11120 - The Journal of Neuroscience, October 26, 2016 + 36(43):11120-11132

Cellular/Molecular

Noisy Juxtacellular Stimulation In Vivo Leads to Reliable
Spiking and Reveals High-Frequency Coding in
Single Neurons

Jens Doose,>* Guy Doron,** Michael Brecht,' and Benjamin Lindner'>
'Bernstein Center for Computational Neuroscience, 10115 Berlin, Germany, 2Humboldt Universitit zu Berlin, 12489 Berlin, Germany, and *NeuroCure
Cluster of Excellence, Humboldt Universitit zu Berlin, 10117 Berlin, Germany

Single cells in the motor and somatosensory cortex of rats were stimulated in vivo with broadband fluctuating currents applied juxtacel-
lularly. Unlike the DC current steps used previously, fluctuating stimulation currents reliably evoked spike trains with precise timing of
individual spikes. Fluctuating currents resulted in strong cellular responses at stimulation frequencies beyond the inverse membrane
time constant and the mean firing rate of the neuron. Neuronal firing was associated with high rates of information transmission, even for
the high-frequency components of the stimulus. Such response characteristics were also revealed in additional experiments with sinu-
soidal juxtacellular stimulation. For selected cells, we could reproduce these statistics with compartmental models of varying complexity.
We also developed a method to generate Gaussian stimuli that evoke spike trains with prescribed spike times (under the constraint of a
certain rate and coefficient of variation) and exemplify its ability to achieve precise and reliable spiking in cortical neurons in vivo. Our
results demonstrate a novel method for precise control of spike timing by juxtacellular stimulation, confirm and extend earlier conclu-
sions from ex vivo work about the capacity of cortical neurons to generate precise discharges, and contribute to the understanding of the
biophysics of information transfer of single neurons in vivo at high frequencies.
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Nanostimulation of single identified neurons in vivo can control spike frequency parametrically and, surprisingly, can even bias
the animal’s behavioral response. Here, we extend this stimulation protocol to time-dependent broadband noise stimulation in
sensory and motor cortices of rat. In response to such stimuli, we found increased temporal spike-time reliability. The information
transmission properties reveal, both experimentally and theoretically, that the neurons support high-frequency stimulation
beyond the inverse membrane time. Generating a stimulus using the neuron’s response properties, we could evoke prescribed
spike times with high precision. Our work helps to establish a novel method for precise temporal control of single-cell spiking and
provides a simplified biophysical description of single-neuron spiking under time-dependent in vivo-like stimulation. j
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Figure 1.
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Juxtacellular stimulation of a cortical neuron in vivo and the equivalent circuit used to mimic its response. A, Diagram of the juxtacellular stimulation. The electrode is inserted through

the dura and brought into the close vicinity of a neuron. At high current densities/transmembrane voltages, the extracellular applied current stimulates the neuron via electroporation while the
response is recorded simultaneously. B, Equivalent circuit of the two-compartment model. Each compartment consists of a resistor accounting for the inverse membrane conductance, a battery
representing the resting potential, and a capacitance. Both compartments are connected via a coupling conductance g.. The injected current /; (t) [f;, 4(t)] enters the somatic (dendritic)

compartment.

descriptions (Herz et al., 2006). Furthermore, such reduced
quantitative descriptions are needed in theoretical studies of neu-
ral networks. Integrate-and-fire (IF) models can capture the sub-
threshold membrane voltage and the spike times of some
pyramidal cells under current injection in vitro fairly well (Badel
etal., 2008). This model class can be used in analytical approaches
(Brunel and Hakim, 2008), but also in large-scale network simu-
lations (Gerstner et al., 2014). In such studies, using a faithful
model for the single-neuron activity is likely as important as us-
ing the correct connectivity. Computational studies have shown,
for instance, that the details of the single-neuron model deter-
mine whether an autonomous network can maintain low firing
rates (Latham et al., 2000; Kriener et al., 2014) and if the neurons
synchronize or remain in an asynchronous state (Abbott and van
Vreeswijk, 1993; Brunel, 2000).

The implications of precise spiking for information process-
ing are an unfathomed issue in neuroscience. The debate over the
significance of discharge timing gained traction some 20 years
ago (Softky and Koch, 1993; Shadlen and Newsome, 1994; Konig
etal., 1995), but the contradicting views on the topic could not be
resolved back then. Some of the most direct evidence for a role of
precise discharge timing comes from single-neuron-stimulation
experiments. In such “reverse physiology” paradigms, it was
found that a few extra spikes may affect the behavior of an animal:
single-neuron nanostimulation in rat motor cortex (Brecht et al.,
2004) and somatosensory cortex (Houweling and Brecht, 2008,
Doron et al., 2014) could be detected by the animal; a similar
hypersensitivity with respect to single-neuron activity was ob-
served in the visual cortex of mice (Li et al., 2009).

