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Abstract
The mutual information between a stimulus signal and the spike count of a stochastic neuron is in many cases difficult to
determine. Therefore, it is often approximated by a lower bound formula that involves linear correlations between input and
output only. Here, we improve the linear lower bound for the mutual information by incorporating nonlinear correlations. For
the special case of a Gaussian output variable with nonlinear signal dependencies of mean and variance we also derive an
exact integral formula for the full mutual information. In our numerical analysis, we first compare the linear and nonlinear
lower bounds and the exact integral formula for two different Gaussian models and show under which conditions the nonlinear
lower bound provides a significant improvement to the linear approximation. We then inspect two neuron models, the leaky
integrate-and-fire model with white Gaussian noise and the Na–K model with channel noise. We show that for certain firing
regimes and for intermediate signal strengths the nonlinear lower bound can provide a substantial improvement compared to
the linear lower bound. Our results demonstrate the importance of nonlinear input–output correlations for neural information
transmission and provide a simple nonlinear approximation for themutual information that can be applied tomore complicated
neuron models as well as to experimental data.

Keywords Sensory coding · Signal transmission · Information theory · Mutual information · Nonlinear lower bound ·
Nonlinear correlations

1 Introduction

One of the key features of neurons and neural systems is
their property to transmit and process sensory signals, and it
is therefore necessary to find means to reliably quantify the
quality of signal transmission. Information theory provides
a tool for the quantification of the quality of signal transmis-
sion without having to rely on specific decoding or encoding
models (Rieke et al. 1996; Borst and Theunissen 1999). The
key characteristics of information theory, the mutual infor-
mation, is shaped not only by linear but also by nonlinear
statistical dependencies between an input signal and an out-
put signal. The mutual information and approximations of it
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have beenwidely applied in the research area of neural signal
processing (see, e.g., Rieke et al. 1995; Chacron et al. 2003;
Passaglia and Troy 2004; Sadeghi et al. 2007; Neiman and
Russell 2011; Doose et al. 2016).

Some features that have been investigated with the help of
the mutual information are for example the beneficial effects
of noise on signal transmission (for specific examples, see,
e.g., Droste et al. 2013; Voronenko et al. 2015, for general
reviews, see Gammaitoni et al. 1998; McDonnell and Ward
2011), the maximal amount of information that the neural
spike trains can carry about the stimulus (Strong et al. 1998;
Stemmler and Koch 1999; Juusola and French 1997) and the
ability of neurons to transmit more information about nat-
uralistic sensory stimuli than about artificial stimuli (Rieke
et al. 1995; Nemenman et al. 2008). The drawback of the
mutual information is that it is often difficult to estimate. In
particular, the neural responses to many repetitions of a stim-
ulus have to be recorded and the neural system is required
to remain in a stationary state. In biological experiments
these conditions make it often difficult to obtain the neces-
sary amount of data in order to obtain accurate and unbiased

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00422-018-0779-5&domain=pdf


524 Biological Cybernetics (2018) 112:523–538

estimates of themutual information (Strong et al. 1998; Borst
and Theunissen 1999). Although a lot of improved estimates
have been developed (see, e.g., Panzeri and Schultz 2001;
Victor 2002; Kraskov et al. 2004; Victor 2006; Panzeri et al.
2007), the faithful estimation of the mutual information still
remains difficult, in particular for large neuronal ensembles
and complex stimuli.

One possible solution to the problems pertaining the direct
estimation is to use a linear lower bound as an approxima-
tion for the mutual information (Bialek et al. 1991; Gabbiani
1996). In cases,where information can be decoded by a linear
filter from the output, the linear lower bound has proven to
be a very helpful tool and some examples have been reported
for which the linear lower bound gives an accurate approxi-
mation of the information rate (Rieke et al. 1993; Borst and
Theunissen 1999). However, intuitively one can expect that
for an inherently nonlinear system as a neuron or a neural
network it may not always be possible to linearly decode all
of the available information (Theunissen and Miller 1995).
Indeed, there are also examples of neural systems for which
the linear approximation fails (Neiman and Russell 2011;
Aldworth et al. 2011; Bernardi and Lindner 2015) and a
detailed comparison has revealed that in many cases we may
miss half of the information rate if the linear lower bound is
used (Aldworth et al. 2011).

The linear lower bound is based on the linear correlations
between input and output signals and their autocorrelations.
In this paper we investigate how nonlinear correlation coef-
ficients can be used to improve the estimation of the mutual
information and come up with a nonlinear lower bound for
the mutual information between stimulus and response. For
simplicity, we consider the case of a static Gaussian input
signal but hope that something can be learned from our exer-
cise about how to treat the more broadly relevant case of
a time-dependent input signal (a static input signal can be
viewed as the limiting case of a very slow input signal which
is encoded in the firing rate).

The formula that we derive is simple and is straightfor-
wardly applicable to neural data. We consider a few models
and different parameter regimes to facilitate the intuition
about when the nonlinear lower bound can improve the linear
approximation of the information transfer. In particular, we
compare our nonlinear lower bound formula to the mutual
information for a simple Gaussian model and two different
neuron models (for the latter models, we also compare to an
alternative approximation by Brunel and Nadal 1998). We
find that for signals of intermediate strength the nonlinear
estimate is close to the mutual information and performs bet-
ter than the linear approximation. Some further results which
are also derived in this paper are an integral formula for the
mutual information between a Gaussian input signal and a
Gaussian output variable and an upper bound for the mutual
informationwhich is valid in case of a Gaussian output noise.

Our paper is organized as follows. In Sect. 2, we recall
some basic concepts of information theory and introduce the
models to be inspected. In subsequent Sect. 3 we derive our
main theoretical results. The latter are applied to two sim-
ple Gaussian models in Sect. 4 and to two neural models
in Sect. 5. We conclude in Sect. 6 with a discussion of our
theoretical and numerical results.

2 Measures andmodels

2.1 Mutual information

One established measure of neural information transmission
that does not require undue assumptions about encoding or
decoding mechanisms is the mutual information (Rieke et al.
1996). In this study we consider a noisy neuron which is
subject to a repeated stimulation by a static signal and for
which the observation time of the output is long enough such
that transients can be ignored (stationary setup). By a static
signalwemeana signalwhich is constant over the timecourse
of a trial but assumes different values for different trials.
Because in experiments researchers often employ Gaussian
signals, we will here also choose a Gaussian distribution of
the signal values on different trials. Because the signal is
chosen to be static, the exact timing of the neural spikes will
not play a role and only the spike count N within a time
window T will carry information about the signal s.

In order to determine the information that the output vari-
able N carries about the input variable s, we first have to
define the total entropy of the output. This entropy is given
by

HN = −
∑

i

P(Ni ) log2 (P(Ni )) , (1)

where P(Ni ) is the probability that the variable N will attain
the state Ni and where the sum runs over all possible states.
For simplicity, let us first consider the signal s in a discretized
version, i.e., s attains different states s j . Picking out only
realizations for which the signal s was in the state s j yields
the conditional entropy of N

HN |s j = −
∑

i

P(Ni |s j ) log2
(
P(Ni |s j )

)
. (2)

The mutual information between the variables s and N is
given by the difference of entropies and can be expressed in
a symmetric fashion by the probabilities of input and output

M = HN − 〈
HN |s

〉
s

=
∑

i, j

P(Ni , s j ) log2

(
P(Ni , s j )

P(Ni )P(s j )

)
. (3)
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Here 〈.〉s indicates an ensemble average over different real-
izations of the signal. From Eq. (3) it can be seen that
the mutual information is a nonlinear measure of statistical
dependencies between s and N . For continuously distributed
variables s and x (e.g., a Gaussian input signal and a Gaus-
sian output variable) the sums in Eq. (3) have to be replaced
by integrals

M =
∫∫

dsdx p(x, s) log2

(
p(x, s)

p(x)p(s)

)
. (4)

In this case, themutual information corresponds to the differ-
ence of differential entropies, i.e., Eqs. (1) and (2) in integral
form (for a discussion of the properties of this kind of entropy
see Cover and Thomas 1991).

