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Abstract

Cognitive models of decision making are an important tool in studies of cognitive psychology and have been successfully
used to fit experimental data and to relate them to neurophysiological mechanisms in the brain. One of the most
important models for binary decision making is the diffusion-decision model (DDM) in which a diffusion process that
models the accumulation of perceived evidence yields the decisions upon reaching one of two thresholds. Due to its
simplicity, the model is analytically tractable and has been used to bridge the gap between implementations of decision
making in neurobiologically plausible neural networks and experiments. However, biologically realistic network models
exhibit nonlinear dynamics that yield via mean-field-reduction techniques a nonlinear DDM for which analytical solutions
and proper numerical tools in general are not known. Furthermore, although often agents have to make a number of
subsequent decisions, the statistics of such sequences of decisions (containing information on whether the decisions are
correct or incorrect and on their timing) are so far poorly understood. Here we introduce the decision trains, sequences
of negative or positive spikes at the decision times with the sign corresponding to the correctness of the decision. The
decision trains enable a proper characterization of experiments in which many trials are performed consecutively. For
the principal reference case of independent decisions (renewal statistics), we derive relations between the second-order
statistics of the decision trains (i.e. their power spectra) and the response-time densities. Most importantly, we extend
an efficient numerical procedure for spiking neuron models, the threshold-integration method, to determine the temporal
statistics of nonlinear DDMs. The threshold-integration method provides the temporal statistics, i.e. decision rates,
decision-time densities and the decision-train power spectra. Moreover, the procedure is used for the calculation of the
linear response to a sinusoidal modulation. We compare all results with direct simulations of the stochastic model.
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1. Introduction

Real life tasks often require sequences of decisions to be
made and, thus, decision making on a low level of cognition
is a crucial ability for higher animals to survive. Many
studies in cognitive psychology are devoted to the question
how animals, and particularly primates, make decisions
and how the process is implemented in the brain [22, 26,
8, 21]. In combination with decision making experiments,
abstract cognitive models are a useful tool to understand
how accumulated noisy perceptual representations yield
decisions [16].

In the standard model for binary decision making, the
diffusion-decision model (DDM) that was introduced by
Ratcliff [48] (see also Ratcliff and Smith [52] for compari-
son with other models), evidence for a decision is modeled
as temporally uncorrelated Gaussian noise and a constant
drift. Thus, within this model, the accumulation of per-
ceived evidence is a diffusion process. Decisions are made
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when the process exceeds one of the thresholds that re-
strict the process. The model and some variations of it
were extensively used in studies of decision making of pri-
mates and humans (see e.g. Ratcliff et al. [55], Ratcliff
[49], Palmer et al. [44], Ratcliff and McKoon [50], Cisek
et al. [10], McKoon and Ratcliff [37], Johanson et al. [28])
and furthermore, combined with direct measurements of
neural activity in monkeys [63, 62]. It was also used to gain
theoretical insights into the optimal decision process with
reward maximization [4, 3]. Due to the simplicity of the
model, it is analytically tractable and the response-time
distributions are given by the solution of a first-passage-
time problem [48].

Several extensions of the model were introduced in or-
der to account for additional features of decision making
and obtain more realistic modeling e.g. trial-to-trial vari-
ability of the starting point [51] or of the non-decision time
[54], multi-alternative tasks [38, 31] or urgency signals and
collapsing boundaries [10, 25]; see the detailed review by
Ratcliff et al. [53] for a history of the model. Many of
these extensions yielded temporally inhomogeneous but
spatially homogeneous diffusion processes for which the-
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Figure 1: Experimental paradigm related to model and decision train (color online). In this paper novel statistics for a two-alternative
forced-choice task are suggested, here illustrated for a motion discrimination task experiment (used in e.g. [62]). The subject, here a monkey,
is in front of a screen that shows a random cloud of dots of which some perform random walks while the other dots move coherently towards
one of the two opposing targets on the left (stimulus s = −1) and right (s = +1) hand sides indicated by the orange and blue circles,
respectively. As soon as the subject perceives the direction of the coherent motion, it makes the decision by a saccade towards the respective
target. The variable y accumulates perceived evidence towards the left or right target with positive and negative increments, respectively.
For a given stimulus, i.e. a certain ratio of dots moving to the left or right target with a certain speed, this stochastic process of evidence
accumulation may analogously described by an overdamped Brownian particle (grey circle) in potentials U-(y) and U+(y), respectively as
sketched below the monkey’s head. A decision is made when y(t) hits one of the thresholds ys- or ys+ indicated by vertical orange and blue
lines, respectively. After a decision and possibly a break, the experiment is repeated with a randomly picked coherent motion direction and
a relocation of all dots; in our model this would correspond to the reset of x′ (here shown from left to right). Experimental parameters
such as coherence and motion strength are fixed during the whole experiment (in contrast to e.g. [62]). The sequence of responses may be
captured by the response train in which times of the saccades towards the left and right targets are represented by δ-peaks with positive and
negative signs, respectively. By multiplication of the response train with the stimulus encoded by +1 for right and -1 for left movement shown
below, the decision train is obtained (bottom) in which correct and incorrect decisions are encoded. In this paper we exclusively consider the
statistics of this decision train.

oretical tools can be applied in order to calculate the first-
passage-time densities, also referred to as response-time
distributions in this context (see for instance [58] and [72]
for review on integral equation methods).

DDMs are also interesting from another perspective:
they may bridge the gap between experiments of decision
making and neurobiologically motivated models that de-
scribe how the decision making process is implemented
in the brain. In such models, evidence, in form of sen-

sory information, enters competing neural networks. For
instance, information encoded by (approximately Poisso-
nian) spike trains of neurons is accumulated by a neural
population; this accumulation can be approximated by an
Ornstein-Uhlenbeck process [73, 74]. A decision is made
following the winner-take-all principle in which one popu-
lation is very active and inhibits the other one that is silent
[81, 82, 35, 47]. The dynamics of such networks can be re-
duced to one-dimensional DDMs by the use of mean-field
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techniques [82]. In contrast to the original DDM with only
constant drift and noise, the nonlinear network dynamics
also yield nonlinear dynamics of the DDM [64]. Apart
from that, also the consideration of a changing environ-
ment yields a nonlinear term in the DDM [78]. For the
nonlinear diffusion processes no analytical solutions are
known and it is also not straight forward how to apply the
integral equation techniques developed for processes with
constant or linear drift functions [58]. Here we present
an efficient numerical procedure to calculate first-passage-
time densities for general nonlinear DDMs that is based on
the method of threshold integration by Richardson [59, 60]
for white-noise-driven integrate-and-fire neurons.

Experiments related to binary decision times often mea-
sure response-time distributions by performing sequential
trials with randomly varying setups (see e.g. [41, 23, 62,
49]). In such a procedure, slow transients that may occur
due to the loss of the subject’s attention and also possible
correlations between trials are neglected. As a second in-
novation in this paper, somewhat in contrast to the usual
approach in decision modeling, we consider the statistics
of sequences of consecutive decisions, the decision trains.
This approach includes the information that is usually cap-
tured in response-time densities by the distributions of the
inter-decision intervals (IDI) but also goes beyond it.

We explain the novel statistics by means of a thought
experiment, a motion discrimination task. In such
two-alternative forced-choice experiments, randomly dis-
tributed dots are presented on a screen to a subject as
shown in Fig. 1. A number of these dots perform one-
dimensional random walks in the horizontal direction with
predetermined variance of step sizes. The remaining dots
are moving coherently towards either the left or the right
hand side of the screen. The experimental control param-
eters are the fraction of coherently moving dots, speed of
the motion and step-size variance of the random walks.
The subject is placed in front of the screen and has to de-
termine the direction of the coherently moving points and,
subsequently, make a decision by a saccade or by pressing
a button. Here, one trial of the experiment consists of a
sequence of consecutive decisions in which the parameters
are fixed but the physical meaning of correct and incorrect,
here direction of coherent motion, switches randomly. Af-
ter each decision all the dots are randomly relocated, but
the coherence and motion strength as well as the variance
of the random-walk step size remains the same.

Results of such an experiment may be captured in the
response train that displays the saccades to the left and
right targets by positive and negative spikes at the times
at which the respective responses were made. By multi-
plying the response train with +1 and -1 corresponding to
the stimuli to the right and left targets, respectively, the
decision train is obtained in which the sign of the spike en-
codes correct or incorrect decisions. In order to introduce
a simple reference model, in this paper we focus only on
the decision train and make two simplifying assumptions
for the decision making process.

Firstly, we assume that both types of decisions are made
symmetrically with respect to their statistics. In other
words, we assume that there is no measurable difference in
the statistics of the decision times, which implies that, for
instance, the probability and the statistics of the decision
times for a left decision given a left-going stimulus are
the same as those for a right decision given a right-going
stimulus. Secondly, we make the simplifying assumption
that all decisions are made independently of each other. If
both assumptions are true, the explicit sequence of stimuli
is not relevant for the decision-train statistics.

In contrast to the standard statistics of response times,
the decision trains can describe the decision process also
on time scales much longer than the mean response-times.
If breaks between a decision and reset are included, for
instance emerging from a random foreperiod (see [23]) or
from getting a reward, it would be possible to subtract the
duration of the break from the respective IDI; in this case,
the time scale of the decision train would not represent the
absolute physical time anymore.

