity λðtÞ ¼ Θ½ϕðtÞ�ϕðtÞ, where ϕðtÞ is a
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Gaussian process and we assume that the mean mðtÞ and
autocorrelation Cϕðt; t0Þ are chosen such that ϕðtÞ < 0 only
rarely and we may set λðtÞ ¼ ϕðtÞ. The limits of validity of
this choice are discussed in Appendix C. The cumulants of
the Cox process are

hηðtÞi¼mðtÞ; Cηðt;t0Þ¼Cϕðt;t0ÞþmðtÞδðt− t0Þ; ð15Þ

the latter reflecting the law of total variance; thus, the
process is indeed temporally correlated (colored) noise.
Next, we derive a somewhat involved extension of the
CRR for this case. However, as we show afterward, the
involved expression can be simplified under reasonable
assumptions.

1. Exact CRR for systems driven
by a Gaussian Cox process

The characteristic functional of a Cox process
with a Gaussian-process intensity is given by Zm;Cϕ

½u� ¼
hZϕ½u�iϕ∼N ðm;CϕÞ [30], where Zϕ½u� ¼ exp ðR ϕðtÞ½eiuðtÞ−
1�dtÞ is the characteristic functional of the Poisson process
and the average is taken over the ensemble of Gaussian
processes with mean m and autocorrelation Cϕ; thus,

Zm;Cϕ
½u� ¼ em

Tðeiu−1Þþð1=2Þðeiu−1ÞTCϕðeiu−1Þ; ð16Þ

where

fTg ¼
Z

dtfðtÞgðtÞ;
1

2
fTCg ¼

Z
dt1dt2

1

2
fðt1ÞCðt1; t2Þgðt2Þ: ð17Þ

To decompose the cross-correlation into linear-response
functions, we need to consider the linear response

Kxmðt; t0Þ ¼
δ

δMðt0Þ hxðtÞiM;Cϕ

����
M¼m

ð18Þ

to mean modulations where the subscripts of the expect-
ation value denote the noise parameters. Additionally, we
need to take into account the linear response KxCϕ

ðt; t0; t00Þ
to autocorrelation modulations

Cϕðt0; t00Þ → Cϕðt0; t00Þ þ εDϕðt0; t00Þ: ð19Þ

This response function can be defined by

hxðtÞim;CϕþεDϕ
¼ hxðtÞim;Cϕ

þ ε

Z
dt0dt00Dϕðt0; t00ÞKxCϕ

ðt; t0; t00Þ

þOðε2Þ; ð20Þ

and KxCϕ
ðt; t0; t00Þ ¼ ½δ=δCðt0; t00Þ�hxðtÞim;CjC¼Cϕ

can be

computed using the two-point functional derivative

δ

δgðt; t0Þ f½g�≡
∂

∂h
f½gþ hδð∘1 − tÞδð∘2 − t0Þ�

���
h¼0

; ð21Þ

where ∘1=2 denote the two intrinsic time arguments of g.
Proceeding analogously to the case of Poissonian input
leads to a CRR for Cox-process-driven systems

Cxηðt; t0Þ ¼mðt0ÞKxmðt; t0Þþ
Z

dt00Cϕðt0; t00Þ½2KxCϕ
ðt; t0; t00Þ

þKxmðt; t00Þ�; ð22Þ

which may alternatively be written as [see Eq. (15)]

Cxηðt; t0Þ ¼
Z

dt00½Cϕðt0; t00Þ2KxCϕ
ðt; t0; t00Þ

þ Cηðt0; t00ÞKxmðt; t00Þ�: ð23Þ

This formulation reveals a more complicated relation
between the input-output cross-correlation and the response
statistics than in the simpler Poissonian and Gaussian cases,
Eqs. (10) and (11), respectively, because here the right-
hand side involves different statistics of the input noise as
well as response functions to modulations of different
parameters. Note that in the limit Cϕðt; t0Þ → 0, in which
the intensity becomes deterministic h½λðtÞ −mðtÞ�2i → 0,
Eq. (10) is recovered withmðtÞ b¼λðtÞ and Kxm b¼K. For the
linear filter, Eq. (22) can be checked directly, hereKxCϕ

≡ 0

(see Appendix C).
To compute the correlation response KxCϕ

numerically,
one must modulate the autocorrelation function of a
Gaussian process. To illustrate a way to do this, consider
the Langevin equation

τϕϕ̇ ¼ m − ϕþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2σ2τϕ½1þ εsðtÞ�

q
ξðtÞ; ð24Þ

where ξ is centered Gaussian white noise. The autocorre-
lation of ϕ is then, for τ > 0,

Cϕðtþτ;tÞ¼σ2e−τ=τϕ

þε
2σ2

τϕ
e−τ=τϕ

Z
∞

0

dΔe−2Δ=τϕsðt−ΔÞ: ð25Þ

If the spontaneous autocorrelation takes the form σ2e−τ=τϕ ,
one can, thus, generate the modulated process by tuning s
such that the second line in Eq. (25) is
εDϕðtþ τ; tÞ ¼ εe−τ=τϕfðtÞ, where f can be chosen freely.
More general situations can be achieved analogously by
higher-dimensional Markovian embedding.
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2. Weakly correlation-responsive regime for systems
driven by a Gaussian Cox process

For systems that respond weakly to systematic changes
in the input autocorrelation (while leaving the mean input
untouched) or for which the input is only weakly auto-
correlated, Eq. (22) can be simplified. Specifically, whenZ

dt00Cϕðt0; t00ÞKxCϕ
ðt; t0; t00Þ ≪

Z
dt00Cηðt0; t00ÞKxmðt; t00Þ;

ð26Þ
we find the useful relation

Cxηðt; t0Þ ≈
Z

dt00Cηðt0; t00ÞKxmðt; t00Þ ð27Þ

or, for stationary processes in the frequency domain,

SxηðωÞ ≈ SηðωÞχmðωÞ: ð28Þ
The approximate CRR for colored shot noise Eq. (27) takes
the same form as the Gaussian FNT Eq. (11), but note the
differences between controlling the mean of Gaussian noise
and controlling the intensity of shot noise, as mentioned
below Eq. (11).
The approximation is exact for linear systems, for

which always KxCϕ
≡ 0. In Sec. III B, we discuss a non-

linear system for which the approximation also holds
(see Fig. 5), and, in Sec. III C, we show that Eq. (27) is
an improvement over Eq. (10) even in a situation where the
colored shot-noise input is not a Cox process.

