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Theory of spike-train power spectra for multidimensional integrate-and-fire neurons
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Multidimensional stochastic integrate-and-fire (IF) models are a standard spike-generator model in studies
of firing variability, neural information transmission, and neural network dynamics. Most popular is a version
with Gaussian noise and adaptation currents that can be described via Markovian embedding by a set of d + 1
stochastic differential equations corresponding to a Fokker-Planck equation (FPE) for one voltage and d auxiliary
variables. For the specific case d = 1, we find a set of partial differential equations that govern the stationary
probability density, the stationary firing rate, and, central to our study, the spike-train power spectrum. We
numerically solve the corresponding equations for various examples by a finite-difference method and compare
the resulting spike-train power spectra to those obtained by numerical simulations of the IF models. Examples
include leaky IF models driven by either high-pass-filtered (green) or low-pass-filtered (red) noise (surprisingly,
already in this case, the Markovian embedding is not unique), white-noise-driven IF models with spike-frequency
adaptation (deterministic or stochastic) and models with a bursting mechanism. We extend the framework to
general d and study as an example an IF neuron driven by a narrow-band noise (leading to a three-dimensional
FPE). The many examples illustrate the validity of our theory but also clearly demonstrate that different forms of
colored noise or adaptation entail a rich repertoire of spectral shapes. The framework developed so far provides
the theory of the spike statistics of neurons with known sources of noise and adaptation. In the final part, we use
our results to develop a theory of spike-train correlations when noise sources are not known but emerge from
the nonlinear interactions among neurons in sparse recurrent networks such as found in cortex. In this theory,
network input to a single cell is described by a multidimensional Ornstein-Uhlenbeck process with coefficients
that are related to the output spike-train power spectrum. This leads to a system of equations which determine
the self-consistent spike-train and noise statistics. For a simple example, we find a low-dimensional numerical
solution of these equations and verify our framework by simulation results of a large sparse recurrent network of
integrate-and-fire neurons.
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I. INTRODUCTION

Sequences of stereotypic events occur in many fields of
physics and beyond: the emissions from a radioactive source,
the shot noise in a semiconductor diode, the occurrences
of avalanches, earthquakes, and floods, crashes in the stock
market, and the generations of action potentials in a nerve cell
are all excellent examples for events that reoccur at apparently
random instances in time. Often, the statistics of these random
sequences is much richer than the textbook example of a
Poisson process; events might be strongly interdependent and
the intervals between them are correlated as well. Stochastic
models that can capture such statistical features are often
noise-driven excitable systems in which certain variables
reach a threshold for event generation.
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Because event sequences in the form of trains of action
potentials are essentially the language in which nerve cells
(neurons) communicate among each other, there is great ex-
pertise in neurophysics for such models [1]. The standard
multicompartment conductance-based Hodgkin-Huxley for-
malism captures many details of the spike generation [2]
and can be employed for a certain type of nerve cell if
lots of information is experimentally available, even then the
power of very detailed models is limited for various reasons
[3]. A powerful alternative, applicable if only spike times
(spontaneous or evoked by an external stimulus) are known, is
the stochastic integrate-and-fire (IF) neuron [4–9]. This model
captures the stimulus- and noise-sensitive subthreshold part of
the neural dynamics but omits the stereotypic spike generation
itself (the spike generation is simply postulated upon reaching
the threshold). IF neurons are popular for analytical studies
of spiking variability, of information transmission, and of
network dynamics of recurrently connected cells.

Early theories of IF models driven by white Gaussian noise
focused on the distribution of interspike intervals [10], on how
noise can break phase locking to a periodic stimulus [11],
and on the stability of the asynchronous state in recurrent
networks [12]. The central tool of analysis is the Fokker-
Planck equation [13] for the probability density P(v, t ) of
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the voltage variable v. A highlight of this kind of analysis
was the stochastic mean-field theory for sparse networks of
recurrently connected IF neurons [12,14–19], in which the
coefficients of the Fokker-Planck equation depend on the
resulting density itself in a self-consistent way (input spikes
are here approximated by Poisson processes), providing a
tool for the analysis of neural “phase transitions” (e.g., the
transition from an asynchronous to a synchronous network
state upon change of a cellular or network parameter). Under
the crucial assumption that neurons are mainly subject to
temporally uncorrelated noise, in particular, the asynchronous
state with its weak cross correlations among neurons can
be well described by linear response theory [20–23] (for a
related problem in an Ising-type spin system, see [24]). For
white-noise-driven neurons, there exist also a number of exact
results for the firing rate [5], the power spectrum [25], and
the linear [12,26–28] and nonlinear [15,29] response func-
tions to periodic stimulation. Moreover, an efficient numerical
scheme, the threshold-integration method [30,31], has been
developed for the swift computation of these statistics for IF
models with arbitrary voltage dependence.

Unfortunately, in many situations the one-dimensional
model with white noise does not suffice to capture the sta-
tistical and information-theoretic features of real neurons.
This model class is, for instance, unable to reproduce non-
vanishing interspike-interval correlations [32,33] or high-pass
information filtering of sensory signals [34–37], distinct fea-
tures that are seen experimentally in many sensory neurons.
The good news is that the extension by just one or a few
degrees of freedom for the subthreshold dynamics yields
excellent models of the various spike patterns seen in vitro
[38–40], of the spike response upon noisy current injections
[41–45], and of the above-mentioned nonrenewal [46,47] and
information-filtering [35,36,48] effects. Further degrees arise
from modeling correlated fluctuation [49–53]: colored noise
can be represented by means of a Markovian embedding [54],
the most popular example of which is the Ornstein-Uhlenbeck
process (OUP) that serves in many studies as a low-pass-
filtered Gaussian noise. In statistical physics the idea of a
Markovian embedding goes back to Mori [55] and has found
many applications, e.g., in studies of escape problems [56–58]
and anomalous diffusion [59,60].

Although special cases of multidimensional IF neurons
have been studied over the past two decades, either nu-
merically [61–64], by analytical approximations [8,26,47,49–
52,65–70], or by a reduction to mesoscopic equations [71,72],
a general framework how to calculate their essential statis-
tics is lacking. We note that although density equations for
two-dimensional IF neurons with instantaneous reset have
been formulated [49,50,61,70], a refractory state of finite
duration has not been incorporated in the multidimensional
Fokker-Planck equation (for an exception in a special case,
see [63]). More importantly, previous studies have focused on
the calculation of the firing rate and voltage distribution only
but did not address a key characteristic of the neural firing
statistics, the spike-train power spectrum.

In particular in the presence of colored noise and/or spike-
frequency adaptation, the spike-train power spectrum gives a
more complete description than the single interspike interval
(ISI) distribution because in general ISIs are correlated. Aside

from the stationary firing rate (the first moment of the spike
train), the next important characteristic is the second-order
statistics, which is the temporal correlation function of the
spike train or its Fourier transform, the power spectrum.
Spectra have been measured in experiments [37,73–76] and
reveal timescales of oscillations by showing peaks at the
firing rate, at the frequency of subthreshold oscillations, at the
frequency of an external periodic driving, or due to narrow-
band noise, and at respective sidebands. Spectra display re-
duced power at low frequencies due to refractoriness or due
to mechanisms of long-term variability suppression (such as
slow spike-triggered inhibitory currents); their zero-frequency
and high-frequency limits are conveniently given by the Fano
factor and the stationary firing rate, respectively. Spectra
indicate processes with extremely slow timescales by a strong
increase of power at low frequencies [77]. Last but not least, in
populations of neurons, the spike-train power spectrum is also
a main contributor to the power spectrum of the population
activity [78,79]. Spike-train power spectra are thus a key
measure of neural variability and their calculation for a given
stochastic model is a key challenge for any theory of neural
firing variability.

There is another reason why the power spectrum of a
multidimensional IF neuron is of particular importance in neu-
rophysics. The aforementioned theories of recurrent networks
employ a white-noise approximation (effectively amount-
ing to treating all spike trains in the network as Poisson
processes), and this approximation fails if physiologically
realistic synaptic coupling amplitudes are used [77,80,81].
Although this has been early on recognized [82] and has
led to self-consistent single-neuron simulation schemes for
the spike-train power spectrum [81–83], a mean-field theory
for a sparse recurrent network of spiking neurons that is
self-consistent with respect to second-order fluctuations is
still missing. Such a theory requires a Markovian embed-
ding for the (network-generated) colored noise and thus a
self-consistent formulation in terms of a multidimensional
IF neuron, the coefficients of which are determined by the
spike-train power spectrum itself. Knowing how to deter-
mine the spectrum for a given multidimensional IF neuron is
the corresponding open-loop problem and thus the first step
in a self-consistent theory of recurrent networks of spiking
neurons. Note that existing multidimensional Fokker-Planck
descriptions of recurrent networks (e.g., in [61,84]) take into
account slower variables (such as adaptation currents) but do
not incorporate this self-consistency condition.

In this paper, we derive the determining equations for the
stationary density, the firing rate, and the spike-train power
spectrum of a multidimensional IF neuron. The inspected
model class includes the cases of neurons driven by low-
pass-filtered noise (as emerges by synaptic filtering [49,52]
or due to slow channel noise [67,68]), driven by high-pass-
filtered noise (as emerges by presynaptic input spikes with
a refractory period [53,62]), endowed with spike-triggered
adaptation (as emerges from slow calcium dynamics and
calcium-dependent ion channels [85]), and endowed with a
bursting mechanism [38,40,41]. For all these distinct cases,
we focus in this paper predominantly on the correlation statis-
tics, i.e., the spike-train power spectrum. We demonstrate the
correctness of our theory for a large number of examples for
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several reasons. First of all, because the numerical solution
of our general equations is far from being trivial and it is
therefore important to test it in many different situations.
Second, the resulting spectra reveal a richness of shapes with
distinct maxima, minima, shoulders, etc., resulting from the
interplay of nonlinear neural dynamics and correlated fluctua-
tions and/or adaptation currents. Third, the spike-train power
spectra obtained can also serve as a reference for comparison
with experimentally measured spike-train power spectra.

Our Fokker-Planck framework for the spectral statistics of
integrate-and-fire models paves the way for many more appli-
cations and generalizations. For instance, it sets the stage for
calculating other important features, among them the response
to external stimuli and the corresponding information flow. In
addition, our framework may serve for modeling some of the
problems outside neuroscience which involve stochastic event
sequences mentioned in the beginning. Most importantly, as
already mentioned above, it allows to approach the problem
of the self-consistent spiking statistics in a sparse recurrent
network. In the last part of the paper, we pursue this important
problem and present a mean-field theory of the self-consistent
second-order statistics. For a special case, we present an
approximate numerical solution of the resulting equations and
demonstrate the agreement of spike-train power spectra with
simulations of a large neural network.

The paper is organized as follows. In Sec. II we introduce
our generic two-dimensional IF neuron model and the spike-
train statistics of interest. The Fokker-Planck equation (FPE)
and a related equation for the power spectrum are presented in
Sec. III. In Sec. IV we apply the theory to the standard leaky
IF neuron driven by a colored noise that can be represented
by a sum of a white noise and a (correlated) OUP. We show
that the Markovian embedding is not unique even in this
very simple case and inspect the spike-train power spectra.
In Sec. V we use an exponential IF neuron with an adaptation
current, the so-called AdEx model [41] driven by white noise
and also including stochastic adaptation [67,68]. We outline
in Sec. VI how the theory is extended to arbitrary dimensions
(covering more complicated input noise correlations [53,69]
or multidimensional adaptation processes) and study as an
example the power spectrum of a leaky IF neuron driven
by a narrow-band noise. In Sec. VII, we employ our results
to develop a theory of self-consistent spike correlations in
a large sparse recurrent network, derive a low-dimensional
approximate solution in a special case, and verify this result
by comparison with a network simulation. We conclude in
Sec. VIII with a summary of the paper’s main achieve-
ments and a discussion of a few open problems. Appendices
give details on the numerical solution of our key equations
(Appendix A) by a finite-difference scheme [86] and on the
ambiguity of the Markovian embedding (Appendix B).

