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Abstract
A recent stochastic pursuit model describes a pack of chasers (hounds) that actively move toward a
target (hare) that undergoes pure Brownian diffusion (Bernardi and Lindner 2022 Phys. Rev. Lett.
128 040601). Here, this model is extended by introducing a deterministic ‘escape term’, which
depends on the hounds’ positions. In other words, the hare can ‘see’ the approaching hounds and
run away from them, in addition to the ‘blind’ random diffusion. In the case of a single chaser, the
mean capture time (CT) can still be computed analytically. At weak noise, the qualitative behavior
of the system depends on whether the hare’s maximum running drift speed is above or below a
critical value (the pursuers’ speed), but not on the target’s viewing range, whereas the capture
statistics at strong noise is similar to those of the original model without escape term. When
multiple hounds are present, the behavior of the system is surprisingly similar to the original
model with purely diffusing target, because the escape terms tend to compensate each other if the
prey is encircled. At weak noise levels and ‘supracritical’ maximum escape speed, the hare can slip
through the chaser pack and lead to a very strong increase of the mean CT with respect to the blind
case. This large difference is due to rare events, which are enhanced when the symmetry in the
initial conditions is disrupted by some randomness. Comparing the median of the CT probability
density (which reflects the typical CT) with the mean CT makes clear the contribution of rare
events with exceptionally long CTs.

1. Introduction

Chase-and-escape problems are a universal phenomenon in nature and a classic problem in game theory
[1–3]. There are many models and methods devoted to studying optimal pursuit or escape strategies. The
seemingly simplest case of this problem, i.e. only one chaser hunting a single target, can already pose
challenging mathematical problems [1–8]. Different authors have also investigated more elaborate situations
in which a pack of hunters chase a single prey [9, 10], a single chaser pursues a herd of prey [11, 12], or a
pack of hunters chasing multiple preys [13–21]. In models describing insect swarming behaviors, individual
agents can act both as predator and preys at the same time [22]. The presence of obstacles in the
environment [23] and a confined space for the pursuit [9] can give the pursuit problem an additional twist.

Several of these models incorporate also random noise elements, which is particularly relevant if
predators and preys are as small as, for instance, microorganisms or the increasingly popular artificial
microswimmers capable of target tracking [24–29]. Typical stochastic chase-and-pursuit models, however,
are either so detailed that they can only be investigated through numerical simulations [8, 13, 14, 16, 17, 19,
20, 30, 31], or rather abstract [4, 7, 32]. Analytical results have been mostly found for the case that both
predators and prey are random walkers confined to a one-dimensional space [33–35], to grids [36], or to
graphs [37]. This kind of predator-prey system is, in fact, closely related to the stochastic search for a fixed

© 2023 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft

https://doi.org/10.1088/1367-2630/acbc42
https://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/acbc42&domain=pdf&date_stamp=2023-3-1
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-7043-6606
https://orcid.org/0000-0001-5617-127X
mailto:benjamin.lindner@physik.hu-berlin.de


New J. Phys. 25 (2023) 023033 M Su et al

target, for which many analytical results were derived in the last years [38–49]. Some results exist for
predators and preys that diffuse on a square lattice and can interact at limited range [12, 50], but analytically
tractable models of active chasers pursuing a randomly moving prey are scarce. Recently, a stochastic pursuit
model involving multiple chasers (hounds) with a classical pursuit strategy that hunt a single, diffusively
moving prey (hare) has been suggested [51, 52], a model that permits some analytical progress for the
capture-time (CT) statistics.

In one of the scenarios studied in [51], N hounds start their pursuit from an equidistant arrangement on
a circle centered around the hare. The disk-shaped hare moves randomly in a two-dimensional space (like an
overdamped Brownian particle), while the point-like hounds deterministically run towards the hare until any
of them reaches the target’s circumference. Remarkably, the randomness of the prey’s motion (quantified by
its diffusion coefficient) can, on average, both lengthen or shorten its survival (enlarge or diminish the mean
CT) depending on the number of hounds and their running speed. From the perspective of the hunter, it is
furthermore interesting to note that the energy spent on hunting the prey can be minimized at a finite
number of hounds and a nonvanishing but finite value of the speed of pursuit [51]. These results may have
relevance for pursuit problems in nanorobotics and for problems involving natural microswimmers.

The model considered in [51] displays strong asymmetries in two respects. The chasers can see the prey
and are completely deterministic, both in their dynamics as well as in their initial position. The single prey,
the hare, does not ‘see’ the predators and behaves completely at random. What if, however, the hare can also
detect the pursuers and make some use of this knowledge to escape from the hounds? This possibility is not
only obviously relevant for macroscopic systems, but also for microscopic chase-and-pursuit scenarios:
chemotaxis, for instance, is used not only by predators to chase preys, but also by preys to evade predators
[53, 54].

In this paper, we revisit the tractable prey-pursuit model from [51] by introducing a sensible ‘evasion
term’ into the dynamics of the hare that reflects its information (seeing) about the pursuers. The chasers still
deterministically move towards the prey, and the prey tends to run away from the chasers in addition to
randomly moving. We derive analytical expressions for the mean CT for the one-chaser case in one and two
spatial dimensions. We also investigate the noiseless case and derive a critical condition for divergence of the
CT. For the case of several chasers, the mean CT is measured by means of stochastic simulations and
inspected as a function of the noise intensity for different combinations of pursuit and escape speeds and
number of hounds. We investigate the existence of a ‘critical’ deterministic evasion speed, above which the
mean CT undergoes a dramatic increase at weak noise levels, and how this critical speed depends on the
number of chasers. We briefly discuss how this picture is changed by a randomization of the initial positions
of the hounds. Inspecting the full CT probability density, we find that certain effects on the mean CT rely on
very rare events when the hare escapes from a pack of hounds and the capture takes an unusually long time.
For these cases we also compare mean and median of the distribution of CTs.

2. Model

The system consists of N chasing hounds and one target hare that move in a d-dimensional space. In this
study, we will consider the cases d= 1 and d= 2 (see figure 1 for an illustration). The chasers’ velocity has
constant magnitude v0 and direction always pointing to the target’s position. In the original model, the prey
undergoes pure Brownian diffusion. Here, the additional term E represents a deterministic escape velocity
that depends on the chasers’ position. The system obeys

dX

dt
=
√
2Dξ(t)+ E, (1)

dYn

dt
= v0

X−Yn

∥X−Yn∥
, (2)

where X(t) is the hare’s position, Yn(t) is the nth hound’s position (n= 1, . . .,N), v0 is the running speed of
the hounds, and ∥·∥ represents the Euclidean distance. The components of ξ(t) are independent Gaussian
white noise sources with unit intensity,

⟨ξi⟩= 0,
〈
ξi(t)ξj(t

′)
〉
= δijδ(t− t ′), (3)

so that D sets the intensity of the noise process, i.e. the randomness of the prey’s trajectory.
The hare’s initial position is the origin of the coordinate system, while the hounds are placed at the same

distance from the target, and such that they are distributed around a circle equidistantly from each other.
Without loss of generality, we can set the initial distance to one, which is equivalent to measuring space in
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Figure 1. A pictorial illustration (a) (Reproduced with permission fromMeta Laitko) and a more faithful illustration of the actual
model (b). Several hounds (here N= 3) go after a hare (gray trajectory) which has started its random motion from the origin;
hounds start at the circumference of a unit circle. The hare is captured by one of the hounds (blue trajectory).

units of the initial distance between chasers and target. The hunt terminates when the hare and any of the
hounds are closer apart than a prescribed distance R, which means that the hare is described by a circle of
radius R (see figure 1(b)).