If we characterize the decision process as a time series
in the form of the trains of correct and incorrect decisions,
the most important statistics are the mean values of these
trains and their variance distribution in the frequency do-
main, i.e. their power spectra [30]. Generally, the decision-
train power spectra might reveal novel insights into the
correlation structure of subsequent decision making pro-
cesses.

For the important reference case of a decision sequence
with independent IDIs, we provide analytical formulas that
connect its statistics, namely, the interval distributions
from reset to the ensuing decision, between consecutive
decisions of the same kind and the power spectra of the
decision trains. The decision-train statistics are also suit-
able to describe how the decisions in such a sequence are
influenced by time-dependent signals imposed by the ex-
perimenter and lasting over the whole sequence, e.g. a
periodic modulation of the velocity in a motion discrim-
ination task. This can be characterized by the linear re-
sponse of the mean decision train to a known stimulus.
Furthermore, the decision train is also useful to describe
slow fluctuations in the experiments that emerge due to
slow intrinsic changes. Slow noise or non-stationary be-
havior could be captured in extensions of the model con-
sidered here.

The paper is organized as follows: in Sec. 2 we introduce
the general nonlinear diffusion-decision model and define
the decision trains and their important statistics that are
the IDI statistics and the decision-train power spectra; we
briefly discuss an analytically tractable case, the original
DDM. In Sec. 3 we present how the threshold-integration
method by Richardson [60] can be adapted to the nonlin-
ear DDM in order to efficiently determine various statis-
tics: the stationary density of the decision variable, rates,
IDI probability densities, the power spectra of the deci-
sion trains, and the linear response of the decision trains
upon periodic stimulation. We conclude in Sec. 6 with a
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summary of our results and a brief outlook on possible
extensions of the model and methods.

2. Diffusion-decision model, spike-train statistics,
and a first analytically tractable example

2.1. A stimulus-dependent model and its transformation
to a correct-incorrect-decision model

For the introduced thought experiment, a stimulus is
given by dots moving either to the left (s = −1) or to the
right (s = +1) target (cf. Fig. 1). The subject perceives
noisy evidence for the movement direction that is accu-
mulated by the variable y (starting at position y = 0 at
t = t0) that obeys the stochastic dynamics:

τy ẏ = fs(y) + σ
√

2τyξ(t). (1)

Here ξ(t) is Gaussian white noise with zero mean and
〈ξ(t′)ξ(t)〉 = δ(t − t′) (angular brackets denote an ensem-
ble average), representing either distracting fluctuations in
the input (set by the experimenter), intrinsic noise in neu-
ral receptors and in the neural networks, or a mixture of
these noise sources. The time scale of the process is deter-
mined by the time constant τy. For the sake of generality,
the stimulus dependent drift fs(y) (f+(y) for s = +1 and
f−(y) for s = −1) may also depend on the evidence y in a
nonlinear fashion.

Decisions of the motion direction are made when suffi-
cient evidence is accumulated and y(t) exceeds one of the
thresholds ys+ and ys− for right or left motion, respec-
tively, with ys− < ys+. Thinking about decision making
as an accumulation process, one may suggest that, for in-
stance, the critical amount of accumulated negative ev-
idence for a left decision should not depend on the ac-
tual signal, i.e. thresholds should be signal-independent
(y−− = y+− and y−+ = y++). However, considering
the neurophysically motivated approach, outlined for in-
stance in Ref. [64], the DDM in Eq. (1) arises from a
mean-field approximation of two competing neural net-
works by reduction to a single-variable dynamics. Deci-
sions in these neural-network models correspond to attrac-
tor states (which are not explicitely described in the deci-
sion model): one population fires at a high rate whereas
the other one is silent. In the reduced description of the
DDM the boundaries (thresholds) represent points of no
return on the way into these attractor states: once the
system has reached one of these points, it will go to the
attractor state in a very short time and is very unlikely
to go back to the starting point. In Appendix A we give
a simple example how these points of no return may in-
deed be affected by the signal (which is a bias signal in
the effective potential). Hence, somewhat in contrast to
one standard assumption of the DDM framework, we allow
for signal-dependent boundaries in our model. Of course,
nothing keeps us from considering the standard assump-
tion of signal-independent boundaries. The decision oc-
curring at time t1, i.e. the response of the model, can be

marked by a δ-function δ(t− t1) with a prefactor +1 or −1
for absorption at the boundary ys+ or ys−, respectively.
We note that crossing the thresholds y++ or y−− corre-
sponds to correct decisions whereas crossing y+− or y−+

indicates incorrect decisions.
After a non-decision time of size ∆ (a refractory period

during which y is undefined), the evidence variable is reset
to y = 0 and a new stimulus s is presented; strictly speak-
ing, the function fs(y) in Eq. (1) is thus time-dependent
due to its dependence on the stimulus. The stimulus how-
ever is binary, it may only change in direction but not in
strength. The next decision is again made by crossing one
of the boundaries and registered by a new response spike at
decision time t2. By repeating this procedure and adding
up the response spikes, we obtain the response train shown
in Fig. 1. Moreover, by multiplying with the stimulus at
the decision, we obtain a train of correct (prefactor +1)
and incorrect (prefactor −1) decisions, called the decision
train, that characterizes the sequence of decisions.

Under certain symmetry assumptions, the model can
still be strongly simplified and in particular the statistics
of the decision train do not depend on the specific stimulus
applied. Before we come to this, we would like to outline a
useful mechanical analogy for the dynamics of the decision
model.

The dynamics Eq. (1) can also be viewed as that of an
overdamped Brownian particle in a potential Us(y) with
fs(y) = −∂yUs(y). This instructive analogy reveals where
a noiseless evidence variable would go to and whether the
evidence variable can reach the boundaries only by fluctu-
ations. The standard DDM would correspond to a Brown-
ian particle sliding down an inclined plane (the inclination
determined by the bias signal) and being perturbed by
noise such that the particle can also go uphill occasionally.
More general potentials (nonlinearities) may correspond
to a particle that has to overcome potential barriers or
may be accelerated by an increasing slope. In these cases,
noise may play a more prominent role than just to some-
what randomize the decision process by introducing the
possibility of erroneous decisions and adding jitter to the
decision time. For a metastable potential, for instance, the
decision variable y(t), initially started close to the poten-
tial minimum, will not be able to escape from this attrac-
tor at all if there is no noise in the system. We emphasize
that the potentials Us(y) have no further physical meaning
beyond their illustrative purpose.

Here we are exclusively interested in the statistics of
the decision train. To this end, our model can be con-
siderably simplified if we assume that the statistics for
both types of decisions are indistinguishable and the po-
tentials and thresholds are symmetric (U+(y) = U−(−y),
y++ = −y−−, y+− = −y−+). In other words, we assume
that there is no statistical difference in making correct de-
cisions for a right stimulus and for a left stimulus. We note
that a more basic assumption was already implicit in the
original model Eq. (1), namely, that the current decision
does not depend on stimuli and decisions made previously
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in the sequence.
Instead of the accumulated evidence for left and right

motion, we now consider the evidence accumulation for
the correct choice x that we define as:

x =

{
y (s = +1)
−y (s = −1),

(2)

for which we only need to consider one potential U(x) =
U+(x) = U−(−x), independent of the applied stimulus.

According to Eq. (1), the dynamics of x are given by:

τxẋ = f(x) + σ
√

2τxξ(t) (3)

(the time constant is unchanged τx = τy). The above reset
rules for y(t) translate to the following decision rule: when
x(t) exceeds one of the thresholds xc = y++ = −y−− or
xi = y+− = −y−+ at time t, a correct or incorrect decision
is made, respectively. Subsequently, x is undefined during
the non-decision time ∆, afterwards reset to zero, xst = 0,
and starts evolving again according to Eq. (3). The reset
rule can be summarized as follows:

if x(t) < xi or x(t) > xc : x(t+ ∆)→ 0, (4)

xi < 0 < xc.

The correct and incorrect decisions at times tc,j and ti,k,
respectively, correspond to stochastic point processes di(t)
and dc(t). To distinguish between both decision trains,
we endow the incorrect decision train with a negative and
correct decision train with a positive sign. The decision
train D(t) introduced above corresponds to the sum of
both:

di(t) := −
ni∑
i=0

δ(t− ti,k)

dc(t) :=

nc∑
j=0

δ(t− tc,j)

D(t) := di(t) + dc(t).

(5)

2.2. Statistics of the decision trains

The ensemble average over a decision train equals the
number of decisions per unit time, i.e. the decision rates:

rc(t) = 〈dc(t)〉
ri(t) = −〈di(t)〉
R(t) = rc(t) + ri(t),

(6)

where also the rate of incorrect decisions is defined to be
positive. To avoid the repetition, in the following all statis-
tics are introduced only for correct decisions. Due to the
symmetry, all formulas hold true if the kind of decision is
swapped (c↔ i).