II. NEURON MODEL AND SPIKE-TRAIN STATISTICS

We consider a generalized two-dimensional neuron model.
The membrane voltage v and an auxiliary variable a evolve
according to the Langevin equations

τmv̇ = f (v, a) + β∗
1 ξ1(t ),

τaȧ =g(v, a) + β1ξ1(t ) + β2ξ2(t ).
(1)

FIG. 1. Features of the integrate-and-fire model. Spike train x(t )
of a generalized two-dimensional neuron model (top); here f (v, a) =
μ − v − a and g(v, a) = Av − a. When the voltage v(t ) (middle)
crosses the threshold vth (red dashed line), the neuron fires a spike
and the voltage is set to the constant vref for a certain refractory
period. Afterward, the voltage is set to vr and evolves according
to its Langevin equation. The voltage dynamics depends on the
auxiliary stochastic variable a(t ) (third panel from top). If the neuron
spikes, the auxiliary variable is incremented by δa. Parameters:
τm = 20 ms, δa = 10 mV, τref = 10 ms, vref = 50 mV, μ = 30 mV,
A = 0.2, β∗

1 = 1 mV
√

s, β1 = 0, and β2 = 2 mV
√

s.

The time constants of the membrane voltage and the auxiliary
variable are denoted by τm and τa, respectively. Furthermore,
ξi(t ) is Gaussian white noise with zero mean, obeying the
correlation 〈ξi(t )ξ j (τ )〉 = δi jδ(t − τ ). The parameters β∗

1 and
β1 quantify the intensity by which the noise process ξ1(t ) may
enter both of the two equations. In the equation for the auxil-
iary process we apply an additional source of noise ξ2(t ) with
the strength β2. Both variables are affecting each other via the
functions f (v, a) and g(v, a). For the functions f (v, a) and
g(v, a), we assume reasonable shapes such that the existence
of a stationary solution for the probability density in v and a is
guaranteed. If the membrane voltage crosses the threshold vth,
the neuron fires an action-potential (spike emission), i.e., it is
clamped to the value vref for an absolute refractory period τref

and then reset to the value vr; at the time of spike emission tk
the auxiliary variable a(t ) may be incremented by a constant
amount δa and freely evolves during the absolute refractory
period:

if v(t ) > vth : v(t ) → vref, v(t + τref ) → vr

and a(t ) → a(t ) + δa. (2)

Within the framework of the IF model our usage of a finite
pulse width τref (cf. Fig. 1) is uncommon. It allows for a
more realistic description of the auxiliary variable’s evolution
during an action potential that is finite in width and amplitude.

Our model can capture two important classes of
multidimensional IF neurons. First, assuming the auxiliary
variable does not depend on membrane voltage and spike
history [ f (v, a) = F (v) + a and δa = 0], it represents an ex-
ternal source of colored noise, that drives a one-dimensional
neuron. The most prominent example of this kind is the
OUP with a linear function g(v, a) = −a. In this case, the
two-dimensional white-noise-driven process [v(t ), a(t )] is a
Markovian embedding of a one-dimensional dynamics v(t )
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driven by a colored (temporally correlated) noise η(t ) =
a(t ) + β∗

1 ξ1(t ).
The second class of multidimensional IF neurons described

by our model is a neuron with an adaptation current. A depen-
dence of the auxiliary process on either the spike history or the
membrane voltage captures effectively a feedback from v(t )
to a(t ). A typical choice is f (v, a) = F (v) − a and δa > 0 and
leads to spike-frequency adaptation [41,46,70,85,87]. Here,
we distinguish between deterministic adaptation (β1 = β2 =
0), in which channel fluctuations of the adaptation channels
are neglected (the case considered in almost all papers cited
above), and stochastic adaptation, for which the dynamics of
a(t ) is subject to additional white noise [67,68]. Furthermore,
subthreshold adaptation can be taken into account by the first
term in g(v, a) = Av − a [41,88], i.e., with a nonvanishing
value of A. Such two-dimensional neuron models have al-
ready rich deterministic dynamics, exhibiting bursting or even
chaotic firing without noise [89,90].

The main goal of our paper is the determination of the
spike train’s temporal correlation or, equivalently, the spike-
train power spectrum. The mathematically convenient abstract
description of a sequence of action potentials is given by the
sum of δ functions at spike times tk constituting the spike train:

x(t ) =
∑

k

δ(t − tk ). (3)

The mean value of the spike train is the instantaneous firing
rate

r(t ) = 〈x(t )〉, (4)

where the angular brackets denote an ensemble average over
different realizations of the noise. In case of a stationary aver-
aging ensemble, we obtain the stationary firing rate r0. How-
ever, other preparations are possible and will be of importance
in the following. For instance, if we consider an ensemble of
neurons right after firing with the proper distribution of the
auxiliary variable a(t ), we obtain the important conditional
firing rate m(t ) that is the essential part of the spike train’s
autocorrelation function [91,92]:

C(t ) = r0[δ(t ) + m(t ) − r0]. (5)

According to its actual definition, the function m(t ) can also
be determined without any knowledge of a(t ) by measuring
the probability for a spike given that there was a spike at t = 0.
Instead of the autocorrelation function we can also consider
the spike-train power spectrum, which is the Fourier transform
of C(t ):

S(ω) =
∫ ∞

−∞
dt eiωtC(t )

= r0

(
1 + 2 Re

∫ ∞

0
dt eiωt (m(t ) − r0)

)
(6)

[here we have used that C(t ) is an even function]. This relation
is central to our approach because it connects the power
spectrum with the Fourier transform of the conditional firing
rate which can be extracted from the Fokker-Planck equation.

We can also measure the spike-train power spectrum in
numerical simulations of the IF model. Generally, we define a

finite time window Fourier transform of the time series y(t ) as

ỹT (ω) =
∫ T

0
dt eiωt [y(t ) − 〈y〉], (7)

where we subtracted the mean value, resulting in Fourier
transforms without DC peak.

The power spectrum of y(t ) is then obtained as the simple
ensemble average

Syy(ω) = lim
T →∞

〈ỹT ỹ∗
T 〉

T
. (8)

If y(t ) is the spike train x(t ) sampled with a time resolution
of �t , we approximate the time series as a binary sequence
of height 1/�t for time bins with a spike and zero elsewhere.
In the following, to ease the notation we will use S(ω) in our
calculations and S( f ) in the figures for the spike-train power
spectrum, where ω and f = ω/(2π ) denote the angular and
regular frequency, respectively.

III. FOKKER-PLANCK EQUATION

The Fokker-Planck equation (FPE) describes the time evo-
lution of an ensemble of processes driven by white Gaussian
noise [13]. For the introduced neuron model, this equation
contains an uncommon nonlocal term due to the fire-and-reset
rule. It reads as

∂t P(v, a, t ) = L̂P(v, a, t ) + {R̂P}(v, a, t ), (9)

where

L̂ = − ∂v

f (v, a)

τm
+ β∗

1
2

2τ 2
m

∂2
v − ∂a

g(v, a)

τa

+ β2
1 + β2

2

2τ 2
a

∂2
a + β∗

1 β1

τmτa
∂v∂a

(10)

and the nonlocal operator R̂ mediates the fire-and-reset con-
dition and the evolution of the probability density during
the refractory period (see below). The density obeys natural
boundary conditions for a → ±∞ and v → −∞, i.e.,

lim
a→±∞ P(v, a, t ) = lim

v→−∞ P(v, a, t ) = 0 (11)

and (because we have included a nonvanishing white noise in
the v dynamics [93]) an absorbing boundary condition at vth:

P(vth, a, t ) = 0. (12)

It is important to mention that a vanishing white noise in
the voltage dynamics yields a different boundary condition as
described in [49]. However, an additional weak white noise
is a reasonable model for different kinds of fluctuations, e.g.,
due to fast ion channels.

If we think of the probability density as a population of
uncoupled neurons, we can relate the probability current in v,

Jv (v, a, t ) =
(

f (v, a)

τm
− β∗

1
2

2τ 2
m

∂v − β∗
1 β1

2τmτa
∂a

)
P(v, a, t ), (13)

to the instantaneous firing rate. On the one hand, the fraction
of neurons with a voltage that crosses the threshold in a small
time interval (t, t + �t ) and at a certain value of the auxiliary
variable a is given by the probability current Jv (vth, a, t )�t ;
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FIG. 2. Illustration of the fire-and-reset rules for the probability in the Fokker-Planck equation. (a) Fire-and-reset rule without refractory
period or spike-triggered adaptation: the flux of probability that is absorbed at the threshold vth (red line) is reinserted at the reset voltage vr

(red arrows) without a change in the auxiliary variable a. (b) Fire-and-reset rule with refractory period but in the absence of spike-triggered
adaptation: the absorbed probability is transferred to the refractory voltage vref (red arrows). The probability density (red line directly after
firing) evolves in the auxiliary variable until the refractory period has passed (blue line after the refractory period). Subsequently, the evolved
density is reinserted at vr (blue arrows). (c) Spike-triggered adaptation without refractory period: the probability is reinserted at the reset voltage
and, simultaneously, shifted by δa along the a axis (red arrows). (d) Combination of spike-triggered adaptation and refractory period: the
probability is shifted along a and inserted at vref. After the refractory period has passed, the evolved probability is reinserted at vr . In addition
to the stationary probability currents (strength indicated by arrow density and background color), we also show the stationary probability
densities in the four situations.

if we integrate over a, this corresponds to the total probability
current through the threshold. The latter, on the other hand,
determines the firing probability r(t )�t . By definition of the
current and the absorbing boundary condition follows:

r(t ) = −
∫ ∞

−∞
da

β∗
1

2

2τ 2
m

∂vP(v, a, t )

∣∣∣∣
v=vth

. (14)

This is an important relation between the subthreshold mem-
brane potential statistics and the spike-train statistics of the
neuron model [8,65]. The set of equations (FPE and its bound-
ary conditions) is completed by the normalization condition∫ vth

−∞
dv

∫ ∞

−∞
da P(v, a, t ) +

∫ t

t−τref

dt ′r(t ′) = 1. (15)

The second term on the left-hand side captures the part of the
probability that is currently in the refractory state.

We turn now to the definition of the fire-and-reset oper-
ator in the FPE [Eq. (9)]. Because this term appears to be
surprisingly cumbersome, let us start with the simple case
without refractory period and incrementation [τref = 0 and
δa = 0, see Fig. 2(a)]. Here, trajectories that reach (vth, a) are
immediately reset to (vr, a); the term R̂P(v, a, t ) mediates a
source of probability at vr (leading to a delta-function contri-
bution) with a source strength corresponding to the efflux of
probability at the threshold, related to the first derivative of the
probability density at the threshold. With an incrementation
in the auxiliary variable [δa > 0, see Fig. 2(b)], there is an

additional shift between the efflux point (vth, a) and source
point (vr, a + δa), implying that we have to take the derivative
not at a but at a − δa. Taken together, we can describe the
effect of the nonlocal operator R̂ for τref = 0 as follows:

{R̂P}(v, a, t ) =
(

−β∗
1

2

2τ 2
m

∂vP(v, a − δa, t )

∣∣∣∣
v=vth

)
δ(v − vr )

(for τref = 0).