Compared to the model in [51], there is a new term E modeling the hare’s escape velocity ve resulting
from ‘seeing’ the hounds. This systematic contribution to the hare’s velocity is given by a weighted sum of N
terms, i.e.

E=
ve
N

N∑
n=1

g(rn)
X−Yn

∥X−Yn∥
. (4)

In equation (4), the nth term of the sum is directed away from the nth chaser and is weighted according to
the distance-dependent function g(rn), where rn = ∥X−Yn∥. It is plausible that hounds further away
contribute less to the escape velocity term; we choose a simple exponential decay for the weighting function:

g(rn) = exp

[
− rn −R

S

]
. (5)

Here S sets the decay rate of the weighting function from its maximum value g(rn = R) = 1 (it must be rn ⩾ R
for each chaser, otherwise the target is captured and the trial terminates). From equation (5), it is clear that
the contribution to the escape term is larger for closer hounds, and that S can be interpreted as the effective
‘viewing range’ of the hare. The parameter ve in equation (4) sets the maximum escape drift speed, which can
be reached only asymptotically. By setting ve = 0, the escape term E vanishes. We will refer to this situation as
to that of a ‘blind’ target, the case which was previously studied in [51] and that we use for reference.

As in [51], we set v0 = 1, which is equivalent to rescaling time units, and choose R= 0.1. The CT for each
realization (trial) is a stochastic variable defined as

Td,N =min

{
t
∣∣∣ min
n=1,...,N

{∥X(t)−Yn(t)∥⩽ R}
}
. (6)

The indices indicate the dimension of space, d, and the number of hounds, N. In the following, we will
mainly focus on the mean CT, but will also briefly consider the median of the CT distribution.

Unless otherwise indicated, results of numerical simulations are based on theM= 105 realizations of
equations (1) and (2) integrated with an Euler–Maruyama algorithm with time step∆t= 10−6.

3. One-dimensional case

If hare and hounds move on a line, there can be at most two hounds, which start at Y1(2)(0) =±1.
Furthermore, the hounds’ trajectories do not depend on the particular noise realization, and are described by

3
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Figure 2. Examples of the potential function for the one-dimensional case, as in equation (10). Three values of the maximum
escape velocity ve are shown (blue, black, and red lines as indicated in the legend). The effective viewing range is here S= 0.25.
Note that in this one-dimensional case the potential does not depend on the noise intensity D. The critical value ve = 1 marks
whether the capture occurs in a finite time in the noiseless system (D= 0).

Y1(2)(t) =±(1− t) (recall that the chasers’ speed was set to v0 = 1). When the number of chasers is N = 1,
the simple variable transformation

r(t) = ∥X(t)−Y1 (t)∥ , (7)

yields the Langevin equation for the distance between the single chaser and its target r(t):

dr

dt
= veg(r)− 1+

√
2Dξ(t). (8)

The stochastic dynamics of this distance can be regarded as the position of an overdamped Brownian particle

dr

dt
=−U ′(r)+

√
2Dξ(t) (9)

moving in the potential

U(r) = r+ veSexp

[
− r−R

S

]
(10)

with the initial condition r(0) = 1 and a fixed absorbing boundary at r= R= 0.1. We note that r is a positive
quantity by definition. Furthermore, the absorbing boundary implies that r is always larger than R.

Examples of the potential function for different values of the escape speed are shown in figure 2; the
magnified view in the inset reveals the position of the potential minimum with respect to the absorption
point at r=R. Note that the potential is independent of the noise intensity, therefore, it makes sense to
discuss the noiseless case D= 0 first. When D= 0, the motion of the hare follows deterministically the
potential gradient, which only depends on E and is always directed away from the hound. The minimum of
the potential function given in equation (10) is at

rmin = R− S ln

(
1

ve

)
. (11)

The potential’s minimum shifts to the right with the increase of ve, as demonstrated by the three example
curves in figure 2. When ve < 1, the second term in equation (11), ln(1/ve), is positive, resulting in a
potential minimum at a value smaller than R (figure 2 blue line). This means that the boundary at r=R is
reached in a finite time even in the absence of noise—for sufficiently low escape speed (smaller than the
pursuit speed of the hounds), capture is certain. When ve = 1, the potential minimum is exactly at R (black
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line). Here, technically, the CT in the deterministic case diverges already, since the passage to the smooth
potential minimum takes an infinite time, as we show below (see equation (16)). For ve > 1 an escape barrier
is created by the potential that cannot be overcome in a noiseless system. Therefore, also in this case the CT
diverges. Note that the critical condition for divergence (ve = 1) is independent of the parameter S.

These qualitative considerations are confirmed by the solution of equation (8), which for D= 0 is an
ordinary differential equation:

dr

dt
= ve exp

[
− r−R

S

]
− 1 (12)

with initial condition r(t= 0) = 1. The change of variables y= exp(−r/S) can be used to transform the
differential equation to

S
dy

dt
= y− vee

R/Sy2, (13)

with initial condition y(t= 0) = e−1/S, which can be solved with standard methods. The solution is

y(t) =
et/S

e1/S − veeR/S + veeR/Set/S
. (14)

Thus, the explicit solution of equation (12) reads:

r(t) =−S lny(t) = S ln
[
vee

R/S −
(
vee

R/S − e1/S
)
e−t/S

]
. (15)

From equation (15), it is straightforward to obtain the deterministic CT

TDet = S ln

(
e1/S − veeR/S

1− ve

)
−R, (16)

which diverges for ve → 1 (we note that it must be R< 1 to avoid the trivial case of immediate capture).
A closed form for the mean CT can be found exactly also in the noisy case D> 0 because in equation (9)

we are dealing with a one-dimensional homogeneous first-passage-time problem, for which the standard
quadrature formula based on the backward Fokker–Planck equation can be applied [55]. Following this
approach, the mean CT is given by

⟨T1,1⟩=
1

D

ˆ 1

R
dy exp

[
U(y)
D

]ˆ +∞

y
dz exp

[
−U(z)

D

]
. (17)

Although the double integral in equation (17) cannot be performed analytically due to the nested
exponential functions, the numerical evaluation of this expression can be compared to simulations as done
in figures 3(a) and (b). Here, symbols indicate simulations and solid lines in the corresponding color
represent the integration of equation (17). At very low noise intensities, the numerical integration of
equation (17) becomes infeasible. Hence, the solid lines break off in the weak-noise limit, which will be dealt
with by using different approximations, as discussed below.