By definition, the introduced model generates a renewal
point process [11], i.e. after each reset the system has the
same properties, thus, different response times are uncor-
related. As a consequence, decision trains are fully char-
acterized by the statistics of time intervals between two

Δ
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t

x
D

d
i

d
c

gi(T)
ϱi(T)

ϱc(T) gc(T)

Figure 2: Diffusion-decision model (color online). The accumu-
lation of noisy evidence x(t) (black trajectory) follows the nonlinear
stochastic dynamics in Eq. (3). If the trajectory exceeds one of the
thresholds xc or xi, the correct or incorrect decision is made, respec-
tively, and the trajectory is reset to zero.After a decision was made,
x is undefined during the non-decision time ∆ and, subsequently,
evolves again according to Eq. (3). The decisions are represented
as Dirac delta-functions at the decision times in the corresponding
decision train dc(t) or di(t). The combined decision train is given by
D(t) in which the intervals that correspond to gi(T ) and %i(T ) are
presented in yellow and blue, respectively.

subsequent decisions. Here we distinguish between the
response-time density gc(T ) for correct decisions occurring
at a time interval T after the last decision (regardless of
its type) and the inter-decision interval (IDI) density %c(T )
for the time between a correct decision and the preceding
correct decision. Put differently, gc(T ) is the interval dis-
tribution for D(t), taking into account only intervals with
a correct decision at the end, and %c(T ) is the IDI density
for dc(t) (see Fig. 2). Note that gc(T ) is not normalized
(its integral over time yields the probability of a correct de-
cision) but %c(T ) is normalized. Incidentally, the calcula-
tions of the densities are the solutions of first-passage-time
problems that have a long history in science and a broad
range of applications (see for instance [13, 12, 27, 57]).

The probability density for the time between two sub-
sequent decisions of any kind is given by the sum of the
individual densities:

g(T ) = gc(T ) + gi(T ) (7)

(this sum is normalized). Given these decision-time densi-
ties, one may ask of the connection between gc(T ), gi(T )
and %c(T ), %i(T ). Exploiting the renewal character of the
model, we obtain for the Fourier-transformed densities:

%̃c(ω) =
g̃c(ω)

1− g̃i(ω)
(8)

(see Appendix B for the detailed derivation). Here we used
the Fourier transform

F̃T (ω) =

T∫
0

F (t)eiωtdt, (9)
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where the absence of the index T indicates that we take
the limit T →∞.

Despite the independence of the response-time (inter-
vals), the decision trains still have a nontrivial correlation
structure that can be captured by their correlation func-
tions, or equivalently in the frequency domain by their
power spectra. The power spectrum of a time series F (t)
is defined by

SF (ω) = lim
T→∞

〈|F̃T (ω)|2〉
T

. (10)

For a renewal spike train, the power spectrum can be ex-
pressed by the Fourier transform of the inter-spike inter-
vals [see 75] resulting in our case in the following formulas:

sc(ω) = rc,0
1− |%̃c(ω)|2

|1− %̃c(ω)|2
= rc,0

|1− g̃i|2 − |g̃c|2

|1− g̃i − g̃c|2
. (11)

Here rc,0 and ri,0 indicate the stationary rates. The
decision-train power spectrum of the combined decision
train D(t) describes the second order fluctuation statistics
of both, correct and incorrect decisions and, thus, might be
helpful for the analysis of decision making experiments. It
can be calculated from the individual decision-train power
spectra and the decision rates (see Appendix C for the
detailed derivation):

S(ω) = sc(ω)

(
1− ri,0

rc,0

)
+ si(ω)

(
1− rc,0

ri,0

)
+R0

=

(
1− rc,0

ri,0

)[
si(ω)− ri,0

rc,0
sc(ω)

]
+R0,

(12)

where we have introduced the total stationary decision rate
R0 = rc,0 + ri,0. In the second line of Eq. (12), we have
recast the terms such a way that the power spectrum ap-
pears as a difference of the two single decision-train spec-
tra. Remarkably, in case of equal rates of the decisions
(rc,0 = ri,0), the spectrum of the combined decision train
is spectrally flat (S(ω) = R0), i.e. it does not depend at
all on the frequency. This surprising property of a white
spectrum is independent of the shape of the individual
decision trains and of the chosen nonlinearity f(x), the
noise intensity and the points xc, xi as long as both deci-
sions have equal probability. Note that the white spectrum
only arises because correct and incorrect decisions enter
the combined decision train with opposite amplitude. A
flat spectrum would generally not be observed for instance
if correct and incorrect decisions would contribute with
spikes of the same amplitude.

2.3. An analytically tractable case

For the simple case of a linear potential (f(x) = µ), the
subthreshold dynamics of the model are a Wiener process
given by:

τxẋ = µ+ σ
√

2τxξ(t). (13)

Such a process is a simplified version of Ratcliff’s original
model (in the latter there is also trial-to-trial variability of

the drift rate µ considered) and can be treated analytically
in order to determine the stationary decision rates and the
inter-decision interval densities (see for instance [48, 20,
71]). For µ 6= 0, the stationary decision rate for correct
decisions in our notation is given by:

rc,0 =
µei

τx[xcei − xiec] + ∆(ei − ec)
,

ec = 1− exp
(
− µ

σ2
xc

)
, ei = 1− exp

(
− µ

σ2
xi

)
.

(14)

This rate describes how many correct decisions per time
unit can be expected and together with the rate of incor-
rect decisions ri,0 (obtained as we remind the reader by
swapping c ↔ i in Eq. (14)) provides the probability of
a correct decision by rc,0/(rc,0 + ri,0). The response-time
density for correct decisions reads in our notation [cf. [48]
Eq. (A9) where the left boundary is set to zero and the
reset is at a non-vanishing point]:

gc(T ) =
2πσ2 exp

[
µxc/(2σ

2)
]

τx(xc − xi)2
Θ(T −∆)

×
∞∑
k=1

k sin

[
kπxc
xc − xi

]
exp

[
− (T −∆)

τx

(
µ2

4σ2
+

k2π2σ2

(xc − xi)2

)]
,

(15)
where Θ(T − ∆) denotes the Heaviside function and in-
corporates the non-decision time. Instead of calculat-
ing the response-time densities as functions of time as in
[48, 20, 71], we may calculate them in Fourier domain. In
our notation, the Fourier-transformed response-time den-
sity for correct decisions reads:

g̃c(ω) =
exp

(
µxc

2σ2 + iω∆
)

sinh (xiκ(ω))

sinh ([xi − xc]κ(ω))
,

κ(ω) =

√
µ2

4σ4
− iωτx

σ2

(16)

(see Appendix D for detailed derivation). The connection
between the density in frequency domain and the density
time domain is given by the inverse Fourier transforma-
tion:

gc(T ) =
1

2π

∞∫
−∞

g̃c(ω)e−iωT dω (17)

Following Eq. (8) the Fourier-transformed IDI density of
the correct decision train is given by:

%̃c(ω) =
eiω∆+µxc/(2σ

2) sinh[xiκ]

sinh[(xi − xc)κ] + eiω∆+µxi/(2σ2) sinh[xcκ]
,

(18)
where, for brevity, we suppressed the frequency depen-
dence of κ(ω). Lengthy expressions for the power spectra
can be obtained via Eq. (11) and Eq. (12) but are not
explicitly stated here. We have tested all statistics by a
comparison with numerical simulations and found excel-
lent agreement (see Fig. 3). Many features of the statistics
for nonlinear decision models (see below) can be already
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observed in the analytically tractable case. For instance,
correct decisions (green spikes in panel a) are made more
often but incorrect ones (red downward spikes in a) are
observed too; the probability density of the decision vari-
able shows the typical kink at the reset point xst = 0 (see
b); the IDI densities of the individual decision trains can
be unimodal or multimodal (see d); power spectra of the
decision trains (e) display maxima at frequencies that cor-
respond to the inverse of the peak times of the respective
IDI density %c or %i (as revealed in c and d). Peaks in
the power spectrum thus show that the decision process is
temporally more regular than a Poisson process and the
different frequencies at which maxima are attained reflect
the typical times in which the thresholds are reached.

The analytical method that led to the explicit formulas
for densities, rates, and spectra above cannot be applied
for the general nonlinear model Eq. (3). In the following
we adapt an efficient numerical procedure, the threshold-
integration method, originally introduced for nonlinear
integrate-and-fire neurons by Richardson [59, 60] and gen-
eralize it here to the case of two absorbing boundaries.
The method is simple to implement and yields a rapid
numerical solution for all statistics of interest.

Fig. τx [s] σ xi xc f(x)
3 0.1 0.5 -1 2 0.2
4 0.1 0.5 -1 1 -x+0.2
5 0.1 0.4 -1 1 2x3-x+0.2
6 0.1 0.7 -1.4 1.4 −16x3 + 18x+ 2.5
7 1.0 2 -3 1 1.085-2x2-x-0.5ex-8sin(2πx)
8 0.1 0.4 -1 1 2x3-x+0.2

Table 1: Parameters of the nonlinear DDMs. In all cases ∆ = 0.2.

