
LETTER Communicated by Anthony Burkitt

Mean, Variance, and Autocorrelation of Subthreshold
Potential Fluctuations Driven by Filtered
Conductance Shot Noise

Lars Wolff
wolff@mpipks-dresden.mpg.de
Benjamin Lindner
benji@mpipks-dresden.mpg.de
Max-Planck-Institut für Physik Komplexer Systeme, 01187 Dresden, Germany

We study the subthreshold voltage fluctuations of a conductance-based
passive point neuron stimulated by filtered Poissonian shot noise. We
give exact analytical expressions in terms of quadratures for the first two
time-dependent moments and the autocorrelation function of the mem-
brane voltage. We also derive simplified expressions for the moments in
terms of elementary functions that hold true in the limit case of short fil-
ter time, small spike amplitude, and a single synaptic reversal potential.
By means of these expressions, we show that for an ensemble of equili-
brated conductances but sharp initial voltage (corresponding to a short
voltage clamp at the initial time), the mean and the standard deviation
can display nonmonotonic time courses. In particular, transient changes
in the standard deviation disagree strongly with the predictions of the
commonly used effective time constant approximation over a large pa-
rameter range. We also study the dependence of the correlation time of
the voltage on the synaptic spike amplitude and the synaptic input rate.
All results are confirmed by extensive stochastic simulations.

1 Introduction

Neurons are the basic unit of computation in our brain. The language in
which they communicate information is the spike train, a sequence of small
discharges of the voltage across their cell membrane of about 80 mV, a
single one of which lasts less than a few ms (Koch, 1999). Because of the
high connectivity in the neural networks of the cortex, a single neuron is
subject to tens of thousands of such spike trains coming from other cells.
Regardless of whether all of these presynaptic spike trains or only some of
them represent information or just random fluctuations, the statistics of the
synaptic input is in many cases well described by Poissonian shot noise, and,
consequently, the resulting time course of the postsynaptic membrane po-
tential and the resulting postsynaptic spike train appear to be stochastic too.
Many researchers have modeled these fluctuations as a stochastic process
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and have calculated their statistics (for reviews, see Holden, 1976; Ricciardi,
1977; Tuckwell, 1989; Gerstner & Kistler, 2002; Burkitt, 2006). In this work,
we contribute to these efforts by an analysis of the time-dependent statis-
tics of the postsynaptic voltage fluctuations without taking into account a
postsynaptic spiking mechanism (passive membrane). Even in situations in
which the neuron barely fires (e.g., for weak input noise or if an inhibitory
current is applied), these subthreshold voltage fluctuations can still be of
interest: their statistics are accessible by standard procedures and can pro-
vide useful information about synaptic properties (Rudolph, Piwkowska,
Badoual, Bal, & Destexhe, 2004).

If the driving shot noise and synaptic filtering are properly taken into
account, even the simplest model, a passive membrane, results in rather
difficult stochastic equations. This model is addressed in this study. It
was proposed in its original form by Stein (1965, 1967) and describes the
fluctuating conductances of the membrane voltage dynamics by a linear
filter equation with the spontaneous background shot noise as input. In
slightly different versions, it has been studied in various papers. Until re-
cently, only approximate results of varying range of validity were available.
Two commonly used approaches are the diffusion approximation (see, e.g.,
Johannesma, 1968; Holden, 1976; Lánský & Lánská, 1987; Tuckwell, 1989;
Burkitt, 2001; Lindner & Longtin, 2006) and the effective time-constant
approximation (ECA), also called gaussian approximation (for reviews,
see Richardson & Gerstner, 2005; Burkitt, 2006). A perturbation expansion
approach going beyond the ECA for the asymptotic probability distribu-
tion and the steady-state moments of the voltage has been put forward by
Richardson and Gerstner (2005).

In a recent publication (Wolff & Lindner, 2008), we proposed a method
to calculate the exact time-dependent moments of the subthreshold voltage
for arbitrary shot noise input. We used this method to calculate the time-
dependent mean voltage for Poissonian shot noise input filtered by a first-
order conductance dynamics. In this letter, we apply the same method
for calculating the time-dependent standard deviation and the stationary
correlation function of the subthreshold voltage. Furthermore, for the mean
and the standard deviation, we give simple expressions in the limit of a fast
synapse driven by a spike train with weak amplitudes.

We compare our exact results and our systematic approximation for two
parameter sets (considering only one kind of synapse, respectively) with
results of stochastic simulations and with the predictions of the common
approximation, the ECA. Mean and standard deviation (SD) show extrema
in the time course—features that are absent in the common approximation.
Despite this qualitative failure of the ECA, we find that the time-dependent
mean voltage and the steady-state SD value deviate only slightly from
the ECA predictions. However, we also observe that the time-dependent
standard deviation shows strong deviations for all parameter sets. Further,
the exact correlation function shows a monotonic decay (as also predicted
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by the ECA) with a time constant (correlation time), which differs for one of
the parameter sets by a factor of three from the correlation time calculated
in the ECA.

This letter is organized as follows. In section 2.1, the passive point neuron
model is introduced. The concept of time-dependent moments is briefly ex-
plained in section 2.2, and the standard approximation to the problem (the
ECA) is reviewed in section 2.3. The exact formulas for the time-dependent
mean, the time-dependent standard deviation, and the stationary autocor-
relation function are given in sections 2.4 to 2.6; here we also state simplified
expressions for the time-dependent moments that are more accurate than
the ECA. In section 3.1, we study the nonmonotonic behavior of the time-
dependent moments. This is followed by an examination of the autocorre-
lation function and the correlation time in section 3.2. We briefly summarize
and discuss our results in section 4.