In figure 3(a), the mean CT is shown as a function of the noise intensity D for S= 0.25 and several values
of ve as indicated in the legend. In the blind case ve = 0, the mean CT is independent of the noise intensity
and is just the mean first passage time of a Brownian motion with constant drift, given by 1−R (black line,
theory; black stars, simulations) [57]. When ve > 0 the mean CT is always increased with respect to the blind
case, as shown in figure 3(a) for the three values of ve discussed above and in figure 2. It can be seen that all
curves converge to the blind case in the strong-noise limit, whereas the behavior in the weak-noise limit
depends on the value of ve.

When the maximum escape speed is ‘subcritical’ (here represented by the case ve = 0.8, purple
diamonds), the mean CT converges to the deterministic limit given by equation (16), indicated by the purple
horizontal dotted line. When the maximum escape speed is ‘supercritical’ (here we consider ve = 1.2, blue
circles), we know from the above discussion of the noiseless case that the potential has a minimum to the
right of the absorbing barrier. Hence, the problem can be framed as an escape over a potential barrier, and we
can find an approximation in the spirit of the classic Kramers escape formula [58]. If the noise is weak
enough, we can expand the potential function in the first and second integrals in equation (17) as

U(y)≈ U (R)+U ′ (R)(y−R), (18)

5
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Figure 3.Mean capture time for the pursuit model in one dimension. (a) and (b): the mean capture time as a function of noise
intensity D when N= 1,S= 0.25 (a) and N= 1,S= 0.5 (b). The values of ve are indicated with various symbols and colors as in
the legend. The analytical results (solid lines) are validated by numerical simulations (symbols). For very small noise intensities,
the analytical results cannot be obtained because the numerical integration becomes unstable. The dotted lines represent the
deterministic limit equation (16) when it is finite (ve = 0.8). In the supercritical ve = 1.2 the mean CT can be approximated by
using the Kramers-like escape formula equation (20) (dashed line). (c): mean capture time as a function of D for N= 2 (symbols:
running away under corresponding parameters; dashed lines: blindly diffusing cases).

U(z)≈ U (rmin)+
U ′ ′ (rmin)

2
(z− rmin)

2
, (19)

respectively. We then employ a steepest-descent approximation [59, 60] to evaluate the inner integral (we
extend the integration boundary to±∞), and ultimately find the mean CT as follows

⟨T⟩K ≈ 1

D

ˆ 1

R
dye

U(R)+U ′(R)(y−R)
D

ˆ +∞

−∞
dzexp

[
−
U (rmin)+

U ′ ′(rmin)
2 (z− rmin)

2

D

]

=
1

D
exp

[
U (R)−U (rmin)

D

]√
2πD

U ′ ′ (rmin)

ˆ 1

R
dyexp

[
U ′ (R)(y−R)

D

]
≈

√
2πD/U ′ ′ (rmin)

|U ′ (R) |
exp

[
U (R)−U (rmin)

D

]
, (20)

where U(R)−U(rmin) is the height of the barrier, i.e. the potential difference between the absorption point
and the minimum. The result of this approximation, which is closely related to the transition time of an
overdamped particle in a double-well potential [60], is shown in figure 3(a) as a blue dashed line.

The agreement with numerical simulations and the exact expression (blue solid line) becomes very good
only when the noise intensity is sufficiently small compared to the potential barrier. The ‘critical’ case ve = 1
cannot be handled by any of the two previous approximations. On the one hand, the potential’s minimum is
exactly at the barrier, and therefore no escape barrier is present regardless of how weak the noise intensity is.
On the other hand, the deterministic CT diverges, hence it is not clear a priori whether the noisy case will
diverge too. To deal with this case, we first decompose the mean CT as the sum of two terms. The first is the
time necessary to reach a small distance ε from the capture boundary, which is a finite value that can be
computed explicitly

TDet(1→ R+ ε) = S ln

(
e1/S − veeR/S

e(R+ε)/S − veeR/S

)
. (21)

The second term is the time needed for the particle to reach the absorbing boundary at the potential
minimum, when starting close to it, i.e. ⟨T(R+ ε→ R)⟩. In this case, the potential can be approximated by a
quadratic function. For this case, the mean first passage time is equivalent to the mean interspike interval of a
leaky integrate-and-fire model [61, 62]
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⟨T(R+ ε→ R)⟩=
√
π

ˆ ε√
2D

0
dxex

2

erfc(x), (22)

where the upper integration boundary goes to infinity in the limit D→ 0. The integral in equation (22)
diverges, as it can be shown by inserting the asymptotic expansion of the complementary error function for
large argument erfc(x)ex

2 ∼ 1/(x
√
π), which leads to

⟨T(R+ ε→ R)⟩ ∼ K− 1

2
ln(D), (23)

where K is some constant of order one. Based on these approximations, it can be expected that the mean CT
for ve = 1 diverges very slowly as D→ 0.

When the effective viewing range is increased to S= 0.5 (figure 3(b)), the qualitative picture is
unchanged. The mean CT is increased for all values of ve ̸= 0, and the range of validity of the weak-noise
approximation equation (20) is wider because the potential barrier is larger.

When N = 2, an exact analytic solution is not easy to find, since the variable change equation (7) leads to
a time-dependent potential, which prevents using the analytic approach discussed until now for the case
N = 1. Also the method of images used in [51] is not viable here, since the solution to the free diffusion
equation clearly does not solve equation (1) in general, but only when ve = 0.

The mean CT from numerical simulations is shown in figure 3(c). Since the hare is trapped between the
two hounds, the (mean) CT cannot be larger than the time at which the two chasers hit the fixed interval
(−R,R) (the one-dimensional circle), which is at time 1−R. This time is also the deterministic limit for all
values of ve, because for symmetry the escape term is always zero. Increasing the noise term can only reduce
the CT, since it can only push the hare toward either chaser. Hence, the mean CT decreases upon increasing
D for all values of ve. The escape term is always pointing to the origin, and its effect is mostly noticeable at
intermediate noise levels, at which the displacement from the origin caused by the noise term can be
countered by the escape term, which acts as a restoring ‘force’. At strong noise, all drift terms become
irrelevant and all curves converge to the blind case, which goes to zero as D→∞ [51]. The simulation results
of figure 3(c) also show that when ve is fixed, the parameter S has little effect on the mean CT, whereas the
increase of ve has a much more evident effect on the mean CT compared to the blind case.

4. Two-dimensional case

When hounds and hare can move in a two-dimensional space, the initial conditions become X(0) = (0,0),
and Yn(0) = (cos 2πn

N , sin 2πn
N ). In words, the chasers are placed at evenly spaced angles on a ring of radius

one. Although in principle the number of chasers can be arbitrarily large, if the chasers are so many that their
initial positions are less than 2R apart from each other, an inescapable ring is formed, which leads to almost
identical CT distributions when N is larger than a certain value6. When R= 0.1, this maximum number of
chasers is Nmax = 32. In the following, we will discuss the case N = 1 first, which can be solved analogously to
the one-dimensional case.