2.4. Trial-to-trial variability of stimulus difficulty

In many experiments (for instance [51]) a sequence of
stimuli is presented in which the difficulty, in our exam-
ple experiment in Fig. 1 the coherence of dots, is chosen
randomly for each decision. Here we consider a sequence
of stimuli with n levels of difficulty for the motion to the
right s = +j and to the left s = −j with j ∈ {1, 2, . . . , n}.
After a decision has been made, the difficulty of the sub-
sequent stimulus is randomly chosen with the probability
Prob(j). In order to consider varying stimulus difficulties
in the DDM for correct and incorrect decisions in Eq. (3),
the subthreshold dynamics can be extended to stimulus-
dependent drift function and noise intensity:

τxẋ = fj(x) + σj
√

2τxξ(t). (19)

Also the thresholds xj,c and xj,i may depend on the stim-
ulus difficulty as explained in Sec. 2.1. Corresponding to
each stimulus difficulty j, an individual response-time den-
sity for correct and incorrect decisions gj,c(T ) and gj,i(T ),
respectively, can be calculated. For the simple reference
case of independent decisions, the correct response-time

density for the entire decision train with varying difficulty
is given by the weighted average:

gc(T ) =

n∑
j=1

Prob(j)gj,c(T ). (20)

With the response-time densities for correct and incorrect
decisions, the other statistics of the decision train are given
by Eqs. (8), (11) and (12). The corresponding rates rc,0
and ri,0 are given by the inverse of the mean value of %c and
%i given in Eq. (8), respectively. Alternatively, we could
calculate, for instance, rc,0, from the stationary rates rj,c,0
of the single states j as follows

rc,0 =

 n∑
j=1

Prob(j)r−1
j,c,0

−1

. (21)

3. Threshold-integration method

In order to calculate the statistics of interest, i.e. the
decision-train statistics, we have to determine the proba-
bility density of the evidence accumulation and the asso-
ciated probability currents through the thresholds. The
probability density of an ensemble of decision-making pro-
cesses is denoted by P (x, t); the corresponding probability
flux will be referred to as J(x, t). Due to the reset mecha-
nism, P (x, t) and J(x, t) are only nonzero in between the
thresholds. The white noise that enters the x-dynamics
results in absorbing boundary conditions (cf. [12]):

P (xc, t) = P (xi, t) = 0. (22)

Between the boundaries P (x, t) is continuous but J(x, t)
exhibits discontinuities at sources and sinks of probability
that are located at the reset and the thresholds, respec-
tively. Rates, densities and power spectra can be com-
puted from the solutions of P (x, t) and J(x, t) under dif-
ferent reset and/or initial conditions all of which can be
represented by the source-and-sink function ν(x, t). The
latter function may take into account the initial placement
of probability (initial condition), the reset of probability
and the absorption of probability at the boundaries. By
means of this function, the continuity equation can be for-
mulated as:

∂tP (x, t) + ∂xJ(x, t) = ν(x, t) (23)

(see the equivalent treatment of an integrate-and-fire dy-
namics by Richardson [60]). The probability flux J(x, t)
is given by [61]:

τxJ(x, t) = f(x)P (x, t)− σ2∂xP (x, t). (24)

Inserting Eq. (24) into Eq. (23) yields the Fokker-Planck
equation, however, for our purposes keeping two equa-
tions of first order is beneficial. First, we generalize the
threshold-integration method to find the stationary solu-
tion following closely the work by Richardson [60].
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Figure 3: Temporal statistics of classic DDM as Wiener process between two boundaries (color online). Decision train (a),
potential (dashed black line) and stationary solution (solid blue line, see Appendix D) (b), response-time densities gc(T ) (green) and gi(T )
(red) from analytical theory (dashed and dash-dotted lines) and direct simulations of Eqs. 3 and 4 (histograms) (c), IDI densities of individual
decision trains, %c(T ) and %i(T ) (d) and decision-train power spectra of individual (red and green) and combined (solid) trains from theory
(dashed, dash-dotted and solid lines) and simulations (bright lines). See Tab. 1 for parameters.

3.1. Stationary solution

The stationary probability density P0(x) does not de-
pend on time (∂tP0(x) = 0) and the probability flux J0(x)
is piecewise constant between reset and the correspond-
ing threshold. The entire probability escaping through
the thresholds is reinserted such that the source-and-sink
function ν0(x) reads:

ν0(x) = (rc,0 + ri,0)δ(x)− rc,0δ(x− xc) (25)

−ri,0δ(x− xi).

Here, the rates rc,0 and ri,0 refer to the stationary decision
rates for correct and incorrect decisions, respectively; these
are determined below. From Eqs. (23) and (24) we obtain
two ordinary differential equations of first order:

∂xJ0 =− rc,0δ(x− xc)− ri,0δ(x− xi)
+ (rc,0 + ri,0)δ(x)

∂xP0 =− 1

σ2
(τxJ0 − f(x)P0).

(26)

The key to determine the solutions P0(x) and J0(x) is the
introduction of the two unnormalized densities pi(x) =
P0(x)/ri,0 and pc(x) = P0(x)/rc,0 and currents ji,0(x) =
J0(x)/ri,0 and jc,0(x) = J0(x)/rc,0 that range from each
threshold to the reset. The values of these probability
densities and fluxes at the thresholds are known as

pc,0(xc) = pi,0(xi) = 0 (27)

and
jc,0(xc) = −ji,0(xi) = 1. (28)

The whole density and current arises from numerical inte-
gration from the threshold xi to the reset of the ordinary
differential equations:

∂xji,0 =− δ(x− xi),

∂xpi,0 =− 1

σ2
(τxji,0 − f(x)pi,0).

(29)

Here a simple Euler integration is used (see for instance
[46]) with N integration steps for the whole probability
density and the step size ∆x = (xc−xi)/N . The k-th step
of the numerical integration reads:

pi,0(xi + k∆x) ≈ pi,0(xi + [k − 1]∆x)

+
∆x

σ2
[τx + f(xi + [k − 1]∆x)pi,0(xi + [[k − 1]∆x)].

(30)
We used that ji,0 = −1 for the considered values of x.
From the threshold to reset Ni = −xi/∆x integration
steps are performed to calculate pi,0(0) ≈ pi,0(xi+Ni∆x),
where Ni is rounded to the next integer. In the same way,
pc,0(0) ≈ pc,0(xc − Nc∆x) is determined by performing
Nc = N −Ni integration steps of:

∂xjc,0 =− δ(x− xc),

∂xpc,0 =− 1

σ2
(τxjc,0 − f(x)pc,0)

(31)
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from xc to the reset of which the k-th step reads:

pc,0(xc − k∆x) ≈ pc,0(xc − [k − 1]∆x)

+
∆x

σ2
(τx − f(xc − [k − 1]∆x)pc,0(xc − [k − 1]∆x)).

(32)
The stationary decision rates, probability density and

flux are determined by exploiting the continuity and nor-
malization of P0(x):

rc,0pc,0(0) =ri,0pi,0(0), (33)
xc∫
xi

P0 dx =1−R0∆. (34)

Here, the term R0∆ represents the fraction of probability
that does not evolve due to the non-decision time period
(this part of the ensemble is not included in the density
P0(x)). Both conditions uniquely determine the rates:

r−1
c,0 =

xc∫
0

pc,0 dx+
pc,0(0)

pi,0(0)

∆ +

0∫
xi

pi,0 dx

+ ∆. (35)

The rate of incorrect decisions can be obtained by switch-
ing c to i or by using Eq. (33). Examples of stationary
solutions and the corresponding potentials U(x) are pre-
sented in Figs. 4-7 b.

3.2. IDI densities and decision-train power spectra

Since the partial differential equations (23) and (24) are
difficult to treat numerically, we apply the Fourier trans-
formation to obtain two ordinary differential equations in
the frequency domain:

∂xJ̃(x, ω) =iωP̃ (x, ω) + ν̃(x, ω)

∂xP̃ (x, ω) =− 1

σ2
(τxJ̃ − f(x)P̃ (x, ω)).

(36)

Similarly to the stationary case, we introduce new vari-
ables for which we know the values at the thresholds.
These are given by the ratios of the probability density
and the efflux at the corresponding thresholds, and the
current and those effluxes:

p̃c(x, ω) =
P̃ (x, ω)

J̃(xc, ω)
, ̃c(x, ω) =

J̃(x, ω)

J̃(xc, ω)
,

p̃i(x, ω) =
P̃ (x, ω)

−J̃(xi, ω)
, ̃i(x, ω) =

J̃(x, ω)

−J̃(xi, ω)

with p̃c(xc) = p̃i(xi) = 0

and ̃c(xc) = −̃i(xi) = 1.

(37)

With these initial values, we numerically integrate the or-
dinary differential equations that we obtain from Eq. (36):

∂x̃c =iωp̃c − δ(x− xc)

∂xp̃c =− 1

σ2
(τx̃c − fp̃c)

(38)

from threshold to reset. Starting at xc we perform Nc
Euler steps of which the k-th is given by:

̃c(xc − k∆x, ω) = ̃(xc − [k − 1]∆x, ω)

−∆x iωp̃c(xc − [k − 1]∆x),

p̃c(xc − k∆x, ω) = p̃c(xc − [k − 1]∆x, ω)

+
∆x

σ2
τx̃(xc − [k − 1]∆x, ω)

− ∆x

σ2
f(xc − [k − 1]∆x)p̃c(xc − [k − 1]∆x, ω).

(39)

From xi we also perform Ni steps of Euler integration:

̃i(xi + k∆x, ω) = ̃(xi + [k − 1]∆x, ω)

+ ∆x iωp̃i(xi + [k − 1]∆x),

p̃i(xi + k∆x, ω) = p̃i(xi + [k − 1]∆x, ω)

− ∆x

σ2
τx̃i(xi + [k − 1]∆x, ω)

+
∆x

σ2
f(xi + [k − 1]∆x)p̃c(xi + [k − 1]∆x, ω).