(16)

This definition has been used, e.g., in Refs. [49,61,70].
If τref > 0, we have to deal with the complicating feature

that the evolution of a(t ) and its corresponding probability
density does not stop during the refractory period. Thus,
the density evolves according to an operator ∂t P(v, a, t ) =
L̂ref(vref, a)P(vref, a, t ), that includes drift and diffusion in a,
whereas the membrane voltage is fixed during the refractory
period at vref. The value vref enters the dynamics of a via the
function g(vref, a) and, thus, the operator is given by

L̂ref(vref, a) = −∂ag(vref, a) + β2
1 + β2

2

2τ 2
a

∂2
a . (17)

The procedure runs as follows: probability crossing the
threshold at t − τref is first shifted to a → a + δa and moved
to the refractory state (in which v = vref = const) where it
is still subject to drift and diffusion in the auxiliary variable
[see Fig. 2(c) for δa = 0 and Fig. 2(d) for δa > 0]. Imagine
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we have inserted a probability density �(a, t − τref ) in the
refractory state at time t − τref and it evolved according to
∂t�(a, t ) = L̂ref(vref, a)�(a, t ) until the end of the refractory
period τref. Then, the evolved probability density �(a, t ) is
given in terms of the formal solution for the transition proba-
bility density by [13]

�(a, t )

=
∫

da′ �(a′, t − τref ) exp (τrefL̂ref(vref, a′))δ(a′ − a)

= {Ê (vref, τref, a, a′)�(a′, t − τref )}(a, t ). (18)

By means of the so-defined operator Ê , we can write the
source term at the reset point as follows:

{R̂P}(v, a, t )

= δ(v − vr ){ÊJv (vth, a′ − δa, t − τref )}

= δ(v − vr )

{
Ê

(
−β∗

1
2

2τ 2
m

∂vP(v, a − δa, t − τref )

∣∣∣∣
v=vth

)}
,

(19)

which is nonlocal both in (v, a) space and in time t .
The first problem of interest is to find the stationary solu-

tion P0(v, a) of Eq. (9) and the corresponding stationary firing
rate r0. In the time-independent case (∂t P0 = 0), the equation
reads as

{L̂P0}(v, a) + {R̂P0}(v, a) = 0 (20)

and the solution satisfies the same boundary conditions as
the time-dependent density. Specifically, the normalization
condition simplifies as follows:∫ ∞

−∞
dv

∫ ∞

−∞
da P0(v, a) = 1 − τrefr0. (21)

The unique solution for the density and the firing rate can be
found by the numerical procedure discussed in Appendix A.

Our main interest is the calculation of the spike-train power
spectrum, for which, according to Eq. (6), we have to compute
the Fourier transform of the conditional firing rate m(t ). The
latter was given by the probability of a spike given that
there was a spike at t = 0 corresponding to an integrated
conditioned probability current [cf. Eq. (14)]. The condition
is that v(t = τref ) = vr but we do not know the value of a(t =
τref ) or, more precisely, its proper initial distribution upon
reset ρUR(a). However, in a stationary situation, the number
of realizations that start at the reset point is proportional to the
stationary probability current into (vr, a), R̂P0, which leads
upon normalization to

δ(v − vr )ρUR(a) = r−1
0 R̂P0. (22)

If we use this as an initial condition for the time-dependent
FPE (9) at t = τref (no probability in the system before that
time), we obtain m(t ) as the integrated current through the
threshold

m(t ) = −
∫ ∞

−∞
da

β∗
1

2

2τ 2
m

∂vP(v, a, t )

∣∣∣∣
v=vth

. (23)

With a Fourier transform of this function, we can determine
the spike-train power spectrum by virtue of Eq. (6).

Alternatively to the approach in time domain, one can
reduce the computational complexity of the problem by a
temporal Fourier transformation, a method that specifically
pays off if we want to know the spike-train power spectrum
only at a few frequency values. The approach can be regarded
as an extension of the work in [31] to multidimensional neuron
models. Through the Fourier transformation, the problem is
described by a partial differential equation in only two, instead
of three, variables, though for a complex-valued function. In
addition, the nonlocal time dependence due to the refractory
state is turned into a local dependence in the frequency
domain.

In order to deal with well-behaved functions in the Fourier
domain, we transform the deviations of the probability density
and conditional firing rate from their respective steady state:

Q̃(v, a, ω) =
∫ ∞

0
dt eiωt [P(v, a, t ) − P0(v, a)],

∫ ∞

0
dt eiωt [m(t ) − r0] = −

∫ ∞

−∞
da

β∗
1

2

2τ 2
m

∂vQ̃(v, a, ω)

∣∣∣∣
v=vth

.

(24)

In the last line we show the important relation of the Fourier-
transformed rate deviation [appearing in the spectral for-
mula (6)] to the derivative of the Fourier-transformed density
Q̃(v, a, ω).

Fourier transforming the FPEs for P(v, a, t ) and P0(v, a)
and taking their difference, we obtain an equation for Q̃,
reading as

(iω + L̂ + eτ R̂)Q̃ =
[

1 +
(

eτ − 1

iω
− eτ

r0

)
R̂

]
P0, (25)

with eτ = exp(iωτref ). This equation has to be solved with
natural boundary conditions for a → ±∞, v → −∞ and an
absorbing boundary condition at v = vth.

Once we have found Q̃(v, a, ω), we can determine the
spike-train power spectrum at frequency ω by Eqs. (6) and
(24):

S(ω) = r0

(
1 − 2 Re

∫ ∞

−∞
da

β∗
1

2

2τ 2
m

∂vQ̃(v, a, ω)

∣∣∣∣
v=vth

)
. (26)

This formula does not necessarily provide a computationally
superior way to calculate the spike-train power spectrum
compared to Langevin simulations, although it may be helpful
in special cases, for instance, for the determination of the Fano
factor. Our main aim was to develop the spectrum’s general
theory, i.e., analytical relations that do not require Monte
Carlo simulations. The general theory is particularly useful for
more involved applications such as the correlation statistics
in recurrent neural networks (see Sec. VII below). It may be
also the starting point of novel analytical approximations in
specific situations.

Since no analytical solution is known in general for
Eqs. (20) and (25), both equations are solved numerically by
approximating the differential operators with finite differences
as explained in Appendix A in detail.
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IV. LEAKY INTEGRATE-AND-FIRE NEURON
DRIVEN BY COLORED NOISE

We show that our method can reproduce spectra of the
standard leaky integrate-and-fire (LIF) neuron driven by col-
ored Gaussian noise (no adaptation, δa = 0). The qualitative
spiking behavior of such neuron model was already studied
in [62] although with vanishing refractory period (here τref =
2 ms if not stated otherwise). To generate such correlated
noise, we use an OUP [94] as an auxiliary noise variable.
For simplicity we set β2 = 0, i.e., LIF neuron and OU process
are driven by the same white-noise source. Our generic model
reads as in this special case

τmv̇ = −v + μ + a + β∗ξ (t ), τaȧ = −a + βξ (t ).
(27)

The stochastic input to the membrane voltage is given by η =
a + β∗ξ (t ) with the input power spectrum

Sηη(ω) = lim
T →∞

〈η̃η̃∗〉
T

= β∗2 + 2ββ∗ + β2

1 + τ 2
a ω2

. (28)

Note that an additional noise source ξ2(t ) does not permit
a different shape of the input spectrum. The input spectrum
(28) is a constant (white noise) plus or minus a Lorentzian
function with a maximum at 0 (red noise); the full width
at half-maximum is given by 2τ−1

a . We distinguish between
high-pass-filtered noise if −2 < β/β∗ < 0 [see green region
in Fig. 3(a)], that we refer to as green noise (white minus
red), and low-pass-filtered noise if β/β∗ < −2 [see red region
in Fig. 3(a)], that we refer to as white-plus-red noise. In
the case that β = 0 or β/β∗ = −2 we generate white noise.
Remarkably, a given input spectrum can be generated by
two different values of β, except if we want the spectrum
at zero frequency to be zero, which is the case if β = −β∗.
Put differently, in general, the Markovian embedding is not
unique (for a similar ambiguity of the Markovian embedding
of a generalized Langevin equation, see [60]). Although the
Fokker-Planck equation and its stationary solution is different
for the two representations of the same colored noise [cf.
Figs. 3(b) and 3(c)], they yield the same spike-train power
spectrum [cf. Fig. 3(d)].

In the following, we test our theory for green and white-
plus-red noise both in a fluctuation-dominated regime and in
a mean-driven regime. We vary the timescale and intensity
of the input fluctuations by changing τa and β∗, respectively.
The influence of the colored noise on the resulting spike-train
power spectrum depends on the ratio between the characteris-
tic frequency fc = (2πτa)−1 and r0. If fc 	 r0, the increase
or lack of input power is felt only at very low frequency,
otherwise, the effect of the noise is mainly restricted to that of
its white component acting with the strength β∗2. In the other
case, fc 
 r0, the input noise acts like a white noise with the
strength (β + β∗)2.

A. Green noise

Here, we choose input spectra with strongly reduced power
at low frequencies [Sηη(0)/Sηη( f → ∞) = 0.1 using β =
(
√

0.1 − 1)β∗]. We start in the fluctuation-dominated regime
(μ/vth = 0.75 < 1).

FIG. 3. Ambiguity of the Markovian embedding. Two Marko-
vian embeddings exist that generate the same colored noise [see
spectra in (a)] and yield the same spike-train power spectrum (d),
although the corresponding Fokker-Planck equations and their solu-
tions (b) and (c) are different. The first panel (a) shows the spectrum
of noise at zero frequency as a function of the parameter ratio
β/β∗. At the intersections with the white dashed line, we generate
white noise. As an example, we used S(0)/β∗2 = 0.1, that is plotted
as yellow dashed-dotted line. Contour plots in (b) and (c) show
stationary solutions of the corresponding FPEs, where (b) has a
smaller value of β. The dashed white line and red line indicate
the reset voltage vr and the threshold vth, respectively. Spike-train
power spectra with the two distinct colored-noise drivings (d) are
nearly indistinguishable which is seen both in our theory (circles
and crosses) and in the simulation results (lines). See Table I for
parameters.

Our theory is capable to predict the power spectra of
all considered parameter sets (cf. agreement between theory
and simulations in Fig. 4). The spike-train power spectrum
adopts the key feature of the input spectrum: it exhibits lower
power up to frequencies where the input spectrum reaches
its high-frequency limit. We obtain an absolute minimum at
f = 0 in all considered cases. Decreasing τa (Fig. 4, from
left to right), and thereby increasing fc, reduces the stationary
firing rate (high-frequency limit of the spectrum) and shifts
the low-frequency dip to higher frequencies.

Increasing the noise strength β∗ (Fig. 4, from top to bot-
tom) increases the stationary firing rate and changes the spec-
tral shapes. Most remarkably, a new maximum [Figs. 4(d),
4(g) and 4(h)] is formed around the frequency at which the
input spectrum starts saturating f∞ ≈ (2τa)−1. This maximum
can be understood by considering the white-noise-driven LIF
neuron‘s power spectrum [25] which exhibits for large noise
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FIG. 4. Green noise in the fluctuation-dominated regime. Spike-
train power spectra (a)–(i). From left to right we decrease the time
constant of the auxiliary variable τa and from top to bottom we
increase the noise strength β∗. The ratio between the noise strengths
is β/β∗ = √

0.1 − 1. The input spectrum Sηη( f ) in units of (mV2 s)
is presented in orange, results of the neuron simulation in blue, and
the result of our theory by red dots. The thin vertical lines represent
f∞ = (2τa)−1 in green and the firing rates r0 in red. Stationary
probability density corresponding to the parameters used in (f) is
shown in (j). For all parameters, see Table I.

intensity a maximum at f = 0 and a minimum at the fir-
ing rate. Reducing the white-noise input at low frequencies
(corresponding to our green noise with sufficiently large τa)
reduces likewise low-frequency power in the output spectrum
thus resulting in the maximum. We would like to emphasize
that therefore there is no oscillation mechanism responsible
for this peak.