4.1. One chaser
When there is only one hound (N = 1), the system is best described in polar coordinates centered on the
hound’s position:

X(t)−Y1 (t) =

(
r(t)cosϕ(t)
r(t) sinϕ(t)

)
, (24)

where

r(t) = ∥X(t)−Y1 (t)∥ . (25)

By applying Itô’s lemma for the change of variables, equations (1) and (2) can be transformed to a pair of
Langevin equations with independent variables r(t) and ϕ(t). Since the capture condition r(t) = R does not
depend on ϕ, only the r equation matters, which is

6 The distance between any two given chasers can never grow in the present model, but can at most stay constant (this happens when
the target is aligned with the line connecting the two considered chasers, but it is not between them). Since all distances between closest
chaser pairs are already smaller than the gap needed to escape at the beginning, no exit from the ring is possible. Hence, all trajectories will
be trapped inside a highly symmetrical ‘tightening noose’ [51]. Still, adding more chasers beyond the ‘maximum’ N can still marginally
decrease the CT, because the space occupied by the absorbing boundary becomes slightly larger (the ring of hounds becomes slightly
‘thicker’).

7
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Figure 4. Pursuit model in two dimensions and a single chaser. (a) The potential function for three values of ve (blue, black, and
red lines as indicated in the legend) and for intermediate noise strength D= 0.1 (dashed lines) and D= 0.0 (solid lines). The
effective viewing range is here S= 0.25. (b) and (c): The mean CT as a function of noise intensity D for d= 2,N= 1 for S= 0.25
(b) and S= 0.5 (c). The analytical results (solid lines) are validated by numerical simulations (symbols). At small noise intensities,
the analytical results cannot be obtained due to instability of the numerical integration. The deterministic limit for subcritical
value ve = 0.8 (dotted lines) and the Kramers-like approximation equation (20) for supercritical ve = 1.2 (dashed line) are used
in the weak-noise limit (see also figure 3 and corresponding discussion in the main text).

dr

dt
=
√
2Dξr(t)+ veg(r)− 1+

D

r
. (26)

Hence, the problem admits an effectively one-dimensional description, i.e. that of a particle that starts at
r(0) = 1 and diffuses in the potential

U (r) = r−D ln(r)+ veSexp

[
− r−R

S

]
, (27)

until the exit boundary at r= R= 0.1 is reached.
Again, we start considering the noiseless case. Note that if D= 0, the potential function becomes the

same as for the one-dimensional case, equation (10). Thus, the critical condition for divergence in the
deterministic two-dimensional case is still ve = 1, the deterministic CT is still given by equation (16), and the
discussion of the one-dimensional capture process still applies. This is not surprising because without noise
in the two spatial directions, the capture process takes place along the first connecting line between the hare
and the single hound, i.e. practically in one spatial dimension.

When D> 0, the additional noise-induced (or Stratonovich) drift term−D ln(r) increases the potential
in equation (27) at small r, and thus shifts the minimum to the right, compared to the noiseless case7. This
effect is visualized in figure 4(a): see the dashed lines compared to the solid ones of the same color.

The additional noise term does not alter the problem fundamentally with respect to the one-dimensional
case discussed above. In particular, the exact expression for the mean CT equation (17) still applies. In the
specific case ve = 0, the integral can be computed exactly and gives the elementary solution given in [51]

⟨T2,1 (D)⟩|ve=0 = 1−R+D ln

(
1

R

)
. (28)

Otherwise, equation (17) needs again to be integrated numerically, which is feasible for all values of D that
are not too small.

7 The readermight be puzzled that wemention and discuss a Stratonovich drift term that is usually associated with amultiplicative noise (a
noise with state-dependent amplitude), although our original system contains only additive (state-independent) noise. The explanation
lays in the nonlinear transformation to polar coordinates that turns the additive noise into a multiplicative one that, in the so-called
Stratonovich interpretation of the stochastic differential equation, comes along with a deterministic drift term, the above mentioned
Stratonovich drift [55]. For a similar case and a more thorough discussion of the issue, see [56].
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Figure 5. Results of pursuit model in two dimensions with multiple chasers: for each value of N, there is a ve above which the
repulsion term causes the mean CT at weak noise to increase dramatically (black lines in (c), black and blue lines in (d)). Below
this critical escape speed, there is barely any difference to the blind case. The mean capture time is shown as a function of noise
intensity D for N ⩾ 2 (closed symbols: actively running prey with speed ve = 1; open symbols and dashed lines: corresponding
blind prey) and S= 0.25 (a) and S= 0.5 (b). The escape speed is set to the two supracritical values ve = 2 and ve = 3 in (c) and
(d), respectively. Note that when ve ̸= 0, a numerical/analytical ‘hybrid’ method was used to deal with trajectories that run for an
exceedingly long time, as described in the main text (last paragraph of section 4.2). Two realizations for N= 6,D= 0.1,ve = 3.0
are shown in (e) and (f). Here, the green curves are the hounds’ trajectories, and the blue curves are the hare’s trajectories,
respectively. The prey can be captured either inside or outside the initial circle, which correspond to the cases of an ensnared
trajectory (e), and of an ‘escapee’ (f), respectively.

The comparison between the analytical expression for the mean CT and Monte Carlo simulations is
shown in figures 4(b) and (c). At low noise, all curves are almost identical to the one-dimensional case, as it
is expected since in the weak-noise limit the potential function approaches the one in the one-dimensional
case. At stronger noise, all curves bend upwards and converge to the same line, which coincides with the
blind case ve = 0, which can be also expected because in the limit D→∞ both deterministic drift terms are
less and less relevant (they can be made arbitrarily small through a rescaling of the time units).

The mean CT is apparently increased for relatively weak noises when comparing to the case of a
completely random prey, indicating that the survival time of the hare is efficiently increased when it can run
away from the hound and the noise intensity is small. Intuitively, the hare can survive longer with larger S,
for a given ve.

4.2. Multiple chasers
When N⩾ 2, the hounds start on the unit circle centered on the hare’s position (the origin) and are
equidistant from each other. In this section, we show the mean CT as a function of the noise intensity D for
several sets of parameters to discuss the effects of S and ve on prolonging the survival time of the hare. The
results in this section are obtained by means of numerical simulations.

When the maximum drift speed of the hare ve is as large as the hounds’ speed (v0 = 1), the repulsion
force has little effect on the mean CT. In figures 5(a) and (b), dotted lines with closed symbols represent the
mean CT for the situation in which the hare can ‘actively run’ (i.e. ve ̸= 0), while results for the
corresponding ‘blindly diffusing’ cases are shown as dashed lines and open symbols. Two distinct values of S
are considered in the first two panels of figure 5. Specifically, figure 5(a) contrasts the blind case to the case of
ve = 1, i.e. when the maximum escape drift is equal to the chasers’ speed and S= 0.25. Remarkably, the
escape term has hardly any effect regardless of the number of chasers, which range from N = 2 to N = 25. If
the viewing range is increased to S= 0.5 (figure 5(b)), some increase in the mean CT can be seen in the
intermediate-noise and strong-noise range, but the difference is rather limited.