(40)

The resulting values at the reset p̃c,s = p̃c(0, ω) ≈
p̃c(xc − Nc∆x, ω), p̃i,s = p̃i(0, ω) ≈ p̃c(xi + Ni∆x, ω),
̃c,s = ̃c(0, ω) ≈ ̃c(xc − Nc∆x, ω) and ̃i,s = ̃i(0, ω) ≈
̃i(xi + Ni∆x, ω) yield the statistics introduced above by
exploiting the continuity of P̃ (x, ω) and the jump con-
dition due to the reinsertion of probability of J̃(x, ω) at
zero. The values of p̃c,s, p̃i,s, ̃c,s and ̃i,s are determined
at equidistant frequencies up to ωcut in steps of ∆ω to de-
termine the Fourier-transformed IDI densities as explained
below and, subsequently, the IDI densities in time domain
by fast Fourier transformation. The used parameters are
presented in Tab. 2. In order to give an impression about
the required numerical effort for the solution on a common
laptop, we list in the last column the computation time
for the determination of the stationary probability density
and the response-time densities in time domain (including
the inverse Fourier transform).

Fig. ωcut [Hz] ∆ω [Hz] N time [s]
4 200 1 1000 2.8
5 200 1 1000 2.8
6 300 1.5 4000 3.1
7 300 1.5 1000 2.8
8 1000

Table 2: Numerical parameters used for the threshold integration
method. We also list the needed run times for the determination
of the stationary probability density and the response-time densities
(laptop with intel core i7 8550u CPU).

In order to calculate the response-time densities gc(T )
and gi(T ), we have to initially inject unit probability at
the reset point (this is the initial condition after a decision
has been made) but switch off any reset of probability.
This corresponds to a classical first-passage-time (FPT)
problem for two absorbing boundaries. Accordingly, the
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sink-and-source function in the time domain reads:

νFPT(T ) = δ(T −∆)δ(x)

− gc(T )δ(x− xc)− gi(T )δ(x− xi),
(41)

where the effluxes of probability at the two thresholds
represent the FPT densities [20] that are equivalent to
the response-time densities gc(T ) and gi(T ). The Fourier-
transformed function reads:

ν̃FPT(ω) = eiω∆δ(x)

− g̃i(ω)δ(x− xi)− g̃c(ω)δ(x− xc).
(42)

The continuity of P̃ (x, ω) and the jump of J̃(x, ω) at zero
that incorporates the initial injection of probability yield
the conditions:

g̃c(ω)p̃c,s = g̃i(ω)p̃i,s,

g̃i(ω)̃i,s + eiω∆ = g̃c(ω)̃c,s
(43)

from which we may identify the Fourier-transformed
response-time densities as:

g̃c(ω) =
p̃i,se

iω∆

p̃i,s̃c,s − p̃c,s̃i,s
, g̃i(ω) = g̃c(ω)

p̃c,s
p̃i,s

. (44)

The densities in time domain are determined by the inverse
Fourier transformation in Eq. (17) that is numerically de-
termined by a fast Fourier transformation, specifically the
Python library numpy.fft.

For the individual decision trains, the IDI distributions
and their power spectra can be calculated using Eq. (8)
and Eq. (11), respectively. Alternatively, the statistics
directly follow under the assumption of other sink-and-
source functions ν(x, t), a way that we pursue in the fol-
lowing; we have verified that the final expressions for both
approaches are the same. In order to calculate the IDI
density of the individual decision train %c(T ), we have
to reinsert continuously the probability that crosses the
other (opposing) threshold xi at xs. Consequentially, the
Fourier-transformed sink-and-source function is given by:

ν̃c(ω) =(1 + β̃i(ω))δ(x− xs)eiω∆

−%̃c(ω)δ(x− xc)− β̃i(ω)δ(x− xi).
(45)

Here β̃i(ω) is the Fourier-transformed efflux at xi. While
the continuity condition is the same as in the previous
case, the jump condition has to incorporate the additional
reset of probability:

%̃c(ω)p̃c,s = β̃i(ω)p̃i,s,

β̃i(ω)̃i,s + (1 + β̃i(ω))eiω∆ = %̃c(ω)̃c,s,
(46)

and we obtain:

%̃c(ω) =
p̃i,se

iω∆

p̃i,s̃c,s − p̃c,s(̃i,s + eiω∆)
. (47)

For %̃i the analogous calculation with corresponding sink-
and-source function yields us:

%̃i(ω) =
p̃c,se

iω∆

p̃i,s(̃c,s − eiω∆)− p̃c,s̃i,s
. (48)

To calculate the conditional decision rates m̃c(ω) and
m̃i(ω), that are the essential part of the individual
decision-train power spectra (see Appendix C), all the
probability absorbed at both thresholds is reinserted at
xs. The corresponding sink-and-source function is given
by:

ν̃S(ω) =(1 + m̃c(ω) + m̃i(ω))δ(x− xs)eiω∆

−m̃c(ω)δ(x− xc)− m̃i(ω)δ(x− xi).
(49)

In this case, the continuity and jump conditions read:

m̃c(ω)p̃c,s = m̃i(ω)p̃i,s,

m̃i(ω)̃i,s + (1 + m̃i(ω) + m̃c(ω))eiω∆ = m̃c(ω)̃c,s,
(50)

with which we obtain:

m̃c(ω) =
p̃i,se

iω∆

p̃i,s(̃c,s − eiω∆)− p̃c,s(̃i,s + eiω∆)
,

m̃i(ω) =
p̃c,se

iω∆

p̃i,s(̃c,s − eiω∆)− p̃c,s(̃i,s + eiω∆)
.

(51)

The decision-train power spectrum can be calculated by
[27]:

sc(ω) = rc,0(1 + m̃c(ω)). (52)

4. Results of the threshold-integration method

The decision-time statistics will depend on all the pa-
rameters of the system, but particularly, on the specific
shape of the function f(x) or, alternatively, on the shape
of the corresponding potential U(x) [where −∂xU(x) =
f(x)]. In the following, we test the numerical routines
presented for some interesting cases with nonlinear poten-
tial; for better comparison, we will show all statistics of
interest in the manner exemplified in Fig. 3.

4.1. Ornstein-Uhlenbeck process (leaky accumulator
model)

In the example presented in Fig. 4, we choose the sim-
plest deviation from a Wiener process: a linear force,
f(x) = −x+µ, (or quadratic potential U(x) = (x−µ)2/2),
for which the stochastic differential equation corresponds
to an Ornstein-Uhlenbeck process (see Tab. 1 for param-
eters and Fig. 4b for the potential shape). This model,
has been used in studies of decision making and is also
known as leaky accumulator model; analytical solutions
for the response-time densities are unknown (see for in-
stance [72, 52]).
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Figure 4: Temporal statistics of the Ornstein-Uhlenbeck DDM. See caption in Fig. 3 for detailed description and Tab. 1 for parameters.
Inset in panel c with logarithmic scale shows exponential tail of the response-time densities.

We obtain an excellent agreement between the results of
the threshold-integration method and from direct stochas-
tic simulations of Eqs. 3 and 4. The asymmetry due to a
positive drift µ > 0 models the signal for correct decisions,
that are thus more likely than incorrect decisions. The re-
sulting response-time densities gc(T ) and gi(T ) exhibit a
shape similar to a gamma distribution (cf. Fig. 4 c) with
an exponential tail (see inset).

For the individual decision trains, the correct decisions
are quite regular and the distribution %c(T ) is similar to
gc(T ) while the low probability of incorrect decisions yields
a long-tailed IDI distribution %i(T ) as presented in Fig. 4d.
Furthermore, a second peak in %i(T ) arises due to the
case of a correct and a subsequent incorrect decision. Due
to the long and irregular time between subsequent incor-
rect decisions, the corresponding spectra si(ω) is almost
flat, similar to the spike-train spectrum of a Poisson pro-
cess. In contrast, sc(ω) exhibits peaks at the decision rate
and its higher harmonics due to the regularity of dc(t).
These properties of the individual spectra also emerge in
the spectrum of the (combined) decision train S(ω) (cf.
Fig. 4 e). Note that the peaks observed in the combined
spectrum S(ω) are a consequence of the nonvanishing bias
for one of the decisions, because according to Eq. (12), we
could expect a perfectly flat spectrum in the absence of
any bias.

4.2. Fourth-order polynomial potentials

As a nonlinear example (Fig. 5), we use a fourth-order
polynomial for U(x), based on a mean-field calculation
for competing neural populations in [64] (see Tab. 1 for

parameters and Fig. 5 b for the potential shape). The re-
sulting decision-train statistics are similar to the statistics
from the Ornstein-Uhlenbeck example, which is not so sur-
prising at second thought: For the former the stochastic
process has to reach one of two possible thresholds, for the
latter, the process has to overcome one of two potential
barriers (and then to quickly proceed to the correspond-
ing threshold) - in either cases fluctuations are needed to
make a decision and they will also shape the statistics of
the decision times in a qualitatively similar way (in partic-
ular, at large times). Consequently, response-time densi-
ties are unimodal and have an exponential tail, the power
spectrum of the correct-decision train displays peaks at
multiples of the rate of correct decisions, and the power
spectrum of incorrect decisions is almost flat because es-
capes to the left boundary xi or, equivalently, over the left
barrier, are rare, resulting almost in Poisson statistics for
the incorrect decisions. Hence, a nonlinearity in the drift
function does not necessarily lead to qualitatively novel
features in the decision-train statistics.

