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We study a network of unidirectionally coupled rotators with independent identically distributed (i.i.d.)
frequencies and i.i.d. coupling coefficients. Similar to biological networks, this system can attain an
asynchronous state with pronounced temporal autocorrelations of the rotators. We derive differential
equations for the self-consistent autocorrelation function that can be solved analytically in limit cases.
For more involved scenarios, its numerical solution is confirmed by simulations of networks with Gaussian
or sparsely distributed coupling coefficients. The theory is finally generalized for pulse-coupled units
and tested on a standard model of computational neuroscience, a recurrent network of sparsely coupled
exponential integrate-and-fire neurons.
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When studying large networks of oscillatory elements
such as the spiking nerve cells in the brain, pacemaker cells
in the heart, or the biochemically and biomechanically
interacting cells in developing tissue, research often focuses
on collective phenomena like synchronization [1] and
global oscillations and waves [2]. However, the emergence
of asynchronous irregular activity instead of some form of
macroscopic order is frequently more typical, e.g., in the
awake behaving animal [3,4] and in corresponding models
[5–8]. Understanding the rich temporal structure of the
asynchronous state remains an open challenge.
In the asynchronous state, units behave quasistochasti-

cally because they are driven by a large number of other
(likewise quasistochastic) units. The correlation statistics of
the driving, i.e., the colored network noise, is connected to
the statistics of the single unit in a self-consistent manner
[9–11]. The temporal structure of the network noise is often
much richer than suggested by the Poisson noise approxi-
mation that is frequently employed in theoretical studies.
Temporal correlations depend in nontrivial ways on both
the oscillator and network properties and these dependen-
cies are poorly understood.
Analytical progress has been achieved for random net-

works of rate units (starting with Sompolinsky et al. [12]
and extended to heterogeneous situations in [13–15]) and
for stochastic units with a high level of intrinsic noise
for which linear response theory can be applied [16–18].
Studies of deterministic networks of spiking neurons,
largely restricted to numerical simulations, found more
involved collective dynamics [19–21] and observed long
transients and slow fluctuations [8,22–24].
The long-standing challenge for the theory of the

asynchronous state is to determine the autocorrelations
of the single units and the total network noise. In this paper
we tackle this problem for a network of phase oscillators,

derive differential equations for the self-consistent auto-
correlation function and solve them in some simple cases.
We also generalize the theory to networks of pulse-coupled
units and compute approximate power spectra for recurrent
networks of integrate-and-fire neurons, an important model
class in computational neuroscience.
Model.—We consider a network of N ≫ 1 unidirection-

ally coupled rotators, inspired by the asymmetric coupling
in neural networks. The state of rotatorm is described by its
position on the complex unit circle xm ¼ expðiΘmÞ, where
Θm is a continuous phase variable. This phase variable
obeys the dynamical equation

_Θm ¼ ωm þ
X
n≠m

KmnfðΘnÞ; ð1Þ

where ωm describes the natural frequency of rotator m;
the coupling coefficient Kmn and the 2π-periodic function
fðΘnÞ characterize the effect of rotator n on rotatorm (with
a uniform phase response curve of rotator m). Both the
natural frequencies and the coupling coefficients are
independent identically distributed (i.i.d.) random variables
with hωmiω ¼ ω0, hΔω2

miω ¼ σ2ω, hKmniK ¼ K̄=N and
hΔK2

mniK ¼ K2=N < ∞. The coupling is in general not
symmetric, i.e., Kmn ≠ Knm. The complete independence
of the interaction term of the driven phase Θm, which
makes our model very different to the Kuramoto model and
other network models of weakly coupled phase oscillators
[25], is certainly a simplifying assumption.
Theory.—In a stochastic mean-field approximation the

rotators are driven by temporally correlated but indepen-
dent Gaussian noise processes ξmðtÞ,

_Θm ¼ ωm þ ξmðtÞ: ð2Þ
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The mean hξmðtÞiξ ¼ μξðtÞ and correlation function
hξmðtÞξnðt0Þiξ − hξmðtÞiξhξnðt0Þiξ ¼ δmnCξðt; t0Þ obey