Looking back at figure 4 in last subsection, when N = 1 and ve = 1 the mean CT can be twofold (when
S= 0.25) or threefold (for S= 0.5) of the blind case in the weak and middle noise range. However, the results
of figures 5(a) and (b) show that when N⩾ 2 running away barely affects the hare’s mean survival time. The
reason for this surprising finding is the symmetry in the initial conditions: The contributions of each chaser
to the total ‘repulsion term’ tend to cancel each other, so that the repulsion term E is close to 0. For weak and
moderate noise the amount of ‘symmetry breaking’ (the hare’s typical displacement from the origin) is also
small, so that the total E stays small during the entire trial when it is captured, which is the same as that for
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blindly diffusing cases. And when the noise is strong, the system is dominated by the noise, so that running
away from the chasers does not affect the mean CT compared to the blindly diffusing cases.

We now consider the case that ve is larger than 1, in which the N = 1 case shows a divergence of the mean
CT when D→∞. Figure 5(c) shows simulation results for the mean CT as a function of D for S= 0.5 and
ve = 2 (solid lines and closed symbols); the values of N are indicated in the legend. Again, the reference case
ve = 0 is represented with dotted lines and open symbols. Here, a striking difference is observed between the
two scenarios when N = 2 (figure 5(c) black circles and lines); at weak noise, the mean CT diverges for D→ 0
when the hare is actively running away from its pursuers (ve = 2), as opposed of the blind case (ve = 0) for
which ⟨T2,N⟩ saturates at the finite value 1−R. If, however, the number of hounds is increased toN = 6 (blue
squares) or N = 11 (green diamonds) the difference to the blind case is, once more, very small. When the
maximum escape speed is further increased to ve = 3 (figure 5(d)), the same qualitative behavior observed in
figure 5(c) for N = 2 (divergence for D→ 0, increase of the first derivative at D→∞) is observed here also
for the case of N = 6 (blue squares and solid lines), whereas simulation results for ve = 0 and ve = 3 are still
very similar when N = 11.

The system’s behavior at weak noise can be interpreted as follows: in the initial position, the evasion term
E is zero, since all contributions cancel out for symmetry. As the chasers get into the effective viewing range,
some displacement from the origin due to the noise term will have broken the symmetry. If this random
displacement occurs towards one of the chasers, the evasion term will push back the hare towards the origin,
where it is eventually captured (an example of these ‘ensnared’ trajectories is shown in figure 5(e)). This kind
of trajectories will have a mean CT that is only marginally larger than in the blind case, since the symmetry is
roughly conserved during the entire realization, and hence the escape term is mostly negligible during the
entire trajectory. If, however, the random displacement from the origin due to noise occurs into an ‘escape
corridor’, i.e. the region between two neighboring chasers, the trajectory can escape the initial ring, as in
figure 5(f). In this case, the chasers form a pack and effectively act as a single one. In this kind of ‘escaped
trajectories’, the mean CT is much longer and diverges in the limit D→ 0. These escaped trajectories account
for the growth of the mean CT at low noise. Clearly, the size of this ‘escape corridor’ and, hence, the
probability of an escaped trajectory depend both on the number of chasers: more chasers reduce the
probability of escaping, whereas a larger ve increases it, which explains the differences between the two cases
observed in figures 5(c) and (d) at weak noise.

We conclude this section on a technical note. As discussed above, at weak noise and ve > 1, the behavior
of the mean CT is determined by whether rare realizations can escape the ring of hounds. These trajectories
can run for an extremely long time, which poses also a technical challenge in terms of numerical simulations.
To deal with this problem, we used a ‘hybrid’ method to calculate the mean CT for ve = 2 and ve = 3 in
figures 5(c) and (d), and in the following figures 8(c) and 9(d): We fixed a threshold time Tmax = 106. If this
time is reached in a given trial and the hare is still not captured, it is a clear indication that this realization has
‘escaped’. In this case, the analytical value for the mean CT for N = 1 and the corresponding parameters as
given in equation (17) is used as CT for this particular trajectory, assuming that the time it took for the hare
to exit the circle and reach the ‘point of equilibrium’ during pursuit is negligible compared to the very long
CT. A further assumption is that the mean CT for escaped trajectories is representative of the single
trajectory (at least with respect to the order of magnitude). In the next subsection, we investigate in more
detail how these rare trajectories can cause a qualitative shift in the mean CT.

4.3. Critical escape velocity
The results shown in figure 5 suggest that the system’s behavior in the weak noise range undergoes an abrupt
transition when ve is increased beyond some value. We argued that this transition is due to few rare
trajectories, which escape the initial circle and for which the CT is very large. In other words, the statistical
ensemble can be split into two parts and the mean CT can be written as

⟨T2,N⟩= pesc ⟨T2,N⟩esc +(1− pesc)⟨T2,N⟩not esc ≈ pesc ⟨T2,1⟩esc + 1, (29)

where pesc is the probability of observing escaped trajectories, ⟨T2,N⟩esc is the mean CT of these trajectories,
and ⟨T2,N⟩not esc is the mean CT of trajectories that do not escape the initial circle. In the approximation, we
have used that (a) for weak noise pesc ≪ 1; (b) the mean CT of escaped trajectories depends only marginally
on the number of chasers; (c) the mean CT of trajectories that do not make it out of the initial circle is of
order unity. Hence, at weak noise the mean CT is determined by the behavior of ⟨T2,1⟩esc and pesc as a
function of the system’s parameters, and, in particular, of ve, D, and N.

As a first remark, in the noiseless case (D= 0) the circular symmetry of the problem causes the hare to be
motionless, which leads to capture after 1−R time units. Hence, a nonvanishing noise intensity is required
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Figure 6. In the weak-noise regime, the mean CT undergoes a strong increase if ve is increased beyond a ‘critical’ value. The plot
shows the mean CT for weak noise (D= 0.02) as a function of ve for several values of N, as reported in the legend. For each curve
an arrow in the same color marks the critical value ve,crit, which is defined as the smallest ve for which at least one trajectory
escapes the initial circle and reaches a distance 10 from the origin. This escape criterion is used here for the ‘hybrid’ method to
calculate the mean CT (see section 4.2). The total number of trajectories used here is the standard valueM= 105. Note that ve,crit
depends, in general, on D, on the discretization of ve (here 0.05), and on the size of the ensembleM (see figure 7(j) and (related)
discussion).

to observe an escape-from-the-circle event. To investigate this phenomenon more systematically, we choose
the weak noise intensity D= 0.02, and we measure the mean CT fromM= 105 of trials as a function of ve for
several values of N. Indeed, figure 6 shows that the mean CT increases sharply at a value that depends on N.
This behavior suggests that the ‘critical’ escape speed ve,crit should be taken close to the value of ve at which
the curve of the mean CT ‘takes off ’. Based on our assumption that the sharp increase is due to trajectories
that escape the hounds’ circle, a more precise definition of ve,crit is to take the smallest ve for which at least
one ‘escaped’ trajectory (out ofM) is observed, which will be the criterion used in the following. A trajectory
will be considered to have escaped the initial ring if a distance ten (measured in multiple of the starting
distance between chasers and target) from the origin is reached. In figure 6, for each curve the value of ve,crit
is marked by a vertical arrow in the same color of the corresponding N. For larger values of N, the increase is
extremely sharp, and ve,crit is at the jump’s location. For smaller values of N, the mean CT undergoes a
smoother transition. In this case, ve,crit is somewhat smaller than the point of maximum growth, but it marks
the position where the curves start to bend up.