2.2 Correlation coefficients

In our theory we will employ various correlation coefficients
that for general stochastic variables a and b are defined by

ρ2
a,b =〈(a − 〈a〉) (b − 〈b〉)〉2

σ 2
a σ 2

b

, (5)

where σ 2
a = 〈

(a − 〈a〉)2〉 and σ 2
b = 〈

(b − 〈b〉)2〉 are the
variances. If a and b are linear functions of other stochastic
variables (e.g., the input and output of a stochastic system)
then ρa,b is referred to as a linear correlation coefficient.
However, if a and b are nonlinear functions of other stochas-
tic variables, then ρa,b is referred to as a nonlinear correlation
coefficient.

2.3 Leaky integrate-and-fire neuronmodel

The popular stochastic leaky integrate-and-fire neuronmodel
(see the comprehensive review by Burkitt 2006) is a point-
neuron model in which the subthreshold voltage across the
nerve membrane is determined by the following stochastic
differential equation

τm v̇ = −v + μ + s + ξ(t) . (6)

Here τm is themembrane time constant,μ is a constant input,
s is a static input signal, and ξ is a white Gaussian noise with
zeromean and the autocorrelation

〈
ξ(t)ξ(t + t ′)

〉 = 2Dδ(t ′);
both μ and s are electric input currents but rescaled by the
input resistance and thus given in units of a voltage. The
stochastic equation for the subthreshold voltage, Eq. (6), is
complemented by a fire-and-reset rule: Whenever the volt-
age hits the threshold, vT = 1, a spike is registered and the
voltage is set to the value vR = 0 for a refractory time τref
after which it continues to evolve according to Eq. (6). In
this paper, we will consider two different mean currents μ,

corresponding to two different firing regimes of the neuron.
In the suprathreshold firing regime (μ = 1.1) the constant
current leads to sustained firing even in the absence of noise
(Vilela and Lindner 2009b). In the subthreshold firing regime
(μ = 0.9) there is no firing in the absence of noise and
only fluctuations can lift the voltage over the threshold and
induce firing. Throughout the paper we will use the noise
value D = 0.001.

2.4 Izhikevich’s Na–Kmodel with channel noise

We also perform numerical simulations of Izhikevich’s
persistent-sodium-plus-potassium model (or Na–K model
for short), which was originally proposed in Izhikevich
(2007), is similar to the two-dimensional Morris–Lecar
model (Morris and Lecar 1981), and has been studied in a
stochastic version with discrete ion channel noise in Thomas
and Lindner (2014) and Voronenko and Lindner (2017). The
dynamics of the Na–K model is given by

C v̇ = I0 + s − IL(v) − INa(v) − IK(v, n) , (7)

with a constant input current I0, a static signal s, a passive leak
current IL and a deterministic “persistent sodium” current
INa. The potassium-gated current IK in Eq. (7) is gated by the
number of open potassium channels 0 ≤ n(t) ≤ ntot, and the
dynamics of the number of open channels n(t) is governed by
the transition rates Ro(v) for channel opening and Rc(v) for
channel closing. The Na–K model exhibits excitability and
generates spikes without an additional fire-and-reset rule as
is required for the LIF.

Because the potassium channels open and close according
to transition rates which are voltage dependent, the resulting
noise for the voltage dynamics is effectively a multiplica-
tive and temporally correlated noise in contrast to the white
(uncorrelated) noise for the LIF. In this paper we consider a
potassium current with a high threshold and standard param-
eters (Izhikevich 2007;Thomas andLindner 2014), forwhich
the passive leak current is given by IL = gL(v − EL) with
gL = 8mS/cm2 and EL = −80mV, the “persistent sodium”
current is defined as INa,p = gNam∞(v)(v − ENa) with
gNa = 20mS/cm2, ENa = 60mV, and a voltage-dependent
activation m∞(v) = 1/{1 + exp[(−20mV − v)/15mV]};
the potassium current is IK(t) = gk(n(t)/ntot)(v − EK)

with gK = 10mS/cm2, EK = −90mV, open channel
number 0 ≤ n(t) ≤ ntot and the total number of chan-
nels ntot = 100. The per capita transition rate for channel
opening is Ro(v) = 1/{1+ exp[(−25mV− v)/5mV]}, and
for channel closing, it is Rc(v) = 1− Ro(v). The membrane
capacitance isC = 1µF/cm2, and the constant input current
is I0 = 6µA/cm2.
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3 Theory

3.1 Nonlinear lower bound: Gaussian input

In the following we introduce a quadratic reconstruction of a
static Gaussian input variable s from a static output variable
x . For this quadratic reconstructionwe determine the optimal
coefficients, for which the reconstruction extracts the maxi-
mally possible information from the output. We then derive
the nonlinear lower bound, which corresponds to the mini-
mal amount of information that is retrieved from the output
by the introduced quadratic reconstruction. Furthermore, we
demonstrate that the nonlinear lower bound is always smaller
than or equal to the full mutual information and is always
larger than or equal to the linear lower bound. The derivation
which we present here is an extension of the derivation for
the linear lower bound in Gabbiani (1996).

We first define the quadratic reconstruction, which takes
into account second-order contributions from the output

srec = h · N + g · N 2 . (8)

The reconstruction error is given by the difference between
the reconstructed and the original signal, η = s − srec. The
optimal coefficients hopt and gopt are determined by mini-
mizing σ 2

η , the variance of the reconstruction error

σ 2
η =

〈
η2

〉
− 〈η〉2

= σ 2
s + h2σ 2

N + g2σ 2
N2 + 2hg

〈(
N −〈N 〉

)(
N 2 −

〈
N 2

〉)〉

−2h
〈(
s−〈s〉

)(
N −〈N 〉

)〉
−2g

〈(
s−〈s〉

)(
N 2−

〈
N 2

〉)〉
.

(9)

The coefficients hopt and gopt are determined by setting the
partial derivatives of Eq. (9) with respect to h and g to zero;
using the definition of ρ from Eq. (5), this yields

hopt = σs

σN

1

1 − ρ2
N ,N2

(
ρs,N − ρs,N2ρN ,N2

)
, (10)

gopt = σs

σN2

1

1 − ρ2
N ,N2

(
ρs,N2 − ρs,NρN ,N2

)
. (11)

The minimal reconstruction error achieved in this way reads

σ 2
η,nl =σ 2

s − σ 2
s ρ2

s,N − σ 2
s

(
ρs,N2 − ρs,NρN ,N2

)2

1 − ρ2
N ,N2

. (12)

For a linear signal reconstruction slinrec = hlinN the minimal
reconstruction error results in

σ 2
η,lin =σ 2

s − σ 2
s ρ2

s,N . (13)

Now, we determine the information that the quadratic recon-
struction can recover from the output about the stimulus. This
information is given by the mutual information between the
input signal and the reconstructed signal,Ms,srec , and will in
general be smaller than the mutual information between the
input signal and the output N according to the data process-
ing inequality (Cover and Thomas 1991)

Ms,srec ≤ MN ,s . (14)

The mutual information between s and srec can be rewritten
in terms of entropies as

