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Experimental and theoretical studies suggest that cortical networks are chaotic and coding relies on
averages over large populations. However, there is evidence that rats can respond to the short stimulation of
a single cortical cell, a theoretically unexplained fact. We study effects of single-cell stimulation on a large
recurrent network of integrate-and-fire neurons and propose a simple way to detect the perturbation.
Detection rates obtained from simulations and analytical estimates are similar to experimental response
rates if the readout is slightly biased towards specific neurons. Near-optimal detection is attained for a broad
range of intermediate values of the mean coupling between neurons.
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How can a local perturbation in a huge network become
macroscopically noticeable, as reported in recent experi-
ments [1–5]? One particularly striking example is that
awake rats can be trained to report the transient stimulation
of a single cortical cell [2]. This finding that one neuron out
of millions has a weak but significant behavioral effect
seems to be at odds with experimental [6] and theoretical
[7,8] studies suggesting that cortical dynamics are chaotic
and therefore only population averages matter. A theoreti-
cal explanation of this hypersensitivity is missing and many
factors make it a challenge: The system is overwhelmingly
complex, it is unclear how the learning process modifies the
system during the training of the experimental subjects, and
it is unknown how the activity of the neural network is
linked to the behavioral response.
A widely used class of models in the theoretical inves-

tigation of neural dynamics are networks of leaky integrate-
and-fire (LIF) neurons [9–15]. Such models represent an
enormous simplification of actual cortical networks [16].
Nevertheless, even an unstructured LIF network can
successfully reproduce features such as the asynchronous
irregular firing pattern [17] or long-range temporal corre-
lations [18–20]. Can such a simple network model explain
the detectability of the single-cell stimulation as well?
In the present study, we apply a perturbation to one

randomly selected neuron from a large random network of
excitatory and inhibitory LIF neurons and consider the
activity of a subset of the network as a basis for the
perturbation readout. We show that for a random selection
of readout neurons the detectability is smaller than what
was experimentally observed (reflecting the fact that
untrained rats cannot detect the single-cell stimulation).
However, biasing the readout towards neurons receiving
direct input from the stimulated cell (a proxy for the
training) increases the detection performance to values
similar to the experimentally measured ones. This finding is

valid over a broad range of synaptic coupling amplitudes.
For strong coupling, fluctuations of the spontaneous
activity impair the detection of the perturbation, whereas
the detectability stays high even for weak coupling. In the
presence of external input noise (mimicking the fact that
real neural nets are never isolated), the detectability drops
for unrealistically small values of the coupling strength,
thus leading to an optimal range for the synaptic connection
strength.
Model.—We consider a random network of NE ¼

8 × 104 excitatory and NI ¼ 2 × 104 inhibitory LIF neu-
rons [21]. The membrane voltage of the kth neuron evolves
according to

τm _vk ¼ −vk þ R½Iext þ IkðtÞ�; ð1Þ

where τm ¼ 20 ms is the membrane time constant and the
constant external input is RIext ¼ 22 mV. Whenever the
voltage (measuredwith respect to the resting potential) vkðtÞ
reaches vT ¼ 20 mV, the neuron fires and vkðtÞ is reset
to vR ¼ 10 mV after a refractory period τref ¼ 2 ms. Delta
functions centered on the time of each threshold crossing,
tk;i, define the output spike train xkðtÞ¼

P
iδðt−tk;iÞ of the

kth neuron. Neurons are coupled by current-based delayed
instantaneous synapses [22]

IkðtÞ¼
τm
R

� X
j∈PeðkÞ

Jkjxjðt−DkjÞ−g
X

l∈PiðkÞ
Jklxlðt−DklÞ

�
:

ð2Þ

The connectivity is sparse and with fixed in degree as in
Ref. [9], but with a larger number of input connections per
neuron C ¼ 5000 and with couplings Jkj drawn from an
exponential distribution with mean J, an approximate
description of the long-tailed histograms of synaptic
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amplitudes measured in cortex [23]. We set the strength of
inhibition relative to excitation g ¼ 7 to make the net
recurrent input inhibitory and achieve low spontaneous
firing rates. Figure 1(a) shows the spontaneous firing rate
rsp as a function of the mean coupling J. Note that the
random weights lead to distributed firing rates despite the
fixed in degree [Fig. 1(e)]. Data points are simulation results
and lines are predictions of the mean-field theory (MFT)
based on the analytical results for a LIF neuron driven by
white shot-noise input developed in Ref. [24]: Requesting
self-consistency for input and output firing rates leads to
mean field equations that can be solved numerically. For
J ≤ 0.1 mV, the spontaneous rate rsp decreases because the
recurrent inhibitory input increases with J. Somewhere
above J ¼ 0.1 mV, fluctuations in the network become
stronger and slower [19,20], so that the assumption of
temporally uncorrelated input is less and less accurate,
causing discrepancies between theory and simulations.
Perturbation and its effect on firing rates.—Oneach trial,