To address the debate about the role of precise discharge tim-
ing, we need improved experimental control of precise spiking in
vivo. Juxtacellular stimulation of single neurons is an effective
stimulation technique, but so far it has limitations with respect to
control of spike timing. Specifically, it was shown that, by apply-
ing combinations of rectangular current pulses, only the control
of spike number, frequency, and regularity (Houweling et al.,
2010; Doron et al., 2014; Doron and Brecht, 2015), but not exact
timing, could be achieved.

Addressing the issues raised above, we first investigated
whether juxtacellular stimulation with broadband (white-noise-
like) currents can gain control over the precise spike times of the
evoked train of action potentials (APs) in both somatosensory
and motor cortices. The reliability in our in vivo experiments was
lower compared with classical in vitro studies (Mainen and Se-

jnowski, 1995), probably due to the synaptic background noise, but
is similar for in vivo juxtacellular and intracellular stimulation.

We then analyzed the spike train statistics and signal-
processing capabilities of single cells using broadband and pure
periodic cosine stimuli. Using estimates of the transfer function
of an individual cell, we were also able to prescribe a spike train
(with constraints on its statistics, but not on single spike times)
that this neuron will fire.

Finally, we used a multicompartment model (Eyal et al., 2014)
and a two-compartment model (Ostojic et al., 2015) to reproduce
quantitatively the statistics measured in vivo and compared the
performance of the latter model with a one-compartment model.

Materials and Methods

Electrophysiology. Most experimental procedures were performed as de-
scribed previously (Houweling et al., 2010). Briefly, we used standard
surgical and electrophysiological techniques to prepare animals [Wistar
rats, n = 46, postnatal day 20 (P20)-P50 at the day of surgery, of either
sex] for acute experiments. Animals were anesthetized with urethane
(1.5-2.0 g/kg, i.p.). Recordings were performed in the barrel cortex (P 2.5
mm, L 5.5 mm relative to bregma) and motor cortex (A 1.5 mm, L 1.5
mm relative to bregma). Glass pipettes for juxtacellular and whole-cell
recordings were filled with intracellular solution containing the follow-
ing (in mm): K-gluconate 135, HEPES 10, Na2-phosphocreatine 10, KCl
4, MgATP 4, and Na3GTP 0.3, pH 7.2. The juxtacellular signal was am-
plified and low-pass filtered at 3 kHz with a patch-clamp amplifier (Da-
gan) and sampled at 25 kHz with a Power1401 data acquisition interface
under the control of Spike2 software (CED). For intracellular recordings,
series resistance and capacitance were compensated. During single-cell
juxtacellular stimulation trials, a 1 s square-wave current pulse either
added with Gaussian noise or with a harmonic wave on top was injected
into a neuron through a glass pipette and current strength was adjusted
(range 1-14 nA for juxtacellular stimulation and 100—1000 pA for whole-
cell stimulation) to elicit a maximal number of APs without damaging
the neuron. A sketch of the setup is given in Figure 1A.

All experimental procedures were performed according to German
guidelines on animal welfare under the supervision of local ethics
committees.

Stimulation with bandpass and cosine stimuli. In most experiments, we
used a broadband signal as follows:

I(t) = I(a + on(1)) (1)

with mean value e and SD 105 1(t) is a band-pass-limited white Gauss-
ian noise with unit variance and cutoff frequency f. = 100 or 200 Hz.
In some experiments we used a pure cosine stimulus as follows:
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I(t) = IO< 1+ VECOS(Z 7Tf5t)> (2)

with frequencies in the range of 100-1000 Hz.
Signal analysis and statistics of interest. Most of our statistics are based
on Fourier transforms of time series defined by the following:

2(f) = f e*™lz(1)dt, (3)

where z(1) is either the stimulus I () or the spike train x(#). The latter is
given in terms of the spike times #; as a sum of § functions as follows:

x(1) = }‘1 8(t— ). (4)

We define the instantaneous firing rate as the average over N, spike
trains x;(f) belonging to the same stimulus and smooth it with a normal-
ized Gaussian of 2.5 ms width (asterisk denotes convolution) as follows:

Nirial
r(t) = NN{0, 2.5ms) * > (D). (5)
Ntrial i=1
The power spectrum is defined as follows:
— 1 o
Sxx(f) - ? <x .X>. (6)

Here, the asterisk denotes complex conjugation and <> averaging over
trials and stochastic signals. To quantify the similarity between spike
trains in Fourier space, we define the spike-train—spike-train cross-
spectrum as follows:

1
lexj(f) =T (X %j)is), (7)

The average runs over all stimuli and over combinations of distinct spike
trains that correspond to the same stimulus. Analogously, the input—
output cross-spectrum is given by the following:

S.() = 7 (9. (5)

According to the Wiener—Khinchin theorem, the inverse Fourier trans-
form F~' yields the corresponding cross-correlation functions as
follows:

Con(1) = F S (f) = Dt + 7)), 9)
Col7) = F 1Sl f)) = LD x(t + 7). (10)

A measure that quantifies the response to a pure cosine stimulus is the
vector strength (Goldberg and Brown, 1969):

= (180 "
s szl

Here f; is the frequency of the input, ¢ are the spike times, and <>
denotes averaging over trials. The absolute value of the vector strength
yields | r(f)| = 0 if the spike times are unrelated to the periodic stim-
ulus, whereas a perfect locking to one specific signal phase leads to
|(f)| = 1. Furthermore, r( f) can be regarded as a normalized Fou-
rier coefficient of the spike train at the driving frequency and is re-
lated to the cross-spectrum under white-noise stimulation through
Ss = <Ix>/T~r(f). To infer the frequency-dependent informa-
tion transfer, we use the spectral coherence function:

|SS)(|2

Coh(f) = S 5

(12)
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which is bounded between zero (no linear correlation between input and
output) and one (input and output are linearly related in a noiseless
fashion). The coherence can be used to give alower bound on the mutual
information rate for Gaussian stimuli (DeWeese and Bialek, 1995; Gab-
biani, 1996) as follows:

MIR = —fclogz(l — Coh(f))df. (13)

The integrand in Equation 13 is a monotonic function of the spectral
coherence and can be interpreted as an approximate mutual information
rate density (Bernardi and Lindner, 2015). Therefore, the shape of the
coherence mirrors the neuron’s information transfer properties in a
frequency-resolved manner. To smooth the data, S;.( /), S..(f), Sx,xj( 1)
and the coherence are convolved with a Gaussian of 3 Hz width in all
figures, where spectral measures are shown.

Spike train similarity (intrinsic variability). To quantify the similarity of
two spike trains, a and b, we use the coincidence measure (Kistler et al.,
1997) which is defined as follows:

Ncoin - Nchance

T, = N (14)

1
E (Na + Nb)

Here N,(N,) is the number of spikes occurring in a spike train a(b) of
length T; N_;, is the number of spikes that coincide within a temporal
precision of =A; and Nyane = 2AN,N,/T is the expected number of
spikes that would coincide by chance if both spike trains would have
homogeneous randomly distributed spike times. The normalization fac-
tor reads as N = (1 — 2AN,/T) and bounds I, , by 1 (equal to 1 for
identical spike trains). Due to the subtraction of N, ., it is expected to
yield I', , = 0 for independent spike trains. We use A = 2.5 ms as preci-
sion for coincident spikes and define I' = (I, ;) as the average over all
stimuli and combinations of distinct spike trains corresponding to the
same stimulus realization. When comparing experiment and simulation
in terms of the coincidence factor, the best match is achieved when two
criteria are fulfilled. First, simulation and experiment should have the same
intrinsic variability. This is the case when the coincidence factor calculated
for pairs of simulated spike trains I' | is as large as it is for pairs of experimen-
tally measured spike trains I'... Second, the model should reproduce the
experimental spike times with a desired accuracy. This is achieved when the
coincidence factor calculated for mixed pairs of experiment and simulation
", is as large as possible. In particular, I, should be as large as the intrinsic
variability I'... In other words, the simulation has to be as similar to the
experiment as the experiment is to itself.