The theory also predicts the spike-train power spectra in
a mean-driven regime well (cf. Fig. 5). The main difference
to the fluctuation-dominated regime is that the spectra at
low noise [Figs. 5(a)–5(c)] exhibit, especially for small τa,
sharp peaks at the firing rate [note the logarithmic scale
in Figs. 5(a)–5(c)]. At strong noise and sufficiently small
characteristic frequency fc [Figs. 5(g) and 5(h)] we observe
again the maximum around the saturation frequency of the
green input noise. This colored-noise-induced peak is thus
independent of the neuron‘s firing regime.

FIG. 5. Green noise in the mean-driven regime. Stationary den-
sity in (j) corresponds to parameters in (c). See caption of Fig. 4 for
detailed description and Table I for all parameters.

In both regimes, we also show one example of a stationary
density, the function that enters our essential Eq. (25) as the
inhomogeneity. For the green noise considered here, the auxil-
iary variable and the voltage are clearly negatively correlated,
especially in the fluctuation-dominated regime at larger noise
[note the pronounced tilt in Fig. 4(j)]. If the mean drive is
stronger and fluctuations are weaker, this anticorrelation is not
as pronounced [Fig. 5(j)].

B. White-plus-red noise

Here, we increase power at low frequencies, choosing
β = (

√
2 − 1)β∗ which keeps the ratio of low- and high-

frequency power spectrum constant at Sηη(0)/Sηη( f → ∞) =
2, irrespective of the choice of τa and β∗. As before our theory
reveals excellent agreement with the simulation results at a
variety of parameter sets (cf. Fig. 6 and Fig. 7).

As in the case of green noise, the spike-train power spec-
trum inherits a main feature of the input spectrum. For the
red input noise, low-frequency power is increased also in the
output spectrum, yielding a maximum at f = 0. Decreasing
τa (Fig. 6, from left to right) yields an increase in the firing
rate and shifts the low-frequency peak to higher frequencies.
Increasing the noise strength β∗ (Fig. 6, from top to bottom)
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FIG. 6. White-plus-red noise in the fluctuation-dominated
regime. Stationary density in (j) corresponds to parameters in (f).
See caption of Fig. 4 for detailed description and Table I for all
parameters.

increases r0 and generally leads to more power at low frequen-
cies. Interestingly, white-plus-red noise with sufficiently low
fc and small strength forms an additional minimum [Figs. 6(a)
and 6(b) and Figs. 7(a) and 7(b)]. The stationary densities in
Figs. 6(j) and 7(j) reveal a positive correlation between auxil-
iary variable and voltage variable for white-plus-red noise.

C. Varying refractory period

Different types of neurons display a wide range of action
potential widths [2], which sets a lower bound for the absolute
refractory period in our IF description. Generally, it is of
interest how the spiking statistics changes as we increase τref.
Furthermore, we can regard the variation of the refractory
period as a further validation of our theory: we recall that
the incorporation of the absolute refractory period is not
completely trivial and thus worth to be tested.

In Fig. 8 we inspect the change of the refractory period for
a neuron in the fluctuation-dominated regime for both green
[Fig. 8(a)] and white-plus-red noise [Fig. 8(b)]. Increasing
the refractory period to the maximal biophysically plausible
value of 100 ms [95] changes the spectral shape drastically.
Power at low frequencies is strongly reduced and sharp peaks

FIG. 7. White-plus-red noise in the mean-driven regime. Station-
ary density in (j) corresponds to parameters in (c). See caption of
Fig. 4 for detailed description and Table I for all parameters.

emerge at the firing rate and its higher harmonics, indicating
more regular firing. We note that even for a long refractory
period the spectra for the two differently colored inputs still

FIG. 8. Effects of the refractory period. Spike-train power spec-
tra for LIF neuron driven by (a) green noise with Sηη(0)/Sηη(∞) =
0.1 and (b) white-plus-red noise with Sηη(0)/Sηη(∞) = 2. We in-
crease the refractory period from 0 to 100 ms, which yields in both
cases more regular spike trains and a reduced firing rate. The vertical
dashed lines represent the inverse refractory period at f = 1/τref.
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TABLE I. Parameters used in the paper. Figures 3– 8 and 13 and 14 correspond to the LIF neuron driven by colored noise and Figs. 9– 12
to the EIF neuron with spike frequency adaptation.

Fig. vth (mV) vr (mV) τref (ms) τm (ms) μ (mV) β∗ (mV
√

s) τa (ms) β (mV
√

s)

3(b) 20 0 2 20 15 4 5 −5.26

3(c) 20 0 2 20 15 4 5 −2.74

4 20 0 2 20 15 1–4 5–200 −0.68 – −2.74

5 20 0 2 20 30 1–4 5–200 −0.68 – −2.74

6 20 0 2 20 15 1–4 5–200 0.41 – 1.66

7 20 0 2 20 30 1–4 5–200 0.41 – 1.66

8(a) 20 0 0–100 20 15 3 40 −2.05

8(b) 20 0 0–100 20 15 3 40 1.24

vth (mV) vr (mV) τref (ms) τm (ms) μ (mV) vT (mV) �T (mV) β1 (mV
√

s) τa (ms) δa (mV) A β2 (mV
√

s) vref (mV)

9(a) 28 0 0 20 15 20 2 3 40–500 3 0 0

9(b) 28 0 0 20 15 20 2 3 100 0.01–15 0 0

10(a) 28 0 0 20 30 20 2
√

2 40–500 3 0 3

10(b) 28 0 0 20 30 20 2
√

2 100 3 0 0.01–4

11 28 0 0 20 15 20 2 3 100 3 0–100 0

12 3 0 2 20 −3 −3 2 0.5 200 3 0.2 0 50

vth (mV) vr (mV) τref (ms) τm (ms) μ (mV) β1 (mV
√

s) 
 (1/s) �0 (1/s) β2 (mV/
√

s3)

13 20 0 0 20 35 0.5 5 2π × 23 2500

14 20 0 2 20

show significant differences, e.g., in the ratio of the first to the
second spectral peak.

V. EXPONENTIAL INTEGRATE-AND-FIRE
MODEL WITH ADAPTATION

An important extension of the LIF neuron that can be
described by Eq. (1) is the popular exponential IF (EIF)
neuron with spike-frequency adaptation (AdEx model):

τmv̇ = −v + �T exp

(
v − vT

�T

)
− a + μ + β1ξ1(t ),

τaȧ = Av − a + β2ξ2(t )

if v(t ) > vth :

v(t ) → vref, v(t + τref ) → vr

and a(t ) → a(t ) + δa.

(29)

Here, an additional exponential term in the membrane voltage
dynamics yields a strong positive feedback if the membrane
voltage exceeds the effective threshold vT , such that the model
generates an abrupt rise from the effective threshold vT to
the true threshold vth, a dynamical feature that significantly
improves the similarity to experimentally observed action
potentials. To model spike-frequency adaptation, the auxiliary
variable is increased by a constant amount δa if the membrane
voltage crosses vth (spike-triggered adaptation). Furthermore,
so-called subthreshold adaptation is incorporated by a linear
term with positive coefficient A which yields a delayed feed-
back.

The model’s variety of spike patterns is large, even in
a deterministic case with β1 = β2 = 0 (see [90] for all).
Here, we show that the introduced theory can predict spike-
train power spectra of the nonlinear AdEx model by means
of a few examples: regular spiking with pure deterministic

adaptation (β2 = A = 0), additional stochastic adaptation
(β2 < 0), subthreshold adaptation (A > 0), and bursting
(vr > vth).

A. Deterministic adaptation

Here, we consider the case of a regular firing EIF neuron
without noise in the adaptation variable (see Table I for all
parameters) driven by white current noise. Several examples
of spike-train power spectra are presented in Fig. 9 where our
theory is in excellent agreement with the simulation results.

When we increase the time constant τa [Fig. 9(a)], the
first effect is a drastic reduction of the firing rate: a larger τa

reduces the time derivative of the adaptation variable except

FIG. 9. Exponential IF neuron in the fluctuation-dominated
regime with deterministic adaptation. We vary the time constant of
the auxiliary process τa in (a), and the adaptation strength δa in (b).
The vertical lines represent the inverse of the time constants 1/τa

as solid lines and the firing rates as dotted lines, consistent with the
color encoding. In (b), the inverse time constant is the black line. See
Table I for other parameters.
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for the jumps upon firing that are not affected by the choice
of τa in our scaling of the model. Consequentially, the time
average of a increases with τa yielding a stronger mean
inhibition for longer time constant which in turn leads to
reduced firing. A second effect of a growing value of τa is
the shrinkage of the frequency range of reduced power due to
the adaptation.

Varying the strength of the spike-triggered adaptation δa

[Fig. 9(b)], we find similarly strong effects on the spectral
shape: the firing rate drops with growing δa, a plateau around
the inverse adaptation time constant τ−1

a = 10 Hz is formed
(orange and green lines) and merges with the high-frequency
limit for strong δa (red line). Generally, we note that with
stronger spike-triggered adaptation the ratio between low- and
high-frequency power spectrum decreases, which is due to the
reduction of long-term variability.

B. Stochastic adaptation

In Ref. [68] it was shown that the finite-size noise of adap-
tation channels can dominate the firing statistics in sensory
neurons. To incorporate such adaptation channel noise, we
include a nonvanishing noise term in the auxiliary process
(β2 > 0). This corresponds to a model that is not only subject
to a deterministic adaptation current but in addition is driven
by a white-plus-red input noise. In order to see this, we follow
Ref. [67] and split the adaptation current into a = a1 + a2 that
obey the two equations

τaȧ1 = Av − a1, τaȧ2 = −a2 + β2ξ2(t ), (30)

where the incrementation only applies to a1, i.e., upon firing
a1 → a1 + δa but a2 remains unchanged. In result, a1 and
a2 + β1ξ1(t ) correspond to the deterministic adaptation and
the white-plus-red input noise, respectively. We note that nu-
merically the original model is obviously simpler to treat but
the separation is conceptually useful and helps to understand
the effects of parameter changes on the power spectrum.

The effects of the stochastic adaptation can be understood
as a mixture of the effects that we have seen due to a white-
plus-red noise (Fig. 6 and deterministic adaptation Fig. 9).
As for the colored noise, we obtain a pronounced increase in
spectral power for τa = 40 ms but not for much higher values.
Similar to the case of deterministic adaptation, longer adap-
tation time yields a reduced firing rate, i.e., a reduced high-
frequency limit of the spike-train power spectrum. Hence,
for the parameters chosen, the two aspects of the stochastic
adaptation, the feedback and the fluctuations, become mainly
manifest in different (low- and high-, respectively) frequency
bands. This is also supported by the variation of the noise
intensity in the adaptation variable [Fig. 10(b)] which mod-
ifies mainly the low-frequency power spectrum but leaves the
high-frequency limit unchanged.

C. Subthreshold adaptation

Incorporating subthreshold adaptation (A > 0) in the IF
model may change the subthreshold dynamics drastically
[40]: new fixed points may emerge and one of them may turn
into a stable focus, which is accompanied by subthreshold
oscillations [65,96]. It is known that such oscillations can

FIG. 10. Exponential IF neuron with stochastic adaptation in the
mean-driven regime. We vary the time constant τa in (a) and the noise
intensity in the auxiliary process in (b). The vertical lines represent
the inverse of the time constant 1/τa as solid line and the firing rates
as dotted lines, consistent with the color encoding. In (b), the inverse
time constant is the black line. See Table I for all parameters.

become apparent in the spike-train power spectrum [48]. This
is also seen in our theoretical and simulation results [cf.
Fig. 11(a)]. For sufficiently large values of A, a peak emerges
close to the resonance frequency [roughly given by fres =√

(1 + A)/(τmτa)/(2π )]; this is particularly pronounced for
A = 100. Another effect of the subthreshold-adaptation term
is a general reduction of the firing rate.