μξðtÞ ¼ K̄hfðΘðtÞÞiξ;ω
Cξðt; t0Þ ¼ K2hfðΘðtÞÞfðΘðt0ÞÞiξ;ω; ð3Þ

where we dropped the indices because they are redundant.
Thus, the system of N coupled ordinary differential
equations is equivalent to a one-dimensional self-consistent
stochastic equation with colored noise. The approximate
dynamics [Eqs. (2) and (3)] seems intuitive when regarding
the rhs of the original dynamics [Eq. (1)] as a noisy input;
their rigorous derivation is based on a dynamical mean-
field theory that becomes exact for N → ∞ (for a similar
approach, see [12,26–28]). Briefly, the theory’s starting
point is the system’s generating functional that is averaged
over the disorder (distributed coupling coefficients and
natural frequencies), decoupled by a Hubbard-Stratonovich
transformation and evaluated in a saddle-point approxima-
tion (details in Supplemental Material [29], which includes
Refs. [30–33]).
We assume a stationary state, in which the auto-

correlation function of the Gaussian process CξðτÞ ¼
limt0→∞Cξðt0; t0 þ τÞ depends only on the time difference
τ. With the assumption of invariance under a rotation of the
reference frame Θ → Θþ α, we can evaluate Eq. (3) to
arrive at a single self-consistent equation [29],

CξðτÞ¼K2
X∞
l¼−∞

jAlj2ϕðlτÞexp
�
−l2

Z
τ

0

duðτ−uÞCξðuÞ
�
:

ð4Þ

Here, we used fðΘÞ ¼ P∞
l¼−∞ AleilΘ with A�

l ¼ A−l, the
characteristic function of the natural frequencies ϕðxÞ ¼
heiωxiω and rescaled ω0 þ μξ → ω0. To solve Eq. (4)
numerically, we rewrite it as an ordinary differential
equation for ΛðτÞ ¼ R

τ
0 duðτ − uÞCξðuÞ,

Λ̈ ¼ K2
X∞
l¼−∞

jAlj2ϕðlτÞ exp½−l2Λ�; ð5Þ

with initial conditions Λð0Þ ¼ _Λð0Þ ¼ 0. Equation (5) is
straightforward to solve numerically for a finite number of
Fourier coefficients Al and yields the autocorrelation
function of the input via

CξðτÞ ¼ K2
X∞
l¼−∞

jAlj2ϕðlτÞ exp½−l2ΛðτÞ�: ð6Þ

The stationary autocorrelation function of a rotator
CxmðτÞ ¼ limt0→∞hx�mðt0Þxmðt0 þ τÞiξ follows from

CxmðτÞ ¼ hei
R

τ

0
du _ΘmðuÞiξ ¼ exp½iωmτ − ΛðτÞ�: ð7Þ

Because we deal with oscillatory functions, it is more
convenient to consider the respective power spectra,
Sfx;ξgðωÞ ¼

R
∞
−∞ dτe−iωτCfx;ξgðτÞ, obtained by Fourier

transformation of the various correlation functions (in all
simulated spectra, we omit the dc component).
Examples with higher-mode interactions.—To test the

theory, we first select a case with a broad Gaussian
distribution of natural frequencies, an interaction function
with two Fourier modes [fðΘÞ ¼ cosð2ΘÞ þ sinð3ΘÞ] and
a moderately sized network of 500 rotators (Fig. 1). The
noise spectrum is rather broad [Fig. 1(a)], whereas the
single rotator spectra are strongly peaked and located at the
(here arbitrarily selected) natural frequencies [Fig. 1(b)].
Network simulations fully confirm our theory.
The temporal correlations become more structured if we

do not distribute natural frequencies (σω ¼ 0), while keep-
ing all other parameters the same as before (Fig. 2). From
our theory it becomes apparent why the specific choice of
two Fourier modes leads to pronounced peaks at jωj ¼ 2ω0

and jωj ¼ 3ω0 in the noise spectrum [arrows in Fig. 2(a)].
These peaks show up as well in the spectra of the single
rotators [arrows in Fig. 2(b)] at ω ¼ ð1� 2Þω0 and at
ω ¼ ð1� 3Þω0 and, together with the peak at ω0, form a
rich correlation structure that is in all details accounted for
by our theory.
As our theory has been developed for large N, a

small discrepancy between theory and simulations emerges
for N ¼ 50 around the main spectral peak [cf., Fig. 2(c)].
In Fig. 2(d) we plot the relative deviation Δ¼RωNyquist
−ωNyquistdωðStheo:x ðωÞ−hSsimul:

x ðωÞiNÞ2=
R ωNyquist
−ωNyquistdωhSsimul:

x ðωÞi2N ,
where h·iN denotes an average over the rotators as a
function of N. Indeed, Δ drops with N and becomes small
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FIG. 1. System with distributed natural frequencies. Noise
spectrum (a) and spectra of three arbitrarily picked oscillators
(b) with natural frequencies as indicated; network simulations
(squares) compared to theory (lines) obtained from numerically
solving Eq. (5) and Fourier transformation of Eqs. (6) and (7),
respectively. Parameters: Gaussian coupling coefficients, K̄ ¼ 0,
K ¼ 0.5, ω0 ¼ 1, σω ¼ 0.5, A2 ¼ 1=2, A3 ¼ 1=2i, Al ¼ 0
otherwise. In simulations, we used a time step of Δt ¼
0.1 a:u: in a time window of T ¼ 26T0, discarded a transient
of T0 ¼ 2500 a:u: and used the remaining 25 pieces of length T0

for averaging.
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for a few hundred units already. In the same graph we
not only show results for the so-far-used Gaussian con-
nectivity but also for a binary distribution (Kmn are
randomly picked from f−K=

ffiffiffiffi
N

p
; K=

ffiffiffiffi
N

p g) and for a sparse
connectivity with vanishing mean value (Kmn come from
f−K=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Npð1þ p=qÞp