Spike extraction. To extract the spike times, we filter the measured
voltage by removing slow transients and frequency components shared
with the input current. We typically remove the frequencies up to 60 Hz
for the cases with constant input and frequencies up to 300 or 400 Hz for
cases with fluctuating input. In the filtered trace, spike times are identi-
fied using a simple threshold criterion. Each time the voltage crosses the
threshold from below is stored as spike time. To avoid artifacts arising
from transients, we exclude the first and last 20 ms from our analysis. We
defined a signal-to-noise ratio by SNR = spike height/SD(V), that is, the
ratio of the height of putative spikes and the SD of the voltage, to quantify
the quality of a recording. To be conservative, we accept data only if the
average spike height exceeds the fourfold SD of the filtered voltage, cor-
responding to a signal-to-noise ratio >4. Because the filtering procedure
excludes the power below the stimulus cutoff frequency, the latter could
not be taken arbitrarily high and was limited to maximum 200 Hz for the
broadband stimulation. For the experiments with pure cosine stimula-
tion, this problem could be circumvented by excluding only the power in
anarrow frequency band around the periodic stimulus and, therefore, we
could go up to stimulation frequencies of f, = 10° Hz. Note that this
spike extraction technique relies on the limited frequency range of the
stimulus power. Therefore, one of the simplest stimuli, a sequence of
narrow rectangular current pulses, would not allow for reliable spike
extraction in this setting.
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Multicompartment model. For simulations, we use a multicompart-
ment model that has been proposed by Eyal et al. (2014). This is a ball
(soma) and two sticks (dendrite and axon) model implemented in the
Neuron software package. It consists of 107 compartments [soma (1),
axon (21 + 25) and dendrite (60)]. In particular, we refer to their case of
an intermediate conductance load (p = (Ggena + Geoma)/Gaxon = 190),
where Gyong» Geoma aNd Gy, are the inverse input resistances of the
isolated compartments, respectively. This dendrite has a length of 3000
pum and a diameter of 5 um (parameters as in Eyal et al., 2014; Fig. 2, gray
curves). For comparison with the experimentally studied cell shown in
Figure 8, we inject a rescaled input current and additionally white Gauss-
ian noise in the model to account for the intrinsic variability. The model
parameters itself have not been modified.

Two-compartment model. We also use a two-compartment model that
contains one somatic compartment and one dendritic compartment
(Ostojic et al., 2015). To allow for electrotonic coupling, both compart-
ments are connected via an Ohmic conductance. g.. The somatic com-
partment, characterized by the membrane voltage, V (1), is equipped
with an active spike-generating mechanism, whereas the dendritic com-
partment, described by the voltage V4(¢), is purely passive (see the equiv-
alent circuit in Fig. 1B):

av. V=V g
L — — Ar _n

Cs dt gsVs gc(Vs Vd) + gsATe + Ol’ (15)
dv,

Cogy = —8&Vat (Vi = Vo) + Ling. (16)

Here the parameter a > 1 accounts for the fact that, in the juxtacellular
situation, only a fraction of the injected current enters the cell. We as-
sume that the soma and the dendrite have the same resting potentials and
shifted the voltages to set it to zero. The extracellular potential is assumed
to be constant at reference potential. Dividing Equation 15 by gA and
Equation 16 by g;A and measuring the voltages in units of the spike
slope factor, V/A; — V, yields the following dimensionless equation:

st 8 V<*E Iin
= _ 25 _ AT
TS it V, gs(VS V,) +e + aghy (17)
v, & Ling
= SV SV - V) 18
Td dt d gd( 2 P (18)
Here 7, = CJ/g,and 7, = C,/g; are the somatic and dendritic mem-

brane time constants of the isolated compartments, respectively, and
Vin/Ar determines the threshold for V, at which point the exponential
starts to rise rapidly. The somatic spiking mechanism obeys a fire-and-
reset rule: Whenever V > X, we register a spike time and reset V; — 0.
The parameter g./g; (g./¢4) is the ratio of the coupling conductance and
the somatic (dendritic) membrane conductance. The somatic input cur-
rent I, = I, + I ;. consists of two parts. First, the external stimulus
injected via the juxtacellular electrode that is given by I(f). Second, to ac-
count for the random fluctuations arising in the soma in vivo, we add intrin-
sic white Gaussian noise, I,,;.(), with zero mean value (I, ;..(f)) = 0 and
correlation function {I,s()ie(t’)) = 2D, 8(t — t'). The dendritic cur-
rent, Iy = Lye T Lioies Which accounts for the synaptic input that the
dendrite receives, consists of a constant base current, I ., and Gaussian
white noise with (I oised(H)lhoisea(t’)) = 2D,8(t — ). In total, the two-
compartment model involves the following nine intrinsic parameters:

gc gc VTh Ds Dd Ibase
Ts> Tas agsAT) TN O A\ (A - \2

& & A7 (Arg)” (Argd)” Argl

For a given set of these parameters, the biophysical parameter values can
be calculated, for example, when assigning a fixed value to the spike slope
factor A; and the parameter « that gives the fraction of current that
enters the cell. We chose A = 0.5 mV and « such that we obtain an input
resistance in the model of 45 M(), as we have measured on average in
intracellular experiments.