D. Bursting

Here, we tune the parameters of the AdEx model to evoke
bursting, i.e., the neuron fires several spikes in rapid succes-
sion and is subsequently silent for a longer period of time
[cf. spike pattern in Fig. 12(a)]. Bursting behavior occurs if
the reset voltage is higher than the effective threshold (vr >

vT ) and the adaptation is slow and weak. In this case, the
exponential term in Eq. (29) yields a rapid increase of the
voltage directly after reset and, hence, a rapid firing sequence,
or, equivalently, short intraburst intervals. Bursting continues
until the adaptation variable has sufficiently grown to bring

FIG. 11. Exponential IF neuron with spike-triggered and sub-
threshold adaptation. Various values of A as indicated are used. For
comparison, we show the same data for A = 8 in both panels. The
vertical black line represents the inverse of the time constant 1/τa

and the dotted lines represent the firing rate consistent with the color
encoding. See Table I for parameters.
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FIG. 12. Exponential IF neuron with adaptation in a bursting
regime. Time evolution of the membrane voltage and adaptation
variable (a), effective threshold (green), and threshold (red) shown as
dashed lines; stationary solution as contour plot (b) with v null cline
(brown line) and a null cline (gray line); spike-train power spectrum
(c), firing rate is indicated by vertical line. See Table I for parameters.

the membrane voltage below the effective threshold. The
following silent period persists until the adaptation variable is
slowly degraded again, resulting in a long interburst interval.
The white current noise that we have included in the model
randomizes both the intraburst and interburst intervals as well
as the number of spikes within a burst [cf. Fig. 12(a)].

The stationary density in Fig. 12(b) reflects the bursting
mechanism. The fast spiking and resetting with increased a
forms the undulating structure close to threshold. Probability
that is reset above the voltage null cline (red dashed line) drifts
toward lower voltages and lower a. The probability is maximal
just beneath the voltage null cline because of the low velocity

and the funneling of trajectories in this region. Finally, voltage
and adaptation variables reach the initial state of a burst again
and the cycle repeats.

Corresponding to the two types of intervals, the resulting
spike-train power spectrum [Fig. 12(c)] is characterized by
two prominent peaks. The first peak at around 3.5 Hz is
associated with the interburst interval and dominates the shape
of the spectrum. The second peak is less pronounced, can
be found around 200 Hz, and corresponds to the intraburst
intervals. The input noise affects the relative variability of
the intraburst intervals much stronger than that of the longer
interburst interval. In addition, the low number of spikes
within a burst is another reason for the smallness of the
high-frequency peak. As before, our theoretical results are in
good agreement with the numerical simulations.

VI. EXTENSION TO HIGHER-DIMENSIONAL
NEURON MODELS

One may wonder whether more complicated colored noise
or adaptation processes can be incorporated in our theory.
Here, we outline how the framework can be extended to arbi-
trarily high-dimensional Markovian embeddings and demon-
strate for one example that the numerical solution of the
corresponding equations is feasible.

The essential step is to replace the scalar process a(t ) by
a d-dimensional auxiliary process �a(t ) with additive white
noise:

τmv̇ = f (v, �a) + �β�ξ (t ), �̇a = �g(v, �a) + B�ξ (t )

if v(t ) > vth :

v(t ) → vref, v(t + τref ) → vr

and �a(t ) → �a(t ) + �δa.

(31)

The d components of �ξ (t ) are independent Gaussian white
noise obeying 〈ξi(t )ξ j (t ′)〉 = δi jδ(t − t ′) and B is a d × d
matrix with the components Bkl .

The main achievement of this paper, namely, the analytical
relation between the solution of the FPE in Fourier domain
[Eq. (25)] and the spike-train power spectrum [Eq. (26)], can
be adopted to the multidimensional model in Eq. (31). The
corresponding FPE in time domain can be written as

∂t P(v, �a, t ) = L̂P(v, �a, t ) + {R̂P}(v, �a, t ), (32)

where the operator L̂ describes the drift and diffusion terms in
all dimensions:

L̂ = − ∂v

f (v, �a)

τm
+ �β2

2τ 2
m

∂2
v −

d∑
k=1

∂ak gk (v, �a)

+
d∑

k,l,m=1

BklBml

2
∂ak ∂am +

d∑
k,l=1

βkBlk

τm
∂v∂al .

(33)

Analogously to the two-dimensional FPE, the fire-and-reset
mechanism is incorporated with the operator R̂ that includes
multiple steps: it measures the probability flux through the d-
dimensional threshold manifold, shifts the out-flowing current
into the refractory state, evolves the probability density in the
refractory state, and reinserts the evolved probability at the
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reset voltage

{R̂P}(v, �a, t )

= δ(v − vr )

{
Ê

(
− �β2

2τ 2
m

∂vP(v, �a − �δa, t − τref )

∣∣∣∣
v=vth

)}
.

(34)

As in the two-dimensional case, the operator Ê can be defined
by its effect on a probability density �(�a′, t − τref ) during the
refractory period:

�(�a, t )

=
∫

da′
1 . . .

∫
da′

d �(�a′, t−τref ) exp (τrefL̂ref(vref, �a′))δ(�a′−�a)

= {Ê�(�a′, t − τref )}(�a, t ),
(35)

where the operator L̂ref is given by

L̂ref = −
d∑

k=1

∂ak gk (vref, �a) +
d∑

k,l,m=1

Bkl Bml

2
∂ak ∂al . (36)

The probability density P(v, �a, t ) obeys natural boundary
conditions for all components ai → ±∞ and v → −∞. Due
to the white noise in the voltage dynamics we have an absorb-
ing boundary at the threshold manifold:

lim
|�a|→∞

P(v, �a, t ) = lim
v→−∞ P(v, �a, t ) = P(vth, �a, t ) = 0. (37)

To calculate the firing rate, that is the flux of probability
that crosses the threshold, we integrate the flux over all
components of our auxiliary process over the entire manifold
Ma:

r(t ) = −
∫

Ma

d�a
�β2

2τ 2
m

∂vP(v, �a, t )

∣∣∣∣
v=vth

. (38)

The Fourier transform of the two-dimensional FPE in
Eq. (25) has to be changed by replacing P0(v, a) → P0(v, �a)
and Q̃(v, a, ω) → Q̃(v, �a, ω); apart from this replacement,
Eq. (25) remains the central equation to be solved. As in the
two-dimensional case, the spike-train power spectrum can be
computed from the solution Q̃(v, �a, ω) as the integrated flux
of probability that crosses the threshold:

S(ω) = r0 − 2r0Re

(∫
Ma

d�a
�β2

2τ 2
m

∂vQ̃(v, �a, ω)

∣∣∣∣
v=vth

)
. (39)

It is clear that the difficulty of finding a solution increases with
the dimension of the Markovian embedding. In the following,
we discuss the case of a two-dimensional embedding.

A. Harmonic noise

The extension to a multidimensional auxiliary process pro-
vides the possibility to calculate spike-train power spectra of
neurons driven by noise with a more complex power spectrum.
As an example, we calculate the spike-train power spectrum
of a LIF neuron driven by a harmonic noise; a similar model
(lacking the leak term and the white noise replaced by an
OU process with short correlation time) has been proposed
by [97] for the spiking of certain electroreceptor cells and has

FIG. 13. Leaky IF neuron with a narrow-band noise, represented
by higher-dimensional Markovian embedding. Time evolution of
the voltage (a) and driving harmonic noise (b); spike-train power
spectrum (c) with peaks at firing rate, the noise peak frequency, and
side bands; input noise spectrum (d). Parameters in Table I. Important
frequencies are indicated by vertical lines.

been studied by the Fokker-Planck method in [69]. Here, we
consider the following version:

τmv̇ = −v + μ + y + β1ξ1(t ), ẏ = s,

ṡ = −
s − ω2
0y + β2ξ2(t ). (40)

For simplicity, we set τref = 0. The auxiliary process y(t )
corresponds to the position of a harmonically bound Brownian
particle with velocity s(t ) that is driven by thermal noise ξ2(t )
and Stokes friction with coefficient 
. The input spectrum is
given by

Sηη(ω) = β2
2

ω2
2 + (
ω2 − ω2

0

)2 + β2
1 (41)

and exhibits a peak at ωp =
√

ω2
0 − 
2/2 with a width that is

controlled by the friction coefficient 
.
The generated input noise [Fig. 13(b)] attains the form

of a noisy oscillation characterized by a peaked power
spectrum [see Fig. 13(d)]. Unsurprisingly, the resulting
spike-train power spectrum in Fig. 13(c) displays likewise
a peak at ω = ωp. In the mean-driven regime and for
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ωp ≈ πr0 (peak frequency of the harmonic noise is roughly
equal to half of the firing rate) the spectrum shows addi-
tional peaks at f± = r0 ± ωp/(2π ) as it is also observed
in experimental data [69,76]. Applying the general theory
(25) to the two-dimensional Markovian embedding (40)
yields a spectrum (red circles) that is close to the nu-
merical simulations. Hence, our theory is applicable in a
nontrivial higher-dimensional model with rich correlation
structure.

VII. THEORY OF SPARSE RECURRENT NETWORKS

The computation of the power spectrum for a colored-noise
driven IF neuron is the first step for a correlation-consistent
theory of sparse recurrent networks. In such a network, each
neuron is subject to the temporally correlated output of other
neurons that is statistically identical to its own output. If we
are able to calculate the power spectrum for an arbitrarily
correlated input noise, we can ask for the kind of input noise
that will evoke the same correlations in the output spike
train. This question can be addressed numerically within an
iterative scheme for a single neuron [81–83]. In contrast to this
numerical approach, below we provide explicit equations for
the self-consistent spectrum in a sparse recurrent IF network
with random connectivity.

To be specific, we address the problem for a well-known
standard network model proposed by Brunel [17] and often
considered afterward (see, e.g., [1,77,80]). The network con-
sists of two neuronal populations with NE excitatory and NI

inhibitory LIF neurons, all obeying the same dynamics:

τmv̇� = −v� + RI�(t ). (42)

Neuronal input RI�(t ) is generated by presynaptic spikes and
a constant external current:

RI�(t ) = RIext + τmJ
CE∑
i=1

∑
k

δ
(
t − t k

i − D
)

− gτmJ
CI∑
j=1

∑
l

δ
(
t − t l

j − D
)
, (43)

where t k
i denotes the kth spike time of the ith presynaptic

excitatory neuron, t l
j the lth spike time of the jth presynaptic

inhibitory neuron, and D is the synaptic delay time (the index
� of the postsynaptic cell enters by the specific random choice
of the CE + CI presynaptic neurons). Excitatory and inhibitory
synaptic weights are given by J and gJ , respectively. Every
neuron has fixed numbers of CE excitatory and CI inhibitory
input connections, where CE/NE , CI/NI 	 1, i.e., the network
has a sparse connectivity.