2 Models and Methods

2.1 The Passive Point Neuron Model. Our study is based on the pas-
sive point neuron model as initially proposed by Stein (1965, 1967) and
recently studied by Richardson (2004) and Richardson and Gerstner (2005).
Its conductance dynamics is described by a linear filter equation with Pois-
sonian shot noise input. This kind of linear filter has also been used by
Brunel and Sergi (1998) and Richardson and Gerstner (2005) and showed
reasonable agreement with experimental data (Destexhe & Mainen, 1994).
A model with unfiltered Poissonian shot noise has been considered in
Tuckwell (1979), and the case with unfiltered white gaussian noise has
been treated in Hanson and Tuckwell (1983), Lánský and Lánská (1987),
Burkitt (2001), and Richardson (2004).

The equations for the model considered here read:

C
dV
dt

=−(V − EL )gL − (V − Ee )ge (t) − (V − Ei )gi (t), (2.1)

τe,i
dge,i

dt
=−ge,i + ce,iτe,i

∑
{tke,i }

δ(t − tke,i ), (2.2)

where e, i means either e or i, C is the membrane capacitance, and the leak-
age, excitatory, and inhibitory reversal potentials are denoted by EL, Ee,
and Ei, respectively. The respective conductances per area are abbreviated
by gL, ge (t), and gi (t). The synaptic filter is parameterized by the synap-
tic time constants τe,i and the synaptic amplitudes ce,i . The homogeneous
Poissonian input process is characterized by the rate re,i .

A visualization of the dynamics is shown in Figure 1. In this example,
the conductances are in a stationary state while the voltage was initially
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Figure 1: Visualization of the dynamics, obtained from the simulation of equa-
tions 2.1 and 2.2. Each time a spike arrives, the respective (inhibitory or excita-
tory) conductance makes a jump of size ce,i and then decays with time constant
τe,i toward zero. The response of the voltage to a spike arrival is less regular, as
the magnitude of the voltage change depends on the distance to the respective
reversal potential. The discontinuous jump of the conductances is smoothed
out due to the filtering, and the voltage is therefore a smoothly varying func-
tion of time. The parameters used for this example are re = 400 Hz, ri = 30 Hz,
ce = 0.3 mS/cm2, ci = 0.8 mS/cm2, gL = 0.3 mS/cm2, τe = 1 ms, τi = 10 ms,
Cm = 1 μF/cm2, Ee = −10 mV, Ei = −85 mV, EL = −60 mV, and V0 = −65 mV.

clamped to a fixed value, V0 = −65 mV. In the upper panel, the times of
spike arrival are indicated by vertical lines for excitation and inhibition,
respectively. The response of the respective conductances is shown in the
middle panel. At the time of spike arrival, the conductance makes an in-
stantaneous jump of magnitude ce,i and then decays toward zero until the
next spike. The resulting voltage trajectory (bottom panel) shows a differ-
ent behavior. Although the model contains a (discrete) shot noise input, the
voltage is a continuously varying function of time. This is due to the finite
filtering time. As the voltage depends on the fluctuating conductances in
a multiplicative fashion, the magnitude of the voltage change caused by
one spike is not fixed, but depends on the difference V − Ee,i . After a brief
transient (t � 10 ms), the moments of the voltage approach constant values,
as indicated by VST in Figure 1 (dashed line). The stationary SD for this
example is σ ≈ 4.8 mV.

Our study aims to characterize the effect of three nontrivial properties
of the subthreshold dynamics equations, 2.1 and 2.2. The stimulus has shot
noise character, is filtered by the first-order conductance dynamics, and
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enters the voltage dynamics via conductance changes in a multiplicative
fashion. All of these properties complicate the theoretical analysis and the
calculation of the fluctuation’s statistics; a gaussian continuous (instead of
discontinuous), uncorrelated (instead of correlated), and additive (instead
of voltage-dependent) noise would be more convenient in this respect. As
we will show, the interplay of these nontrivial properties of the stochastic
voltage dynamics strongly influences the features of the time-dependent
voltage moments and can also change the autocorrelation function and, in
particular, the correlation time, significantly.

For ease of notation, we will use a number of abbreviations in this
letter:

v = V − EL , ve,i = Ee,i − EL , v0 = V0 − EL , β = gL

C
,

εe,i = ce,iτe,i

C
. (2.3)

In our theory, regarding the relative amplitudes εe,i as small permits a
considerable simplification of the resulting formulas. We note that these
amplitudes are nondimensional products of ratios

εe,i = ce,i

gL

τe,i

C/gL
= ce,i

gL

τe,i

τmem
. (2.4)

Here the first factor is the ratio of the increment of the conductance and the
leak conductance of the unperturbed system. This factor will be small for an
input spike train with small amplitude. The second factor is the ratio of con-
ductance filter timescale and membrane time constant of the unperturbed
system τmem = C/gL . This ratio τe,i/τmem is small for a “fast” synapse—a
synaptic filter with a time constant smaller than that of the driven voltage
dynamics. Simplifications of our formulas thus apply for neurons with fast
synapses and small-amplitude shot noise input. Note that the firing rate
of the input spike train does not enter the relative amplitudes εe,i , unlike
small parameters used in other approximations (diffusion approximation
or ECA).

2.2 Statistics of Interest: Time-Dependent Moments and Derived
Measures. The first two time-dependent moments are given by

〈
V(t)

〉
and〈

V(t)V(t′)
〉
, where the average is taken over an ensemble of time-dependent

trajectories for which V(t = 0) = V0 and all conductances are equilibrated.
This statistical ensemble corresponds to an ensemble of experiments where
the voltage is initially briefly clamped to V0 and it is assumed that this
voltage clamp does not affect the synaptic conductances.