III. APPLICATIONS OF THE CRR

A. Particle detector

Detectors resolving single particles in a beam, like
electrons or photons, are of unquestionable importance:
from the early Geiger Müller counters [31], used to quantify
radioactive decay, to the newest superconducting-nanowire
single-photon detectors [32], key elements for optical
quantum computing, to name only two prominent examples.
These single-particle detectors have the following issues in
common [33,34]: (i) After detecting one particle, there is a
nonvanishing dead time within which subsequent particle
detection is unreliable, and (ii) they are subject to thermal
noise, which is problematic at the low energies correspond-
ing to single particles. Here, we consider a generic detector
model describing an observable current

IðtÞ ¼ ½α � ðϑ½η�ηÞ�ðtÞ þ ζðtÞ ð29Þ
which generates a pulse

αðt − tiÞ ¼ Θðt − tiÞ
t − ti
τ2p

exp

�
−
t − ti
τp

�
ð30Þ

upon particle arrival at ti, provided the detector is not
in a refractory state (dead) due to a preceding event.
Specifically, we consider a nonparalyzable detector [31],
which means that the switch ϑ attains the values ϑ½η; t� ¼ 0

if
R
t
t−τdead ϑ½η; t0�ηðt0Þdt0 ¼ 1 and ϑ½η; t� ¼ 1 else. The

initial value of the switch, e.g., ϑ½η; 0� ¼ 1 corresponding
to an initially susceptible detector, is forgotten after
≈τdeadðτdeadλ0Þð1þ τdeadλ0Þ. We also take into account
thermal fluctuations in the form of an Ornstein-Uhlenbeck
process

τζζ̇ ¼ −ζ þ
ffiffiffiffiffiffiffiffiffiffiffi
2σ2ζτζ

q
ξðtÞ ð31Þ

[here, ξðtÞ is standard Gaussian white noise].
Particle emission is often considered a Poisson process,

matching the key assumption in the derivation of the
CRR. For instance, in the case of coherent laser light, the
photon absorption statistics is exactly Poissonian [35].
Thus, we may use Eq. (12) to relate the cross-spectrum
SIη between the incoming particles and the elicited
current to the susceptibility χIη with respect to modulat-
ing the beam intensity λ0 þ ενðtÞ, namely, SIη ¼ λ0χIη.
We note that the independent thermal noise ζðtÞ does
not affect the relation according to what we discuss
in Sec. II A.
In Fig. 2, we show the left- and right-hand sides

of Eq. (12) for three different values of the detector’s
dead time, where the statistics are measured in stochastic
simulations, on which we elaborate in Appendix A. For
τdead ¼ 0, we have the simple example of linearly low-pass
filtered shot noise, for which both, the input-output cross-
spectrum and the susceptibility drop monotonically with
frequency. The system becomes nonlinear for nonvanishing
dead times. As we see in Figs. 2(c) and 2(d), the detector is
less susceptible in this regime; i.e., we observe an overall
reduction of both the susceptibility and the cross-spectrum,
and, for long dead times [Fig. 2(d)], we even see maxima
forming in the spectral measures. In all cases, the CRR
is excellently confirmed by the simulation results. As
sketched in Fig. 2(a), in an experiment, the accessible
manipulation of the beam intensity and the observable
mean response to it thus permit one to determine the exact
cross-correlation between the actual particle arrivals and
the detector signal.

B. Leaky integrate-and-fire neuron

Integrate-and-fire neurons are an abstraction of neural
dynamics that is excellent at predicting neural spike trains
[25,36–39] and frequently used in simulations and in
theory of spiking neural networks [40–46]. Such models
exhibit a multitude of biologically observed network states
(see Refs. [41,43], and references therein).
Here, we consider a leaky integrate-and-fire (LIF)

neuron. In this model, the neuron maps the Poissonian
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input spikes ηðtÞ ¼ P
i δðt − tiÞ to its output by integrating

the equation

τmv̇ðtÞ ¼ −vðtÞ þ μþ ðα � ηÞðtÞ ð32Þ

until the membrane voltage vðtÞ hits a threshold vðtIFi Þ ¼
vT at which the neuron spikes and is reset vðtIFi Þ → vR;
see Fig. 1(b). Time is counted in multiples of the membrane
time constant τm, which, to ease the notation, we set
to one. The neuron receives a constant current μ, and
the input spikes are convolved with a synaptic filter
αðtÞ ¼ AΘðtÞt expð−t=τsÞ=τ2s , where A is the synaptic
amplitude and τs ≪ 1 is the synaptic timescale. The output
spike train x½η; t� ¼ P

i δðt − tIFi Þ, where tIFi are the fire-
and-reset times, is communicated to other neurons and is,
thus, the observable we are interested in.

1. Test of the CRR and limitations
for non-Poissonian input spikes

In Fig. 3, we present simulation results for the cross-
spectrum SxηðωÞ using spontaneous input (ε ¼ 0) and the
susceptibility χðωÞ using modulated input (ε > 0).
Both simulations are done for two distinct parameter sets
[Figs. 3(a) and 3(b)]. For once, we test the case of a low
input intensity with high amplitude; here, two input spikes
in short succession are sufficient to trigger an output spike.
The susceptibility in this case is rather high and decays with
increasing frequency. Second, we use a high input intensity
with low amplitude of the input spikes [Fig. 3(b)], such that
the mean input is the same as in Fig. 3(a) but we are close to
a diffusion limit [47,48]. In this setting, we observe a much
lower susceptibility (by a factor of approximately 7 for low
frequencies), which is due to the reduced synaptic ampli-
tude A (this is similar to the findings in Ref. [26]). In
addition, the high-intensity case features a peak around the
firing rate that is caused by the reduction in the effective
noise level. Most importantly in the context here, in both of

these opposite cases, Eq. (12) is excellently confirmed;
i.e., the cross-correlation between input and output spikes
in the spontaneous case fully agrees with the linear
response to an intensity modulation.
A common approximation of shot-noise-driven systems,

the diffusion approximation [1], replaces an inhomo-
geneous Poisson process ηðtÞ with intensity λðtÞ þ εsðtÞ
by white Gaussian noise zðtÞ with matched first- and
second-order statistics, i.e.,

ηðtÞ ≈ zðtÞ≡ λðtÞ þ εsðtÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðtÞ þ εsðtÞ

p
ξðtÞ; ð33Þ

where ξðtÞ is white Gaussian noise with hξðtÞi ¼ 0 and
hξðtÞξðt0Þi ¼ δðt − t0Þ. This replacement becomes exact
only in a very specific scaling limit (see Appendix B)
but is often trusted to be a good approximation. If one seeks
to estimate the linear response of hx½η; t�i to modulations
of the intensity of the Poisson process using the diffusion
approximation, it becomes apparent from Eq. (33) that
one has to compute the linear response of hx½z; t�i to

FIG. 1. Examples of trajectories of shot-noise-driven systems.
(a) Output (purple line) of a nonparalyzable photodetector with
dead times (black bars) driven by shot noise (green lines).
(b) Voltage trace (black), output spikes (purple), and input spikes
(green) for a leaky integrate-and-fire neuron [Eq. (32)].