This simple model was shown to exhibit a rich variety of
distinct firing patterns and corresponding states of synchro-
nization or desynchronization [17,80]. For dominating recur-
rent inhibition, a large part of the parameter space is occupied
by the asynchronous irregular state, which resembles the spike
statistics often observed in the awake behaving animal [98].
In that case it is convenient to consider one representative
neuron and approximate its neural input, being the sum of
many independent spike trains, as a stochastic process η(t )

with Gaussian statistics and constant mean input μ = 〈RI (t )〉:
τmv̇ = −v + μ + η(t ). (44)

The constant mean input only depends on the firing rate of the
presynaptic neurons r0:

μ = RIext + τmJ (CE − gCI )r0. (45)

As an approximation, the temporal correlations of spike trains
were neglected in [17] and η(t ) was approximated by a
white-noise process that is fully determined by the firing
rate of the presynaptic neurons. Hence, the output firing
rate of a neuron only depends on the input firing rate. In
a homogeneous network, input and output firing rates have
to coincide (mean-field condition for the self-consistence of
the first-order statistics). Assuming white Gaussian noise, one
can solve for the corresponding firing rate [17]. However, as
presented in all examples, neuronal spike trains are charac-
terized by temporal correlations with nonflat power spectra
and the neuronal input, being the sum of many spike trains,
maintains these correlations [99]. Hence, the condition of
self-consistence has to be extended to the spike-train power
spectrum:

Sηη(ω) = φS(ω), (46)

φ = τ 2
mJ2(CE + CI g

2). (47)

The solution of this equation can be determined using the
iterative scheme proposed in [81–83]: simulating Eq. (44)
with an arbitrary initial choice for the power spectrum of the
noise η(t ), one measures the power spectrum of the output
spike train and generates a new surrogate noise with a power
spectrum equal to that of this output spike train; the LIF
neuron is then driven by the surrogate noise, the new output
spectrum is measured, and the procedure is repeated until
input and output spectra agree within the desired accuracy
[i.e., until Eq. (46) is approximately satisfied]. This numeri-
cal scheme agrees well with simulations of sparse recurrent
networks but still constitutes a Monte Carlo approach but
not a theoretical solution for the self-consistent correlation
statistics. Here, our solution of the open-loop problem is used
to formulate this theory.

A. General theory of Markovian embedding
of recurrent network noise

In line with our previous representation of colored noise by
a Markovian embedding we write η(t ) as the summed compo-
nents of an Ornstein-Uhlenbeck process with arbitrarily high
dimensionality:

η(t ) = �βᵀ�ξ (t ) + �1ᵀ�a(t ), �̇a(t ) = −A�a + B�ξ (t ). (48)

Here, �1 denotes the vector in which all components are 1. The
matrix A has to ensure that all components of �a stay finite.
This process is a special case of Eq. (31) with linear functions
f (v, �a) = −v + �1ᵀ�a and �g(v, �a) = −A�a and without adapta-
tion. The crucial difference to the previous cases considered
in Secs. II–VI is that we do not know the matrices A, B and
the vector �β.
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Formally, for given A, B and �β the input-noise power
spectrum reads as (see Eq. 4.4.58 in [100])

Sηη(ω) = �β2 + ( �V + �̄V )�β + | �V |2,
�V = �1ᵀ(A + iω1)−1B. (49)

Without loss of generality, all components of �β except one can
be set to zero (see Appendix B for details and more discus-
sion of the ambiguity issue). The unknown coefficients also
determine the output power spectrum via the generalization
of the functions Q̃(v, �a, ω) and P0(v, �a) in Eqs. (20) and (25).
Combined, we obtain a system of equations for A, B, �β, Q̃,
P0, S, and r0 that we first write in its simplest version:

Sηη(A, B, �β, ω) = τ 2
mJ2(CE + CI g

2)S(Q̃, r0, ω)

[iω + L̂(A, B, �β ) + eτ R̂(A, B, �β )]Q̃ =
[

1 +
(

eτ − 1

iω
− eτ

r0

)
R̂(A, B, �β )

]
P0,

[L̂(A, B, �β ) + R̂(A, B, �β )]P0 = 0. (50)

This system has to be complemented by the definition of the firing rate, the normalization of the stationary density P0, and the
numerous boundary conditions for Q̃ and P0. We emphasize again that this set of equations determines not only the two functions
Q̃ and P0, but also the coefficients of the noise process η(t ). The full complexity of the mathematical problem becomes apparent
if we write this system of equations explicitly out as follows:1

�β2 + �1ᵀ[(A + iω1)−1 + (A − iω1)−1]B�β + �1ᵀ(A + iω1)−1BBᵀ((A − iω1)−1)ᵀ�1

= τ 2
mJ2(CE + CI g

2) r0

(
1 − 2 Re

∫
Ma

d�a
�β2

2τ 2
m

∂vQ̃(v, �a, ω)

∣∣∣∣
v=vth

)
,

iωQ̃(v, �a, ω) − ∂v

(
−v + �1ᵀ�a

τm
Q̃(v, �a, ω)

)
+ �∂ᵀ

a (A�aQ̃(v, �a, ω)) + 1

2
�∂ᵀ

a BBᵀ�∂aQ̃(v, �a, ω) + 1

τm
∂v �βᵀBᵀ�∂aQ̃(v, �a, ω)

− eiωτrefδ(v − vr )
∫

Ma′
d�a′ ρref(A, B, τref, �a|�a′)

�β2

2τ 2
m

∂vQ̃(v, �a′, ω)

∣∣∣∣
v=vth

= P0(v, �a) −
(

eiωτref − 1

iω
− eiωτref

r0

)
δ(v − vr )

∫
Ma′

d�a′ ρref(A, B, τref, �a|�a′)
�β2

2τ 2
m

∂vP̃0(v, �a′)
∣∣∣∣
v=vth

,

− ∂v

(
−v + �1ᵀ�a

τm
P0(v, �a)

)
+ �∂ᵀ

a (A�aP0(v, �a)) + 1

2
�∂ᵀ

a BBᵀ�∂aP0(v, �a) + 1

τm
∂v �βᵀBᵀ�∂aP0(v, �a)

− δ(v − vr )
∫

Ma′
d�a′ ρref(A, B, τref, �a|�a′)

�β2

2τ 2
m

∂vP0(v, �a′)
∣∣∣∣
v=vth

= 0,

r0 = −
∫

Ma

d�a
�β2

2τ 2
m

∂vP̃0(v, �a′)
∣∣∣∣
v=vth

,

∫ vth

−∞
dv

∫
Ma

d�a P0(v, �a) = 1 − τrefr0,

F (vth, �a) = lim
v→−∞ F (v, �a) = lim

|�a|→±∞
F (v, �a) = 0, for F (v, �a) = P0(v, �a), Q̃(v, �a, ω) (51)

[�∂ᵀ
a = (∂a1 , ∂a2 , . . . , ∂ad )]. This set of equations constitutes a

mean-field theory of sparsely connected networks of spiking
LIF neurons taking into account the self-consistent temporal
correlations of spike trains at all timescales. Put differently,
the equation should be satisfied at all frequencies, at least in
the limit case of an infinite-dimensional Markovian embed-
ding. To show the existence, uniqueness, and stability of the

1The only nonexplicit part is the function ρref(A, B, τref, �a|�a′) that
incorporates the probability transition of the OUP during the refrac-
tory period which can be calculated analytically (see Eq. 6.124 in
[13]).

solution in A, B, �β, Q̃, P0, and r0 is a challenging problem
for the theory and may reveal novel dynamical regimes of
spiking networks for which the heterogeneous asynchronous
state found in [80] is but one example. In the following,
we simply assume that this problem has a solution and test
numerical methods to find this solution for a simple example.
However, we stress that this set of equations above deserves
much more attention in future investigations.

In the above derivation we have assumed that the summed
components of a multidimensional OUP may exhibit an ar-
bitrary power spectrum. However, in general, this process
has to be infinite dimensional which is difficult to implement
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numerically. In what follows, we restrict ourselves to finite-
(and in fact rather low-) dimensional approximations of the
self-consistency problem.

B. Finite-dimensional Markovian embedding
of the network noise

For a d-dimensional embedding the input spectrum in
Eq. (49) can be expressed as the following rational function:

Sηη(ω) = �β2 +
∑d−1

k=0 Xk (A, B, �β )ω2k

1 + ∑d
�=1 Y�(A)ω2�

, (52)

where the coefficients Xk and Y� are related to the matrices A,
B and the vector �β by

d∑
�=1

Y�det(A)2ω2� = |det(A + iω1)|2 − det(A)2,

d−1∑
k=0

Xkdet(A)2ω2k = �1ᵀ2 Re[adj(A + iω1)det(A − iω1)]B�β

+ �1ᵀadj(A + iω1)BBᵀadj(A − iω1)ᵀ�1,

(53)

[adj(A) is the adjoint matrix of A].
We recall that Eq. (52) approximates an input power spec-

trum of summed spike trains multiplied with current ampli-
tudes. Then, the constant term �β2 can be readily identified
as the input firing rate with an additional amplitude factor
[defined in Eq. (46)]

Sηη(ω → ∞) = �β2 = φr0 = φS(ω → ∞). (54)

The equality of input and output firing rates, already used in
[17], can thus be interpreted as the consistency of spike-train
and input spectra at infinite frequency. In the diffusion approx-
imation, input fluctuations are assumed to be uncorrelated and
the corresponding white input spectrum can be regarded as a
zero-dimensional “embedding” (d = 0) of the network noise.
With a finite nontrivial Markovian embedding (0 < d < ∞),
self-consistency can be achieved at several frequencies. A
particularly simple relation is obtained in the zero-frequency
limit (ω = 0):

X0 = φS(0) − �β2. (55)

For a given output spectrum S(ω), we can write 2d − 1 linear
equations for the remaining 2d − 1 unknown coefficients Xk

(k = 1, . . . , d − 1) and Y� (� = 1, . . . , d):

Sηη(ωc) = φS(ωc), c = 1, . . . , 2d − 1. (56)

The optimal choice of the corresponding 2d − 1 frequency
values is not obvious. A reasonable frequency value is cer-
tainly the firing rate (ω1 = 2πr0) which exhausts the number
of possible values for d = 1. For d = 2 we additionally
choose ω2 = πr0, ω3 = 4πr0 [for details on the numerical
solution of Eqs. (54)–(56), see Appendix B).

Figure 14 displays our numerical solution for embeddings
with d = 1 (blue) and d = 2 (red). We also compare to
Brunel’s theory with d = 0 (green) and simulation results for
a large recurrent network (black). The Brunel theory (green)

FIG. 14. Self-consistent solutions of the spike-train power spec-
trum for low-dimensional Markovian embeddings and comparison
to network simulation. Black line represents spike-train power spec-
trum in the network (cf. Table II for parameters), obtained by aver-
aging raw spectra over all neurons. Colored lines are self-consistent
input Sηη(ω)/φ (dashed) and output (solid) power spectra and colors
indicate dimensionality of Markovian embedding. Frequency values
at which the self-consistency is enforced are indicated by vertical
dotted lines. See Tables III and II for parameters.

displays a clear discrepancy between the white input spectrum
Sηη/φ (dashed) and the high-pass spike-train power spectrum
(solid) except in the high-frequency limit. For d = 1 (blue)
dashed and solid lines, i.e., rescaled input and output spectra,
are closer together and intersect at the three frequencies
ω = 0, 2πr0, ∞. With d = 2 (red), consistence of input and
output spectra can be achieved for five distinct frequencies and
the dashed and solid lines become nearly indistinguishable.
Moreover, the resulting spectra are close to the power spec-
trum measured in the recurrent network (black line); a remain-
ing small discrepancy is most likely due to the shot-noise char-
acter of the input [101] that we have neglected in the Gaussian
approximation. Our example demonstrates the correctness
of our general theory and its numerical feasibility for low-
dimensional Markovian embedding at least in special cases.