The results in figure 6 suggest that ve,crit—defined as the smallest ve for which at least an escape is
observed—marks reasonably well the point of qualitative change in the system’s behavior, and that ve,crit
grows on increasing N. As a way to further substantiate the intuition about how N and ve influence the
probability of observing an escaped trajectory, the idea of the ‘escape corridors’ introduced in the previous
section is visualized in figure 7. More specifically, figures 7(a)–(i) show the starting positions for the hare
that, in the deterministic system (D= 0), lead to capture (red areas) and escape (blue areas), respectively.

Consider, for concreteness, the case N = 3 and ve = 2, depicted in figure 7(a). For non-zero but weak
noise, most random displacements due to the driving noise will push the hare mostly to a position which is
still in the vicinity of the origin. These positions are all ‘red’ (i.e. they ultimately lead to capture in the
deterministic system) for all N; hence, from these positions the deterministic drift will most likely bring the
hare back toward the origin. In this case, the symmetry of the problem will be maintained, and the hounds
will close in such that, at a later time point, the system’s configuration will likely be close to figure 7(b), and
afterwards to that depicted in figure 7(c). It can be seen that the red region keeps shrinking until the black
areas (that represent the capture area) touch each other and escape is then impossible. Until this time,
however, a rare noise fluctuation can drive the hare into the blue region, from which the deterministic drift is
likely to push the hare away, thus leading to an escaped trajectory. We note that the escape is most likely
through the saddle points of the effective potential created by the hounds’ presence. Indeed, these points of
minimal distance of the blue region to the origin are the ‘holes in the net’ through which the hare is most
likely to slip through, and the potential difference between the saddle point and the origin could be loosely
defined as an effective escape barrier, the height of which, due to the hounds’ motion, depends on time. If ve
is increased, this qualitative description of the system’s evolution will still apply, but the blue region expands
closer to the origin, thus increasing the probability of an escape (figures 7(d)–(f)). Intuitively, increasing the
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Figure 7. The effective escape barrier is lowered by increasing ve,crit, and it grows by increasing N. Furthermore, the value of ve,crit
depends on the size of the ensemble. Panels (a)–(i) represent the deterministic system’s evolution, in which the red and blue area
mark the initial positions from which the hare is ultimately captured or escapes, respectively. Parameters: (a)–(c) N= 3, ve = 2;
(d)–(f) N= 3, ve = 3; (g)–(i) N= 7, ve = 3. Panel (j): critical velocity ve,crit vs. number of chasers N for different numbers of
trialsM as indicated. Other parameters: D= 0.02.

number of chasers has the opposite effect, i.e. it makes the ‘red’ area grow, and it could be seen as enhancing
the height of the effective escape barrier (figure 7(g)–(i)). It is worth remembering that, when N is so large
that the black capture region becomes connected (this happens forN = 32 with our standard choice R= 0.1),
escape is not possible, and ve,crit cannot be defined in a meaningful way.

The above discussion makes clear that ve,crit is the value of ve for which the effective escape barrier is so
low that the probability of escaping through the saddle point pesc becomes of order∼ 1/M, whereM
indicates the number of trials. Consequently, ve,crit will depend on the size of the statistical ensemble. Until
now, the behavior of ve,crit has been investigated for the standard ensemble size used in all other figures
(M= 105). The effect of increasing the number of realizations is visualized in figure 7(j). Indeed, the critical
ve displays a decreasing trend withM for all N. Figure 7(j) shows that, for a fixedM, ve,crit increases very
steeply with N. These points are, however, also those that are most sensitive to the ensemble size.

The results in figure 7(j) indicate that ve,crit decreases toward unity for all N, which begs the question
whether, in the limit D→ 0 andM→∞, the critical value will tend to one for all N. According to the
definition of ve,crit as the lowest ve for which an escape from the circle is observed, in the limitM→∞ there
is a nonzero probability of reaching any distance from the origin because the driving noise is unbounded. Of
course, the number of realizations needed to observe at least one such event grows without bound as well,
when D→ 0. Hence, ve,crit will eventually decrease to−∞ ifM→∞. In this case, however, ⟨T2,N⟩esc is finite,
so that the mean CT, according to equation (29), will not grow. Indeed, it makes sense to limit ve,crit to the
interval [1,∞). Even in this case, however, the behavior of the indeterminate form ‘zero times infinity’ in
equation (29) is hard to predict whenM→∞ and D is arbitrary small. The factor ⟨T2,N⟩esc can be expected
to diverge as∼ exp(∆Ue/D), where∆Ue is the effective barrier height during the pursuit (after the escape).
The limiting behavior of the escape probability pesc, however, is harder to predict. Framing this problem as an
escape over an effective barrier suggests that the asymptotic behavior will be pesc ∼ exp(−∆Ub/D). In the
end, the limiting behavior of the product ⟨T2,N⟩esc · pesc may depend both on the precise value of the effective
escape barrier and on the prefactors, which is a challenging problem to tackle analytically. This discussion
makes also clear that a very slow convergence to the limiting value is to be expected, so that even a numerical
investigation of the problem is hard.

In summary, there is some degree of unsolved ambiguity in the above definition of the critical ve, or
rather in the behavior of the mean CT in the limitM→∞ and arbitrarily small D. We emphasize that,
however, for any sufficiently large ensemble size and sufficiently small but finite noise level, the definition of
ve,crit yields results that are reasonable and consistent. The fact that an extremely rare event can possibly cause
an abrupt change in the mean CT is a curious mathematical problem but it would make no practical
difference in most physical situations. Indeed, this mathematical inconsistency begs the question of whether
the mean CT is the most meaningful statistical property to be considered in this weak-noise regime. This
issue is discussed further below, in section 4.5.
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Figure 8. Effect of randomized starting positions of the pursuers: for ve = 1 (b), the random starting positions increase the mean
CT at strong noise and decrease the mean CT at weak noise; for larger ve (c), the mean CT increases strongly at weak noise by a
randomization of the initial positions. Two realizations for N= 3,D= 0.1,ve = 1.0 are shown in (a). The blue trajectories
represent the hounds start with equidistant arrangement over the unit circle (σ= 0). Red trajectories show the case of
randomized starting positions (here σ= 0.2). The mean CT as a function of noise intensity D with deterministic (solid lines) and
random initial positions of the hounds (dashed lines) are compared in (b) and (c) in the cases of ve = 1 and ve = 3. The results in
(c) include trajectories handled with the ‘hybrid’ simulation method (see last paragraph of section 4.2).