Ms,srec = Hs − 〈
Hs|srec

〉
srec

, (15)

where Hs is the signal entropy and
〈
Hs|srec

〉
is the noise

entropy. For a fixed srec, the uncertainty about the input s
is represented by the reconstruction noise η and we find

Hs|srec = Hη|srec . (16)

The statistics of the reconstruction noise η(srec) will in gen-
eral depend on the specific realization of srec and may not be
Gaussian. However, the fact that for fixed variance σ 2

η (srec)
the entropy is maximized by a Gaussian random variable ηG
(Shannon 1948; Rieke et al. 1996) implies that

Hη|srec ≤ HηG |srec . (17)

Taking further into account that an averaged conditional
entropy is always smaller than the unconditioned entropy
(Rieke et al. 1996) leads to

〈
HηG |srec

〉
srec

≤ HηG . (18)

In conclusion, using Eqs. (14–18) we obtain the lower bound
for the mutual information between s and N (Mlb ≤ Ms,N )
to be

Mlb = Hs − HηG = −1

2
log2

(
σ 2

η,nl

σ 2
s

)
, (19)

where Hs and HηG are both entropies of the Gaussian vari-
ables s and ηG with variances σ 2

s and σ 2
η,nl , respectively.

Combining Eqs. (12) and (19) we arrive at the final result for
the nonlinear lower bound

Mnl
lb = −1

2
log2

(
1 − ρ2

N ,s −
(
ρs,N2 − ρs,NρN ,N2

)2

1 − ρ2
N ,N2

)
.

(20)
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This may be compared to the linear lower bound, obtained
by inserting Eq. (13) into Eq. (19)

Mlin
lb = −1

2
log2

(
1 − ρ2

N ,s

)
. (21)

Because the definition of ρa,b in Eq. (5) implies that
ρ2
N ,N2 ≤ 1, it holds that

(
ρs,N2 − ρs,NρN ,N2

)2

1 − ρ2
N ,N2

≥ 0 , (22)

which implies that the nonlinear lower bound is always higher
than or equal to the linear lower bound

Mnl
lb ≥ Mlin

lb = −1

2
log2

(
1 − ρ2

N ,s

)
, (23)

as can be expected.

3.2 Upper bound: Gaussian input and Gaussian
noise

It is possible to derive an upper bound formula for the mutual
information in the case in which both the input signal and the
intrinsic noise (for a frozen value of the input signal) have
Gaussian statistics. This is less general than the case covered
in the previous section but still comprises cases in which both
the mean and variance of the output depend in a nonlinear
fashion on the input signal.

In the following we consider a nonlinear system of the
form

x = M(s) + √
V (s) ξ , (24)

where M(s) and V (s) are nonlinear functions of s and the
noise ξ is a Gaussian noise variable with zero mean and unit
variance. For the system in Eq. (24) we derive a generalized
upper bound for the mutual information. Our derivation is
a generalization of the derivation of the upper bound from
Borst and Theunissen (1999), which only holds for constant
V (s) ≡const. The generalized upper bound can be used as
a check for the error-prone numerical estimate of the full
mutual information. Furthermore, whenever one of the lower
bounds is close to the upper bound, it is possible to use either
one of these measures as an estimate for the mutual infor-
mation. This could be particularly helpful in experimental
settings where the amount of available data is too limited to
compute the mutual information directly.

The mutual information between a signal s and the output
of the nonlinear Gaussian model, Eq. (24), reads

Mx,s = Hx − 〈
Hx |s

〉
s . (25)

For a fixed signal, all the variability of x comes from the noise
ξ , which is multiplied with

√
V (s). Hence, we find that

p(x |s) = 1√
2πV (s)

e− (x−M(s))2

2V (s) , (26)

which leads to the differential entropy

〈
Hx |s

〉
s =1

2

〈
log2 (2πeV (s))

〉
s , (27)

where e is the Euler constant. In general, the output x will be
non-Gaussian, such that the entropy Hx will be smaller than
or equal to the entropy HxG of a Gaussian variable xG with
the same variance as x . The entropy of a Gaussian variable
with the density pG(x) = exp[−x2/(2σ 2

x )]/√2πσ 2
x is given

by

HxG = −
∫

ds p(s)
∫

dx pG(x) log2(pG(x))

=1

2
log2

(
2πeσ 2

x

)
, (28)

which leads to

Mx,s = Hx − 〈
Hx |s

〉
s ≤ HxG − 〈

Hx |s
〉
s = Mgub , (29)

where Mgub is the generalized upper bound for the mutual
information. Inserting Eqs. (27) and (28) into Eq. (29) leads
to the final result for the upper bound for the mutual informa-
tion of a signal processing system with a Gaussian intrinsic
noise:

Mgub = 1

2

〈
log2

(
σ 2
x

V (s)

)〉

s
(30)

The relation in Eq. (29) holds if the output can be written
in the form of Eq. (24) and if the noise ξ is Gaussian for
a fixed realization of the signal. If the unconditional distri-
bution of x is also Gaussian, then the equality in Eq. (29)
holds and the upper bound is equal to the mutual informa-
tion. However, when the distribution x deviates from the
Gaussian distribution, e.g., due to a nonlinearity of M(s)
and V (s) in Eq. (24) or due to a non-Gaussian distribution
of the signal, then the upper bound overestimates the mutual
information. Note that Eq. (29) breaks down if the noise ξ is
non-Gaussian and that in this case there is no clear relation
betweenMgub and the mutual information. This is a restric-
tion which is not shared by the linear or the nonlinear lower
bounds.
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4 Mutual information and its bounds for a
nonlinear Gaussianmodel

We consider the Gaussian model, Eq. (24). Then the mutual
information between s and x is given by

M =
∫∫

dsdx ps(s)px (x |s) log2
[

px (x |s)∫
ds′ ps(s′)px (x |s′)

]
,

(31)

where

ps(s) = 1√
2πσ 2

s

e
− s2

2σ2s (32)

and

px (x |s) = 1√
2πV (s)

e− (x−M(s))2

2V (s) . (33)

Using Eqs. (5) and (24) we can compute the linear and non-
linear correlation coefficients between s and x and find

ρ2
s,x =〈s · M(s)〉2

σ 2
s σ 2

x
,

ρ2
s,x2 =

(〈s · M(s)2〉 + 〈s · V (s)〉2)2
σ 2
s σ 2

x2
,

ρ2
x,x2 = 1

σ 2
x σ 2

x2

(
〈M3(s)〉−〈M(s)〉〈M2(s)〉

+ 3〈M(s)V (s)〉−〈M(s)〉〈V (s)〉
)2

, (34)

where the variance of the output is given by

σ 2
x =

〈
M2(s)

〉
− 〈M(s)〉2 + 〈V (s)〉 (35)

and the variance of the squared output reads

σ 2
x2 =

〈
M4(s)

〉
−

〈
M2(s)

〉2 + 6
〈
M2(s)V (s)

〉

−
〈
M2(s)

〉
〈V (s)〉 + 3

〈
V 2(s)

〉
− 〈V (s)〉2 . (36)

Nonlinear signal dependence of themean

We now consider a Gaussian model with the functions

M(s) = s + αs2 and V (s) = 1 , (37)

where α is a constant coefficient. The functions M(s) and
V (s) are plotted in Fig. 1a for α = 0.001. Note that for
the displayed range of signal values the function M(s) only