Two important statistical measures can be obtained from the first two
time-dependent moments: the standard deviation σ (t) and the stationary
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autocorrelation function c(τ ). The square of the time-dependent standard
deviation is given by

σ 2(t) = 〈V2(t)〉 − 〈V(t)〉2, (2.5)

and the autocorrelation function reads

c(τ ) = lim
t→∞(〈V(t)V(t + τ )〉 − 〈V(t)〉2). (2.6)

Nonoscillating correlation functions can be characterized by the correlation
time:

τc = 1
c(0)

∫ ∞

0
dτ c(τ ). (2.7)

For purely exponential autocorrelation functions, τc is equal to the decay
time constant.

To obtain a moment from experiments or simulations, the first step is to
record N time-dependent voltage trajectories, where N is a large number.
The trajectories are obtained by imposing an initial condition to the voltage
(e.g., by clamping the cell to the voltage V0), releasing the constraint and
recording the voltage until the dynamics is in a steady state (≈50 ms). An
important assumption for the methods used to derive the results of this
letter is that the conductances are equilibrated. From the moments of this
ensemble of time-dependent voltage trajectories, one can obtain estimates
for the time-dependent moments of the subthreshold voltage fluctuations.
This procedure is illustrated in Figure 2 for the time-dependent mean value
and the time-dependent standard deviation.

Stationary quantities (such as the autocorrelation function, which is also
calculated in this letter), can be extracted much more easily, from voltage
recordings: one needs only one long stationary voltage trace to extract the
correlation function with a moving-window algorithm.

2.3 Approximate Expressions for Mean, Standard Deviation, and
Correlation Function Using the Effective Time Constant Approximation.
The passive point neuron model consists of three stochastic differential
equations with multiplicative noise in the voltage and shot noise input to
the conductances. The solution of the equations is rather challenging, and
in many cases, approximations have been used.

The following standard approximation is widely used in the case of Pois-
sonian input spike trains (see Burkitt, 2006; Richardson & Gerstner, 2005).
For a high input rate and a small impact of a single spike on the conduc-
tances (represented by ce and ci in this model), the Poissonian input noise
in equation 2.2 can be replaced by a gaussian white noise process. More-
over, the multiplicative contributions to the dynamics can be neglected.
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Figure 2: Estimating the time-dependent mean value and standard deviation
from voltage traces. After recording N time-dependent voltage traces with initial
voltage V(0) = V0 (left panel), one has to take the arithmetic mean of the N
traces to obtain an estimate for the time-dependent mean value of the neuron
(upper right panel). The asymptotic (stationary) mean voltage 〈V〉st is indicated.
To obtain an estimate of the variance, one has to subtract the squared time-
dependent mean value from the arithmetic mean of the squared traces. The
standard deviation, which is the square root of the variance, is shown in the
lower right panel.

This leads to the following simplified equations:

C
dV
dt

= −(V − E0)g0 − (Ee − E0)ge F (t) − (Ei − E0)gi F (t), (2.8)

τe,i
dge,i;F

dt
=−ge,i;F +

√
2τe,iσ

2
e,iξe,i (t). (2.9)

Here, E0 and g0 are the new effective leakage reversal potential and leakage
conductance, respectively. They are given by

g0 = gL + ge0 + gi0, (2.10)

E0 = 1
g0

(gL EL + ge0 Ee + gi0 Ei + Iapp), (2.11)

with ge,i;0 = ce,iτe,ire,i , σe,i = ce,i
√

τe,ire,i/2. The gaussian white noise pro-
cess ξe,i (t) is characterized by 〈ξ 〉 = 0, and 〈ξ (t)ξ (t + τ )〉 = δ(τ ).
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This is the so-called effective time constant approximation (ECA) (also
called a gaussian approximation) because the equations resemble a passive
point neuron with current noise, where the membrane time constant C/gL

is replaced by the effective time constant τ0 = C/g0 . From equations 2.8 and
2.9, one can easily obtain all moments. We will compare the exact results
obtained in the following section to the predictions of the ECA. For this
purpose, we explicitly give the expressions for the time-dependent mean
and variance as well as the autocorrelation function as predicted by the ECA:

〈V(t)〉EC A = (V0 − E0)e−t/τ0 + E0,

= v0e−t/τ0 + (1 − e−t/τ0 )(reεeve + riεivi )τ0 + EL , (2.12)

σ 2(t)EC A =
(

Ee − E0

g0

)2

σ 2
e

τ 2
e

τ 2
e − τ 2

0

(
1 − τ0

τe
+ e−2 t

τ0

(
1 + τ0

τe

)

− 2e−( 1
τ0

+ 1
τe

)t
)

+
(

Ei − E0

g0

)2

σ 2
i

τ 2
i

τ 2
i − τ 2

0

×
(

1 − τ0

τi
+ e−2 t

τ0

(
1 + τ0

τi

)
− 2e−( 1

τ0
+ 1

τi
)t
)

= ((1 − reεeτ0)ve − riεiτ0vi )
2 re

2
ε2

e τ
2
0

τe

τ 2
e − τ 2

0

×
(

1 − τ0

τe
+ e−2 t

τ0

(
1 + τ0

τe

)
− 2e−( 1

τ0
+ 1

τe
)t
)

+ ((1 − riεiτ0)vi − reεeτ0ve )2 ri

2
ε2

i τ
2
0

τi

τ 2
i − τ 2

0

×
(

1 − τ0

τi
+ e−2 t

τ0

(
1 + τ0

τi

)
− 2e−( 1

τ0
+ 1

τi
)t
)

, (2.13)

and

c(τ )EC A =
(

Ee − E0

g0

)2

σ 2
e

τ 2
e

τ 2
e − τ 2

0

(
e− τ

τe − τ0

τe
e− τ

τ0

)

+
(

Ei − E0

g0

)2

σ 2
i

τ 2
i

τ 2
i − τ 2

0

(
e− τ

τi − τ0

τi
e− τ

τ0

)

= ((1 − reεeτ0)ve − riεiτ0vi )
2 re

2
ε2

e τ
2
0

τe

τ 2
e − τ 2

0

(
e− τ

τe − τ0

τe
e− τ

τ0

)

+ ((1 − riεiτ0)vi − reεeτ0ve )2 ri

2
ε2

i τ
2
0

τi

τ 2
i − τ 2

0

(
e− τ

τi − τ0

τi
e− τ

τ0

)
.