4.4. Random starting positions
Since the circular symmetry of the chasers’ initial positions plays an important role in the finding that even a
strong escape term has hardly any effect when multiple chasers are present, it is natural to ask how disrupting
this symmetry can change the picture. To this end, we will add a random component to the initial positions
of each hound and explore how the mean CT is affected in the remainder of this section. These random
components will be i.i.d. Gaussian numbers with zero mean and standard deviation σ. Hence, the starting
position of the nth hound is now

Yn(0) =

(
cos

2πn

N
+ u1, sin

2πn

N
+ u2

)
(30)

where are u1,u2 ∼ N(0,σ2). Note that σ is here the standard deviation of the single component and not of
the random vector Yn(0), and that when σ= 0.0 the non-random initial conditions used so far are recovered.
Figure 8(a) shows an example trajectory of a trial with randomized initial components (red) compared to the
fixed initial conditions (blue).

We will focus on the case S= 0.5 and ve = 1 first, for which the escape term has hardly any effect on the
mean CT compared to the blind case. Figure 8(b) contrasts the simulation results obtained with randomized
initial conditions (open symbols and dashed lines) and the case of fixed initial conditions σ= 0 (open
symbols and dotted lines). When N = 2 the curves corresponding to the two cases (black open/close circles
and dashed/dotted lines) are almost indistinguishable, indicating that the random shifts of the hounds’ initial
positions has little effect on the mean CT. When the number of chasers is increased to N = 6 (blue squares
and lines), an effect can be seen: the mean CT is decreased for weak noises when the starting positions of the
hounds are random (σ= 0.3), and it is slightly increased at larger noise intensities with respect to the
nonrandom initial conditions (σ= 0, open squares and dotted lines). The same qualitative difference is
observed in a more pronounced fashion if the number of chasers is increased to N = 11 (green diamonds).
These observations can be interpreted as follows. In the weak-noise limit, the CT is approximately equal to
distance to the closest chaser. If there are enough chasers, the probability of reducing the initial distance of
one of the chasers outweighs the probability of increasing it. In the strong-noise limit, the deterministic
escape speed plays a minor role, and the increase in the mean CT is dominated by the trajectories that slip
through the ring of hounds [51]. In this scenario, the random initial conditions can lead to a wider hole in
the ‘net of chasers’, and thus increase the probability that a trajectory can slip through.

We can now consider the case of ‘supracritical’ escape velocity ve = 3 (figure 8(c)). Also in this case no
appreciable difference can be seen between random and fixed initial conditions when N = 2 (black circles
and lines), and the mean CT has the same behavior observed in the previous section. When the number of
chasers is increased to N = 6, however, the random initial conditions lead to a difference, namely, an increase
in the mean CT at all noise levels (open vs. closed blue squares). When N = 11 (green diamonds), the
randomized initial conditions cause the mean CT to diverge in the vanishing noise limit (open diamonds)
whereas the fixed initial conditions lead to a finite mean CT (closed green diamonds); otherwise, the random
initial conditions cause a modest increase in the mean CT.
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Figure 9. At very weak or very large noise intensity, the mean capture time is dominated by rare events. The mean and median
used to estimate the mean capture time as a function of noise intensity D for N= 2 and N= 6 are compared in (a) and (d),
respectively. The distributions of the capture time are shown in the remaining panels to illustrate the reason for the differences
between average and median. Parameters: N= 2,ve = 0 (b) and (c), N= 6,ve = 3 (e)–(g). Only the trajectories that are captured
before leaving a circle of radius 10 around the prey’s initial position (ensnared trials) are considered in (f) and (g), in this case the
mean and median coincide again.

In summary, the random initial conditions have a different effect on the mean CT for weak noise
depending whether ve is above or below the critical value: If it is below or near the critical value and there are
sufficiently many chasers, as in figure 8(b), it can lead to a reduced mean CT because there is a sizable chance
that one of the chasers starts closer to the hare; If it is above the critical value, it can only increase the mean
CT because it enhances the chances that a wider ‘escape corridor’ is formed between a couple of chasers. For
the same reason, the mean CT is always increased by the random initial condition, although here the escape
through the hound pack is driven by noise [51].

4.5. Mean andmedian
So far, the mean CT was considered as the only statistics of interest. However, in several circumstances the
mean CT is dominated by rare outliers with extremely large CT, while most trajectories have a CT that is
orders of magnitude smaller. In this case, the mean is perhaps not the most appropriate way to characterize
the statistical ensemble. In this last subsection, we will investigate the median as an alternative way of
characterizing the typical CT. The median is given by the time that splits the full CT probability density into
equal halves (or, equivalently, the time at which the cumulative probability distribution reaches 0.5). For
brevity, we will focus on a selection of emblematic cases.

In figure 9(a), the mean and median CT as a function of D are compared for N = 2, S= 0.5, and ve is
either equal to zero or ve = 1. Here, all curves are rather similar to each other in the weak-noise range.
However, as the noise level grows, the mean CT increases (black circles) whereas the median CT decreases
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(orange squares). This applies to both the blind (empty symbols) and the sighted prey (closed symbols).
Looking at the histogram of the CT at weak noise (figure 9(b)) makes clear the reason why mean and median
are close to each other: although the CT distribution has a peculiar skewed shape with a sharp drop around
the deterministic CT (here, ve = 0), it is clearly unimodal with no heavy tails. In contrast, when the noise is
strong, the CT distribution is spread over several orders of magnitude with a heavy tail (figure 9(c)), which
shifts the mean to the right, although half of the distribution is concentrated at rather low values and the
majority of realizations has typically much smaller values than the mean value.

In the ‘supracritical’ maximum speed range (figure 9(d)), the mean (closed squares) and the median CT
are only similar in the intermediate noise range. At strong noise, the situation is similar to that discussed in
the previous paragraph. At weak noise, however, mean and median CT are also very different from each
other. The mean increases without bound for D→ 0, as already seen in the previous subsection, whereas the
median saturates at a finite value. The CT histogram (figure 9(e)) demonstrates that all but few rare CT are
concentrated around the median CT. However, the CT of the rare ‘escapees’ is so much larger that the mean
is about five orders of magnitude larger than the median. If the escaped trajectories are left out and only
ensnared trajectories are considered, mean and median are rather close to each other at all noise intensities
(figure 9(d), compare filled stars with open circles, and the CT distributions in figures 9(f) and (g)). In the
weak-noise regime, the median seems to better represent the CT of the typical trajectory, although it misses
the information about the rare events. In the strong-noise regime, the difference is more nuanced, since the
distribution is more skewed and the weight of the right tail is larger.

5. Concluding remarks

In the present study, we have investigated how a recently proposed stochastic pursuit model is changed by the
addition of a deterministic ‘repulsion term’ that drives the prey away from the chasers.

For the case of one chaser, we could derive an analytical expression for the mean CT in the form of a
double integral which can be easily evaluated numerically for most parameter values and further simplified
in special limit cases. These analytical results were validated by numerical simulations. The case of several
chasers was studied by simulations only.