Fig. 1 Gaussianmodel with a nonlinear signal dependence of themean.
a Function M(s) vs signal value; function V (s) vs signal value; and
rescaled signal distributions for three different values of σs . b Mutual
information (red circles), linear lower bound (orange triangles), nonlin-
ear lower bound (green diamonds) and upper bound (blue squares) vs
σs (color figure online)

slightly deviates from a linear function (gray-dotted line).
The third panel in Fig. 1a shows the Gaussian signal distri-
butions for σs = 20, 50, 100, which were renormalized such
that the maximum is always equal to one. The renormalized
distribution illustrates which signal values are most likely
assumed by the random signal. For example, for σs = 20
99.7% of the signal realizations fall within the interval
[−60, 60] over which the function M(s) is hardly distin-
guishable from the gray-dashed line. The colored shaded
regions indicate signal values which lie within one standard
deviation away from the mean (yellow for σs = 20, blue for
σs = 50, red for σs = 100). For the correlation coefficients
we find

ρ2
s,x = σ 2

s

2ασ 4
s + σ 2

s + 1
,

ρ2
s,x2 = 18α2σ 6

s

48α4σ 8
s + 42α2σ 6

s + σ 4
s (1 + 6α2) + 2σ 2

s + 1
,
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ρ2
x,x2 =2α2σ 4

s

(
1 + 4σ 2

s + 6α2σ 4
s

)2

1 + σ 2
s + 2ασ 4

s

[
1 + σ 4

s

+ 42α2σ 6
s + 48α4σ 8

s + 2(σ 2
s + 3α2σ 4

s )
]−1

. (38)

The nonlinear and linear lower bounds are computed by
inserting the nonlinear correlation coefficients from Eq. (38)
into Eq. (20) and Eq. (21), respectively. The upper bound for
the Gaussian model, Eq. (30), with the functions M(s) and
V (s) from Eq. (37) is given by

Mgub = 1

2
log2(2α

2σ 4
s + σ 2

s + 1) . (39)

The mutual information is computed by numerically evalu-
ating the integral in Eq. (31).

The resulting mutual information and its various bounds
are plotted in Fig. 1b. The mutual information (red circles)
increases monotonically with increasing σs and is matched
closely by the upper bound (blue squares).Aswe discussed in
the introduction, the linear lower bound can often be used as
a simple estimate for the mutual information for weak signal
strengths. Indeed, we find that the linear lower bound (yellow
triangles) is a faithful approximation of the mutual informa-
tion for σs ≤ 20. For larger signal strengths, however, the
linear lower bound decays with increasing signal strength
after reaching a maximum at σs ≈ 25. The nonlinear lower
bound (green diamonds) closely matches the mutual infor-
mation for σs ≤ 40, a range which is twice as large than for
the linear lower bound. For larger signal strengths the nonlin-
ear lower bound also decays with increasing signal strength
in a similar way as the linear lower bound, after reaching a
maximum at σs ≈ 55. The plot also illustrates that the non-
linear lower bound always is equal to or larger than the linear
lower bound.

Why do the lower bounds decrease at large σs with
growing signal strength? This asymptotic behavior can be
understood by considering the linear and nonlinear corre-
lation coefficients, Eq. (38), in the limit of a strong signal.
Because of the nonlinear term in the model, the variance
for very strong amplitude grows more strongly than the
co-variance between signal and output and thus the corre-
sponding correlation coefficients vanish in the limit:

lim
σs→∞ ρ2

s,x = 0 , lim
σs→∞ ρ2

s,x2 = 0 , lim
σs→∞ ρ2

x,x2 = 3

4
.

(40)

Because the lower bounds are entirely based on these corre-
lations, their respective limits vanish as well

lim
σs→∞Mlin

lb = 0 and lim
σs→∞Mnl

lb = 0 . (41)

In marked contrast to the lower bounds, the upper bound,
Eq. (39), grows for increasing signal strengths. Although
we cannot determine the asymptotics of the mutual informa-
tion analytically, we expect that stronger signals will imply a
stronger statistical dependence between x and s resulting in
an unlimited growth of the mutual information with increas-
ing σs . The simple example illustrates that the lower bounds
do not allow general conclusions about the qualitative behav-
ior of the mutual information at arbitrary signal amplitudes.

Despite the strong discrepancy between mutual informa-
tion and its lower bounds at large signal amplitude, the
difference between the two lower bounds for the intermediate
amplitude range deserves attention. In our simple example,
the nonlinear lower bound provides a simple estimate of
the mutual information for a much larger range of signal
strengths than the linear lower bound (0 ≤ σs ≤ 40 vs
0 ≤ σs ≤ 20, respectively). Hence, the nonlinear lower
bound constitutes, at least for this simple example, a sig-
nificant improvement compared to the linear lower bound.

Nonlinear signal dependence of the output variance

Now we consider a Gaussian model for which only the vari-
ance exhibits a signal dependence:

M(s) = 0 and V (s) = (1 + βs)2 , (42)

where β is a constant parameter. The functions M(s) and
V (s) with β = 0.01 are shown in Fig. 2a. The third panel
in Fig. 1a shows the renormalized Gaussian signal distribu-
tions for σs = 20, 50, 100. For σs = 20 more than 99% of
all signal realizations are within the interval [−60, 60] over
which the function V (s) is invertible. For σs = 100, how-
ever, the values of the signal upon different realizations are
drawn from a wider interval, over which the function V (s)
is not invertible anymore. For our choice of M(s) and V (s)
in Eq. (42), the linear and nonlinear correlation coefficients,
Eq. (34), can be calculated and read

ρ2
s,x = 0 ,

ρ2
s,x2 = 2β2σ 2

s

1 + 8β2σ 2
s + 4β4σ 4

s
,

ρ2
x,x2 = 0 , (43)

which for the linear and nonlinear lower bounds leads to

Mlin
lb = 0 , (44)

Mnl
lb = −1

2
log2

(
1 − 2β2σ 2

s

1 + 8β2σ 2
s + 4β4σ 4

s

)
. (45)
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Fig. 2 Gaussian model with a nonlinear signal dependence of the out-
put variance. a Function M(s) vs signal value; function V (s) vs signal
value; and rescaled signal distributions for three different values of σs .
b Mutual information (red circles), linear lower bound (orange trian-
gles), nonlinear lower bound (green diamonds) and upper bound (blue
squares) vs σs (color figure online)

The upper bound is given by

Mgub = 1

2

〈
log2

(
1 + β2σ 2

s

(1 + βs)2

)〉

s

= 1

2

∞∫

−∞
ds

e
− s2

2σ2s
√
2πσ 2

s

log2

(
1 + β2σ 2

s

(1 + βs)2

)
. (46)

and still requires the numerical evaluationof one integral. The
mutual information is computed via a numerical integration
of Eq. (31).

We can see in Fig. 2b that the mutual information (red cir-
cles) increasesmonotonically for increasing signal strengths.
The linear lower bound (orange triangles) is always zero irre-
spective of the strength of the signal. The nonlinear lower
bound (green diamonds) matches closely the mutual infor-
mation for σs ≤ 20, reaches a maximum and then decreases
for increasing signal strength. From Eq. (45) we can find that
the maximum is attained at σs = 1/(

√
2 · |β|) and that the

maximal value of the nonlinear lower bound is given by

Mnl
lb,max = −0.5

(
log2(5) − log2(6)

) ≈ 0.13. (47)

Interestingly, themaximal value of the nonlinear lower bound
is independent of the choice of the coefficientβ. In the limit of
large signal strengths, the nonlinear correlation coefficients
between s and x4 are given by limσs→∞ ρ2

s,x2
= 0, which

implies that the nonlinear lower bound decays to zero for
large signal strengths similar to what we already observed for
the Gaussian model with the nonlinear signal dependence of
the mean. For small signal strengths, the upper bound (blue
squares in Fig. 2b) increases monotonically with increasing
σs . In order to determine the behavior of the upper bound
for large signal strength, we recast the integral expression in
Eq. (46) by a simple variable transformation in the following
form

Mgub = − 1√
8π

∞∫

−∞
ds e− s2

2 log2

⎛

⎝
1
σ 2
s

+ 2βs
σs

+ β2s2

1
σ 2
s

+ β2

⎞

⎠ .