(2.14)
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For pure inhibition or excitation, all of these functions are monotonic in t,
and the correlation time for equation 2.14 takes a very simple form:

τc,EC A = τ0 + τe,i. (2.15)

For both excitation and inhibition present, the SD can show an overshoot.
Note that the time-dependent standard deviation, equation 2.13, is
completely independent of the initial voltage.

Finally, we state an approximate result by Richardson and Gerstner
(2005) for the steady-state mean value, which goes beyond the ECA:

〈V〉RG
∞ = E0 −

(
σ 2

e

g2
0

(Ee − E0)
τe

τe + τ0
+ σ 2

i

g2
0

(Ei − E0)
τi

τi + τ0

)

+ O
((

σe,i

g0

)3
)

(2.16)

= EL + εereτ0ve + εi riτ0vi −
(

r
2(τe + τ0)

ε2
e τ

2
0 ((1 − reεeτ0)ve

− riεiτ0vi ) + ri

2(τi + τ0)
ε2

i τ
2
0 ((1 − riεiτ0)vi − reεeτ0ve )

)

+ O
((re,iεe,iτ0

τ

)3
)

.

In the derivation of this result, it was assumed that the following parameters
are small:

δRG
e,i = σe,i

g0
= ce,i

√
τe,ire,i/2

gL + ciτi ri + ceτere
	 1. (2.17)

According to Richardson and Gerstner (2005), there is within the same
approximation no correction to the steady-state variance as predicted by
the ECA.

2.4 Exact Formula for the Mean. Using the methods introduced by
Wolff and Lindner (2008), one obtains for the time-dependent mean value
for Poissonian shot-noise input,

〈
v(t)

〉 = v0 exp [−βt + fe (t) + fi (t)]

−ve

∫ t

0
ds exp [−βs + fe (s) + fi (s)]

d fe (s)
ds

−vi

∫ t

0
ds exp [−βs + fe (s) + fi (s)]

d fi (s)
ds

. (2.18)
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The functions fe,i (t) are given in appendix A. Due to the complicated form
of these functions, the integrals appearing in equation 2.18 have to be solved
numerically.

The resulting formulas can be simplified for weak relative amplitudes
εe,i 	 1 where the exponential occurring in the moments can be approxi-
mated as follows (Wolff, 2007):

exp[ f (s)] ≈ e−rεs
(

1 + 1
2

rτε2
( s

τ
+ (

e−s/τ − 1
)))

. (2.19)

Here we have omitted the respective index e or i for rates, amplitude, and
time constant. When the expansion is inserted into the exact formulas, all
integrals can be performed analytically. Here we restrict ourselves to the
case of only one synaptic reversal potential (either pure excitation or pure
inhibition). With the abbreviation τe,i = τ , the expression reads as follows:

〈
v(t)

〉 ≈ 〈V〉RG
∞ − EL + c〈v〉,1(t)e−t/τ0 + c〈v〉,2e−(1/τ0+1/τ )t, (2.20)

where 〈V〉RG
∞ is the steady-state value calculated by Richardson and

Gerstner (2005), and c〈v〉,1(t) and c〈v〉,2 are a linear function of t and a con-
stant, respectively, which are given in section B.1. Note that we use an
asymptotic expansion for the integrands of equation 2.18. This implies that
the full integral is not an asymptotic expansion anymore; however, it is still
an asymptotic approximation. In other words, although we expanded the
integrand to a certain power in ε, we cannot say about the whole integral
that it is of a particular order in ε. In the rest of this letter, when we speak
of the expansion to a certain order, we always mean that we expanded the
integrand and inserted it into equation 2.18.

The approximation equation, 2.21, includes corrections up to order ε2

and is expected to work for small ε at any time t; in linear order in ε,
it corresponds to the ECA. Note that although we have used a slightly
different expansion parameter (ε given in equation 2.3 instead of δRG given
in equation 2.17), the steady-state value of the voltage is the same as the
one calculated by Richardson and Gerstner (2005).

2.5 Exact Formula for the Standard Deviation. With the methods by
Wolff and Lindner (2008), the second time-dependent moment 〈v2(t)〉 yields
(for details, see also Wolff, 2007)

〈v2(t)〉 = v2
0e−2βte fe>(t,t)e fi>(t,t) − 2v0ve

∫ t

0
ds ′e−β(t+s ′)e fi>(t,s ′) d

ds ′ e
fe>(t,s ′)

− 2v0vi

∫ t

0
ds ′e−β(t+s ′)e fe>(t,s ′) d

ds ′ e
fi>(t,s ′)
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+ 2v2
e

∫ t

0
ds

∫ s

0
ds ′e−β(s+s ′)e fi>(s,s ′) d2

dsds ′ e
fe>(s,s ′)

+ 2v2
i

∫ t

0
ds

∫ s

0
ds ′e−β(s+s ′)e fe>(s,s ′) d2

dsds ′ e
fi>(s,s ′)

+ 4vevi

∫ t

0
ds

∫ s

0
ds ′e−β(s+s ′)

(
d
ds

e fe>(s,s ′)
) (

d
ds ′ e

fi>(s,s ′)
)

.