FIG. 2. Test of the cross-correlation–response relation Eq. (12)
for a particle detector without (b) and with dead time (c),(d) as
described in Sec. III A and sketched in (a). Both the cross-
spectrum SIη (red, absolute value; blue, argument) and the
susceptibility λ0χIη (black circles) are determined from stochastic
simulations (Appendix A) and averaged over 1000 trials—their
agreement corroborates Eq. (12). (b)–(d) test this agreement for
increasing values of the detector dead time, making the system
increasingly nonlinear, yet Eq. (12) is respected in that colored
lines and black circles agree. The gray dashed lines show the
exact cross-spectrum for τdead ¼ 0, that is, the absolute value and
argument of λ0F ½α�ðωÞ, where F ½α�ðωÞ ¼ ð1 − iωτpÞ−2 is the
Fourier transform of Eq. (30). Parameters: λ0 ¼ 1, τp ¼ 0.2,
τζ ¼ 1, σ2ζ ¼ 0.01, Δt ¼ 10−4, T ¼ 200, and Twarm ¼ 50.
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simultaneous modulation of both the mean and the noise
intensity of the Gaussian process zðtÞ. We present this
diffusion-approximation-based linear response

Kda
xλðt; t0Þ≡ δ

δλðt0Þ hx½z; t�iz ð34Þ

alongside the true response to intensity modulations in
Fig. 3. To this end, we simulate Eq. (32) but with the
Gaussian process above replacing η and simultaneously
modulate both the mean and the noise intensity (results
shown in Fig. 3 as gray dashed lines). For the parameters
that we have chosen, the diffusion approximation turns
out to be a reasonable description of the susceptibility,
although, in the case of low input intensity and high
amplitudes [Fig. 3(a)], somewhat stronger deviations
become apparent.
The validity of Eq. (10) and thereby Eq. (12) relies on the

Poissonianity of the input. To exemplify this, we generate
non-Poissonian input processes with intensity λ0 þ ενðtÞ,
by first sampling a Poisson process with intensity
n½λ0 þ ενðtÞ� and then keeping only every nth spike. As
shown in Fig. 4(a), this procedure, in the absence of
modulation ε ¼ 0, decreases the coefficient of variation
C2
v ¼ ⟪I2⟫=hIi2 ¼ 1=n (where ⟪ · ⟫ denotes a cumulant,

i.e., here the variance) of the interspike interval I such that
the so-generated processes (for n ¼ 2; 3;…) are more
regular than a Poisson process (Cv ¼ 1). For these proc-
esses, Eq. (12) is violated, as shown in Fig. 4(b). Moreover,
no frequency-independent linear relation between Sxη and χ
can be found. The violation is most severe in a frequency
band about the input intensity (black dotted line).
The deviation in Fig. 4(b) can be cured at low frequen-

cies by using naively the color-correction Eq. (28) but
remains at frequencies ω≳ 2πλ0 [see Fig. 4(c)]. However,
if the input process is truly a Cox process, as required in
Sec. II B, the color-correction Eq. (28) seems to be a good
approximation; see Fig. 5. Thus, the correlation response
KC seems to be negligible for the model Eq. (32). In
Sec. III C, we find a situation in which Eq. (28) works for
non-Cox noise, too.

2. Fluctuation-response relation

Next, we leverage Eq. (12) and follow the approach of
Ref. [11], to derive a relation between the spontaneous
output fluctuations of the model Eq. (32) and the output’s

FIG. 3. LIF neuron model: Test of the cross-correlation–
response relation Eq. (12) for a constant baseline intensity λ0
and the two cases of low intensity λ0 and high amplitude A (a) and
high intensity and low amplitude (b). Both, the spontaneous
input-output cross-spectra Sxη=λ0 (red lines: absolute value, blue
lines and right axis: argument), and the susceptibility χðωÞ (black
circles, absolute value and argument respectively) are determined
from numerical simulations (Appendix A); for the susceptibility
the intensity is explicitly modulated (ε > 0). The agreement of
colored lines and black circles corroborates Eq. (12). Suscep-
tibility based on the diffusion approximation Eq. (34) (gray
dashed line). Output firing rate (black dotted vertical lines).
Eq. (32) is integrated by Euler’s method with time stepΔt ¼ 10−4

and integration length T ¼ 100. Furthermore, vT ¼ 1, vR ¼ 0.5,
μ ¼ 0.5, and τs ¼ 0.02. In (a), λ0 ¼ 2, A ¼ 0.4, in (b) λ0 ¼ 16,
A ¼ 0.05. The stimulus used to compute the susceptibility
(circles) is ε cosðωstÞ with ε ¼ 0.1 (a) and ε ¼ 0.16 (b).

FIG. 4. LIF neuron model: Violation of the CRR Eq. (12) for
non-Poissonian input. (a) Samples of a Poissonian process (dark
blue) and non-Poissonian processes (Cv < 1). (b) Absolute value
of the relative error of Eq. (10) j½χðωÞ − SxηðωÞ=λ0�=χðωÞj where
χðωÞ is the response to a modulation and SxηðωÞ is the sponta-
neous cross-spectrum. As in Fig. 3, both the susceptibility χ and
the input-output cross-spectrum Sxη are obtained from numerical
simulations, see Appendix A. For all but the lowest line, the input
is non-Poisson with colors corresponding to (a). The dotted line
indicates the input intensity 2πλ0. (c) Absolute value of the error
j½χðωÞ − SxηðωÞ=SηðωÞ�=χðωÞj, which quantifies the mismatch of
Eq. (28), for the same setting as in (b). The vanishing error at
small ω indicates that here Eq. (28) is a successful color-
correction of Eq. (10) whereas the remaining error about the
input intensity ω ¼ 2πλ0 indicates that here the naive color-
correction fails. Parameters as in Fig. 3(a).
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response to modulations of the input intensity. To this end,
we formally incorporate the reset mechanism into Eq. (32):

v̇ ¼ −vþ μþ ðα � ηÞ − ðvT − vRÞxðtÞ: ð35Þ
Note that if the input would not be smoothed by α, the reset
term would have to be −½vðtÞ − vRÞ�xðtÞ, as, e.g., in
Ref. [45], to account for overshooting. The product
vðtÞxðtÞ would be inconvenient, because it would lead to
third-order statistics in the following expressions (a similar
problem emerges when an absolute refractory period is
taken into account [13]), which we avoid by using the
synaptic filter, which is biophysically more plausible any-
way. Following Ref. [11], we assume stationary statistics
[i.e., λðtÞ ¼ λ0], apply Rice’s method to Eq. (35), and get
for ω ≠ 0

SxηðωÞ ¼
ðvT − vRÞSxðωÞ þ ð1þ iωÞSxvðωÞ

α̃�ðωÞ ; ð36Þ

where α̃ðωÞ ¼ Að1 − iωτsÞ−2, the (cross-)power spectra
SFGðωÞ ¼ ⟪F̃ðωÞG̃�ðωÞ⟫=T with the finite-time-window
Fourier transform G̃ðωÞ ¼ R

T
0 dteiωtGðtÞ, and the asterisk

denotes the complex conjugate.
Plugging Eq. (12) into Eq. (36) then yields an FRR

χðωÞ ¼ ðvT − vRÞSxðωÞ þ ð1þ iωÞSxvðωÞ
λ0α̃

�ðωÞ : ð37Þ

Thus, the susceptibility can be computed using exclu-
sively output fluctuations, quantified by Sx and Sxv, and

without knowing the input spike times (although λ0 and α
must still be known). Equation (37) is tested and con-
firmed in Fig. 6.

3. A nonstationary case

While many tools for stochastic systems are tailored to
stationary situations, in a number of areas, such as climate
research or biology, nonstationary behavior cannot be
ignored without losing key features of the dynamics. For
instance, the model Eq. (32) does not approach stationarity
if the baseline rate λðtÞ is not constant. If λðtÞ varies
sufficiently slowly, one would not expect strong differences
from a stationary setting. Indeed, as we show in Fig. 7,
when incorporating a slow Gaussian pulse λðtÞ ¼ λ01 þ
λ02 exp½−ðt − tmÞ2=ð2σ2Þ� into the baseline intensity, the
system’s output rate adapts adiabatically to the changing
input intensity. This is reflected by the scale invariance of
the output rate with respect to the pulse width σ; see the
overlapping gray lines in Fig. 7(a). Thus, nonsurprisingly,
the nonstationary CRR Eq. (10) is fulfilled for the adiabatic
case [the yellow line and gray circles agree in Fig. 7(b)].
Truly interesting nonstationary behavior is achieved, when
the pulse is too short to be responded to adiabatically;
see the purple line in Fig. 7(a), which breaks the scale
invariance (and also the symmetry with respect to the pulse
center tm). However, as we confirm for σ ¼ 0.1, Eq. (10) is
still valid in this nonadiabatic case [the orange line and
black circles agree in Fig. 7(b)].