(48)

In the limit σs → ∞, the above equation can be expressed in
terms of the Euler–Mascheroni constant γ ≈ 0.58 (Ryzhik
and Gradshtein 1963; Lagarias 2013)

lim
σs→∞Mgub = − 1√

8π

∞∫

−∞
ds e− s2

2 log2
(
s2

)

= 1

2

(
1 + γ

ln(2)

)
≈ 0.92 . (49)

We thus find that for large signal strength the upper bound
saturates at a finite value (dashed line in Fig. 2b). This implies
that also the mutual information remains finite even in the
limit of strong signal.

In conclusion, we find for the Gaussian model with
a signal-dependent output variance: (i) The linear lower
bound cannot provide a nontrivial approximation for the
mutual information because the linear correlation coefficient
between input and output is always zero, irrespective of the
signal strength. (ii) The nonlinear lower bound provides a
good estimate of the mutual information for weak signal
strengths (σs ≤ 20 in our case). (iii) The mutual informa-
tion does not grow without bounds but saturates at a finite
value.

5 Nonlinear transmission of information
about a Gaussian signal by the neural
spike count

We now investigate the information transmission for a Gaus-
sian signal for two neuron models, the LIF model and the
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Na–K model. In particular, we are interested in the infor-
mation which the neural spike count carries about a static
Gaussian input signal. In addition to the numerical estimate
of themutual information,we also determine the upper bound
and the linear and the nonlinear lower bounds for the mutual
information and study under which conditions these bounds
can be used as approximations for the mutual information.
We consider a Gaussian input signal with zero mean and
standard deviation σs .

5.1 Gaussianmodel for the LIF spike count for
large T

The LIFmodel if driven by awhite Gaussian noise and a con-
stant input current, generates a renewal point process—the
interspike intervals are statistically independent because the
reset of the voltage erases any memory that could be carried
by the voltage variable and the driving noise is uncorrelated
by definition. For large observation times, the statistics of the
neural spike count for a renewal process approaches a Gaus-
sian distribution (Cox 1962). This allows us to approximate
the neural spike count by a Gaussian variable xN which we
define by the stochastic equation

xN =MN (s) + √
VN (s) ξ , (50)

where ξ is a Gaussian noise with unit variance. The non-
linear functions MN (s) and VN (s) correspond to the mean
and variance of the spike count for a fixed signal realization,
respectively. Numerically, these functions can be determined
by repeatedly stimulating a neuron with a signal s and by
computing mean spike count and the spike count variance,
respectively. By repeating this procedure for different values
of s it is possible to obtain the full function MN (s). For the
LIFmodel, the functionsMN (s) (blue circles) andVN (s) (red
squares) are shown in Figs. 3a and 4a for the suprathreshold
and subthreshold firing regimes, respectively. Note that the
only parameter that changes from the suprathreshold regime
to the subthreshold regimes is the mean current μ which
amounts to a simple shift of the signal’s mean value. Con-
sequently, the functions MN (s) and VN (s) exhibit identical
shapes in the suprathreshold and subthreshold regimes but are
shifted along the x-axis (note the different ranges of the x-axis
in Figs. 3a and 4a).We find that the functionMN (s) increases
monotonicallywith s. The function VN (s)first increaseswith
s and then decreases again after attaining a maximum around
s = −0.15 in the suprathreshold regime and s = 0.05 in the
subthreshold regime1.

1 There is a strong similarity of the observed maximum of the spike
count vs mean signal to a standard problem in statistical physics: the
giant acceleration of diffusion in a tilted periodic potential (Reimann
et al. 2001; Lindner and Sokolov 2016). A Brownian particle in

Fig. 3 LIF model with T = 100 and μ = 1.1. a Signal-dependent
mean count MN (s), vs signal value; signal-dependent count variance
VN (s) vs signal value; and rescaled signal distributions for three differ-
ent values of σs . bMutual information (red circles), linear lower bound
(orange triangles), nonlinear lower bound (green diamonds) and upper
bound (blue squares) vs σs . The colored solid lines correspond to the
mutual information (red), the linear lower bound (orange), the nonlin-
ear lower bound (green) and the upper bound for the Gaussian model
with the same functions MN (s) and VN (s) as in a. The black solid
line shows the Brunel–Nadal approximation for the mutual information
(color figure online)

For the LIF model, the function MN (s) can be computed
analytically by employing the fact that the mean spike count
can be expressed as a product between the observation time
T and the signal-dependent firing rate:

MN (s) = Tr(s) . (51)

Footnote 1 continued
an inclined washboard potential attains a pronounced maximum in
its positional variance [quantified by the diffusion coefficient, D =
limT→∞〈(x −〈x〉)2〉/(2T )] for a certain intermediate value of the bias
force [equivalent to the mean signal in the LIFmodel]. Themaximum is
attained for a force (mean signal strength) close to the bifurcation value
that determines the transition from a noise-induced transport (or firing)
regime to a regime, in which movement (spiking) is possible without
noise.
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Fig. 4 LIF model with T = 100 and μ = 0.9. a Signal-dependent
mean count MN (s), vs signal value; signal-dependent count variance
VN (s) vs signal value; and rescaled signal distributions for two differ-
ent values of σs . bMutual information (red circles), linear lower bound
(orange triangles), nonlinear lower bound (green diamonds) and upper
bound (blue squares) vs σs . The colored solid lines correspond to the
mutual information (red), the linear lower bound (orange), the nonlin-
ear lower bound (green) and the upper bound for the Gaussian model
with the same functions MN (s) and VN (s) as in a. The black solid
line shows the Brunel–Nadal approximation for the mutual information
(color figure online)

Using thewell-known equation for theLIFfiring rate (Siegert
1951; Ricciardi 1977)

r(s) =
[
τref + √

π

∫ (μ+s−vT)/
√
2D

(μ+s−vR)/
√
2D

dx ex
2
erfc(x)

]−1

(52)

we obtain the analytical result for the function MN (s) (black
line) in Figs. 3a and 4a. For both firing regimes of the LIF
model, we find a very good agreement between the numerical
estimation and the analytical prediction. For a more detailed
illustration of the function r(s) for varying parameters μ

and D of the LIF model please refer to Vilela and Lindner
(2009a).

In order to find an analytical expression for the function
VN (s) we first express the spike count variance in terms of
the Fano factor, F = 〈

ΔN 2
〉
/ 〈N 〉, and the firing rate, r(s),

which leads to

VN (s) = Tr(s)F(s) . (53)

In the limit of large time windows the above equation trans-
forms into

lim
T→∞ VN (s) = Tr(s)Cv(s)

2 = T lim
ω→0

S(ω) , (54)

where Cv is the coefficient of variation of the interspike
intervals and limω→0 S(ω) is the low-frequency limit of the
spike train power spectrum. For the LIF model the coeffi-
cient of variation and the spike train power spectrum are
known analytically (Lindner et al. 2002). Here we used
the low-frequency limit of the analytical equation for the
power spectrum for an analytical prediction of the function
VN (s) (black line) in Figs. 3a and 4a. For s > −0.1 in the
suprathreshold regime and for s > 0.1 in the subthresh-
old regime the analytical theory underestimates the function
VN (s) because of the limit T → ∞ in the analytical formula
(here T = 100 in both firing regimes). For smaller s we find
a good agreement between the numerical estimates and the
theoretical predictions.