(2.21)

The functions fe,i>(s, s ′) are given in appendix A. Again, the complicated
structure of these functions precludes the analytical evaluation of the inte-
grals in equation 2.21. A numerical evaluation of the integrals is, however,
straightforward and, with the evaluation of equation 2.18, provides via
equation 2.5 the exact standard deviation.

Furthermore, as in the case of the mean, we can also calculate an ap-
proximation that holds true for small relative amplitudes εe,i using approx-
imations for the exponential functions appearing in the above formula (see
section B.2). Again, all resulting integrals can be carried out explicitly; the
resulting expression for the time-dependent variance (and for only excita-
tion or inhibition present) reads

〈v2(t)〉 ≈ c〈v2〉,1(t)e−2t/τ0 + c〈v2〉,2(t)e−t/τ0 + c〈v2〉,3e−(2/τ0+1/τ )t

+ c〈v2〉,4e−(1/τ0+1/τ )t + c〈v2〉,5, (2.22)

where the first two coefficients are linear in t and the last three are con-
stants; all are given in section B.2 and τ = τe,i. In contrast to the ECA, this
result can also predict a nonmonotonic behavior of the variance (see be-
low). Note that the lowest order (ε) of this systematic approximation does
not correspond to the ECA (in contrast to the mean value). This is due to the
nonlinear character of the variance, as explained in the following: The ECA
roughly corresponds to a lowest-order expansion of the stochastic process
V(t) = v(t) + EL . The systematic approximation proposed in this section, in
contrast, is an expansion of the moments of the stochastic process v(t). Thus,
one can reckon the first (linear) moment of the ECA process to agree with
the leading order of the systematic expansion of the mean value. For the
higher moments, however, one might expect discrepancies between the two
approaches. In particular, the variance of the ECA approximation (which
is quadratic in the approximated process and thereby higher order) will be
different to the leading-order expansion of the exact second moment.

We emphasize that our systematic approximation is a rigorous proce-
dure. Moreover, by calculating the next term of the expansion, one can also
obtain a measure for the error.
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2.6 Exact Formula for the Autocorrelation Function. According to Wolff
and Lindner (2008) and Wolff (2007), the asymptotic second moment for
Poissonian shot noise can be calculated by

lim
t→∞

〈
v(t)v(t + τ )

〉

= 2
∫ ∞

0
ds

∫ s

0
ds ′e−β(τ+s+s ′)

{
((v2

e e f +
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) (
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+
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) (
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(
d
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e f −
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d

ds ′ e
f −
i>(s,s ′,τ )

)}
. (2.23)

The functions f ±
e,i> are given in appendix A. Also in this case, the integrals

in equation 2.23 have to be evaluated numerically.
The exact autocorrelation function can be calculated using equations 2.6,

2.18, and 2.23.

2.7 Stochastic Simulation Algorithm. To generate the Poissonian time
series for the input spike train, a random number between 0 and 1 was
drawn, using the function rand of the programming language C. If this
number was smaller than re,i times the integration time step dt, a spike
was generated. One time step after the occurrence of a spike, the respective
conductance was increased by ce,i . Using these conductances, a discretized
version of equation 2.1 was integrated using a simple Euler integration
scheme.

To obtain mean and variance, at each time step, V(t) and V2(t) were
recorded, and the arithmetic mean was taken over N independent trajecto-
ries. The autocorrelation function was obtained by the following procedure.
After a certain waiting time to ensure that the system relaxed to a stationary
state, the asymptotic time-dependent trajectory V∞( j × dt) was recorded,
and the quantity V∞( j × dt) − 〈V∞〉 was Fourier transformed. The square
of the absolute value of the Fourier transform was averaged over many
independent trajectories to obtain the power spectrum (see, e.g., Gardiner,
1985, equation 1.4.34). According to the Wiener-Khinchin theorem (see, e.g.,
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Table 1: Standard Parameter Set 1.

Parameter Standard Set 1

re 800 Hz
τe 3 ms
ce 0.03 mS

cm2

Ee −30 mV
EL −90 mV

C 1 μF
cm2

gL 0.05 mS
cm2

τmem 20 ms

Note: Here the relative amplitude
εe = 0.09 is much smaller than one.

Table 2: Standard Parameter Set 2.

Parameter Standard Set 2

ri 20 Hz
τi 10 ms

ci 2 mS
cm2

Ei −90 mV
EL −65 mV

C 1 μF
cm2

gL 0.05 mS
cm2

τmem 20 ms

Note: In this case, the relative ampli-
tude εi = 20 is larger than one.

Gardiner, 1985, equation 1.4.39), the inverse Fourier transform of the power
spectrum yields the autocorrelation function.

3 Results

In this section we compare our exact results for mean and standard devia-
tion to stochastic simulations, the ECA, and our weak-amplitude approx-
imations equations 2.20 and 2.22. We also inspect the correlation function
and the correlation time that can be derived from it.

In the following, two standard parameter sets are used to which we refer
in most of our numerical examples (see Tables 1 and 2). For both sets, only
one synaptic input is present. Standard set 1 describes a neuron with many
but weak (excitatory) synaptic connections. The high rate and the weak
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Figure 3: Exact mean voltage (solid line), systematic approximation (dash-dot
line) and ECA expression (dashed line) compared to simulation results (circles).
The exact mean value has a maximum at t ≈ 3 ms, which is very well repro-
duced by the systematic approximation. The ECA fails to predict nonmonotonic
behavior. The parameters are taken from standard set 1 (see Table 1) and the
initial voltage is −55 mV.

noise indicate that the ECA should be a good approximation for this set.
Standard set 2 represents a neuron with few but strong (inhibitory) synaptic
connections. Due to the low rate and the strong noise, one expects that the
ECA description will fail for this set.