One-compartment model. We compare the performance of the
two-compartment model with that of the one-compartment model
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(Fourcaud-Trocmé et al., 2003). The one-compartment model results
from Equation 17 in the limit of vanishing coupling conductance g..
Because the one-compartment model still has to account for the synaptic
input of the surrounding neurons, the constant input I, . is shifted to the
somatic compartment. This yields the following equation:

1%
Tsts _ _ V57£ + Is + Inoise + Ibase. (19)

dt agsAT
The spiking mechanism remains the same as in the case of the two-
compartment model.

Model fitting. For comparison between experiment and simulation, we
define a cost function as follows:

1557 = Sy, | 1S58 — Sells | 1S5 — S5l

XiXj XiXj sx
exp” ]
fr Hssx fr

‘ rexp _ rsim |

+ T (20)

cost — HST exp
X

X HfF st,x,

The individual terms have the form [|[A¢;||/||¢;*|| where ¢; is some mea-
surable quantity. The term ||Ad/||/||¢*?|| is the difference between simu-
lation and experiment (A¢,) normalized by the value from the
experiment (¢{”), which makes different functions ¢, comparable. The
first term describes the relative deviations in power spectrum (¢,
= §..), followed by the spike-train—spike-train cross-spectrum (¢,
= lexj) and by the stimulus—spike-train cross-spectrum (¢; = S,,).
The last term in Equation 20 contains the relative deviation of the mean
firing rates r. Because ¢,, ¢,, and ¢, are frequency-dependent quantities,
we define a norm as the area under the absolute value of the function up
to a frequency f;: (we chose f. = 1.5f,) as follows:

I,
|d>(f)||f;f | &(f) | df. 1)

0

To minimize Equation 20, we use the CMA-ES algorithm (covariance matrix
adaptation evolution strategy; Hansen and Ostermeier, 2001; Hansen et al.,
2003). The essential CMA-ES iteration steps are as follows. It draws an en-
semble of points (feasible solutions) in the parameter space from a multivar-
iate normal distribution centered at the actual favorite solution. In each
iteration step, the candidate solutions are ordered according to their cost
function values and weighted to prefer the best ones (evolution). These
weighted candidates are used to calculate the new mean and the covariance
from which a new multivariate normal distribution is calculated to draw
feasible solutions in the next step. We use the CMA-ES implementation from
the Python “cma” package (Hansen, 2015).

Goodness-of-fit. Because we deal with finite datasets, the spectral measure
¢; will be subject to measurement noise. To quantify deviations between
simulation and experimental data that go beyond this measurement noise,
we define two functions ;" = (™) + 3SD(¢i™) based on the statistics
of the measure in the simulated model. Typically, the simulated measure
will be within the region that is limited by ¢;. The deviation of the
experimental data, ¢;*?, from this region provides us with a measure for
the goodness-of-fit:

A=

@] =
i

fe
. f@(l@lw’l)’wp@
f|<¢:"">df ’

0

af| (22)

+c~><|¢:@|—|¢r>‘ o g

where O denotes the Heaviside function. Intuitively, A can be regarded as
a percental deviation between simulation and experiment.

Generating noise that evokes a prescribed spike train. Using a linear
ansatz, input and output of a system can be related according to the
following:
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Figure 2.

Spike extraction is reliable in noisy juxtacellular stimulation and comparable to spike detection in intracellular recordings. A7, Juxtacellular recording trace with 100 Hz broadband

stimulation. The gray bar denotes the SD of the voltage trace. A2, Filtered voltage (gray bar is SD). Histogram at the right shows the distribution of the spike height, with the relative broadness
characterized by its SD-over-mean ratio, (.. A3, SNR versus input fluctuations. Red indicates the SNR for raw data; blue, SNR for filtered voltage. The dashed line indicates SNR = 4, taken as our

significance level. B1-B3, Same as in A7-A3 but for an intracellular recording.

x(t) = K = I(t), (23)

which, after applying a Fourier transformation, turns into:

x(f) = x(HLK). (24)

In Equations 23 and 24, K() is the system specific linear response kernel
and x(f) its Fourier transform, known as susceptibility or the rate-
modulation factor. On the one hand, this equation determines the sus-
ceptibility according to the following:

SSX
XN =25 25

On the other hand, given a certain desired spike train, x.(t), and its
Fourier transform %;( f), we can estimate the most likely stimulus evok-
ing %;( f) to be the following:

1
LD = - (26)

To avoid stimulation with too large pulses that might damage or kill the
cell, we constrain the stimulus to obey Gaussian statistics. To this end, we
apply two somewhat ad hoc steps. First, instead of using the spike train
x,(t), we use a filtered version of it, X,(t) = N(0,2.5 ms) * x,(t) in Equa-
tion 26, which yields a continuous function in time. Second, for the
resulting signal, I;(f), we estimate the cumulative probability distribu-
tion, P(x) = Prob(x < I;) and then pass it through a static nonlinearity
as follows:

Ip(t) = F(Iy(1), Meexps a%xp) (27)
where F has the form:
F(x, y 0%) = P (P(x), ty o). (28)

Here

(=1)
Pol(x, w, o) = (%[ 1+ erf((x — M)/Jz?)]) (29)

is the inverse of the cumulative probability distribution for a Gaussian
variable with mean y and variance o 2. In this way, we have achieved
that the resulting stimulus I,(#) obeys a particular Gaussian proba-
bility density. However, due to the nonlinear transformation, I;,(f) no
longer has the same cutoff frequency as I,. Because a finite cutoff
frequency is essential for the spike extraction procedure (see above),
we have to further process the stimulus. To this end, we remove all
power at frequencies beyond the desired cutoff frequency. This in
turn changes again the profile of the probability distribution to a
non-Gaussian shape so that the nonlinear transformation has to be
applied again. When performing nonlinear transformation to a
Gaussian and the constraint on high-frequency power in an iterative
way, the stimulus converges to the desired statistics within 10 itera-
tions (for a similar scheme, see Nichols et al. (2010)). Of course,
compared with the stimulus resulting from the optimal linear recon-
struction, we now deal with a modified variant of this stimulus and it
has to be tested whether this stimulus is still effective in evoking the
desired spike train x;(t).

From Equation 26, it becomes clear that one has to know the sus-
ceptibility, x, which is specific for the neuron under investigation, in
advance before calculating the desired stimulus. In addition, we are
not completely free in choosing the prescribed spike train and restrict
ourselves to spike trains that have the same mean firing rate and
coefficient of variation (C,,, SD over mean) of the interspike interval
(ISI), which in turn requires us to measure these statistics for the
specific neuron.

Because we have to know the characteristics of the neuron before
calculating I,(), we divide the experiment in two phases. In phase 1, we
stimulate the neuron with 10 different white Gaussian noise stimuli
(Eq. 1). Each of these stimuli is applied 10 times so that we gain a dataset
that consists of 100 trials from which, after spike extraction, the mean
firing rate, the Cy, the cross-spectrum, and, thus, via Equation 25, the
susceptibility can be calculated. Using the statistics from phase 1, we
generate the desired spike train as a renewal process; practically, we sim-
ulate a white-noise-driven perfect IF model that obeys these statistics
(Vilela and Lindner, 2009a).
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Figure 3.

Spike trains lock to the broadband stimulus and spike times thus become reproducible. 4, Reconstruction of layer 2/3-pyramidal neuron superimposed on a micrograph of the section.

B, Top, Constant input signal. Bottom, Corresponding raster plot. C, Same as B, but with fluctuating input. D, Stimulus—spike-train correlation function C, (). E, Spike-train—spike-train

correlation function C,.,. (7).
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Figure 4.

Firing rate increases with mean input (scaled by ), synchrony increases with SD of stimulus (scaled by o). A, Constant input current (top row) and raster plots (bottom rows) for

increasing a(—0.5,0,0.25,0.5, 7). B, Same as A but with fluctuating input with o = 0.1. C, Same as A but o = 1. This is an example of the data recorded for one stimulus waveform for a single

cell from motor cortex.

With the desired spike train and the susceptibility of the neuron, we
can calculate the stimulus (same mean, Fexp> and variance, Texpr S
applied in phase 1) that should evoke the desired spike train in this
neuron. In phase 2, this stimulus is applied to the neuron several
times to generate raster plots and to calculate the reliability in evoking
the desired spike times.

Results

Reliable spike extraction in juxtacellular broadband stimulation

When spikes are evoked by long DC current steps in conventional
juxtacellular stimulation, determining spike times is relatively
straightforward because stimulation artifacts are limited to the
onset and offset of current steps. Extraction of spikes becomes a
nontrivial matter, however, when a broadband nanostimulus is
applied juxtacellularly. Because our stimulus frequencies ex-

tended only up to a certain cutoff, we could filter out this fre-
quency band. We first ensured that this filter procedure for spike
extraction is reliable.