VIII. SUMMARY AND OPEN PROBLEMS

In this paper we have developed a theory for the power
spectrum of a multidimensional stochastic integrate-and-fire
neuron, i.e., a nerve cell that is subject to a nontrivial volt-
age dynamics, to a temporally correlated noise, or to spike-
frequency adaptation. The theory consists of a system of
partial differential equations including a nonlocal operator for
the resetting and evolution of the probability in the refrac-
tory state. We also provided in the Appendices a numerical
implementation for the solution of the equations and tested
them on a large number of cases. In all cases, we found a
good agreement between the theory and results of stochastic
simulations. We demonstrated that already with the relatively
small number of auxiliary variables, various features in the
spike-train power spectrum emerge, some of which are also
known from the experimental literature.
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TABLE II. Parameters of the network simulation (Fig. 14).

NE NI CE CI J (mV) g D (ms) τm (ms) RIext (mV) vth (mV) τref (ms) T (s) �t (μs)

200 000 50 000 500 125 0.4 4.5 2 20 30 20 2 2 10

Interestingly, we found that the Markovian embedding
of colored noise is not unique: there are distinct stochastic
differential equations that yield the same Gaussian noise. This
ambiguity might be even larger in higher dimensions (see also
[60]) and thus worth to be explored in more detail. It remains
to be seen whether these different representations of the same
colored noise have a meaning and whether some of them are
numerically simpler to be found than others.

Our framework can be applied and extended in a num-
ber of directions. First of all, the theory may become the
starting point of analytical approaches beyond the existing
ones that are limited to IF models with weak or short-
correlated Ornstein-Uhlenbeck noise. Second, with more ef-
ficient algorithms (efficient tools for the solution of mul-
tidimensional FPEs [102,103] might be useful here) also
higher-dimensional situations, e.g., an adapting neuron with
narrow-band noise input (corresponding to a system of four
stochastic differential equations) might be tractable; possible
candidates are eigenfunction expansions [104,105] and the
matrix-continued-fraction method [13]. Third, similar to the
one-dimensional white-noise case [30,31], the calculation of
the firing-rate modulation in response to a time-dependent
stimulus (other than noise) will follow a very similar mathe-
matical framework as presented here for the calculation of the
power spectrum. Knowledge of the rate modulation and the
spontaneous power spectrum gives us access to information-
theoretic measures like the coherence or the lower bound on
the mutual information and enables the systematic study of
the information-filtering properties of sensory neurons [36].

The theory as developed here is applicable to many inter-
esting cases for neurons subject to colored channel noise [68],
narrow-band driving by other cells [76], and other situations,
in which we have a clear idea about the correlations of the
underlying noise sources, e.g., for some cell types in the
sensory periphery. However, neurons beyond the periphery
operate in large and sparse recurrent networks in which most
of the noise emerges by the nonlinear interactions among the
nerve cells [77,80,106–108]. The dynamics of such networks
can be investigated by the self-consistent mean-field theory
introduced here. The corresponding set of equations poses a
number of open problems for future studies: exploring the
solution’s (or solutions’) existence, uniqueness, and stability
may reveal novel dynamical regimes and, thus, yield a deeper
understanding of the complex dynamics of such networks.

TABLE III. Parameters of the self-consistent solutions (Fig. 14).

d A B (mV/
√

s) �β (mV/
√

s)

0 2.360
1 91.43 −107.0 2.321

2

(
103.5 202.8

−21.56 103.5

) (−233.3 0
0 167.7

) (
2.324

0

)

Interestingly, the approximation by a finite-dimensional
Markovian embedding includes in a systematic way the the-
ory by Brunel [17] which implements the lowest-order self-
consistency, i.e., a self-consistency between input and output
firing rates, or, in our Fourier formulation, a self-consistency
of input and output power spectra at infinite frequency. Con-
vincingly, with an increasing dimensionality of the embed-
ding, self-consistency of input and output spectra can be
achieved at an increasing number of distinct frequencies and
the resulting spectrum approaches the true spectrum observed
in network simulations.

The results on the recurrent network complement an ap-
proach to the correlation problem that has recently been put
forward in Ref. [109]. In the latter study, the power spectrum
for IF neurons in a Brunel network were considered in the
limit case of a strong mean input drive, in which spectra
display pronounced peaks at the firing rate. The spectrum that
we found as the self-consistent solution (cf. Fig. 14), looked
very different and displayed a pronounced reduction of power
at low frequencies, similar to spectra measured experimentally
in vivo [74].

Specifically with regard to the mean-field-theoretical ap-
plications of the model, one could be worried about the ap-
proximation of spike-train input by a Gaussian noise process.
Indeed, for stronger synaptic amplitudes (or amplitude distri-
butions with a fat tail), one has to consider synaptically filtered
shot noise instead of Gaussian fluctuations. Although exact
results for the firing rate, power spectrum, and response func-
tions exist, if the input noise is a Poisson process [101], it is a
difficult problem to derive and solve similar density equations
for general point processes (for an exception, if the input spike
train can be described by a renewal point process, see [110]).
However, the self-consistent numerical simulation schemes
developed and tested in [81–83] for large recurrent networks
of pulse-coupled IF neurons suggest that the Gaussian approx-
imation (a basic assumption of our theory) is a reasonable
one in many situations of interest, especially in networks
with moderate synaptic amplitudes. Hence, we are confident
that the framework developed here will be a useful step to
better understand theoretically the spike statistics and also the
information processing in the neural networks of the brain.

ACKNOWLEDGMENT

This paper was developed within the scope of the IRTG
1740/TRP 2015/50122-0, funded by the DFG/FAPESP.

APPENDIX A: NUMERICAL SOLUTION OF SPECTRUM
AND DENSITY FOR THE MULTIDIMENSIONAL

IF MODEL

Except for a few special cases, we lack analytical solutions
of multidimensional FPEs. Here, we outline the numerical
methods to solve Eqs. (20), (21), and (25) in order to evaluate
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the power spectrum (26). We follow standard procedures
for the numerical integration of partial differential equations
[86].2

1. Discretization and boundary conditions

We approximate the derivatives in second order using finite
differences and discretize v, a, and time:

v → vi = v0 + i�v, a → a j = a0 + j�a,

t → tk = k�t
(A1)

with i, j ∈ [0, 1, . . . , N − 1] and k ∈ [0, 1, . . . ,∞) (see
Table IV for all parameters for d = 1 and Table V for d = 2).
The functions P and Q considered as discrete values can be
regarded as vectors [P(v, a, tk ), Q(v, a, tk ) → Pk, Qk] with
the elements

P(vi, a j, tk ), Q(vi, a j, tk ) → Pk
i+ jN , Qk

i+ jN . (A2)

The last discrete element of v is located right in front of the
threshold, i.e., the element v0 + N�v = vth is not included.
The numerical values v0, a0, and N are chosen to properly
resolve the relevant region of phase space, which is done
by visual inspection of the stationary density. Put differently,
one has to ensure that the final result (the power spectrum)
does not depend (or does only weakly depend) on the specific
values v0, a0, N .

Except for the boundary at the threshold, if the other
boundaries are chosen in a sufficient distance from the main
location of the probability, the kind of boundary condition
(reflecting, absorbing, or periodic) should become unimpor-
tant. We opt for absorbing boundary conditions that are im-
plemented via the operators (see below). We have tested also
reflecting boundary conditions and did not find any change in
our results.

The linear operators L̂ and R̂ appearing in Eqs. (20)
and (25) are approximated by large and sparse matrices of
dimension N2 × N2 that act on P and Q. Discretized, the FPE
reads as now

Pk+1 − Pk

�t
= L̂Pk + R̂Pk−Nref , (A3)

where, for simplicity, we use for the absolute refractory period
an integer multiple of the time step τref = Nref�t .

2. Subthreshold dynamics

We first discuss the evolution operator of the subthresh-
old dynamics L̂. We use symmetric approximations of the
derivatives in v and a yielding for the operator L̂ a tridiagonal
matrix

L̂i+ jN,m = −
(

β∗
1

2

τ 2
m�v2

+ β2
1 + β2

2

τ 2
a �a2

)
δi+ jN,m

+
(

β∗
1

2

2τ 2
m�v2

+ f (vi+1, a j )

2τm�v

)
δ̄i,N−1δi+1+ jN,m

2See https://github.com/sebsvell/Multidimensional_IF_spectra for
implementations.

+
(

β∗
1

2

2τ 2
m�v2

− f (vi−1, a j )

2τm�v

)
δ̄i,0δi−1+ jN,m

+
(

β2
1 + β2

2

2τ 2
a �a2

+ g(vi, a j+1)

2τa�a

)
δ̄ j,N−1δi+( j+1)N,m

+
(

β2
1 + β2

2

2τ 2
a �a2

− g(vi, a j−1)

2τa�a

)
δ̄ j,0δi+( j−1)N,m

+ β∗
1 β1

4τmτa�v�a
[δ̄i,0(δ̄ j,0δi−1+( j−1)N,m

− δ̄ j,N−1δi−1+( j+1)N,m ) + δ̄i,N−1(δ̄ j,N−1δi+1+( j+1)N,m

− δ̄ j,0δi+1+( j−1)N,m )]. (A4)

By means of δ̄k,m = 1 − δk,m we have incorporated the absorb-
ing boundary conditions into the operator. The sparse matrix
has only nine nonzero components in each row, and even less
if the corresponding element is located next to a boundary.

3. Firing, evolution in refractory state, and reset

The fire-and-reset operator performs four different steps.
The operator (i) absorbs the probability that crosses the
threshold and transfers it into the refractory state, (ii) shifts
it along the a axis (spike-triggered adaptation), (iii) evolves
the probability during the refractory period, and (iv) finally
reinserts the probability at vr . Numerically, we perform these
steps by subsequent matrix multiplications:

R̂ = R̂Ê ŜF̂ . (A5)

The (N × N2)-dimensional matrix F̂ extracts the efflux of
probability crossing the threshold and puts it into the refrac-
tory state (an N-dimensional vector)

F̂m,i+ jN = β∗
1

2

2τ 2
m�v

δm, jδi,N−1. (A6)

The probability that crosses the threshold within a small time
interval �t [being proportional to the derivative with respect
to v in Eq. (13)] is here approximated by the finite difference
between the vanishing value at the threshold and Pk

N−1+ jN (the
latter terms are exactly the ones picked out by the matrix).

To account for spike-triggered adaptation, this probability
is shifted along the a axis by a constant amount δa. In the
likely case that δa is not a multiple of the bin size �a, we shift
the content of each probability bin into two neighboring bins
with distance na = M(δa,�a) = δa/�a − (δa mod �a) and
na + 1, respectively [the function M(z,�) returns the down
rounded fraction of z/�]. The fractions of probability that end
up in the ( j + na)th and ( j + na + 1)th bins are given by κa =
1 − (δa mod �a) and (1 − κa), respectively. We can represent
the shift operator Ŝm′,m as follows:

Ŝm′,m = κaδm′−na,m + (1 − κa)δm′−1−na,m, (A7)

where we look at the influx in the jth bin rather than the efflux
from the jth bin. The part of the flux that is shifted from
outside or out of the considered range of j is neglected.

The probability evolves in the refractory state with the re-
duced tridiagonal N × N Fokker-Planck operator acting only
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TABLE IV. Parameters of the numerical solution and simulation for two-dimensional FPE.