3.1 Nonmonotonic Behavior of the Transient Moments. We have
shown (Wolff & Lindner, 2008) that the time-dependent mean value ex-
hibits an extremum if the initial voltage is chosen in an appropriate way.
The parameter set in Table 1 is similar to one of the sets used in Wolff and
Lindner. The mean value for these parameters is presented in Figure 3. The
exact mean value shows a maximum versus time. This is also very well
reproduced by the systematic approximation presented in the last section.
In contrast, the ECA is not able to reproduce this nonmonotonic behav-
ior. Also, the asymptotic value of the systematic approximation is in better
agreement with the exact value than the ECA. Note, however, that the quan-
titative deviations of the ECA for this set are very small as compared to the
SD (see Figure 5). Therefore, if one is interested in the mean value, using
the ECA is in most cases completely justified for this set.

An example for the standard set 2 (see Table 2) is given in Figure 4, where
we plot the exact mean, the prediction of the ECA, and the simulation results
versus time. The exact curve and the ECA prediction agree for t < 0.2 ms.
For longer times, the ECA prediction decays exponentially, whereas the
exact curve reaches a minimum (in contrast to the excitatory example,
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Figure 4: Example for a nonmonotonic mean. The exact mean value (solid
curve) has a minimum at t ≈ 3 ms, whereas the ECA prediction shows a purely
exponential time curse. The parameters are taken from standard set 2 (see
Table 2), and the initial voltage is −80 mV. The simulations are averaged over
105 trajectories.

where a maximum was observed) at t ≈ 3 ms and then increases until it
attains a stationary value. The magnitude of the extremum for this example
is approximately 2.6 mV. The systematic approximation is not shown for
this set, as the requirement of a small relative amplitude ε is not met.

To obtain a nonmonotonic mean value, the initial value has to lie within a
narrow range, the width of which is determined by the other parameters of
the system (Wolff & Lindner, 2008). However, it could be proven that there
always exist initial values that lead to a nonmonotonic behavior (Wolff &
Lindner, 2008), although the latter is not necessarily typical.

A nonmonotonic behavior of the SD as a function of time is much more
typical. Figure 5a shows the SD for different initial voltages, most of which
lead to a maximum attained between 7 and 10 ms. In Figure 5b, the standard
deviation for the initial value of −80 mV is compared to the approximations
and to simulation results. The ECA prediction does not change at all with
the initial voltage (see equation 2.13). Only for moderate initial voltages is
the SD monotonic and in agreement with the ECA prediction (compare the
lowest curve in Figure 5a to the ECA curve in Figure 5b). The systematic
approximation, however, fits the nonmonotonic behavior of the standard
deviation very well. The fact that we found the exact expressions for the
moments is supported by the excellent agreement of our theory to numerical
simulation results of the full model.

An even more interesting behavior can be observed for the standard set 2,
which has only an inhibitory conductance. Figure 6 shows the exact SD for
this set for different initial values. In contrast to the excitatory example, one
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Figure 5: (a) The exact standard deviation for different initial voltages for stan-
dard set 1 (see Table 1). For moderate initial voltages, V0 ≈ 〈V〉ST (lowest curve),
the time course is monotonic. If the initial voltage is decreased, a maximum de-
velops. The maximum becomes more pronounced the lower the initial voltage
is. (b) The curve for the lowest initial value is compared to results of stochastic
simulations (circles), the ECA (dashed line), and the systematic approximation
(dash-dot line).

observes maxima for initial voltages larger than the steady-state mean value
(in this case, 〈V〉ST ≈ −80 mV). For initial voltages between the steady-state
mean voltage and the inhibitory reversal potential (Ei = −90 mV for this
example), the SD is monotonic. Interestingly, for initial voltages smaller
than Ei, one again observes a nonmonotonic time course with a minimum
and a maximum. The extrema become more pronounced as the difference
of the initial voltage to the synaptic reversal potential grows.

We conclude that if the parameters meet the requirements of section 2.3
and one is interested only in the stationary mean and SD, using the ECA
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Figure 6: The exact standard deviation for different initial voltages for standard
set 2. As in Figure 5, a monotonic time course can be observed for moderate
initial voltages. In this case, however, for large initial voltages (the reference
point is always the steady-state mean voltage), the curve shows a maximum,
and for low initial voltages V0 < Ei , one can see a minimum and a maximum.

expression is justified. However, even in cells where deviations between
the predictions for the stationary quantities of the ECA and the exact ex-
pressions are small, transient differences in the SD can be large. These may
be important for the spiking statistics in the presence of voltage-gated ion
channels (i.e., a spike-generating mechanism).

3.2 The Autocorrelation Function. As the autocorrelation function is
calculated from the stationary moments, there is no dependence on the ini-
tial voltage. The nontrivial dependence on the initial voltage was one major
effect of the multiplicative dynamics and the shot noise input and revealed
interesting effects such as a nonmonotonic time course. Nevertheless, there
is a difference in the timescale between the full multiplicative dynamics
and the additive dynamics with a gaussian input noise (represented by the
ECA). As a measure for the typical timescale of the correlation function, we
use the correlation time as introduced in equation 2.7.

Figure 7 shows the exact autocorrelation function, the ECA predic-
tion, and simulation results for standard set 1. The exact curve and the
simulations agree very well, and the ECA prediction is in reasonable
agreement. The correlation times for this example are τc,ex = 11.4 ms and
τc,EC A = 11.2 ms.