FIG. 5. Test of the approximate CRR [Eq. (28)] for a Cox-
process-driven LIF neuron. (a) Power spectrum Sη of a Cox
process, in which the intensity is bandpass Gaussian noise with
mean mðtÞ¼m0¼16 and power spectrum SλðωÞ¼10 ·Θðω−2Þ·
Θð20−ωÞ. (b) Absolute value (red line) and argument (blue line)
of Sxη=Sη and respective susceptibility of the model Eq. (32)
(black circles), obtained by stochastic simulations (Appendix A)
using the stimulus ε cosðωstÞ with ε ¼ 0.2. The gray line is the
absolute value of Sxη=m0, probing Eq. (12). Parameters: time step
Δt ¼ 10−3, integration time T ¼ 100, vT ¼ 1, vR ¼ 0.5, μ ¼ 0,
τs ¼ 0, and A ¼ 0.05.

FIG. 6. Test of the fluctuation-response relation [Eq. (37)] for a
constant baseline intensity λ0. (a),(b) Susceptibility computed
from spontaneous output fluctuations [right-hand side of
Eq. (37)], absolute value (red line), and argument (blue line,
right axis), and susceptibility computed by explicitly modulating
the intensity (black circles, absolute value and argument, re-
spectively). The agreement of colored lines and black circles
corroborates Eq. (37). The susceptibility computed by explicit
modulations (black circles) is the same as in Fig. 3, but the
colored lines here are exclusively output statistics. All statistics
are measured in stochastic simulations; see Appendix A. Param-
eters as in Fig. 3, except for the spontaneous case in (b), where
Δt ¼ 10−5 is necessary to achieve agreement.
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C. Recurrent neural network

Here, we discuss the problem of stimulating a “control”
neuron in a network to achieve a desired time-dependent
firing rate in a “target” neuron. If the susceptibility of the
control neuron χcI to a current injection IðtÞ is known and
spontaneous measurements of pairwise cross-correlations
have been conducted, one can apply the approximate CRR
for colored shot noise Eq. (28) to estimate the remote
susceptibility

χtIðωÞ ≈ ScðωÞ−1StcðωÞχcIðωÞ; ð38Þ

where Sc is the power spectrum of the control neuron and
Stc is the cross-spectrum between the target and the control
neuron. Knowledge of χtI then allows one to make the
target fire with a desired rate rtðtÞ by applying the current

IðtÞ ¼ F−1½F ½rt�=χtI�ðtÞ ð39Þ

to the control neuron. Note that, beside the assumptions for
Eq. (28), one also needs to assume that the control and the
target neuron receive independent noise from the rest of
the network (see Sec. II A). This can be violated in dense
networks, but, as we show next, for the biologically relevant
case of sparse neural networks the assumption is justified.
For concreteness, we consider a sparsely connected

random neural network [41]. This network model consists
of NE excitatory and NI ¼ NE=4 inhibitory LIF neurons.
Each neuron has exactly CE incoming excitatory synapses
with efficacy J and CI incoming inhibitory synapses with
efficacy −gJ. Thus, the evolution of the network is given by

v̇i ¼ −vi þ J
X

j∈CEðiÞ
xjðtÞ − gJ

X
j∈CIðiÞ

xjðtÞ þ J
XCE

j¼1

xiext;j;

ð40Þ

with the additional fire-and-reset rule as in Eq. (32). Here,
xiext;j are independent external Poisson processes with
intensity νext, and CEðiÞ [CIðiÞ] is the set of excitatory
[inhibitory] neurons that send spikes to neuron i.
In Fig. 8, we show simulation results for this network.

We select two neurons as control and target, respectively,
enforcing that the target is at one-synapse distance from the
control [highlighted by the green arrow in Fig. 8(a)]. The
susceptibilities χcI and χtI are obtained from simulations
in which the control neuron is directly stimulated with a
Gaussian white noise current. The cross-spectrum Stc and
the power spectrum Sc are obtained from spontaneous
simulations. As shown in Figs. 8(b) and 8(c), the estimate

FIG. 7. LIF neuron model: test of the Eq. (10) for nonstationary
dynamics. (a) Output firing rate (gray and purple lines) of Eq. (32)
for a time-dependent input intensity λðtÞ ¼ 2þ 4 exp½−ðt − tmÞ2=
ð2σ2Þ� (green line) for σ ¼ 10, σ ¼ 5, and σ ¼ 1 (overlapping gray
lines) and σ ¼ 0.1 (purple line). (b) Cross-correlation Cxηðtþτ0;tÞ
with τ0 ¼ 0.05 for σ ¼ 5 (yellow line) and σ ¼ 0.1 (orange line)
and response function λðtÞKðtþ τ0; tÞ for σ ¼ 5 (gray circles) and
σ ¼ 0.1 (black circles). Furthermore, vT ¼ 1, vR ¼ 0.5, μ ¼ 0,
and τs ¼ 0.02.

FIG. 8. Remote control in recurrent neural networks. (a) Net-
work model Eq. (40). One random neuron is selected as control
neuron, and another random neuron is selected as target neuron,
constrained to be at one-synapse distance from control (green
arrow). The control neuron receives the current IðtÞ in Eq. (39) to
make the target fire with a desired rate rtðtÞ. (b),(c) Real and
imaginary parts of the target’s response to control stimulation
measured by stimulation (black circles) and estimated from
Eq. (38) (red and blue lines). The gray line shows the estimate
based on Eq. (12), i.e. without the color correction Eq. (28).
(d) Desired rate rtðtÞ (turquoise line) and achieved rate
(purple line) of the target neuron after application of the current
Eq. (39) to the control neuron. The spontaneous rate of the target
neuron is r0 ≈ 0.68 (gray dashed line). Parameters: NE ¼ 105,
NI ¼ 2.5 × 104, CE ¼ 200, CI ¼ 50, g ¼ 4.2, J ¼ 0.01, and
νext ¼ 0.83=ðJCEÞ. The spectral measures in (b) and (c) are
averaged over 104 noise realizations, and the rate in (d) is
averaged over 103 noise realizations. In both cases, the network
realization is fixed. For a membrane time constant of
τm ¼ 10 ms, the y ticks in (d) are 7, 8, and 9 Hz, respectively.
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Eq. (38) captures the susceptibility quite well. In Fig. 8(d),
we then demonstrate how χtI can be exploited to control the
target indirectly: Here, we generate a Gaussian broadband
stimulus rtðtÞ (turquoise line) with cutoff frequency
ωc ¼ 2, feed the current Eq. (39) to the control neuron,
and observe the firing rate (purple line) of the target neuron.
Note that the parameters here are chosen such that, for a
reasonable membrane time constant τm ¼ 10 ms, the
spontaneous rate in dimensional units is approximately
7 Hz, which is biologically reasonable.