the network is initialized randomly and simulated for a time
window of 3 s centered on t ¼ 0 [25]. A randomly selected
neuron is the perturbation site and labeled as B0. For
0 < t < 400 ms the constant input to B0, RIext, is increased
by 23 mV to bring its firing rate from the spontaneous value
rsp to a new value r0 and mimic the single-cell stimulation.
Figure 1(b) shows the relative increase of the firing rate
during the stimulation, that is ðr0 − rspÞ=rsp.

To study the effects of the increased firing rate of B0, one
needs to distinguish between two subsets of the network:
neurons receiving direct input from B0, labeled as B1, and
all other neurons (that do not receive direct input from B0),
labeled as B2 [Fig. 1(f)]. Intuitively, the firing rate of B1

neurons, r1, is increased (decreased) when B0 is an excita-
tory (inhibitory) neuron: Figure 1(c) shows the relative
deviation from the spontaneous firing rate ðr1−rspÞ=rsp
as a function of J for the case of excitatory (inhibitory) B0

with a continuous (dashed) line for theory and circles
(squares) for simulation results. As B2 does not receive
direct input from B0, the effect of the stimulus on r2, the
firing rate of B2, is weaker [Fig. 1(d)].
Detection.—Neurons forming a second circuit reading out

the activity of the network can receive input only from a
subset of the stimulated network. Therefore, a natural choice
is to consider a subpopulationA of sizeC as input for a neural
“perturbation detector.” The readout population A can be
constructed by choosing at random λC neurons in B1 and
ð1 − λÞC neurons in B2, so that 0 ≤ λ ≤ 1 parametrizes the
overlap betweenA andB1; to be conservative,B0 is excluded
from A. Each realization of A can be thought of as one
sample from an ensemble of populations serving as input to
many readout neurons. These neurons would integrate their
input over some time scale, which we set at τf ¼ 100 ms
(comparable to the time scale of NMDA synapses [26]), and
react to variations of their input, the readout population
activity AðtÞ ¼ C−1P

xi∈Axi⋆F τfðtÞ, where ⋆ indicates
convolution andF τf is a causal filter standing for an abstract
information integration [27]. Two trajectories of AðtÞ for
different values of λ are plotted together with the respective
trial average hAðtÞi in Fig. 2. Here, hAðtÞi reaches a plateau
rλ ¼ r1λþ r2ð1 − λÞ after approximately 3τf.
We consider the deviation of AðtÞ from its time average

before stimulation ΔAðtÞ ¼ jAðtÞ − R
0
−Tw

dthAðtÞij, where
Tw ¼ 1300 ms is the time window for the perturbation
detection. An event is detected when ΔAðtÞ crosses a
threshold θd; i.e., AðtÞ leaves the interval ½rsp−θd;rspþθd�
(see Fig. 2). If ΔAðtÞ exceeds θd at least once before the

FIG. 2. Schematics of perturbation readout. Two example
trajectories of AðtÞ for each λ are plotted together with the trial
average hAðtÞi (dashed lines). Parameters: inhibitory B0,
J ¼ 0.1 mV.

(a) (e)

(f)(b)

(c)

(d)

FIG. 1. (a) Spontaneous network firing rate rsp as a function of
the average coupling strength. (b),(c),(d) Relative deviation of the
firing rate of B0, B1, and B2 during the stimulus, respectively.
Lines indicate MFT predictions and data points are simulation
results. (e) Firing rate distribution for J ¼ 0.1 mV. (f) Network
model. B0: perturbation site B1: neurons receiving direct input
from B0. B2: all other neurons. A: readout population. λ: overlap
between A and B1 (0 ≤ λ ≤ 1). Note that there is no structure in
the network, subsets are grouped for illustration purposes.
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stimulus onset (for −Tw < t < 0), this is counted as a false
positive event. The fraction of trials in which this happens
defines the false positive rate, FPðθdÞ, as a function of the
detection threshold. The correct detection rate CDðθdÞ is
defined analogously but for a threshold crossing in
0 < t < Tw. We note that fluctuations of AðtÞ that limit
the detectability are mainly due to weak cross-correlations
in the network.
Estimation of detection rates.—Because AðtÞ is the