Figure 2 illustrates the filtering procedure for spike extraction
for juxtacellular stimulation with strong input fluctuations (Fig.
2A1-A3) and for an intracellular recording with smaller input
fluctuations (Fig. 2B1-B3). In the raw data, Figure 2A1 APs are
hidden in large fluctuations of the voltage trace. Figure 2A2 dis-
plays the trace after applying a filter yielding a much cleaner
sequence of spikes clearly distinguished from the baseline. Due to
the variability in AP width and the filter procedure, the AP height
extracted in this way fluctuated as is illustrated by the histogram
on the right of Figure 2A2. To further test the filtering procedure,
we applied it also to intracellularly measured voltage traces (raw
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trace in Fig. 2B1), resulting in a spike se-

>
-

Doose, Doron et al. @ Noisy Juxtacellular Stimulation

quence of comparable variability in spike
height (histogram at the right side of Fig.
2B2). In particular, the Cy (SD over
mean) of the two height distributions was

AN
o

comparable (C,, = 0.27 for juxtacellular,
Cy = 0.2 for intracellular recordings).
The quality of spike extraction and
the effect of the filtering procedure are
shown for the whole juxtacellular data-
set in Figure 2A3. Here, we show the
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height of the gray boxes in the two top -0.5
rows denotes the SD of the particular
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trace (including the large excursions

during the APs). For the raw traces, we
used the spike height measured at con-
stant stimulation (o0 = 0) to calculate
the SNR at larger 0. As a conservative
criterion for spike extraction, we used
SNR = 4 as the threshold (dashed line);
that is, only spike trains with sufficiently
high amplitudes were used in our anal-
ysis. Because the filtering procedure ex-
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frequency, the latter could not be taken
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maximum 200 Hz for the broadband
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pure cosine stimulation, this problem
could be circumvented by excluding
only the power in the narrow frequency
band around the periodic stimulus and,
thus, we could go up to stimulation fre-
quencies of f = 1 kHz.
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Figure 5.

Precise control of spike timing by juxtacellular stimulation
Next, we investigated the extent to which we have control of the
neuron’s behavior by stimulating it with a broadband stimulus
(Eq. 1) and changing the parameter (o, «). For each neuron, I,
was adjusted to yield a firing rate approximately in the range of
10-30 Hz and was kept constant while recording this neuron. In
Figure 3A, a reconstructed juxtacellularly stimulated layer 2/3
pyramidal neuron in the motor cortex is shown. For a constant
current, the raster plots in Figure 3B reveal randomly distributed
spikes; their timing was determined by the synaptic input and
intrinsic noise, which were different in each trial. In marked con-
trast, a fluctuating input leads to more reliable spike timing
(Fig. 3C). The high spike-time reliability under noisy juxtacel-
lular stimulation also becomes apparent in the correlation
between stimulus and spike train C(7) (Fig. 3D) and in the
correlation among different spike trains under the same (fro-
zen) stimulus CxiX](T) (Fig. 3E). In summary, as shown previ-
ously in the classical in vitro study by Mainen and Sejnowski
(1995) for intracellular stimulation, our data demonstrate that
a high spike-time reliability can be achieved using noisy jux-
tacellular stimulation in vivo.

To examine the roles of mean and SD of the noisy stimula-
tion, we used various combinations of the stimulus parame-
ters @ and o (Fig. 4). The spike number increased with the
mean of the applied current. Therefore, positive (negative)
currents depolarize (hyperpolarize) the cell (Houweling et al.,
2010). More importantly, the timing reliability across trials

0.0 0.5 1.0 0.0 0.2 0.4 0.6 0.8
« T

High synchrony for large o-while unreliable spiking for weak o. Firing rate increases with cv. A1, A2, Left, Firing rate
versus o for small to intermediate values of the noise SD o~ € [0, 0.01, 0.1] (A7) and for large SD o = 1 (42), as indicated. Gray
and colored lines are individual experiments and averages, respectively. B1, B2, Right, Firing rate against the coincidence measure
I for juxtacellular (blue) and intracellular (red) data. This dataset also contains cells that have been stimulated with a different
noise amplitude o-as shown in the left column. Therefore, we distinguish between o~ << 0.5 (BT) and o = 0.5 (B2); only large
noise amplitude yields synchrony (I” significantly larger than zero) for both kinds of stimulation. For the purposes of visualization,
one intracellular data point is omitted in B2 (coordinates 0.77, 81.6 Hz). These cells are from motor and somatosensory cortex.