IV. FURTHER VARIANTS OF THE CRR

Here, we discuss two further variants of the CRR: First, we
show how to include random amplitudes of the input spikes,
and then we show CRRs for higher-order input-output
cross-correlation functions and nonlinear response functions.
Given the characteristic functional Zp½u� of the input process,
where p denotes the (time-dependent) parameters of the
noise model, CRRs can be found systematically by recog-
nizing that they correspond to relations between functional
derivatives ofZp½u�with respect to uðtÞ and functional Taylor
coefficients of Zp½u� with respect to parameters pi. This is
analogous to the derivations of Eqs. (10) and (22) and is
exemplified for the two further cases below.

A. Random amplitudes of input spikes

As a first variant, we consider an input process with
random amplitudes ηðtÞ ¼ P

i aiδðt − tiÞ, where ti
are Poisson events with intensity λ0 and ai are
independently sampled from an exponential distribution
pðaÞ ¼ ΘðaÞb−1 expð−a=bÞ. Thus, we replace the
Poissonian input with a marked Poisson process. In the
example of the shot-noise-driven LIF neuron, random
amplitudes are a more faithful description of synaptic
inputs that display considerable variability [26,49–51].
One could ascribe the random amplitudes to an additional
random process as described in Sec. II A, specifically
ηðtÞ ¼ ξðtÞη0ðtÞ, where η0 is the unmarked Poisson process

and ξðtÞ�i:i:d: Θ½ξðtÞ�b−1 exp½−ξðtÞ=b� (independence refers
here to the time argument). Then, without additional effort,
we have a CRR Eq. (10) for the cross-correlation between
the output and η0. In contrast, if we aim at a CRR for the
full marked input ηðtÞ, we deal with a more complicated
problem that we address next.
The mean of the input process is hηðtÞi ¼ bλ0; thus,

modulating λ0 and b has a similar effect on the mean input.
In Ref. [26], the susceptibility χðωÞ of a LIF neuron to an
intensity modulation of such an input process has been
derived. To fully explain the input-output cross-spectrum
SxηðωÞ, it turns out that χðωÞ is not sufficient. Specifically,
we show that one also needs the susceptibility χbðωÞ to
time-dependent modulations of b.
Our starting point is the characteristic functional of an

independently and identically marked Poisson process [52]

Zλ;b½u� ¼ e
R

λðt0Þ½ϕbðuðt0ÞÞ−1�dt0 ; ð41Þ

where ϕbðuÞ ¼ heiaui is the characteristic function of the
marks (here, amplitudes). For exponentially distributed
amplitudes, ϕbðuÞ ¼ 1=ð1 − iubÞ. Similarly to Eq. (9),
Cxη can be expressed by a functional derivative
DZðtÞ≡ ½δ=δiuðtÞ�Zλ;b½u�, and, similarly to Eq. (7), the
two linear-response functions can be expressed by func-
tional Taylor coefficients TðtÞ≡ ½δ=δΛðtÞ�ZΛ;b½u�jΛ¼λ and
TbðtÞ≡ ½δ=δBðtÞ�Zλ;B½u�jB¼b. Because of the identity
(easily checked by insertion)

∂

∂iu
ϕbðuÞ ¼ bϕbðuÞ þ b2

∂

∂b
ϕbðuÞ; ð42Þ

the three functions DZ, T, and Tb are directly related:

DZðt0Þ ¼ λbTðt0Þ þ b2Tbðt0Þ; ð43Þ

as follows by straightforward differentiation. If we integrate
Eq. (43) with

R
Duy½u; t�× and assume stationarity, we find

for ω ≠ 0 the CRR

SxηðωÞ ¼ λ0bχðωÞ þ b2χbðωÞ: ð44Þ

Thus, in the case of random amplitudes, the spontaneous
input-output cross-spectrum is connected to two mecha-
nistic properties of the system, the linear responses to
intensity and amplitude modulations, respectively.
The CRR [Eq. (44)] is verified and illustrated in

Fig. 9 for two opposite cases of the input process. The

FIG. 9. LIF neuron model: test of the CRR for a LIF neuron
driven by a Poisson process input with random amplitudes
Eq. (44). Absolute value [(a),(c), red lines] and argument [(b),
(d), blue lines] of the cross-spectrum SxηðωÞ. Right-hand side of
Eq. (44) (black circles) and single contributions b2χbðωÞ (light
gray circles) and λ0bχðωÞ (dark gray circles); for the latter, the
exact result [26] is shown (dark gray line); for all other lines and
symbols, the statistics are measured in stochastic simulations—
see Appendix A. Parameters: vT ¼ 1, vR ¼ 0.5, μ ¼ 0, and
τs ¼ 0. For (a) and (b), λ0 ¼ 2 and b ¼ 0.4; for (c), λ0 ¼ 24
and b ¼ 1=20.
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cross-spectrum decreases monotonically with frequency
and saturates at a nonvanishing level, corresponding to the
event that an input spike triggers immediately an output
spike; this is more likely for larger amplitudes [saturation
is larger in Fig. 9(a) than in Fig. 9(c)] and relies on our
choice of a vanishing filter time τs ¼ 0. We also illustrate in
Fig. 9 the relevance of the two contributions in Eq. (44),
which agree for small frequencies but deviate otherwise,
especially pronounced in the phase for large amplitudes and
intermediate frequencies [Fig. 9(b)].

B. Higher-order statistics and nonlinear response

Lastly, we demonstrate a higher-order CRR involving
nonlinear response functions and higher-order cross-
correlations. It has been recently suggested [53] that the
nonlinear response of sensory cells may be important in
certain detection problems [54]. Furthermore, taking into
account nonlinear response overcomes the limitations of
linear-response theory of neural activity [55] and may
exhibit surprising features already for simple neuron
models [56].
Considering again a fixed-amplitude inhomogeneous

Poisson process, the third input-output cumulant
Cxηηðt; t0; t00Þ ¼ ⟪xðtÞηðt0Þηðt00Þ⟫ can be attributed to a
linear combination of the linear-response function Kðt; t0Þ
and the second-order response function K2ðt; t0; t00Þ ¼
½δ2=δεsðt0Þδεsðt00Þ�hx½η; t�iεjε¼0. Analogously to the above
derivation, expressing Cxηη, K2, and K as path integrals
including the second functional derivative of the character-
istic functional of η and its second and first functional
Taylor coefficients with respect to the intensity, respec-
tively, we find by comparing the integrands

Cxηηðt;t0;t00Þ¼δðt0− t00Þλðt0ÞKðt;t0Þþλðt0Þλðt00ÞK2ðt;t0;t00Þ:
ð45Þ

This strikingly simple relation reveals that the third-order
cross-correlations are entirely determined by first-
and second-order response functions. Similarly, cross-
correlations of the order of n are given in terms of response
functions up to the order of n − 1. Likewise, cross-
correlations including orders m ≥ 2 of x are related to
response functions of

Q
m
i¼1 xðtiÞ.