For standard set 2, more drastic deviations can be observed, as can be
seen in Figure 8. We note that the deviations at small time lags are related
to the difference between the true and approximate stationary standard
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Figure 7: Comparison of the exact autocorrelation function, the ECA prediction,
and simulation results for standard set 1. The simulations and the exact curve
are in excellent agreement, and the ECA prediction does not deviate much for
this set.
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Figure 8: Comparison of the exact autocorrelation function, the ECA prediction,
and simulation results for standard set 2. The simulation results and the exact
curve are in excellent agreement. In contrast to Figure 7, however, the ECA
prediction deviates strongly from the exact result. From the comparison of the
normalized curves (inset), it becomes apparent that the timescales also differ.

deviation. Apart from these deviations, there are also strong differences in
the timescale (see Figure 8, inset): the ECA predicts a correlation time of
τc,EC A = 12 ms and the exact value is τc,ex = 29 ms. Here one should keep in
mind that the stationary standard deviation does not affect the correlation
time.

Apparently the effect of the multiplicative dynamics on the timescale
becomes stronger as the shot noise character of the input noise becomes
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Figure 9: Correlation time versus the parameter ce for standard set 1. The pre-
dictions of the ECA are very close to the exact results. Also for large ce, the
agreement does not become significantly worse. Both curves saturate at τe . The
point corresponding to the original standard set 1 is indicated by a circle.

stronger, in accordance with the predictions in section 2.3. In the follow-
ing, we further investigate the dependence of the correlation time on the
parameter ce,i and the input rate re,i .

Figure 9 shows an example for the dependence of the correlation time
on the parameter ce. The other parameters are taken from standard set 1.
The first observation is that the correlation time decreases with increasing
spike amplitude ce and that the ECA prediction agrees very well with the
exact result. The monotonic decrease has been checked for 0.03 ≤ ce ≤ 8.3
(not all data are shown, for clarity).

In Figure 10, the correlation time is plotted versus the parameter ci for
the standard set 2. In this case, there are strong qualitative and quantitative
deviations from the prediction of the ECA. Note that there is a distinguished
value of ci, where the correlation time has a minimum, in contrast to the
monotonic behavior of the previous example (see Figure 9).

Figures 11 and 12 show the dependence of the correlation time on the
synaptic input rate for two different values of the parameter ce,i . For mod-
erate ce,i (see Figure 11), the ECA prediction fits well the exact curve. For a
more pronounced shot noise input, once again the difference between the
simplified and the full dynamics becomes apparent (see Figure 12). Interest-
ingly, the difference between both predictions depends nonmonotonically
on the rate (inset in Figure 12). This means that at both low and high
rates, there may be regimes where the correlation function is well described
by the ECA; however, for moderate spike amplitudes, the ECA might
fail.
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Figure 10: Correlation time in dependence on the spike amplitude ci for stan-
dard set 2. In this example, the agreement of the ECA predictions and the exact
values is reasonably good only for very small ci. Also, the exact correlation
times now show a minimum at ci ≈ 0.3 mS/cm2, whereas the ECA predictions
decay monotonically. The point corresponding to the original standard set 2 is
indicated by a circle.
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Figure 11: Correlation time in dependence of the input rate for standard set 1.
The ECA predictions and the exact values agree well for high as well as for low
rates. The original rate of set 1 is indicated by the circle.

4 Discussion

In this letter, we calculated the exact time-dependent mean and variance
and the exact stationary autocorrelation function of a passive point neuron
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Figure 12: The correlation time in dependence of the input rate for standard
set 2. At low rates, strong difference between the exact values and the ECA
predictions can be observed. The original rate of set 2 is indicated by the circle.

driven by a filtered conductance shot noise with Poisson statistics. These
exact results are rather involved, containing integrals that can only be eval-
uated numerically. For this reason, we also derived approximations that are
based on a small parameter ε that depends on the ratio of spike amplitude
and leak conductance and on the ratio of synaptic filter time to membrane
time constant. These expressions go beyond the standard approximation
(the ECA) and can predict novel effects like extreme values of mean and
standard deviation as functions of time. If the parameter ε 	 1, the approx-
imation predicts the actual time course of mean and standard deviation
accurately. However, we also inspected a physiologically plausible param-
eter set (see Table 2) where ε > 1 and our approximation (not to speak of the
ECA) cannot be applied. In such a case, one can only resort to the numerical
evaluation of the exact quadrature expressions.

Our results show that for parameters corresponding to many weak input
spikes filtered by a fast synapse (see Table 1), the predictions of the ECA for
the time-dependent mean value (Figure 3) and for the steady-state value
of the standard deviation (asymptotic limit in Figure 5b) are reasonably
good, which is in accordance with previous results (Richardson & Gerst-
ner, 2005). Although the nonmonotonic behavior in the mean value is not
captured by the ECA, the quantitative deviations of the time-dependent
mean value from the ECA predictions will be hard to resolve in this case.
However, even for these parameters, the large and measurable transient
changes seen in the standard deviation are quantitatively missed in the
ECA (cf. the time course in Figure 5) for a broad range of initial voltages.
In particular, if we start with a strongly hyperpolarized initial value (see
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Figure 5b), the deviation between the true standard deviation and the ECA
prediction is off by about 100%. Hyperpolarized initial values are not im-
plausible if we think of the reset mechanism for the voltage-introduced by
additional voltage-dependent conductances, for instance, in the Hodgkin-
Huxley model.

We demonstrated that the ECA breaks down, as can be expected for
larger synaptic weights, lower input rates, and slower synapses. In this
case, deviations of the transient and stationary mean value and standard
deviation from the predictions of the ECA become a few mV and may thus
be easily resolved in experiments.

We also showed that the shot noise character as well as the multiplica-
tive nature of the synaptic noise severely affect the correlation function of
the subthreshold voltage (cf. Figure 8). Estimates of the correlation time of
voltage, which are based on the ECA, may be off by a factor of two (cf.
Figure 12). The correlation time can display a minimum versus the ampli-
tude of the shot noise driving. This is possibly interesting in the context
of synaptic plasticity. Neurons undergo short-term and long-term changes
in their synaptic efficacies that will lead to a small but nontrivial change
in the correlation time of the membrane voltage. The implications of such
a change for the neural coding of stimuli are unclear but might be worth
exploring.