However, to demonstrate that qualitatively different fea-
tures become possible with nonlinear drift functions, we
use once more a fourth-order polynomial for U(x) but with
different parameters such that the reset is near the maxi-
mum of the potential and two minima are located in prox-
imity of the two thresholds as indicated by the olive green
and cyan lines in Fig. 6 b. This is a truly bistable dynamics
with additional absorbing boundaries at the left and right
corresponding here still to incorrect and correct decisions.
As in the previous examples, parameters are chosen such
that incorrect decisions are very unlikely to happen.

In contrast to the previous examples, the response-time
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Figure 5: Temporal statistics of nonlinear DDM with polynomial potential. See caption in Fig. 3 for detailed description and Tab. 1
for parameters.

T

100 s

a)

c) d) e)

b)

Figure 6: Temporal statistics of nonlinear DDM with bistable polynomial potential. See caption in Fig. 3 for detailed description
and Tab. 1 for parameters. Inset with logarithmic scale in panel c shows biexponential tail of the response-time density: large exponent
shown belongs to the first-passage-time density from the minimum close to the boundary as cyan dot-dashed line, low exponent belongs to
first-passage time density from minimum close to the threshold indicated as olive green dashed line. The corresponding minima are also
indicated in panel b as vertical lines in the respective colors.
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density for correct decisions exhibits a bi-exponential tail
as presented in the inset of Fig. 6 c. The underlying mech-
anism for the two apparent time scales is the following:
in a short period of time after the reset, even low evi-
dence pushes x towards one of the two minima with similar
probability in a preliminary decision. If x is located near
the minimum near xc, the threshold is relatively quickly
crossed within a short time causing the first part of the
bi-exponential tail. Note that the escape rate of this part
is equal to the inverse of the first-passage time for a start
at the minimum near xc (see inset of Fig. 6 c cyan dash-
dotted line). If x first moves towards the minimum far
away from xc, the time that is required to cross xc is
much higher because now two potential barriers have to
be crossed by the assistance of the driving noise. The ex-
ponential tail at long times fits to the first-passage time
density if the trajectory starts at the minimum close to
xc (see olive green line in inset). The presence of the pre-
decision process leads to a rather irregular decision train
as presented in Fig. 6 a. The corresponding decision-train
power spectrum exhibits increased power at low frequen-
cies (see Fig. 6 e) and is thus qualitatively different to the
cases considered before in Fig. 4 and Fig. 5.

4.3. An example with equal decision rates

For the last example, we use a highly nonlinear asym-
metric potential with several local minima and asymmet-
ric boundaries xi = −3xc (see Tab. 1 for parameters and
Fig. 7 b for the potential shape). This potential has no
meaning for the decision making process but is shown to
demonstrate the general applicability of the method.

We also use this case to illustrate the peculiar conse-
quence of equal decision rates: a flat decision-train power
spectrum. Specifically, we adapted the constant drift in or-
der to obtain equal decision rates (vanishing decision bias).
Again, results from the threshold-integration method are
confirmed by the direct simulations.

The longer distance from reset to the threshold xi yields
a more regular train di(t) compared to dc(t) (cf Fig. 7 a),
and also, longer IDIs for incorrect than for correct deci-
sions, cf. locations of the maxima of gc(T ) and gi(T ) (cf.
Fig. 7 c). The individual decision spectra presented in
Fig. 7 d are different and exhibit peaks at different loca-
tions. However, despite the changes in timing, we empha-
size that the probability of correct and incorrect decisions
are equal in this example. The equal decision rates result
in a flat spectrum of the combined decision train as pre-
dicted by Eq. (12) and also found in our simulations (cf.
Fig. 7 e, black line).

5. Linear response to modulation of input

We can also imagine that, in addition to the switching
between two constant stimuli, the overall strength of the
bias is deliberately modulated over time by the experi-
menter, e.g. in order to probe the system in comparison

with different models (see discussion). If the bias is weakly
modulated in time, this will result in a likewise small mod-
ulation of the decision rates (and the resulting decision
train will not be a renewal process anymore). Here we
generalize the method by Richardson [59] to compute the
linear response of the decision rates to a parameter mod-
ulation of the nonlinear DDM. We assume a weak mod-
ulation of a parameter α (which could be, for instance,
modulation of the constant input signal, see below)

α(t) = α0 + ε sin(ωt+ φ) (53)

with a small modulation amplitude ε and an initial phase
φ.

5.1. Threshold-integration method for the linear response

We expand the probability density and current to linear
order in ε:

P (x, t) ≈ P0(x) + εP1(x, ω)eiωt,

J(x, t) ≈ J0(x) + εJ1(x, ω)eiωt.
(54)

Here, P1(x, ω) and J1(x, ω) denote the complex linear re-
sponse of the probability density and current, respectively.
P1(x, ω) is also subject to absorbing boundary conditions
at both thresholds. The parameter modulation causes
modulations of the decision rates r̃c(ω) and r̃i(ω):

rc(t) = rc,0 + εr̃c(ω)eiωt, (55)

ri(t) = ri,0 + εr̃i(ω)eiωt, (56)

from which we can extract the amplitudes (|r̃A(ω)|) and
phases (Φ(r̃c) = arctan(Im(r̃c)/Re(r̃c)). In general, the
linear response terms for probability and current obey the
ordinary differential equations:

∂xJ1 =iωP1 + (r̃c + r̃i)e
iω∆δ(x− xs)

− r̃cδ(x− xc)− r̃iδ(x− xi),

∂xP1 =− 1

σ2

(
τxJ1 − fP1 − ∂α(f − σ2∂x)

∣∣∣
α=α0

P0

)
.

(57)
To determine the solution, we split probability flux and
density into three parts

J1 = r̃c̃c + r̃ij̃i + ̃ε,

P1 = r̃cp̃c + r̃ip̃i + p̃ε.
(58)

Here the densities p̃c and p̃i and the corresponding cur-
rents are only nonzero in the interval [xi, xs] and (xs, xc],
respectively. These parts take into account the reinsertion
of probability, such that they are given by the ordinary
differential equations:

∂x̃c = iωp̃c − δ(x− xc),

∂xp̃c = − 1

σ2
(τx̃c − f(x)p̃c),

∂x̃i = iωp̃i − δ(x− xi),

∂xp̃i = − 1

σ2
(τx̃i − f(x)p̃i),

(59)
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Figure 7: Temporal statistics of nonlinear DDM with equal decision rates and asymmetric potential. See caption in Fig. 3 for
detailed description and Tab. 1 for parameters.

for which we again know the values at the thresholds as

−̃i(xi, ω) = ̃c(xc, ω) = 1 (60)

and
p̃c(xc, ω) = p̃i(xi, ω) = 0. (61)

Numerical integration from the respective threshold to the
reset provides the values p̃i,s = p̃i(xs, ω), p̃c,s = p̃c(xs, ω),
̃i,s = ̃i(xs, ω) and ̃c,s = ̃c(xs, ω) which will be important
in the following calculation. The third terms in probability
density and current in Eq. (58) take into account the linear
response term that includes the derivative in α and the
stationary density. Thus, ̃ε and p̃ε obey the ordinary
differential equations:

∂x̃ε =iωp̃ε + λ,εδ(x− xs),

∂xp̃ε =− 1

σ2

(
τx̃ε − fp̃ε − ∂α(f − σ2∂x)

∣∣∣
α=α0

P0

)
+ λp,εδ(x− xs).

(62)

Because the particular part p̃ε of P1 does not generate
any further efflux of probability, we know that ̃ε(xi, ω) =
̃ε(xc, ω) = p̃ε(xi, ω) = p̃ε(xc, ω) = 0. In order to calculate
the jumps in probability density λp,ε and current λ,ε, we
may integrate Eq. (62) numerically from the thresholds to
the reset i.e.,

λp,ε = p̃ε(x→ x+
s , ω)− p̃ε(x→ x−s , ω),

λ,ε = ̃ε(x→ x+
s , ω)− ̃ε(x→ x−s , ω),

(63)

where the index + (−) indicates the limit taken from above
(below). Finally, we exploit the continuity of the proba-

bility density P1 and the jump condition of J1 that read:

r̃cp̃c,s − r̃ip̃i,s + λp,ε = 0,

r̃c̃c,s − r̃i̃i,s + λ,ε = (r̃i + r̃c)e
iω∆,

(64)

to determine the rate modulations:

r̃i =
λp,ε(̃c,s − eiω∆)− λ,εp̃c,s

p̃i,s(̃c,s − eiω∆)− p̃c,s(̃i,s + eiω∆)
,

r̃c =
r̃ip̃i,s − λp,ε
p̃c(xs)

.