; 0; K=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nqð1þ q=pÞp g with prob-

abilities p ¼ 0.02; 1 − p − q; q ¼ 0.08, mimicking the
sparse connections in neural networks). In all cases, the
agreement between theory and network simulations sys-
tematically improves with growing N and, remarkably, is
best for the biologically realistic sparse case. For the
remainder, we keep the sparse connectivity.
Analytically tractable example.—The parameter space of

the model is large. Here, we focus on a simple case that
allows for an analytical treatment: The frequencies are not
distributed (σω ¼ 0) and the coupling function is fðΘmÞ ¼
sinðΘmÞ, leading in Eq. (5) to Λ̈ ¼ ðK2=2Þ cosðω0τÞe−Λ. As
we can rescale timewith the natural frequencyω0, this leaves
one parameterK=ω0.We proceedwith the two limiting cases
ω0 ≪ K and ω0 ≫ K and focus on the single rotator [the
noise autocorrelation is simplyCξðτÞ ¼ ðK2=2ÞReðCxðτÞÞ];
detailed derivations are in [29].
For sufficiently small ω0 (ω0 ≪ K), we obtain

CxðτÞ≈
expðiω0τÞ

cosh2ðKτ=2Þ; SxðωÞ≈
4πðω−ω0Þ=K2

sinhðπðω−ω0Þ=KÞ
: ð8Þ

The quality factor Qx ¼ ω0=Δω with Δω being the full
width of the peak at half maximum can be calculated as

Qx ≈
πω0

2zK
; where z ¼ sinhðzÞ=2 ≈ 2.17732: ð9Þ

The correlation time of the rotators reads

τx ¼
Z

∞

0

dτ

����CxðτÞ
Cxð0Þ

���� ≈ 2

K
; ð10Þ

while the intensity of the network noise is given by

Dξ ¼
Z

∞

0

dτjCξðτÞj ≈ K; ð11Þ

where we used the definitions proposed in Ref. [34] and
both results become exact for ω0 ¼ 0.
In the opposite limit of a very large natural frequency,

we obtain

CxðτÞ ≈
expðiω0τÞ

coshðK2τ=ð2 ffiffiffi
2

p
ω0ÞÞ

;

SxðωÞ ≈
2

ffiffiffi
2

p
πω0=K2

coshð ffiffiffi
2

p
πω0ðω − ω0Þ=K2Þ : ð12Þ

For the correlation time, noise intensity and quality factor
follow for K ≪ ω0,

Qx≈
πω2

0=K
2ffiffiffi

2
p jcosh−1ð2Þj ; τx≈

ffiffiffi
2

p
πω0

K2
; Dξ≈

ffiffiffi
2

p
ω0: ð13Þ

Equations (8)–(13) agree well with simulation results
(Fig. 3). As illustrated in Fig. 3(a) [Fig. 3(b)], a weak
(strong) coupling strength leads to a sharp (broad) spectral
peak at the natural frequency. Similarly, the quality factor
[Fig. 3(c)], the correlation time [Fig. 3(d)], and the network
noise intensity [Fig. 3(e)] show a good agreement valid
beyond the strict asymptotic regimes K ≪ ω0 and K ≫ ω0.
Application to a recurrent network of spiking neurons.—

With a small modification, our theory is applicable to the
self-consistent autocorrelation statistics of spiking neurons
in sparse recurrent networks (details in [29] including
Refs. [35,36]). Choosing a Dirac comb for fðΘÞ that is
multiplied by the time derivative of the input unit, i.e.,
changing the model to

_Θm ¼ ωm þ
X
n≠m

Kmn
_Θn

X∞
k¼−∞

δðΘn − 2πkÞ; ð14Þ

we can mimic the spikes arising from threshold crossings
in the conventional integrate-and-fire (IF) neuron. To
make the Dirac delta distribution numerically tractable,
we regularize it as δðxÞ → ð1=

ffiffiffiffiffiffiffiffiffiffi
2πλ2

p
Þ expð−x2=2λ2Þ with

λ ≪ 2π. This leads to the self-consistency equation
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FIG. 2. System with a single natural frequency. Spectra of
noise (a) and single-rotator (b), averaged over all units (b) for
two system sizes as indicated. Network simulations (squares)
compared to theory (lines) [expanded view in (c)]. Deviation Δ
between theory and simulations for the (network-wide averaged)
single-rotator spectrum for different connectivities (d). Para-
meters as in Fig. 1 except σω ¼ 0.
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Λ̈ ¼ K2