filtered sum of many weakly correlated spike trains, its
stationary distribution is nearly Gaussian (not shown). The
time-dependent mean of AðtÞ can be well approximated by
exploiting the MFT [28]. However, even under the
assumption that its autocorrelation function is unchanged
by the stimulus, exact detection rates are related to the first-
passage time distribution for a Gaussian process with time-
dependent mean and a generic autocorrelation function,
which has no known analytical solution. Instead, we use a
simple approximation: Given the variance of AðtÞ from
the measured autocorrelation function, the probability
pΔAðθd; tÞ that ΔAðtÞ is below θd at any given point in time
is straightforward to obtain [29].We then divide the time axis
in Tw=τc intervals, where τc is a suitably defined correlation
time τc [30], and approximate the probability ofΔAðtÞ to be
below θd in the whole Tw as the product of the average
probability of being below the threshold once in each
interval:

CDðθdÞ ≈ 1 −
YTw=τc

k¼0

1

τc

Z ðkþ1Þτc

kτc

dtpΔAðθd; tÞ; ð3Þ

and analogously for FPðθdÞ, but for negative times.
Plotting FPðθdÞ on the x axis and CDðθdÞ on the y axis

upon variation of θd defines the receiver operating char-
acteristic (ROC) curve, a standard way of quantifying the
performance of a detector. ROC curves for excitatory B0,
J ¼ 0.1 mV and four values of λ are shown in Fig. 3:
continuous lines are analytical estimates, while symbols are
simulation results. For each value of λ four realizations ofA
are shown. For λ ≈ 1 the ROC curve is well separated from

the diagonal (chance level), and approaches the diagonal on
decreasing λ.
Optimal detection.—Following Ref. [2], we define the

effect size as the difference between correct detections and
false positives. To compare our results to the experiments,
we choose the maximum distance of the ROC curve from
the diagonal Ȳ¼maxθdfCDðθdÞ−FPðθdÞg. Selecting the
optimal threshold can be thought of as one effect of the
training phase that is part of the experimental procedure.
One practical issue with this choice is that any finite-size
fluctuation of the ROC curve produces a systematic upward
bias on Ȳ. Increasing the number of trials decreases the
bias. Still, a way to quantify the reliability of our measure is
desirable. To this end, we compute the p value from
Fisher’s exact test (with significance level p < 0.05, as
in Ref. [2]) for each data point. We investigate the effect of
the recurrent coupling parameter, by plotting Ȳ as a
function of J. In Fig. 4(a) the case of excitatory B0 is
depicted for many values of λ. Solid lines are theoretical
estimates while data points are simulation results. Closed
symbols indicate significant data points. It can be seen that
almost all curves display a very broad maximum for
10−2 ≤ J ≤ 10−1. For larger values of J, i.e., in the range
where strong slow fluctuations appear [19,20], the detect-
ability drops. For J < 10−2 the effect size decreases less
rapidly upon decreasing coupling strength. Nonsignificant
data points are those for which large deviations from the
theoretical predictions are observed, with the exception of
the two smallest values of J: for these data points deviations
of firing rates from the spontaneous value are so small that
the relative error of the MFT prediction is large, although
the absolute error on each firing rate is small. For small
values of λ the theoretically predicted effect size is small

FIG. 3. ROC curves for excitatory B0 (maximum distance from
the diagonal defines the effect size Ȳ).

(a) (b)

(c) (d)

FIG. 4. Detection statistics as a function of the average coupling
strength for different overlaps λ. Closed (open) symbols indicate
significant (nonsignificant) data points (significance level
p < 0.05). Each point is the average over 24 different realizations
of A. Lines indicate theoretical estimates. Results for excitatory
(a,c) and inhibitory (b,d) B0 in the absence (a,b) or presence (c,d)
of external shot noise. Number of trials: 800 (a), 400 (b), 900 (c),
600 (d).
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and not significant. The minimum λ required to obtain a Ȳ
similar to the experimental value of ≈0.015 is λ ≈ 0.25,
while a completely random selection of readout neurons
corresponds to λ0 ¼ C=N ¼ 0.05, which is not significant
for all values of J. In the case of inhibitory B0 [plotted in
Fig. 4(b)] the effect size is generally much stronger, which
is in line with experiments. In our model this is caused by
inhibitory synapses having a higher weight than excitatory
ones. For λ > 0.4, there is almost perfect detection for small
to intermediate values of J, and Ȳ is larger than in
experiments (≈0.07) even for λ ¼ 0.15. Also, in this case
of inhibitory B0, for λ ¼ 0.05 there is no significant
data point.
The effect size Ȳ stays rather high even for extremely