Fig. v0 (mV) a0 (mV) aN−1 (mV) N method T (s) �t (μs) No. Trials

3(b) −40 −200 200 1600 indirect
3(c) −40 −100 120 1000 direct
3(d) 4 1 16000

4(a) −8 −7 −7 1000 direct 4 10 10000
4(b) −10 −15 15 1000 direct 4 10 10000
4(c) −7 −27 30 1000 direct 4 10 10000
4(d) −45 −20 20 1000 direct 4 10 10000
4(e) −40 −40 40 1000 direct 4 10 10000
4(f) −40 −80 80 1000 direct 4 10 10000
4(g) −60 −18 18 1000 direct 4 10 10000
4(h) −60 −40 40 1000 direct 4 10 10000
4(i) −40 −100 120 1000 direct 4 10 10000

5(a) −5 −8 8 1000 direct 4 10 10000
5(b) −7 −20 20 1000 direct 4 10 10000
5(c) −8 −35 35 1000 direct 4 10 10000
5(d) −35 −20 20 1000 direct 4 10 10000
5(e) −35 −40 40 1000 direct 4 10 10000
5(f) −35 −100 100 1000 direct 4 10 10000
5(g) −50 −30 30 1000 direct 4 10 10000
5(h) −50 −40 40 1000 direct 4 10 10000
5(i) −40 −100 120 1000 direct 4 10 10000

6(a) −7 −4 4 1000 direct 4 10 10000
6(b) −10 −6 6 1000 direct 4 10 10000
6(c) −15 −20 20 1000 direct 4 10 10000
6(d) −40 −15 15 1000 direct 4 10 10000
6(e) −50 −20 20 1000 direct 4 10 10000
6(f) −60 −50 50 1000 direct 4 10 10000
6(g) −60 −10 10 1000 direct 4 10 10000
6(h) −70 −25 25 1000 direct 4 10 10000
6(i) −75 −65 65 1000 direct 4 10 10000

7(a) −5 −4 4 1000 direct 4 10 10000
7(b) −8 −8 8 1000 direct 4 10 10000
7(c) −8 −20 20 1000 direct 4 10 10000
7(d) −30 −15 15 1000 direct 4 10 10000
7(e) −40 −25 25 1000 direct 4 10 10000
7(f) −55 −60 60 1000 direct 4 10 10000
7(g) −45 −20 20 1000 direct 4 10 10000
7(h) −60 −40 40 1000 direct 4 10 10000
7(i) −60 −70 70 1000 direct 4 10 10000

8(a) −60 −20 20 1000 direct 20 10 20000
8(b) −60 −20 20 1000 direct 20 10 20000
9(a) −50 0 15 1000 direct 4 10 10000

−50 0 15 1000 direct 4 10 10000
−50 0 30 1000 direct 4 10 10000
−60 0 40 1000 direct 4 10 10000

9(b) −50 0 0.1 1000 direct 4 10 10000
−50 0 10 1000 direct 4 10 10000
−60 0 30 1000 direct 4 10 10000
−60 0 50 1000 direct 4 10 10000

10(a) −12 −40 50 2000 direct 4 10 10000
−12 −20 40 2000 direct 4 10 10000
−12 −10 30 2000 direct 4 10 10000
−12 5 25 2000 direct 4 10 10000

10(b) −10 0 15 2000 direct 4 10 10000
−8 −5 20 2000 direct 4 10 10000
−8 −10 25 2000 direct 4 10 10000
−10 −20 40 2000 direct 4 10 10000
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TABLE IV. (Continued.)

Fig. v0 (mV) a0 (mV) aN−1 (mV) N method T (s) �t (μs) No. Trials

11(a) −40 −5 20 2000 direct 4 10 10000
−40 −20 40 2000 direct 4 10 10000
−45 −60 80 2000 direct 4 10 10000

11(b) −50 −20 40 2000 direct 4 10 10000
−60 −200 220 2000 direct 4 10 10000

12 −20 −1 15 2500 direct 20 1 40000

14 −30 −35 40 1000 direct 2 10 250000

on the auxiliary variable:

L̂ref
m′′,m′ = β2

1 + β2
2

τ 2
a �a2

δm′′,m′

+
(

β2
1 + β2

2

2τ 2
a �a2

+ g(vref, am′ )

2τa�a

)
δm′′+1,m′

+
(

β2
1 + β2

2

2τ 2
a �a2

− g(vref, am′ )

2τa�a

)
δm′′−1,m′ . (A8)

In case of a stochastic auxiliary process, the whole evolution
during the refractory period can be approximated by numeri-
cal integration using the forward-time-centered-space scheme
[86]:

Ê =
(
1 + τref

Nref
L̂ref

)Nref

, (A9)

with �t = τref/Nref. To obtain sufficiently accurate results, we
used an estimate for a reliable time step for a pure diffusion
process Nref = 4τref(β2

1 + β2
2 )/(2τ 2

a �a2) (see [86]).
If the auxiliary process is completely deterministic (as in

Sec. V D), we can simplify the evolution operator and recast
it as a simple shift operator, similar to the effect of spike-
triggered adaptation

Êm′′,m′ = κE
m′δm′′−nE

m′ ,m′ + (
1 − κE

m′
)
δm′′−nE

m′ −1,m′ ,

κE
m′ = 1 − ([adet(τref; am′ ) − a0] mod �a),

nE
m′ = M[adet(τref; am′ ) − a0,�a], (A10)

where adet(t ; a(0)) is the solution of the deterministic equation
τaȧ j = g(vref, a j ) with the initial condition a(0).

To reinsert the evolved probability we approximate the δ

function in Eq. (19) that transfers the flux to the reset voltage
by Kronecker deltas:

R̂i′+ j′N,m′′ = κrδi′,nr + (1 − κr )δi′,nr+1

�v
δ j′,m′′ ,

κr = 1 − ((vr − v0) mod �v),

nr = M(vr − v0,�v). (A11)

4. Stationary solution

With the approximated operators Eq. (20) attains the form
of a large and sparse linear system:

((L̂ + R̂)P0)i, j = 0; (A12)

additionally, the density is normalized. To solve the above
system, we first set an arbitrary element to one and solve the
inhomogeneous system

((L̂ + R̂)P′
0)i, j + P′

0 nr+N2/2 = 1 (A13)

using either a direct approach with the LU decomposition
performed with the SUPERLU package in Python [111], or an
indirect one with the ILU decomposition as preconditioner and
the stabilized biconjugated gradient method, both provided in
the Eigen library [112] (the used methods for the respective
models are listed in Tables IV and V).

From the unnormalized solution, we can calculate the
stationary firing rate using Eqs. (14) and (21):

r0 =
⎡
⎣τref +

(
β∗

1

2τ 2
m�v2

∑N−1
j=0 P′

0 N−1+ jN∑N−1
i, j=0 P′

0 i+ jN

)−1
⎤
⎦

−1

(A14)

and the normalized stationary density

P0 = P′
0

�v�a
∑N−1

i, j=0 P′
0 i+ jN

(1 − τrefr0). (A15)

5. FPE solution in Fourier domain
and spike-train power spectrum

With the stationary density, we know the inhomogeneity
in Eq. (25) and by replacing the operators by matrices as
similarly done above, we obtain

(iω + L̂+ eτ R̂)Q̃(ω) =
[

1 +
(

eτ − 1

iω
− eτ

r0

)
R̂

]
P0. (A16)

We find a solution Q̃(ω) for a given ω with the same method
as used for solving Eq. (A13). With Q̃(ω) we can calculate the

TABLE V. Parameters of the numerical solution and simulation for three-dimensional FPE.

Fig. v0 (mV) y0 (mV) yNy (mV) s0 (mV/s) sNs (mV/s) Nv Ny Ns method T (s) �t (μs) No. Trials

13 (ω �= ω0) −1 −22 22 −3300 3300 1000 100 100 indirect 25 2 4000
13 (ω = ωp) −1 −22 22 −3300 3300 1000 150 150 indirect 25 2 4000

v0 (mV) a10 (mV) a1Na1 (mV) a20 (mV) a2Na2 (mV) Nv Na1 Na2 method T [s] �t [μs] # Trials

14 −25 −75.29 75.29 −40.77 40.77 500 100 100 indirect 2 10 250000
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spike-train power spectrum [cf. Eq. (26)]:

S(ω) = r0

⎛
⎝1 + 2

β∗
1

2�a

2τ 2
m�v

N−1∑
j=0

Re[Q̃N−1+ jN (ω)]

⎞
⎠. (A17)

In the limit of low frequencies ω → 0, we observe numerical
instabilities because Q̃(ω → 0) is not uniquely determined by
Eq. (A16); every Q̃′(ω → 0) = Q̃(ω → 0) + γ P0(v, a) is a
solution as well. We find an additional condition for Q̃(ω →
0) from the normalization condition for the time-dependent
probability density which can be expressed by the temporally
integrated efflux. After a number of manipulations, we arrive
at the relation

lim
ω→0

∫ vth

−∞
dv

∫ ∞

−∞
da

(
1

τref
+ R̂

)
Q̃(v, a, ω) = τrefr0

2
− 1.

(A18)

We can find the correct Q̃(ω → 0) = Q̃′(ω → 0) −
γ P0(v, a) by inserting this expression into Eq. (A18), solv-
ing for γ , and reinserting this solution into the expression
for Q̃(ω → 0). Expressing the integrals by simple sums we
obtain

Q̃(ω → 0)

= Q̃′(ω → 0) + P0τref

(
1

2
τrefr0 − 1

)

− P0�v�a
N−1∑
i, j=0

[(1 + τrefR̂)Q̃′(ω → 0)]i+ jN . (A19)

In this paper this procedure is applied for all frequencies lower
than 1 Hz.

APPENDIX B: MEANINGFUL CHOICE OF THE
EMBEDDING AND APPLICATION TO THE

SELF-CONSISTENCY PROBLEM

As we have studied in detail in the one-dimensional case,
the power spectrum of the Markovian embedding in Eq. (49) is
ambiguous, thus, the number of free variables can be reduced
without loss of generality. If the dimensionality is d > 1, we

may reduce the ambiguity by exploiting the invariance of the
summed OUP Eq. (48) upon the following change:

�β ′ = S�β, B′ = BSᵀ, (B1)

where Sᵀ = S−1 denotes an arbitrary rotation matrix. Conse-
quentially, all components may be rotated in the first dimen-
sion [�β ′ᵀ = (β, 0, . . . , 0)] and any �β and B can be replaced by
the �β ′ and a corresponding matrix B′ without restricting the
power spectrum’s shape. For d = 2, the remaining ambiguity
in A and B can be further reduced by the choice

A =
(

a a1

a2 a

)
, B =

(
b1 0
0 b2

)
, and �β =

(
β

0

)
.

(B2)
For the particular choice b2 = 0, Eq. (53) can be inverted

a =
√

Y1

4Y2
+ 1

2
√

Y2
, a1 = a2 − 1/

√
Y2

a2
,

b1 = W√
Y2(a − a2)

,

a2 =
aX2 ± W

√
X1 + β2Y1 + 2β

√
Y2(X0 + β2)

X2 + 2β
√

Y2W
(B3)

(here W =
√

X0 + β2 − β) and the only remaining freedom is
the choice of the sign in the formula for a2. This apparently
satisfying choice (b2 = 0) leading to the simple system above,
however, turns out to be disadvantageous for the numerical
solution of the FPE (second-order derivatives stabilize the
solution of the PDE, see [86] 20.5). Instead, we numerically
solve Eq. (53) with the additional constraints (B2) and obtain
a (nonunique) set of parameters A, B, �β that are given in
Table III. The resulting self-consistent spectra show a slight
dependence on the specific constraint because of the limited
number of grid points.

For the iterative determination of the self-consistent solu-
tion in Sec. VII B, the coefficients of the OUP for the next
iteration are calculated from the spike-train power spectrum
at zero frequency Sηη(0) = φS(0) and at the cmax = 2d − 1
frequencies ωc [Sηη(ωc) = φS(ωc)]. First, inserting the given
points of the spectrum into Eq. (52) yields a linear system, in
the coefficients Xk and Y�. Then, the OUP coefficients for the
next iteration follow from solving Eq. (53).
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