The ‘repulsion’ or ‘escape’ term introduced here has two parameters: the effective viewing range S and the
maximum escape speed of the hare ve. In all considered scenarios, the viewing range S had a minor effect on
the mean CT. On the contrary, the maximum escape speed ve could trigger a qualitative change in the mean
CT’s behavior as a function of the noise intensity D. In particular, it was found that when ve is not large
compared to the hounds’ speed (here set equal to one), running away based on the given repulsion force
caused only minor consequences for the hare’s survival time: a moderate increase at weak noise if there is
only one chaser (N = 1), or hardly any effect when N⩾ 2. This rather surprising result holds true also when
ve = 1 (i.e. the maximum escape drift speed is equal to the chasers’ speed), and it is due to the fact that the
contributions to the escape drift term tend to cancel each other when multiple hounds surround the prey.
However, when ve is large compared to the hounds’ speed, a strong divergence can occur at vanishing noise
intensity in some cases. This divergence relies on specific rare events: i.e. when the hare escapes from the
circle of hounds and survives the pursuit for an extremely long time. We understood this phenomenon by
comparing the mean and median of the CT, which differ drastically when the mean is dominated by the rare
escape-from-the-circle events.

The hounds’ speed is the value of ve above which the divergence of the mean CT is possible. For any finite
ensemble size (see section 4.3), however, the number of hounds N plays a role, whether any
escape-from-the-circle event, and thus a large increase in the mean CT, is observed. In other words, from the
physical point of view, ve,crit is an increasing function of N. In this sense, the interplay between ve and N plays
at weak noise the same role of the interplay between D and N at large noise intensity. In this latter case, the
mean CT can grow or decrease as a function of D depending on the number of chasers [51]. Also in this case
the growth is caused by trajectories that escape the ring of hounds. Here, however, the escape-from-the-circle
events are driven by the noise, which is reflected in the different CT distributions as well as the much slower
growth with D of the mean CT when D→∞.

We also showed the distinct effects that a randomization of the initial conditions can have on the capture
statistics by adding a vector with random components to the equidistantly distributed hounds over the unit
circle. When ve ⩽ 1, we find that the mean CT can be either increased or decreased, or remains almost
unchanged—depending on the number of hounds and the range of hare’s diffusion coefficient. When ve > 1,
the randomized initial conditions tend always to increase the hare’s mean survival time by increasing the
probability of the escape-from-the-circle events.

A consistent finding in all our simulations is that the repulsive escape term always increases the average
CT: it is always beneficial—or at least not harmful—for the hare to take the positional information about its
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pursuers into account. However, there are many possibilities to make use of this information. In other words,
the repulsion term introduced here is certainly only one possible choice, but other sensible evasion strategies
are possible. For example, the hare could run away from the closest hound only (a popular choice in pursuit
models involving multiple chasers and multiple targets), or a different functional dependence on the distance
g(r) could be used in place of an exponential.

Although it seems likely that making (good) use of additional information can only improve the survival
chances, the natural domain of application of a stochastic model is a microscopic physical system, and
microorganisms can indeed chase nutrients but also have to run away from threats [53, 54]. In this context,
predators and preys have to deal with severe uncertainties in sensing each other’s position and cannot reliably
‘see’ each other as in our model [63–66]. Such uncertainties would translate into rotational noise acting on
the velocity vector of pursuers and evaders, a kind of noise that can be beneficial or detrimental in the
pursuit of a non-random target [8, 47]. It is not clear, however, how this further stochastic element would
affect the present model, in particular if the model is endowed with different evasion strategies. As an
interesting open question remains whether circumstances exist, in which a repulsion term or evasion strategy
can shorten the prey’s survival time, which would be better off with a purely random motion instead.
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[64] Tkačik G and Bialek W 2016 Annu. Rev. Condens. Matter Phys. 7 89–117
[65] Barberis L and Peruani F 2016 Phys. Rev. Lett. 117 248001
[66] Mattingly H H, Kamino K, Machta B B and Emonet T 2021 Nat. Phys. 17 1426–31

17

https://doi.org/10.1088/0953-8984/19/6/065142
https://doi.org/10.1088/0953-8984/19/6/065142
https://doi.org/10.1103/PhysRevLett.106.160601
https://doi.org/10.1103/PhysRevLett.106.160601
https://doi.org/10.1088/1742-5468/2011/06/p06022
https://doi.org/10.1088/1742-5468/2011/06/p06022
https://doi.org/10.1103/PhysRevLett.113.220602
https://doi.org/10.1103/PhysRevLett.113.220602
https://doi.org/10.1073/pnas.1320424111
https://doi.org/10.1073/pnas.1320424111
https://doi.org/10.1103/PhysRevLett.118.030603
https://doi.org/10.1103/PhysRevLett.118.030603
https://doi.org/10.1103/PhysRevLett.119.140603
https://doi.org/10.1103/PhysRevLett.119.140603
https://doi.org/10.1002/env.2451
https://doi.org/10.1002/env.2451
https://doi.org/10.1103/PhysRevE.98.022128
https://doi.org/10.1103/PhysRevE.98.022128
https://doi.org/10.1103/PhysRevLett.121.050601
https://doi.org/10.1103/PhysRevLett.121.050601
https://doi.org/10.1088/1367-2630/ac8824
https://doi.org/10.1088/1367-2630/ac8824
https://doi.org/10.1073/pnas.0904354106
https://doi.org/10.1073/pnas.0904354106
https://doi.org/10.1103/PhysRevLett.128.040601
https://doi.org/10.1103/PhysRevLett.128.040601
https://doi.org/10.1103/Physics.15.s10
https://doi.org/10.1103/Physics.15.s10
https://doi.org/10.1146/annurev.bi.44.070175.002013
https://doi.org/10.1146/annurev.bi.44.070175.002013
https://doi.org/10.1016/S0960-9822(02)01424-0
https://doi.org/10.1016/S0960-9822(02)01424-0
https://doi.org/10.1162/08997660360675035
https://doi.org/10.1162/08997660360675035
https://doi.org/10.1016/S0031-8914(40)90098-2
https://doi.org/10.1016/S0031-8914(40)90098-2
https://doi.org/10.1103/RevModPhys.62.251
https://doi.org/10.1103/RevModPhys.62.251
https://doi.org/10.1103/PhysRevLett.102.218101
https://doi.org/10.1103/PhysRevLett.102.218101
https://doi.org/10.1146/annurev-conmatphys-031214-014803
https://doi.org/10.1146/annurev-conmatphys-031214-014803
https://doi.org/10.1103/PhysRevLett.117.248001
https://doi.org/10.1103/PhysRevLett.117.248001
https://doi.org/10.1038/s41567-021-01380-3
https://doi.org/10.1038/s41567-021-01380-3

	Pursuit problem with a stochastic prey that sees its chasers
	1. Introduction
	2. Model
	3. One-dimensional case
	4. Two-dimensional case
	4.1. One chaser
	4.2. Multiple chasers
	4.3. Critical escape velocity
	4.4. Random starting positions
	4.5. Mean and median

	5. Concluding remarks
	References