small values of J because the fluctuations of AðtÞ become
extremely small, which makes the detection of a very weak
effect in the firing rates possible. However, cortical circuits
are not isolated systems because they receive both bottom-
up and top-down external input. If such a feature is
mimicked in the model by adding external excitatory shot
noise input to each neuron [31], the detectability drops
especially for small values of J: in Figs. 4(c)/4(d) we plot
simulation results for excitatory/inhibitory B0 in the pres-
ence of external random input (θd was optimized for each
data point in Fig. 4 separately). For strong coupling, the
reduction in Ȳ is only moderate because the detection is
limited by the autonomous fluctuations of the network.
Scaling and thermodynamic limit.—Although cortical

networks are indeed finite, a theoretically intriguing ques-
tion is whether detection is possible in an arbitrarily large
network (briefly discussed here, more details in Ref. [33]).
If the network size N ¼ NE þ NI is increased with

constant C, the network becomes sparser, leading to
decreased cross-correlations between neurons. Because
cross-correlations are the main source of fluctuations in
AðtÞ, the effect size Ȳ increases for a given λ. However, λ0,
the overlap expected from an unbiased selection, becomes
smaller with increasingN, making the necessary bias on the
readout prohibitively strong.
In contrast, if C is scaled along with N to keep the ratio

C=N constant, J needs to be scaled down to prevent trivial
limiting behaviors of the network dynamics. In the range of
C that can be numerically explored, we find that for weak
synapses (i.e., J, Jext ∼ C−1) [37] the effect size Ȳ increases
moderately for increasing N, whereas for strong synapses
(i.e., J, Jext ∼ C−1=2) [7,37] Ȳ decreases slightly. These
observations can be related to how cross-correlations and
the neuron’s linear response to slow signals depend on C
[33]. For network sizes beyond our computational pos-
sibilities (NC > 1010), theoretical arguments suggest that
the effect size eventually goes to zero for N → ∞ for both
scalings [33].
Conclusions.—How the transient firing of a single

neuron in a large network can be detected is a novel and
still unsolved problem. In this study, we showed how the

activity of a single cell can be detected in a simple
macroscopic statistic: the instantaneous firing rate of a
readout subset A, a proxy for the response of an ensemble
of readout neurons and for the rat’s response. Our results
show that choosing A at random is not sufficient; i.e., the
readout needs to be trained, as experiments suggest. Note
that the experimental training [2] does not target single cells
but an area. Therefore, the formation of hubs, essential to
the phenomena in Refs. [3,4], seems less likely to be
relevant for the considered problem.
For a large range of coupling values J, a biased selection

ofA permits the detection; i.e., there is a minimum overlap
λ with B1 for which the effect is significant and of a size
similar to experiments. If readout sets A are chosen at
random, the probability of finding a readout set A with λ
above the needed value is low. However, it is conceivable
that in neural systems synaptic input populations are not
completely random but spatially organized and that during
the training phase most readout sets with the necessary λ
gain weight, thus enabling the perturbation detection.
We found that strong coupling is detrimental for

detecting the perturbation. In the other limit of extremely
weak coupling, the detectability stays high even for
unrealistic values. In the presence of external noise, the
detectability shows a more definite but still broad maxi-
mum located somewhat below mean synaptic amplitudes
measured in the cortex. The optimum may shift if con-
ductance-based synapses or heterogeneities are included in
the model [38].
Concerning the robustness of our findings, replacing the

fixed in-degree connectivity with an Erdős-Rényi graph or
increasing the network size up to N ¼ 4 × 105 does not
change our results qualitatively [33]. Although a theoretical
analysis reveals that the perturbation detection must be
regarded, strictly speaking, as a finite-size effect, we
remark that the perturbation stays detectable for any net-
work size in a biologically plausible range.
This study was conducted in the spirit of assessing how

short a null hypothesis would fall. Although many aspects
need further investigation, it is surprising that a compara-
tively simple model, which allows a partial analytical
treatment, can reproduce some features of the experimental
results, thus posing a first promising step in further
exploration of this challenging theoretical problem.
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