The Gaussian approximation for the neural spike count,
Eq. (50), allows us to use Eqs. (31–33) for the estimation of
the mutual information and Eq. (34) together with Eq. (20)
and Eq. (21) for the estimation of the linear and nonlin-
ear lower bounds for the LIF model. We also compute the
upper bound, Eq. (30). As we discussed above, in the limit
of large T the functions MN (s) and VN (s) of the LIF model
could in principle be computed analytically. For the subse-
quent analysis of the mutual information and the lower and
upper bounds, however, we employ the numerically mea-
sured MN (s) and VN (s). This allows a better comparison
between the LIF spike count and the Gaussian approxima-
tion in Eq. (50), without the confounding influence of the
discrepancies between the numerically measured functions
MN and VN and their analytical predictions due to a finite T .

We show the mutual information (red line), the upper
bound (blue line), the linear lower bound (orange line) and
the nonlinear lower bound (green solid line) for the Gaussian
model of the LIF spike count in the suprathreshold firing
regime in Fig. 3b. For a vanishing signal strength the mutual
information (red line) starts at zero and increases monotoni-
cally with increasing σs . The upper bound (blue line) closely
matches the mutual information for σs < 0.1. The linear
lower bound (yellow line) also increases monotonically with
σs andmatches closely themutual information forσs ≤ 0.03.
For σs > 0.03, however, the linear lower bound exhibits
a qualitatively different behavior from the mutual informa-
tion and decreases with increasing σs . The nonlinear lower
bound (green line) follows themutual information closely for
σs ≤ 0.07. For stronger signals the nonlinear lower bound
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decays with increasing σs in a similar way as the linear lower
bound but never falls below the latter as predicted byEq. (23).
Both lower bounds provide accurate estimates of the mutual
information for weak signals, but the nonlinear lower bound
does so for a broader range of signal strengths than the linear
lower bound.

We also consider themutual information and its upper and
lower bounds for the Gaussian model of the LIF spike count
in the subthreshold regime (μ = 0.9) in Fig. 4b. The mutual
information (red line) increasesmonotonically for increasing
σs but does not rise as fast as in the suprathreshold regime. At
σs = 0.1 the mutual information attains a value of approx-
imately 2 bits in the subthreshold regime as compared to
approximately 4 bits in the suprathreshold regime. The upper
bound (blue line) increases monotonically with σs , but for
stronger signals the difference between the upper bound and
the mutual information is much stronger in the subthreshold
regime than in the suprathreshold regime. In contrast to the
suprathreshold regime for which the linear and the nonlinear
lower bounds (yellow and green lines, respectively) exhib-
ited a peak with respect to σs , in the subthreshold regime
they increase monotonically with σs . Both lower bounds
coincide with the mutual information for σs < 0.01 but sig-
nificantly underestimate the mutual information for larger
signal strengths. In contrast to the suprathreshold regime,
the nonlinear lower bound does not provide any significant
improvement for the estimation of the mutual information as
compared to the linear lower bound.

5.2 Numerical estimation of themutual information
and its upper and lower bounds for the LIF
model

We now turn to the numerical estimation of the mutual infor-
mation between theGaussian signal and the spike count of the
LIF neuron model. In particular, we repeatedly draw realiza-
tions of a Gaussian signal, which then drive the LIF model,
Eq. (6). For each specific signal realization, we record the
number of spikes which occurred within a time window T .
From the resulting list of pairs of signal realizations and
spike countswe then estimate the probabilities P(N , s), P(s)
and P(N ) and determine the mutual information by means
of Eq. (3) [please refer to Voronenko (2018) for a more
detailed discussion of the numerical estimate]. For every
measurement of the spike count, the LIF model is subject
to independent intrinsic noise. From the list of signal and
spike count pairs we also numerically determine the linear
and nonlinear correlation coefficients and compute the lin-
ear and nonlinear lower bounds by employing Eqs. (21) and
(20). Finally,we perform a binning in s of the signal and spike
count pairs, determine the signal-dependent output variance,
V (s), and the total output variance, σ 2

x , and obtain the upper
bound by means of Eq. (30).

The numerical results for the mutual information, and the
linear and nonlinear lower bounds for the LIF model in the
suprathreshold regime (μ = 1.1) are shown as functions of
σs in Fig. 3b. We find a very good agreement between the
mutual information which we estimated for the LIF spike
count (colored symbols) and the mutual information which
we computed for the Gaussian model of the spike count
(colored lines). This good agreement allows us to use the
functions MN (s) and VN (s) for the interpretation of the
behavior of the nonlinear lower bound. First, we consider
a weak signal with σs = 0.01, the distribution of which
is illustrated (orange line) in Fig. 3a. The range of values
which are predominantly sampled by the signal is indicated
by the orange shading. In the relevant signal range, the func-
tionsMN (s) and VN (s) are effectively linear and this leads to
the good agreement of the linear lower bound, the nonlinear
lower bound and the mutual information for σs < 0.01 in
Fig. 3b. A strong signal with σs = 0.2 has a much broader
distribution (green solid line in Fig. 3a) and samples a much
larger range of signal values (green shading). In this range
the functionsMN (s) and VN (s) are strongly nonlinear, which
is the reason for the large discrepancy between the mutual
information and its lower bounds for σs = 0.2. For a signal of
intermediate strength with σs = 0.07 (distribution indicated
by the blue solid line in Fig. 3a) the range of values which are
predominantly sampled by the signal (blue shading) is such
that in this range the functions MN (s) and VN (s) exhibit
only weak nonlinearities, i.e., nonlinearities which could be
captured by the first terms of a Taylor expansion. As we
have already seen in the analysis of the Gaussian model with
a nonlinear signal dependence of the mean in the previous
chapter, for this type of nonlinearities the nonlinear lower
bound comprises a much better approximation of the mutual
information than the linear lower bound. Indeed, we find that
for σs = 0.07 the nonlinear lower bound is much closer to
the mutual information than the linear lower bound (Fig. 3b).

In the subthreshold regime in Fig. 4b, the agreement
between the mutual information for the LIF spike count (red
circles) and the mutual information for the Gaussian model
(red line) is worse than in the suprathreshold regime but still
reasonably good. The reason for the disagreement between
the LIF spike count and the Gaussianmodel can be explained
by the low mean spike count in the subthreshold regime. For
our choice of the observation time (T = 100), the discrete
nature of the spike count influences the behavior of themutual
information. For the lower bounds for themutual information
for theLIF spike count and theGaussianmodel the agreement
is remarkably good, despite the discussed limitations of the
Gaussianmodel. As beforewe can therefore use theGaussian
model for the interpretation of the behavior of the nonlinear
lower bound for different signal strengths. For weak signals
with σs = 0.01 the signal distribution is narrow (orange line
in Fig. 4a) and the signal predominantly samples a range of
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signal values (indicated by the orange shading) in which the
functions MN and VN are approximately linear. This leads
to the good agreement between the lower bounds and the
mutual information for σs = 0.01 in Fig. 4b. For a relatively
strong signal with σs = 0.07, the signal distribution is wider
(blue line in Fig. 4a) and the signal predominantly samples a
range of values (blue shading) over which the functions MN

and VN are strongly nonlinear, i.e., they cannot be expressed
by the first terms of a Taylor expansion. Consequently, the
mutual information is strongly underestimated by the lower
bounds for σs = 0.07 in Fig. 4b. Interestingly, in the sub-
threshold firing regime of the LIF there are no values of the
signal strength for which the nonlinear lower bound signif-
icantly exceeds the linear lower bound and provides a good
agreement with the mutual information.