V. SUMMARY AND OUTLOOK

In this paper, we derived a number of exact relations
between the input-output cross-correlations of a shot-noise-
driven system and its response functions. These CRRs can
be regarded as analogs of the famous Furutsu-Novikov
theorem for systems driven by Gaussian noise but are, as
we demonstrated, not the same. Our theorem, holding true
for the case of Poissonian shot noise (and in an extension
for Cox noise), applies to simple functionals such as a
linear filter but also to a more complicated system such as

an excitable neuron that itself generates spikes (i.e., another
shot-noise process). We tested the basic relation for a
particle detector and for a shot-noise-driven integrate-
and-fire neuron and demonstrated that it is nontrivial, as
it is not obeyed if the input shot noise deviates from
Poisson statistics. We used the CRR for this model class
to derive a novel FRR in the presence of shot noise. In a
recurrent network, we used the CRR to extract remote-
response functions from spontaneous cross-correlations.
Finally, we generalized the relation in two further
respects: (i) We replaced the common Poissonian input
noise by a marked Poisson process, for which ampli-
tudes are drawn from an exponential distribution; and
(ii) we exemplified how higher-order cross-correlation
functions of shot-noise-driven systems can be related to
higher-order response functions.
The approaches developed here enable the derivation of

families of nontrivial input-output relations of systems
driven by random series of events. It is conceivable, for
instance, that the generalizations outlined above may be
combined; i.e., we could consider a marked and doubly
stochastic process as an input and also derive higher-order
relations in this setting. Another extension is the common
situation that a system is subject to several independent
shot-noise processes or to both shot noise and Gaussian
noise. In neurons, for instance, there are excitatory and
inhibitory synaptic inputs and, moreover, several compet-
ing types of noise, some of which can be approximated
by Gaussian noise, e.g., the channel noise from a large
population of independent ionic channels [57]. We expect
that, in such cases, families of relations between various
input-output cross-correlations and response functions
to various modulations (e.g., intensities of excitatory
and inhibitory input spike trains; mean and variance of
Gaussian input noise) can be found and may serve to
derive, for instance, corresponding families of FRRs.
Another interesting model class for neural activity is the
Hawkes process [55,58,59], which our study does not
cover due to its deviation from Poissonian input sta-
tistics. It is, thus, an open problem to derive CRRs for
this situation.
Regarding the specific application of the CRR to the

integrate-and-fire model, several remarks are in order. First
of all, analytical results for this model class are scarce, and
the CRRs may allow us to derive new exact results. For the
case of random amplitudes, the intensity response is known
(see Ref. [26]), and the response to modulations of the
amplitude might be obtained by the methods therein;
knowing both of these functions would provide us with
an explicit expression for the input-output cross-correlation
function of this model. Second, the CRR can also be
applied to more involved nonlinear models, such as
integrate-and-fire models with adaptation [60–63], with
synaptic short-term plasticity (see, e.g., Refs. [64–68]), or
with conductance-based input shot noise [69–73]. Beyond
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the integrate-and-fire framework, CRRs may be exploited
in detailed biophysical models such as Hodgkin-Huxley–
type neuron models with a true spike-generating mecha-
nism and spatially extended neuron models based on
cable theory with stochastic inputs distributed over the
neuron’s dendrite [74,75]. Third, at the network level,
input-output cross-correlations are particularly relevant,
because the input spikes for one neuron are another
neuron’s output spikes, and modern multielectrode arrays
allow for parallel recording of hundreds to thousands of
spike trains. Expanding on the approach worked out in
Sec. III C, we may use the CRR to determine an entire
matrix of pairwise response functions in heterogeneous
networks of spiking neurons. Furthermore, from a more
theoretical point of view, CRRs can be helpful by
constraining the constituents in the theory of neural
networks. For example, in a recent cavity-method
approach to rate-based neural networks [12] with
Gaussian statistics, the Gaussian FNT was used to
connect neural cross-correlations and response functions.
With the results presented here, such approaches can
likely be extended to recurrent networks of spiking
neurons. Last but not least, in the theory of neural
learning, the important paradigm of spike-timing-
dependent plasticity involves the cross-correlation of
pre- and postsynaptic spike trains. Relations such as the
CRR constrain the possible dynamics of the synaptic
weights during learning and may, thus, be instrumental to
understand this type of self-organization in the brain.
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APPENDIX A: NUMERICAL METHODS

The main results of this manuscript are links between
correlation functions and response functions, both of which
are, in general, hard to obtain analytically. Therefore, in
Figs. 2–9, we compute these statistics from stochastic
simulations. This involves sampling a large number of
realizations of the input processes, computing the respec-
tive output processes, and assuming that averages over the
ensemble of input processes may be approximated by
averages over the finite number of input realizations. In
this appendix, we lay out technical details.

1. Generation of Poisson processes

To sample Poisson processes with intensity ΛðtÞ, we
discretize time into time steps Δt and perform a Bernoulli
trial in each time bin k with tk ¼ kΔt [52]. Specifically, we
draw uniform random numbers qk ∼Uð0; 1Þ between 0
and 1. If qk ≤ ΛðtkÞΔt, we note an event at time tk; thus, the

so-sampled Poisson process may be represented by the
discrete-time spike train

ηk ¼
X

k0 such that qk0≤Λðtk0 ÞΔt

δkk0

Δt
: ðA1Þ

Here, the ratio of the Kronecker delta and the time step is
the discrete-time approximation of the Dirac delta function
in the continuous-time spike train, ηðtÞ ¼ P

δðt − tk0 Þ.

2. Integration of Langevin equations

To sample the Ornstein-Uhlenbeck process Eq. (31), we
integrate the Langevin equation using the Euler-Maruyama
method. Specifically, we initialize the value of the process
at time t0 as ζ0 ¼ 0 and then iteratively compute the
subsequent values of the process

ζkþ1 ¼
�
1 −

Δt
τζ

	
ζk þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2σ2ζ

Δt
τζ

s
zk; ðA2Þ

where zk�i:i:d: N ð0; 1Þ. To get rid of transient behavior
due to the choice of ζ0, we cut off a transient time
Twarm ¼ 50 ≫ τζ ¼ 1.
The same type of integration is applied to simulate the

LIF dynamics Eq. (32) driven by white Gaussian noise zðtÞ
Eq. (33) in order to determine the diffusion approximation
of the response function Eq. (34). Here, we apply a
Markovian embedding to implement the filter αðtÞ by
means of two additional auxiliary variables m1 and m2:

ðα � ηÞðtÞ ≈ ðα � zÞðtÞ ¼ Am1ðtÞ=τ2s
ṁ1ðtÞ ¼ −τ−1s m1ðtÞ þm2ðtÞ
ṁ2ðtÞ ¼ −τ−1s m2ðtÞ þ zðtÞ: ðA3Þ

The last line describes again an Ornstein-Uhlenbeck
process that can in discrete time be simulated as in
Eq. (A2).