4π2

�
ðΛ̈þ σ2ω þ ω2

0Þϑ3
�
1

2
ω0τ; e−

1
2
σ2ωτ

2−λ2−Λ
�

þ ω0ðσ2ωτ þ _ΛÞϑ03
�
1

2
ω0τ; e−

1
2
σ2ωτ

2−λ2−Λ
�

þ 1

4
ðσ2ωτ þ _ΛÞ2ϑ003

�
1

2
ω0τ; e−

1
2
σ2ωτ

2−λ2−Λ
�	

; ð15Þ

where ϑ3ðz; qÞ ¼
P∞

l¼−∞ e2ilzql
2

denotes the Jacobi

Theta function, ϑðnÞ3 ðz; qÞ ¼ ∂n
zϑ3ðz; qÞ, and we rescaled

ω0 þ μξ → ω0 with μξ ¼ K̄ω0=ð2π − K̄Þ.
We compare the resulting spectra of network noise and

single unit to simulation results of a sparse heterogeneous
network of NE excitatory and NI inhibitory EIF neurons
governed by

τm _Vi ¼ −ðVi − V leakÞ þ ΔTe
−Vi−Vth

ΔT þ RIiðtÞ ð16Þ

supplemented by the fire-and-reset rule; i.e., whenever the
voltage diverges (or, in the simulations, reaches a threshold
Vpeak) a spike is registered and thevoltage is reset toVreset and
kept constant during the refractory period tref . The total
recurrent inputRIiðtÞ¼RIext;iþτmJE

P
j∈NE

Cijxjðt−τDÞþ
τmJI

P
j∈NI

Cijxjðt−τDÞ consists of the excitatory
(inhibitory) recurrent contributions with amplitudes JE
(JI ¼ −gJE), where xiðtÞ ¼

P
kδðt − tki Þ denotes the spike

train of neuron i, τD is the transmission delay, and Cij is
a random connectivity matrix with i.i.d. distributed entries
that are 1 with probability ε and 0 otherwise. An important

biophysical constraint is given by Dale’s law; i.e., excitatory
neurons form only excitatory outgoing connections and
vice versa for inhibitory neurons. Cell-to-cell variability is
implemented by means of a constant input current to each
neuron that is drawn from a Gaussian distribution with mean
RIext and variance σ2ext (corresponding to the distribution of
natural frequencies in the rotator network). This type of
network is frequently used in computational neuroscience to
study the asynchronous irregular state of cortical networks
[6,8,24]. Deep in the mean-driven regime of the spiking
network, the spectra obtained from solving the modified
rotator Eq. (15) display a good agreement with the spectra of
the network noise [Fig. 4(a)] and the single-neuron’s spike
train [Fig. 4(b)] obtained from simulating the spiking net-
work using the NEST simulator [37].
Conclusions.—In this Letter we explored the emergence

of a dynamical network noise in a random network of
deterministic phase oscillators. We obtained equations for
the second-order temporal correlation statistics, which
are formally exact in the limit N → ∞. Focusing on an
analytically tractable case, we derived asymptotic solutions
for the stationary autocorrelation functions of the network
fluctuations and the rotators, respectively. Furthermore, we
generalized the theory to the important case of a recurrent
neural network of spiking neurons and demonstrated that
our rotator-network theory is applicable if the integrate-
and-fire neurons are in a strongly mean-driven regime.
It is still an open problem how the autocorrelation of IF
neurons can be calculated when the model operates in the
fluctuation-driven regime where our rotator approxima-
tion fails.
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Our work paves the way for more detailed studies of how
the statistics of connection strength, the network’s hetero-
geneity, and the interaction function shape the network
noise and the autocorrelations of the single element if
this element has an predominantly oscillatory nature.
Mathematically, it is an interesting challenge to prove
the stability of the asynchronous state of our model under
general conditions. Furthermore, it is plausible but has to
be worked out in detail whether interactions of distinct
oscillator populations may be described by separate but
coupled equations for the different correlation functions.
Another exciting topic for future research is the response of
our model to external stimuli and the accompanying change
of the correlation statistics. Finally, a theoretical under-
standing of power spectra of weighted sums of the synaptic
input (like the network noise) in spiking neural networks
enables systematic studies of rhythms in the local field
potential [2], an experimentally accessible quantity arising
from filtered synaptic input currents [38,39].

We thank Davide Bernardi, Alexander Neiman, and
Misha Zaks for valuable comments on an earlier version
of this Letter.
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