(65)

As an example, we calculate the linear response of a si-
nusoidal modulation of the constant input with the poly-
nomial potential used in Fig. 5 for which the corresponding
Langevin equation reads:

τxẋ = f(x) + ε cos(ωt) + σ
√

2τxξ(t), (66)

with ε = 0.1 and vanishing initial phase of the signal.
All other parameters are chosen as in the third example
(see Tab. 1). With this simple additive signal, the second
equation in Eq. (57) attains the form:

∂xP1 =− 1

σ2
(τxJ1 − f(x)P1 − P0). (67)

5.2. Example for the linear response of a nonlinear DDM

The results of the linear response calculation for a spe-
cific case (the polynomial potential studied in Fig. 5) are
presented in Fig. 8 and compared to direct simulations of
Eq. (66). The modulations determined with the thresh-
old-integration method for ω = 13.54 Hz (red and green
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Figure 8: Linear response to sinusoidal modulation of input. a: Modulations of the decision rates ri(t) and rc(t) (red and green)
from the threshold-integration method (dashed and dot-dashed solid) and direct simulations (jagged lines) and modulated signal (black) with
ε = 0.1 and ω = 13.54 Hz. b and c: amplitude and phase of rate modulations from threshold-integration method (dashed and dot-dashed
lines) and direct simulations (circles) where emphasized circles belong to panel a. See Tab. 1 for all parameters.

solid lines in Fig. 8 a) match the direct simulations (jagged
lines). Also for other frequencies, the introduced method is
capable to adequately predict the amplitude and the phase
of the rate modulations as shown in Fig. 8 b and c, respec-
tively. For increasing frequency, the amplitude of both
modulations decays, but for the correct decisions, it first
reaches its maximum at 16 Hz while the decay is monotonic
for the incorrect decisions. Note, that the small resonant
peak in the correct modulation is found at the same fre-
quency where also the main peak in the power spectrum
(Fig. 5 e) is observed. Generally, the absolute modula-
tion amplitude is larger for the decision that is preferred
in the unperturbed state. However, remarkably, the rela-
tive modulation amplitude in the specific case considered
is larger for the unpreferred decision.

The modulation of incorrect decisions is characterized
by a high negative phase for all frequencies. It is sim-
ple to understand, what the limit of the phase shift is for
arbitrarily low frequencies. Here a slow positive signal
(ε cos(ωt) > 0) pushes the decision variable towards the
correct decision whereas it does the opposite and enhances
escapes via the boundary for incorrect decisions during its
negative half cycle (ε cos(ωt) < 0).

6. Discussion and outlook

In this paper we have introduced the decision trains in
which sequences of consecutive binary decisions are repre-
sented as the sum of delta-spikes at the decision times. We
derived the connections between their basic statistics that
are the interdecision interval densities and the power spec-
tra under the assumption of uncorrelated decisions and
stationarity. Surprisingly, we find that, in case of equal
stationary decision rates, the power spectrum of the com-
bined decision train is always constant, i.e. it is a white
noise in the sense of a vanishing second-order correlation.
This result is independent of the spectra of the individual
decision trains. For the evaluation of related experiments,

taking into account not only the decision time densities, as
it is the case in most studies, but also the power spectrum
might reveal novel features of the underlying dynamics of
binary decision making, since the spectrum includes cor-
relations between decision times that are neglected other-
wise. Thus, specifically Eqs. (8) and (11) can be used as
a test of the renewal property for the decision times in a
sequence of consecutive decisions. If a nonrenewal behav-
ior is observed, e.g. due to the subject’s loss of attention,
the representation of the binary decisions by the decision
trains may turn out to be a useful characteristics of tran-
sient changes (see below for some thoughts on how this
could be modelled).

We also introduced a general nonlinear DDM for which
the subthreshold nonlinearity can be for instance chosen
to approximate binary decision making in neural networks
[64] or changing environments during decision making [78].
For such models, no analytical solution is known. Here we
generalized the threshold-integration method introduced
by Richardson for nonlinear integrate-and-fire neurons in
[59, 60] for the nonlinear DDM. If implemented on a stan-
dard personal computer or laptop, this simple method pro-
vides a rapid means of calculating the model’s statistics
within seconds. Hence, it is a proper tool to fit exper-
imental data to different model systems. In particular,
theoretical predictions such as [64, 78] leading to distinct
subthreshold nonlinearities can be tested against experi-
mental data. The introduced procedure might be a first
step to tackle the more general inverse problem, i.e. to
constrain nonlinear models by the IDI statistics and the
here introduced power spectra of the decision trains.

Besides the model’s stationary statistics (corresponding
to the standard setup of a constant signal plus a distract-
ing noise), the threshold-integration method can be used
to compute the linear response of the decision rates, as we
have shown in the last part of the results section. The
linear response approach could be instrumental to under-
stand experiments in which a prescribed modulation of
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evidence results in modulations of decisions in a long se-
quence of subsequent trials. Although we are not aware
of such experiments, we think they are feasible and would
provide an excellent means to further test nonlinear de-
cision models. We are encouraged to think so because
it has been shown for the related class of spiking neuron
models that their spontaneous activity can be very simi-
lar irrespective of the subthreshold nonlinearity, whereas
their response properties drastically differ [80]. Put dif-
ferently, neuron models that can hardly be distinguished
when looking at their spontaneously generated spike trains
reveal their differences in their response to and correlation
with a prescribed time-dependent stimulus. The same can
be expected for the decision-making model studied here.

Although the model considered in this paper is certainly
more general than the standard DDM, we still made a
number of drastically simplifying assumptions. We as-
sumed for instance that the decision process is symmet-
ric for both stimuli (e.g. coherent motion towards the left
or right direction), i.e. if we only ask for the statistics of
correct and incorrect decisions, the DDM does not depend
on the specific stimulus of a certain trial. This symme-
try may not be given and we may extend our analysis for
a model in which a stimulus dependent nonlinear poten-
tial (and equivalently noise intensity or other parameters)
is used. This would mean that we have to resort to the
more explicit stimulus-driven model Eq. (1). However, if
the experimenter uses independent draws for the binary
signal, we still expect renewal statistics for the decision
trains and simple relations between the power spectrum of
the decision train and the corresponding interval densities.

We also assumed that the intrinsic fluctuations of the
decision process can be represented by uncorrelated Gaus-
sian input noise. Real fluctuations, however, either dis-
traction noise (stimulus components not belonging to the
signal) or intrinsic noise, e.g. originating in the involved
neural networks [2, 5, 15, 45], are always temporally cor-
related. One way to incorporate temporal correlations is
a Markovian embedding which was developed first in sta-
tistical physics, see e.g. [42, 24, 70], but has also been fre-
quently used in computational neuroscience for correlated
Gaussian [6, 39, 40, 65] and non-Gaussian noise [14, 43].
We have recently applied this method for integrate-and-
fire neurons subject to an arbitrarily correlated Gaussian
noise [79]. A similar generalization for the decision model
seems to be feasible. More difficult is the question what
kind of colored noise should be used. The application of
the decision-train statistics developed here will be helpful
to detect indirectly the effects of correlated fluctuations in
the form of nonrenewal features in the decision trains as
discussed above.

The most severe assumption we have made concerns the
renewal character of our model. We have completely ne-
glected that experimentally measured response times often
depend on the used sequence of stimuli (see for instance
[36, 9, 29]). For a simple two-alternative forced choice task,
repetitions of the stimulus seem often to come along with

a shortening of the mean response time, an effect known
as facilitation.

Our continuous model for the accumulation variable
could be extended as follows to capture this first-order
effect:

τy ẏ = fs(y) + a+ σ
√

2τyξ(t), (68)

τaȧ = −a, (69)

if at time t decision to the right a(t)→ a(t) + ε,

if at time t decision to the left a(t)→ a(t)− ε.

The variable a implements a positive feedback: if (for a
stimulus going to the right) a decision to the right has
been made, a increases by ε and will furthermore acceler-
ate the decision if the next stimulus goes to the right as
well. A stimulus repetition leads thus to a reduction of the
mean response time as observed in the experiment. In be-
tween decision times, a decays exponentially (according to
Eq. (69)), hence previous decisions are forgotten after some
time. Even if the stimuli are completely randomly drawn
(as a Bernoulli process), the response train is not a renewal
process anymore because the dynamics for the accumula-
tion variable keeps a memory about previous decisions by
virtue of the variable a(t). We note that alternatively to
modifying the drift, the variable a could modify the reset
point with a similar facilitation effect and the additional
feature of a variable reset point somewhat similar but not
identical to other generalizations of the DDM [51, 55, 54].

We do not state this extension of our model here be-
cause it is most realistic or capable of capturing all the
stimulus-induced facilitation and expectation effects that
are observed in the various experiments; indeed, more de-
tailed models have been successfully fit to experimental
data (see, for instance, [9, 19, 29]). Rather we would like to
use the extension of our model to point out a further anal-
ogy with stochastic models of neural spike trains. Spike-
frequency adaptation has been studied by different authors
in a very similar way as sketched above with one impor-
tant difference: in neuron models a(t) would represent the
strength of a slow inhibitory current, which acts as a nega-
tive feedback (achieved by changing +a to −a in Eq. (68)).
One feature observed in adapting neurons [56, 7, 17] as
well as in neuronal models [34, 7, 67] are correlations
among the interspike intervals illustrating that the asso-
ciated point process is not a renewal process. Analytical
approaches to calculate ISI correlations for adapting neu-
rons [66, 76, 68, 67, 69, 77] could inspire similar approaches
to the correlations of response times in DDMs. Moreover,
the Fokker-Planck equation that we treated here specif-
ically with the threshold-integration method can also be
used for multi-dimensional setups, for instance, with an
adaptation (or facilitation) variable [32, 1, 79]. In partic-
ular, the methods of Ref. [79] seem to be extendable to
explore the effect of facilitation-induced sequential mem-
ory on the decision-train power spectrum.

The study of such generalized models endowed with
colored-noise and facilitation variables and their compari-
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son to experimental data present exciting topics for future
investigations.
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Appendix A. Signal-dependent thresholds in neu-
rophysically motivated models

Nonlinear DDMs can be motivated neurophysically as
the reduction of the mean-field approximation of two com-
peting neural networks to a single variable (see for instance
[82, 64]).