An alternative approximation for the mutual information
between a static signal and the neural spike count was pro-
posed by Brunel and Nadal (1998). The authors model the
neural spike count by the Gaussian model, Eq. (50). In the
limiting case in which the modulation of the mean output by
the signal is much stronger than the modulation of the noise
variance, the authors derive an approximate expression for
the mutual information. For a Gaussian signal, their result
reduces to a single integral

MBN = 1√
8π

∞∫

−∞
dz e− z2

2 log2

(
σ 2
s M

′2
N (zσs)

VN (zσs)

)
, (55)

where the prime denotes the derivative of the mean with
respect to s. For general functions MN (s) and VN (s), the
above equation cannot be simplified further and the inte-
gral has to be evaluated numerically. However, in contrast to
the mutual information of our Gaussian model in Eq. (31)
with two integrals, Eq. (55) requires a numerical integration
over only one variable. We compare the approximation from
Eq. (55) with the mutual information for the LIF spike count
and with the mutual information of the Gaussian model in
Figs. 3b and 4b. In the suprathreshold regime, the approxima-
tion from Eq. (55) (black line) is in good agreement with the
mutual information (red circles) for σs < 0.15 and exhibits
a slight disagreement for stronger signals. In the subthresh-
old regime, however, the approximation from Eq. (55) (black
line in Fig. 4b) consistently underestimates the mutual infor-
mation irrespective of the signal strength. For weak signals
(σs < 0.015) the approximation by Brunel and Nadal pre-
dicts negative values for the mutual information because the
argument of the logarithm in Eq. (55) becomes smaller than
one for a significant range of signal values. This behavior is
a consequence of the assumption of Brunel and Nadal about
the smallness of VN (s). Note that although in our exam-
ples the Brunel–Nadal approximation is always equal to or

smaller than the actual mutual information, it is in general
not a lower bound.

5.3 Dependence of the linear and nonlinear
correlation coefficients on the observation
time T

The Gaussian approximation for the spike count allows us to
investigate the dependence of the linear and nonlinear cor-
relation coefficients on T . First, we use Eqs. (51) and (53)
and express the linear and nonlinear correlation coefficients,
Eq. (34), in terms of the signal-dependent firing rate r(s)
and the signal-dependent Fano factor F(s). For the linear
correlation coefficient between signal and output we find

ρ2
s,xN (T ) = 〈(s − 〈s〉)(xN − 〈xN 〉)〉2〈

(s − 〈s〉)2〉 〈(xN − 〈xN 〉)2〉

= ρ2
s,r

1 + 1
T

〈r(s)F(s)〉
〈(r(s)−〈r(s)〉)2〉

. (56)

For the nonlinear correlation coefficient between the signal
and the squared output we find

ρ2
s,x2N

=
〈
(s − 〈s〉)(x2N − 〈

x2N
〉
)
〉2

〈
(s − 〈s〉)2〉 〈(x2N − 〈

x2N
〉
)2

〉

=
ρ2
s,r2

1 + 4
T

〈r(s)3F(s)〉
〈(r(s)2−〈r(s)2〉)2〉 + 2

T 2
〈r(s)2F(s)2〉

〈(r(s)2−〈r(s)2〉)2〉
.

(57)

Finally we also obtain the nonlinear correlation coefficient
between the output and the squared output,

ρ2
xN ,x2N

=
〈
(xN − 〈xN 〉)(x2N − 〈

x2N
〉
)
〉2

〈
(xN − 〈xN 〉)2〉 〈(x2N − 〈

x2N
〉
)2

〉

=
ρ2
r ,r2

(
1+ 2

T

〈
r(s)2F(s)

〉

〈(r(s)−〈r(s)〉)(r(s)2−〈r(s)2〉)〉
)2

(
1+ 4

T
〈r(s)3F(s)〉

〈(r(s)2−〈r(s)2〉)2〉 + 2
T 2

〈r(s)2F(s)2〉
〈(r(s)2−〈r(s)2〉)2〉

)

×
[
1 + 1

T

〈r(s)F(s)〉〈
(r(s) − 〈r(s)〉)2〉

]−1

. (58)

Taking the limit of T → ∞ in Eqs. (56–58) we finally arrive
at

lim
T→∞ ρ2

s,xN= ρ2
s,r , lim

T→∞ ρ2
s,x2N

= ρ2
s,r2 ,

lim
T→∞ ρ2

xN ,x2N
= ρ2

r ,r2 . (59)

From the above equations it can be seen that in the limit
T → ∞ the linear and nonlinear correlation coefficients
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Fig. 5 LIF model with T = 1000 and μ = 1.1. a Signal-dependent
mean count MN (s), vs signal value; signal-dependent count variance
VN (s) vs signal value; and rescaled signal distributions for three differ-
ent values of σs . bMutual information (red circles), linear lower bound
(orange triangles), nonlinear lower bound (green diamonds) and upper
bound (blue squares) vs σs . The colored solid lines correspond to the
mutual information (red), the linear lower bound (orange), the nonlinear
lower bound (green) and the upper bound for the Gaussian model with
the same functions MN (s) and VN (s) as in a. The black solid line corre-
sponds to the Brunel–Nadal approximation for the mutual information
(color figure online)

converge to finite values, which do not depend on F(s) but
are expressed in terms of correlation coefficients between the
signal and the function r(s). This is consistent with the fact
that for long time windows the noise is effectively averaged
out and only the signal dependence of the mean contributes
to the estimation of the mutual information.

In Fig. 5a we show the numerically measured functions
MN (s) and VN (s) for T = 1000 and compare the numeri-
cal results to theoretical predictions from Eqs. (51) and (54)
(black lines). In comparison with the suprathreshold firing
regime for T = 100 (Fig. 3a) we can see that both functions
MN (s) and VN (s) increased by a factor of 10 and that the
theoretical prediction of VN (s) now exhibits a better match
with the numerical measurements. Because in the stochastic
equation for the Gaussian variable xN , Eq. (50), the function
VN (s) enters as the argument of a square root, the increase

of T from 100 to 1000 effectively diminishes the strength
of the noise in comparison with the noise independent term
MN (s). Consequently, the output xN is less noisy and we
expect a better transmission of information about the signal.
Indeed, Fig. 5b shows that the mutual information (red cir-
cles) increases in comparison with the setup with T = 100
for all values of σs (for σs = 0.2 it increases from 4.5 bits to
approximately 6 bits).

For the linear and the nonlinear lower bounds (orange
triangles and green diamonds, respectively) we find a quali-
tatively different behavior. For strong signals (e.g., σs = 0.2)
both lower bounds attain the value of 2 bits independent of
the choice of T . For intermediate signals however, both lower
bounds attain larger values for T = 1000 than for T = 100.
Furthermore, the nonlinear lower bound exhibits a stronger
increase than the linear lower bound. For σs = 0.6 the non-
linear lower bound increases from approximately 3.5 bits for
T = 100 to approximately 5 bits for T = 1000. Fromour dis-
cussion of the nonlinear correlation coefficients in the limit
of large T in Eq. (59) we can infer that the relative increase
of the nonlinear lower bound with respect to the linear lower
bound can be attributed to the decreased effect of the noise
on the output xN and on the nonlinear signal dependence of
the function r(s) which leads to nonvanishing nonlinear cor-
relation coefficients ρs,r2 and ρr ,r2 . The mutual information
and its upper and lower bounds for the Gaussian model (red,
blue, orange and green lines) are again in good agreement
with the numerical results for the LIF model (colored sym-
bols). Finally note that due to the output variability of the
spike count for T = 1000 the approximation by Brunel and
Nadal (black line) shows a good agreement with the mutual
information even for large signal strengths.