3. Sampling colored Gaussian noise

For the production of Fig. 5, we use a different method
(see Ref. [76] and references therein) to sample the
Gaussian input process. Namely, we generate the Gaussian
noise λðtÞ with given meanm and power spectrum SλðωÞ by
sampling the Fourier transform λ̃ðωÞ. Since we here consider
a stationary random process, that is, ⟪λðtþ τÞλðtÞ⟫ is
invariant to translations in time t, the correlations in
frequency space are diagonal: ⟪λ̃ðωÞλ̃�ðω0Þ⟫ ∝ δðω − ω0Þ.
Thus, for a finite time window T and discrete frequency
bins ωk ¼ 2πk=T, we may conveniently sample Rez̃ðωkÞ;
Imz̃ðωkÞ�i:i:d: N ½0; SλðωkÞ=2� independently for each fre-
quency bin. Lastly, we add m0 to the inverse Fourier
transform of z̃ to obtain λðtÞ ¼ m0 þ zðtÞ.
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4. Integrating LIF neurons

To integrate the LIF neuron Eq. (32), we first sample the
input as detailed above and then integrate Eq. (32) with a
simple forward scheme. Specifically, at each step k, the
membrane voltage is updated as

vkþ1 ¼ vk þ Δt½−vk þ μþ ðα � ηÞðtkÞ�; ðA4Þ

and the convolution α � η is computed in advance.
Alternatively, the Markovian embedding Eq. (A3) could
be used for shot noise ηðtÞ instead of zðtÞ, too.

5. Spontaneous statistics

For spontaneous statistics, e.g., the left-hand sides in
Eqs. (10), (22), (37), and (44), the simulations are com-
puted as outlined above for large numbers of input
realizations. Per realization, the correlation functions and
spectra correspond to simple products (of Fourier trans-
forms) of variables. The presented statistics are averages of
these per-realization products over all realizations.

6. Response functions

The susceptibility χ of a variable hxi to modulations of a
parameter λ0 is computed as follows. For each frequency ωs
at which the susceptibility is sought, we simulate the
dynamics of x for many realizations of the input with
parameter λ0 þ ε cosðωstÞ. Assuming stationary dynamics
for ε ¼ 0, linear response theory states that, for ωs > 0,

hx̃ðωÞi ¼ επχðωÞδðω − ωsÞ þOðε2Þ: ðA5Þ

Thus, for each ωs we may extract the susceptibility
χðωsÞ ¼ ½Δω=ðεπÞ�hx̃ðωsÞi, where the average is taken
over the realizations and the frequency step is given in
terms of the simulation window T as Δω ¼ 2π=T.

APPENDIX B: CRR IMPLIES WHITE-NOISE
FNT IN THE DIFFUSION LIMIT

Here, we show that the CRR Eq. (10) implies the FNT
for white Gaussian noise. To this end, we follow an
approach put forward by Refs. [77,78] to recall that every
white Gaussian noise process can be regarded as the
diffusion limit of a scaled Poisson process with offset.
Thus, the CRR which applies to Poisson processes has a
corresponding property which applies to white Gaussian
noise; this property turns out to be the FNT.
The diffusion approximation in its common use refers to

replacing an inhomogeneous Poisson process by white
Gaussian noise with matched time-dependent mean and
noise intensity. This replacement neglects all cumulants of
the order of k ≥ 3 of the Poisson process. However, the
scaled Poisson process with offset

znðtÞ ¼ anηnðtÞ þ ψnðtÞ; ðB1Þ

where ηnðtÞ is a Poisson process with intensity λnðtÞ,
becomes equivalent to white Gaussian noise

x½zn; t� ⟶n→∞
x½ξ; t�; ðB2Þ

in the sense specified in Refs. [77,78], in a specific limit. If

λnðtÞ ¼ AðtÞnþ BðtÞn2;
an ¼ a†=n;

ψnðtÞ ¼ −a†BðtÞn; ðB3Þ

with A, B, and a† independent of n, then in the limit n → ∞
the mean and autocorrelation of zn are hznðtÞi → a†AðtÞ
and hhznðtÞznðt0Þii → a2†BðtÞδðt − t0Þ, yet all cumulant
functions of the order of k ≥ 3 vanish ∝ 1=Oðnk−2Þ.
Thus, in this limit, Eq. (B1) is statistically identical to a
white Gaussian process ξ with mean mðtÞ ¼ a†AðtÞ and
noise intensity DðtÞ ¼ a2†BðtÞ=2. Conversely, every white
Gaussian noise process can be represented as the diffusion
limit of a scaled Poisson process with offset.
Modulating the intensity of the Poisson process, specifi-

cally, replacing λnðtÞ by λnðtÞþεsnðtÞ with snðtÞ¼ s†ðtÞn,
corresponds in the limit n → ∞ to modulating the mean of
the Gaussian process, i.e., replacing mðtÞ by mðtÞ þ εŝðtÞ
with ŝðtÞ ¼ a†s†ðtÞ, whereas the noise intensity is not
affected. Thus, the linear response Kn of a functional
x½ηn; t�≡ x̂½zn ¼ anηn þ ψn; t� to a modulation of λnðtÞ,

hx½ηn; t�iε ¼ hx½ηn; t�i0 þ ε

Z
dt0Knðt; t0Þsnðt0Þ þOðε2Þ;

ðB4Þ

corresponds in the diffusion limit to the response of x̂ to
modulating mðtÞ:

hx̂½ξ; t�iε ¼ lim
n→∞

hx̂½zn; t�iε

¼ hx̂½ξ; t�i0 þ lim
n→∞

ε

an

Z
dt0Knðt; t0Þŝðt0Þ þOðε2Þ;

ðB5Þ

where ξ is the Gaussian noise introduced above. Thus,
the linear-response function to mean modulations of the
Gaussian process is Kxξ ¼ limn→∞Kn=an in the diffusion
limit. Additionally, the cross-correlations Cxηðt; t0Þ ¼
⟪xðtÞηnðt0Þ⟫ and Cx̂ξðt; t0Þ ¼ ⟪x̂ðtÞξðt0Þ⟫ are related by
Cx̂ξ ¼ anCxη in the diffusion limit. Thus, Eq. (10) implies
the white-noise case of the Gaussian FNT Eq. (11):

Cx̂ξðt; t0Þ ¼ a2nλnðt0ÞKxξðt; t0Þ
¼ 2Dðt0ÞKxξðt; t0Þ; ðB6Þ

since a2nλnðtÞ¼ða2†=n2Þ½AðtÞnþBðtÞn2� →n→∞
a2†BðtÞ≡2DðtÞ.
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APPENDIX C: IMPACT OF NON-NEGATIVITY

In Sec. II B, we discuss the Cox process, i.e., a condi-
tionally Poissonian point process ηðtÞ with intensity λðtÞ,
and λðtÞ is itself a random process. Specifically, we choose
λðtÞ≡ Θ½ϕðtÞ�ϕðtÞ, where ϕðtÞ is a Gaussian process with
mean mðtÞ and autocorrelation function Cϕðt; t0Þ. In the
derivation of the extended form of the CRR for this Cox
process [Eq. (22)], we assume that ϕðtÞ is almost always
non-negative, i.e., that the positive mean value is much
larger than the standard deviation. We may, thus, set
λðtÞ ¼ ϕðtÞ. This allows us to achieve the closed-form
expression of the characteristic functional hexp ½R λ½ϕðtÞ�
ðeiuðtÞ − 1Þdt�iϕ; see Eq. (16). Nonlinearities of λðϕÞ could
be captured systematically by expressing λ as a polynomial
around m, taking the contributions up to and including
O½ðϕ −mÞ2� into account by absorbing it into the Gaussian
problem, and treating higher-order nonlinearities of λ using
Feynman diagrams. However, such a procedure is likely to
become cumbersome.
Setting λ ¼ ϕ is legitimate if the probability of

negative ϕ,

Pðϕ < 0Þ ¼ 1

2
erfc

h
mðtÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Cϕðt; tÞ

q i
; ðC1Þ

can be neglected (here, erfc is the complementary error
function). To estimate the impact of the non-negativity
constraint on the validity of the CRR Eq. (22), we first show
that Eq. (22) is fulfilled for a linear system if indeed λ ¼ ϕ.
Second, we show how Eq. (22) is violated for a linear
system if Pðϕ < 0Þ ≪ 1 is violated.
Assuming ϕ ¼ λ, the response functions of a linear filter

x½η; t� ¼ R
∞
0 dτκðτÞηðt − τÞ can be computed explicitly.