Figure A.9: Signal dependence of threshold points. The sub-
threshold dynamics of the decision variable corresponds to the over-
damped motion in a quartic potential (solid lines), signal-biased to
the right (a) or left (b) [64]. Attractor states (dash-lined minima,
corresponding to left or right decisions) are not part of the potential.
Within the DDM model, the decision is made if a threshold, i.e. a
point of no return on the way into one of the attractors, is reached.
These points are defined by a certain potential depth (dotted line)
and depend on the signal [blue, orange lines shift between (a),(b)].

The neurons in each population are coupled such that
each population amplifies its own activity and inhibits
the other one. The asymptotic behavior of the system
is bistable; it is characterized by two stable fixed points in
each one of which one population is firing at a high rate and
the other one is silent. Decision making is in this picture
equivalent to the system reaching one of these fixed points.
By the application of mean-field techniques, the dynamics

can be reduced to a two-dimensional rate model. Con-
sidering only the difference of the rates, the subthreshold
dynamics can further be simplified to the one-dimensional
dynamics given by the nonlinear DDM in Eq. (1). The
final attractor states are not part of the DDM description;
instead threshold points are defined at which it becomes
almost certain that the dynamics will reach (in a short
time) the respective fixed point.

In Fig. A.9 we illustrate the emergence of the thresh-
old points in the DDM model for a specific example and
explain why there is a dependence of these points of no re-
turn on the signal. Taking the example from Ref. [64] that
corresponds to a quartic potential resulting from a Taylor
expansion of the dynamics around the initial point, we
see that the true attractor states of the network dynamics
(indicated by dash-lined minima) are not included. In our
simplified description, we associate decisions with reach-
ing the thresholds y±,± that can be defined differently. A
reasonable definition is that the threshold points are at-
tained where the quartic potential reaches a certain depth
(dotted lines in Fig. A.9). The so-defined threshold points
will depend on the tilt of the potential, i.e. on the signal.
Put differently, in general y++ 6= y−+ and y+− 6= y−− as
can also be seen by comparing their positions (blue and
orange lines) in Fig. A.9a and b.

Appendix B. Relation between response-time
densities and inter-decision-interval
densities

Here we show the detailed derivation of the connection
between gc(T ) and %c(T ) which also holds true for incor-
rect decisions if we exchange c ↔ i. Given that a correct
decision occurred at T = 0, the probability density for the
next correct or incorrect decision is determined by gc(T )
or gi(T ), respectively. If an incorrect decision occurs at T ′,
we have to take into account the reset such that the next
decision is either correct with the probability gc(T − T ′)
or incorrect with gi(T − T ′), such that the probability to
obtain n incorrect decisions followed by an correct deci-
sion is given by an n-fold convolution of gc(T ) with gi(T )
[11]. Taking into account that the number of incorrect de-
cisions in between two sequential correct decisions can be
arbitrarily high we obtain:

%c(T ) = gc(T ) +

T∫
0

dT ′gc(T − T ′)gi(T ′)

+

T∫
0

dT ′
T ′∫
0

dT ′′gc(T − T ′)gi(T ′ − T ′′)gi(T ′′)

+ ...

= gc ∗

δ(T ) +

∞∑
n=1

gi ∗ ... ∗ gi︸ ︷︷ ︸
n−terms

 ,

(B.1)
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where the asterisk denotes convolution. The Fourier trans-
form of the expression yields Eq. (8):

%̃c(ω) =g̃c(ω)

( ∞∑
n=0

[g̃i(ω)]
n

)
=

g̃c(ω)

1− g̃i(ω)
. (B.2)

Appendix C. Power spectra of combined decision
train

In order to derive the power spectrum of the combined
decision train, we use the autocorrelation function of the
decision train for correct decisions that is given by:

cc(τ) =〈dc(t)dc(t+ τ)〉 − 〈dc(t)〉2 (C.1)

=rc,0(δ(τ) +mc(τ)− rc,0). (C.2)

The conditional decision rate mc(τ), the probability den-
sity for a decision at τ under the condition of a reference
decision at τ = 0, is the essential part of the autocorre-
lation function [27, 18]. This probability density is deter-
mined by the summed (distinct) probability to have one,
two, and so on interdecision intervals T between the ref-
erence time t and the time t + τ . Since all intervals are
independent, these probabilities are simple convolutions of
the density %c and one obtains

mc(τ) =

∞∑
n=1

%c ∗ ... ∗ %c︸ ︷︷ ︸
n−terms

(τ) (C.3)

m̃c(ω) =
%̃c(ω)

1− %̃c(ω)
. (C.4)

The autocorrelation function for the combined decision
train is given by:

C(τ) =〈D(t)D(t+ τ)〉 − 〈D(t)〉2

=ci(τ) + cc(τ) + 2ri,0rc,0

+ 〈di(t)dc(t+ τ)〉+ 〈dc(t)di(t+ τ)〉
=ci(τ) + cc(τ) + 2ri,0rc,0 − ri,0mc(τ)− rc,0mi(τ)

=ci(τ)(1− rc,0
ri,0

) + cc(τ)(1− ri,0
rc,0

) +R0δ(τ).

(C.5)
Since, according to the Wiener-Khinchin theorem [20], the
power spectrum is given by the Fourier transform of the
autocorrelation function, we obtain:

S(ω) = sc(ω)

(
1− ri,0

rc,0

)
+ si(ω)

(
1− rc,0

ri,0

)
+R0.

(C.6)

corresponding to Eq. (12) in the main text.

Appendix D. Wiener process

The simplest version of the DDM, the Wiener process
in Eq. (13) with the reset condition in Eq. (4), is analyt-
ically tractable. Here the derivation of the analytical for-
mulas for the stationary rates and the Fourier-transformed

response-time densities are presented in our notation. The
stationary probability density obeys the stationary Fokker-
Planck equation and the normalization condition[
− µ

τx
∂x +

σ2

τx
∂2
x

]
P0(x) + (rc,0 + ri,0)δ(x) = 0,

xc∫
xi

P0 dx = 1− (rc,0 + ri,0)∆.

(D.1)

The solution reads:

P0(x) = θ−1

{
ec
[
exp

(
µ
σ2 [x− xi]

)
− 1
]

for x ≤ 0,
ei
[
exp

(
µ
σ2 [x− xc]

)
− 1
]

for x > 0
,

θ = xiec − xcei −
µ

τx
∆(ei − ec),

ec = 1− exp
(
− µ

σ2
xc

)
, ei = 1− exp

(
− µ

σ2
xi

)
.

(D.2)
The time-dependent Fokker-Planck equation that corre-
sponds to Eq. (13) is given by:

∂tP (x,t) =

[
− µ

τx
∂x +

σ2

τx
∂2
x

]
P (x, t)+δ(x)δ(t−∆), (D.3)

with absorbing boundary conditions at the thresholds and
the continuity condition at the reset point

P (xi, t) = P (xc, t) = 0, lim
ε→0

P (xs+ε, t)−P (xs−ε, t) = 0.

(D.4)
The last term in Eq. (D.3) represents the insertion of all
probability at reset xs = 0 after the non-decision time has
elapsed.

We next consider the Fourier transformation of
Eq. (D.3) for P̃ (x, ω) and change to a new function q(x, ω)
by

P̃ (x, ω) = exp
( µx

2σ2

)
q(x, ω), (D.5)

which leads us to the following ordinary differential equa-
tion for q(x, ω):

σ2

τx

d2

dx2
q(x, ω) +

(
µ2

4σ2τx
+ iω

)
q(x, ω) = −eiω∆δ(x)

(D.6)
(for the general method, applied to an integrate-and-fire
model, see [33], ch. 2.4). Homogeneous solutions of
Eq. (D.6) (setting the right hand side to zero) are given
by

q1(x, ω) = exp[κ(ω)x], q2(x, ω) = exp[−κ(ω)x] (D.7)

with κ(ω) in Eq. (16). The inhomogenous solution q(x, ω)
can be constructed by the linear combination

q(x, ω) =

{
a1q1 + a2q2 for xi ≤ x ≤ xs
b1q1 + b2q2 for xs ≤ x ≤ xc

(D.8)

The coefficients a1, a2, b1 and b2 are determined by con-
ditions at the boundaries and the reset point: at xi and
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xc the density must vanish (absorbing boundaries), at xs
the density must not suffer a jump (continuity of the den-
sity in the entire interval) but the probability current does,
reflecting the insertion of probability after a decision has
been made and the non-decision time has passed. These
conditions can be summarized as follows

q(xi, ω) = q(xc, ω) = 0, lim
ε→0

q(xs + ε, ω)− q(xs − ε, ω) = 0

lim
ε→0

d

dx
q(x, ω)|xs−ε −

d

dx
q(x, ω)|xs+ε =

exp(iω∆)τx
σ2

.

(D.9)
Using these equations to calculate the coefficients a1, a2,
b1, b2, we know q(x, ω) and can determine the Fourier
transforms of the response-time densities g̃i and g̃c as
the Fourier transforms of the probability currents at the
thresholds, i.e. by

g̃i(ω) =
σ2

τx
exp

(µxi
2σ2

) d

dx
q(x, ω)

∣∣∣∣
x=xi

,

g̃c(ω) = −σ
2

τx
exp

(µxc
2σ2

) d

dx
q(x, ω)

∣∣∣∣
x=xc

,

(D.10)

which lead to the expression for the IDI density, Eq. (16)
in the main text.
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