In conjunction with previous results on the location of the extrema of
the mean value (Wolff & Lindner, 2008), our simplified results (see equa-
tions 2.20 and 2.22) may be useful to infer parameters of the synaptic input
from experiments measuring the time-dependent moments. In particular,
the strong maximum seen in the standard deviation may allow a deter-
mination of the synaptic timescale or other parameters such as the input
rate or the synaptic amplitude ce,i . Determining these parameters from the
rather shallow minimum in the time-dependent mean voltage requires cer-
tainly a very good statistics—many repetitions of clamping and relaxing
the voltage. In contrast, the strong maximum in the standard deviation for
a hyperpolarized initial voltage may require fewer realizations and may
thus be much more practical from the experimental point of view.

A further application of our results is the study of the effect of the con-
ductance shot noise on the spontaneous firing statistics of spiking neurons.
An important class of such neuron models comprises those based on a
Hazard function (Gerstner & Kistler, 2002), that is, a time-dependent func-
tion that gives the probability of the voltage to reach for the first time the
firing threshold a given time after the last voltage reset. These models are
good approximations to integrate-and-fire models in the subthreshold fir-
ing regime driven by a white gaussian current noise (Plesser & Gerstner,
2000) and allow an analytical approximation to the interspike interval (ISI)
probability density. Hazard functions involve the time-dependent density
of the voltage in the absence of a threshold that can be calculated from
the time-dependent mean value (corresponding for a current driving to the
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noise-free solution of the voltage equation) and the time-dependent stan-
dard deviation. Our result may allow the construction of hazard functions
for a subthreshold dynamics driven by a conductance shot noise. In partic-
ular, one can use a hazard function that incorporates the time-dependent
mean and standard deviation derived in this letter. Note, however, that the
incorporation of the third cumulant (giving the skew of the distribution)
may turn out to be essential to capture the correct ISI statistics. As shown
by Richardson and Gerstner (2005), the skew introduced by both the shot
noise character and the multiplicative nature of the conductance noise may
be considerable. In principle, one can calculate the third time-dependent
cumulant using the method introduced in Wolff and Lindner (2008) and
applied here, although this calculation will be rather tedious. As a simple
approximation, one may use in the hazard function the steady-state value of
the third cumulant, which was derived in Richardson and Gerstner (2005).

From our point of view, an experimental verification of our predictions is
highly desirable, in particular, those regarding the nonmonotonic behavior
of the mean and standard deviation. To the best of our knowledge, so far
no measurements on the time-dependent subthreshold moments have been
performed. We hope that this letter will encourage experimental groups to
tackle this challenge, as many unexpected effects may be discovered.

Appendix A: Auxiliary Functions

In this appendix, the functions that we abbreviated for simplicity in the main
part are given explicitly. For the methods used to calculate these functions,
we refer to Wolff and Lindner (2008). For details of the calculations, see Wolff
(2007). We use the symbol γ to represent the Euler-Mascheroni constant,
γ ≈ 0.577.

The function fe,i (t) for the mean value is given by

fe,i (t) = τe,ire,i (Ei[εe,i (e−t/τe,i − 1)] + (Ei[εe,i ] − Ei[εe,i e−t/τe,i ])e−εe,i

− ln[εe,i (et/τe,i − 1)] − γ ). (A.1)

For the function fe,i>(s, s ′) for the variance, we obtain
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Finally, the functions f +
e,i>(τ, s, s ′) and f −

e,i>(τ, s, s ′) read
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and
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respectively.

Appendix B: Coefficients for the Systematic Approximation

In the following, the subscripts e, i will be omitted.

B.1 Coefficients for the Mean Value. The coefficients for the mean value
read:

c〈v〉,1(t) = (v0 − verετ0)
(

1 + rε2

2
(t − τ )

)
+ rε2

2
veτ

2
0 β (B.1)
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and
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B.2 Coefficients for the Second Moment. To derive the approximate
expression for the second moment, we use the following expansion:
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The coefficients read:
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− τ0τ (ve + 3v0) + 2v0τ

2
)

+ r2ε3v2
e τ0

2

(
8τ0τ − 4τ 2 − 5τ 2

0

)]

+ [
2r3ε4τ 2

0 v2
e − 4r2ε3v0veτ0 + 2rε2v2

0

]
t, (B.4)

c〈v2〉,2 = rεveτ0

τ + τ0

[
2v0(τ + τ0) − ε(2τ0rve (τ + τ0) + v0(3τ0 + τ ))

+ rε2(2ve
(
τ0τ + 2τ 2

0

) + v0
(
3τ 2

0 − τ 2)) + r2ε3veτ0
(
τ 2 − τ0τ − 4τ 2

0

)]
+ [

r2ε3v0veτ0 − r3ε4τ 2
0 v2

e

]
t, (B.5)

c〈v2〉,3 = 2rε2τ

τ + τ0

[
v0 (v0τ + τ0(v0 − ve ))

+ rεveτ0 (τ0(ve − v0) − 2v0τ ) + r2ε2v2
e ττ 2

0

]
, (B.6)

c〈v2〉,4 = rveτ0τε2

τ 2 − τ 2
0

[
(v0 − ve )τ + v0τ0 − rε (2veτ0 (τ − τ0)

+ v0
(
τ 2

0 − ττ0 − 3τ 2)) + r2ε2veττ0(2τ0 − τ )
]
, (B.7)
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and

c〈v2〉,5 = rv2
e τ

2
0 ε2

τ + τ0

[
1 + 2r (τ + τ0) − 2rτ0ε + 3

2
r2τ 2

0 ε2
]

. (B.8)
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