Since, here, hηðtÞi ¼ hλðtÞi ¼ mðtÞ, and, thus, hxðtÞi ¼R∞
0 dτκðτÞmðt − τÞ, the linear-response functions to mean-
and autocorrelation modulations are, respectively,

Kxmðt; t0Þ ¼
δ

δmðt0Þ hxðtÞi ¼ Θðt − t0Þκðt − t0Þ ðC2Þ

and

KxCϕ
ðt; t0; t00Þ ¼ δ

δCϕðt0; t00Þ
hxðtÞi ¼ 0: ðC3Þ

The fact that KxCϕ
≡ 0 shows that, for Pðϕ < 0Þ ≪ 1, a

linear system does not respond to modulations of Cϕ.
The input-output cross-correlation can also be computed

explicitly:

Cxηðt; t0Þ ¼
Z

∞

0

dτκðτÞhηðt − τÞ½ηðt0Þ −mðt0Þ�i

¼ mðt0ÞΘðt − t0Þκðt − t0Þ

þ
Z

dt00Θðt − t00Þκðt − t00ÞCϕðt0; t00Þ

¼ mðt0ÞKxmðt; t0Þ

þ
Z

dt00Cϕðt0; t00Þ½2KxCϕ
ðt; t0; t00Þ þ Kxmðt; t00Þ�;

ðC4Þ

where in the last step we recast Cxη into the form of the
right-hand side of Eq. (22), using the above expressions
for the response functions; Eq. (22) is, thus, explicitly
confirmed for the linear system.
If P½ϕðtÞ < 0� ≪ 1 is violated, the above calculations do

not provide a valid approximation anymore. The double-
average hf½η�i, where first the conditional average over
Poisson processes η with intensity ΘðϕÞϕ and then the
average over Gaussian processes ϕ have to be carried out,
produces expectation values of a nonlinear function of
Gaussian random variables. Yet, the two response functions
can be computed explicitly from the mean output

hxðtÞi ¼
Z

t
dt0κðt − t0Þhηðt0Þi

¼
Z

t
dt0κðt − t0Þη̄½mðt0Þ; Cϕðt0; t0Þ�; ðC5Þ

where

η̄ðm; cÞ ¼ hΘðϕÞϕiϕ∼N ðm;cÞ

¼ c
1ffiffiffiffiffiffiffiffi
2πc

p e−m
2=ð2cÞ þm

2
erfc



−m=

ffiffiffiffiffi
2c

p �
ðC6Þ

is the ensemble average of the input process. The linear
response to mean modulations follows from differentiating
Eq. (C5):

Kxmðt; t0Þ ¼
δ

δmðt0Þ
Z

t
dsκðt− sÞη̄½mðsÞ;Cϕðs; sÞ�

¼ d
dh

Z
t
dsκðt− sÞ

× η̄½mðsÞ þ hδðs− t0Þ;Cϕðs; sÞ�
���
h¼0

¼ Θðt− t0Þκðt− t0Þ1
2
erfc

h
−mðt0Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Cϕðt0; t0Þ

q i
:

ðC7Þ

For Cϕ → 0, this reproduces Eq. (C2), since
limx→−∞ erfcðxÞ ¼ 2.
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Concerning modulations of Cϕðt; t0Þ, we first observe
that the mean output Eq. (C5) depends only on the variance
VϕðtÞ≡ Cϕðt; tÞ. Thus, the linear response to modulations
of Cϕ is given by the linear response to variance modu-
lations KxCϕ

ðt; t0; t00Þ ¼ δðt0 − t00ÞKxVϕ
ðt; t0Þ, as one can

see by Taylor expanding Eq. (C5) and identifying the
correlation response:

hxðtÞiε¼
Z

t
dt0κðt− t0Þη̄½mðt0Þ;Vϕðt0ÞþεDðt0;t0Þ�

¼ hxðtÞi0þε

Z
t
dt0κðt− t0Þ

×
∂

∂Vϕðt0Þ
η̄½mðt0Þ;Vϕðt0Þ�Dðt0;t0Þ

¼ hxðtÞi0þε

Z
t
dt0

Z
t
dt00κðt− t0Þ

×δðt0− t00Þ ∂

∂Vϕðt0Þ
η̄½mðt0Þ;Vϕðt0Þ�Dðt0;t00Þ: ðC8Þ

As one may read off from this, the variance response
follows again by differentiating Eq. (C5):

KxVϕ
ðt;t0Þ¼ δ

δVϕðt0Þ
Z

t
dsκðt−sÞη̄½mðsÞ;VϕðsÞ�

¼Θðt− t0Þκðt− t0Þ1
2

1ffiffiffiffiffiffiffiffiffiffiffi
2πVϕ

p e−m
2=ð2VϕÞ: ðC9Þ

Thus, as opposed to the case where Pðϕ < 0Þ ≪ 1, the
nonlinearity induces a nonvanishing response to variance
modulations. This response function vanishes for Vϕ → 0,
the limit in which Pðϕ < 0Þ → 0, provided that m > 0.
To test the violation of Eq. (22), we additionally need to

compute the input-output cross-correlation

Cxηðt; t0Þ ¼
Z

t
dsκðt − sÞhηðsÞηðt0Þi

−
Z

t
dsκðt − sÞhηðsÞihηðt0Þi

¼
Z

t
dsκðt − sÞ½hλ½ϕðsÞ�δðs − t0Þi þ Cλðs; t0Þ�

¼ Θðt − t0Þκðt − t0Þη̄½mðt0Þ; Vϕðt0Þ�

þ
Z

t
dsκðt − sÞCλðs; t0Þ: ðC10Þ

We are not aware of a closed-form expression for Cλ in
terms of Cϕ, although a possible method is applied in
Ref. [79]. Here, we content ourselves with computing Cλ

numerically for the special case Cϕðt; t0Þ ¼ c0e−jt−t
0j=τϕ by

evaluating the double integral

CλðτÞ ¼
Z

dϕ1dϕ2N
��

ϕ1

ϕ2

	�����m

m

	
;

�
c0 cτ
cτ c0

	�
× ½λðϕ1Þ − η̄ðm; c0Þ�½λðϕ2Þ − η̄ðm; c0Þ�; ðC11Þ

where cτ ¼ CϕðτÞ, using Gauss-Hermite quadrature.
In Fig. 10, we show the input-output cross-correlation

Eq. (C10) as well as the right-hand side of Eq. (22) using
the response functions Eqs. (C7) and (C9) for κðτÞ ¼ e−τ=τκ
and different values of the coefficient of variation

ffiffiffiffiffi
c0

p
=m.

As expected, the CRR Eq. (22) is violated if
ffiffiffiffiffi
c0

p
=m is

not small enough, corresponding to Pðϕ < 0Þ ≪ 1 being
violated.
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