5.4 Nonlinear information transmission for the
Na–Kmodel

In order to demonstrate that our results are not specific to
the LIF model but are of a more general nature, we apply
our theory to the Na–K model with ion channel noise. First
we numerically estimate the mutual information between the
signal and the neural spike count (red circles in Fig. 6b).
Furthermore, we numerically measure the linear and nonlin-
ear correlation coefficients between the signal and the neural
spike count and compute the linear lower bound (orange tri-
angles) and the nonlinear lower bound (green diamonds) for
the mutual information. Finally, we numerically determine
the signal-dependent spike count variance and compute the
upper bound (blue squares). We find that the MI show a
very similar behavior as in the suprathreshold firing regime
of the LIF model. For weak signals (σs < 0.3) the lower
and upper bounds coincide with the mutual information. For
strong signals (σs > 0.7) the mutual information is overesti-
mated by the upper bound and significantly underestimated
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Fig. 6 NaK model with T = 1000ms and I0 = 6μA/cm2. a Signal-
dependent mean count MN (s), vs signal value; signal-dependent count
variance VN (s) vs signal value; and rescaled signal distributions for two
different values of σs . b Mutual information (red circles), linear lower
bound (orange triangles), nonlinear lower bound (green diamonds) and
upper bound (blue squares) vs σs . The colored solid lines correspond
to the mutual information (red), the linear lower bound (orange), the
nonlinear lower bound (green) and the upper bound for the Gaussian
model with the same functions MN (s) and VN (s) as in a (color figure
online)

by the linear and the nonlinear lower bounds. For signals of
intermediate strength (0.3 < σ < 0.7) the nonlinear lower
bound provides a significantly better approximation for the
mutual information than the linear lower bound.

We also determine the mean spike count as a function
of the value of the input signal, MN (s), and the signal-
dependent spike count variance, VN (s), which are shown in
Fig. 6a. As for the LIF model, we use the functions MN (s)
and VN (s) for a Gaussian model of the neural spike count.
For this model we then compute the mutual information (red
line Fig. 6b), the upper bound (blue line), the linear lower
bound (orange line) and the nonlinear lower bound (green
line). We find that the results for the Gaussian model are in
good agreement with the mutual information between the
signal and the spike count and its upper and lower bounds.

For two values of the signal standard deviation, σs = 0.3
and σs = 0.75 , we plot a rescaled version of the signal distri-

butions (orange and blue lines, respectively) in the third panel
of Fig. 6a. For σs = 0.3 the signal predominantly samples
a narrow range of signal values (orange -shaded region); for
σs = 0.75 the sampled signal range is considerably broader
(blue-shaded region). Thewidths of the two sampling regions
in turn determine which parts of the functions MN (s) and
VN (s) are sampled by the signal. If the functions MN (s) and
VN (s) are sampled in a region where they are essentially lin-
ear, then the linear lower bound provides a reliable estimate
of the mutual information (e.g., for σs = 0.3 in Fig. 6b).
However, for signals of intermediate strengths, which sam-
ple the functions MN (s) and VN (s) in a region where they
are weakly nonlinear, the nonlinear lower bound provides a
significant improvement for the approximation of the mutual
information as compared to the linear lower bound (e.g., for
σs = 0.75 in Fig. 6b).

6 Discussion

In this paper we derived a nonlinear lower bound for the
mutual information of a nonlinear system which is driven
by a static Gaussian signal. This bound incorporates non-
linear correlation coefficients between input and output. We
measured this nonlinear bound for two simple models with
Gaussian noise and for two spiking neuronmodels (a stochas-
tic LIF neuron with white Gaussian noise and Izhikevich’s
Na–Kmodel endowed with channel noise) and compared the
nonlinear bound to the mutual information and to previously
suggested approximations of it.

As demonstrated in several examples, our formula pro-
vides a significant improvement of the standard linear lower
bound approximation if the system is governed by a weak
nonlinearity and the signal amplitude is in an intermedi-
ate range. In biological systems the weak nonlinearity often
arises for neurons which are subject to sufficient background
noise. Furthermore, we can generally expect that the most
relevant signals for sensory neurons are the ones that are nei-
ther barely detectable nor overwhelmingly strong but in an
intermediate range (for a recent discussion of noise and signal
amplitudes in a biological model system, the electro-sensory
system of weakly electric fish, see Grewe et al. 2017).

We emphasize that the calculation of our formula hardly
requires much more efforts than for the computation of the
linear lower bound: We have to compute two more correla-
tion coefficients, which can be quickly done both in neural
(experimental) data and inneuronmodels that are exploredby
numerical simulations. Hence, our results offer a significant
improvement for both theoretical and experimental studies
of neural information transmission.

Our work also provides a link between nonlinear input–
output correlations and the mutual information. Although
nonlinear signal reconstructions have been successfully
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applied to biological systems in the past (e.g.,Marmarelis and
Naka 1972), many experimental studies have argued that the
nonlinear terms of the signal reconstruction do not contribute
to a better estimation of the mutual information (Bialek et al.
1991, 1993). Here, we demonstrated that for an interme-
diate stimulus range the nonlinear correlation coefficients
contribute to a significant improvement of the lower bound.
Furthermore, the deviation of the mutual information from
the linear lower bound can be completely understood by the
nonlinearity of transmission and in particular by a quadratic
nonlinearity. We believe that our result will be helpful in
further assessing the role of nonlinear input–output correla-
tions for neural signal transmission. We also think that for
models for which the nonlinear correlation coefficients can
be computed analytically (e.g., for the IF models with white
background noise) our work can contribute to new analytic
studies of neural signal transmission.

In our approach we used a specific (quadratic) nonlin-
earity. One obtains very similar formulas if other nonlinear
functions are used. In particular, if the term proportional to
N 2 in Eq. (8) is replaced by some nonlinear function f (N ),
then the nonlinear lower bound is given by the same expres-
sion as in Eq. (20) but where ρN ,N2 and ρs,N2 are replaced by
ρN , f (N ) and ρs, f (N ), respectively. One possible direction for
further research is to investigate whether additional terms of
a higher order than N 2 could further improve the nonlinear
lower bound. Another interesting approach would be to try
to find a nonlinear function which gives the strongest differ-
ence from the linear lower bound (i.e., the most significant
improvement). If it is possible to uniquely determine such an
optimal function, then it would be interesting to know how
it is related to the nonlinearity of the system.

In this paper we improved the linear lower bound by incor-
porating nonlinear terms into the signal reconstruction. We
then used the mean squared error of the signal reconstruc-
tion to obtain a lower bound for the mutual information. A
different approach to improve the linear lower bound (and
also further improve our nonlinear lower bound) would be
to find a relation between the mutual information and the
higher-order moments of the signal reconstruction (not only
the mean squared error but also for example the skewness
and kurtosis). We believe that this approach would further
improve the lower bounds for strong signals or for neural
systems in strongly nonlinear firing regimes.

Another possible extension of our work concerns the case
of multiple neurons transmitting information about the same
signal (but being subject to different but possibly correlated
noise sources). Finally, the case of a time-dependent stimulus
seems to be themost involved generalization of our approach:
Here we expect that terms involving higher-order coherence
functions (Nikias and Petropulu 1993), reflecting in partic-
ular the synergetic transmission of information about signal
components from multiple frequency bands (Bernardi and

Lindner 2015), will replace the correlation functions of the
simple static system that we have investigated.
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