grew gradually with increasing SD. It was largest for a large
mean value (ensuring a high mean firing rate) and a high
amplitude of the time-dependent part of the noise. Even in the
case of the highest amplitude noise with the largest mean,
however, locking to the stimulus was never perfect because
external synaptic input and intrinsic noise were still present.
Pooled population data for the mean firing rate versus the
mean input parameter « are shown in Figure 5A; Figure 5B
displays the firing rate versus the coincidence measure I'. To
better elucidate the relation between firing rate and coinci-
dence measure, we present separately data for small stimulus
fluctuations (Fig. 5A1,B1) and large stimulus fluctuations
(Fig. 5A2,B2). In all cases, the firing rate increased monotoni-
cally with e, but this relationship became more linear for stronger
stimulus fluctuations (i.e., a larger value of o) due to the well
known linearization effect of noise (Longtin, 2000; Vilela and
Lindner, 2009a). From Figure 5B1, it becomes evident that stim-
ulation with a small or intermediate amplitude o resulted in little
coincident evoked spiking despite a broad range of firing rates.
When the mean firing rate was high enough, we obtained strong
synchronization among trials only for large o (used in Fig. 5B2).
Inboth Fig. 5B1 and Fig. 5B2, we also show data for the equivalent
intracellular experiment that display similar dependence between
firing rate and coincidence measure. Interestingly, both methods
resulted in similar maximal I values. This means that, in our
in vivo setting, the feasible reliability by the juxtacellular stim-
ulation technique is similar to that of the classical intracellular
stimulation.
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Figure 6.  Neurons can track the stimulus up to very high frequencies. A, Absolute values of
the stimulus—spike-train cross-spectrum |Ssx|. Solid lines are individual recordings, dashed
lines are ensemble averages. The black dashed line can be interpreted as noise floor. The curves
with significant coincidence (I" > 0.15) increase or are constant up to the stimulus cutoff
frequency. B, €, Absolute value of the vector strength for different cells driven with pure cosine
stimuli. Both figures show the same statistics, but the dataset is split into cells that show clearly
increasing vector strength (B) and those that do not (€). Note the different scales between Band
C.Inboth cases, no clear cutoff can be seen up to 1000 Hz. Thisimplies that the neurons are able
to track fast stimuli changes.

Neurons transmit high-frequency stimulus information

How well does the neuron transfer certain frequency compo-
nents of the input? To address this question, we calculated the
cross-spectra S, (f) between input I(¢) and spike train x(#) for
band-pass stimuli with ¢ = 1 and @ = 1 and the vector strength
for pure cosine stimulation (Fig. 6).

Focusing on experiments that yielded a minimal reliability of
I" > 0.15, we found that individual cross-spectra were either flat
or even increased with frequency up to the cutoff frequency of f,
= 100 Hz and so does the average over all cross-spectra (colored,
dashed line in Fig. 6A). This is surprising because the cells’ firing
rates barely exceeded 40 Hz.

To further test the high-frequency encoding capabilities of the
cells, we used cosine stimuli that permit to explore much higher
frequencies (100 Hz = f, = 1000 Hz) and plot the vector strength
normalized to its value at f, = 100 Hz. Because there was a large
variability in the frequency dependence, we sorted the data into
curves that show a pronounced (initial) increase (Fig. 6B) or not
(Fig. 6C). The different curves of the vector strength in Figure 6B
showed shallow maxima around f, = 600 Hz, whereas some of the
curves in Figure 6C started declining between 200 and 400 Hz.
This decline, however, was only slight and it was difficult to
identify a clear cutoff frequency from the experimental data.
Given the strong cell-to-cell variability, there was no principal
difference with respect to high-frequency encoding for the
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Figure 7.  Higher I" corresponds to higher coherence and therefore to higher mutual infor-
mation rate values. 4, Spectral coherence function Coh(f). Solid lines are individual recordings
dashed lines are ensemble averages. The black dashed line can be interpreted as noise floor. The
coherence function shows no obvious low- or band-pass behavior. All frequency components up
to the cutoff frequency seem to be equally well transferred. B, MIR. Each color represents an
individual cell. The MIR increases linearly with I". Spike trains that lock at the stimulus can
transfer more information about the stimulus and will necessarily generate reproducible spike
times.

data measured in motor cortex (blue) and somatosensory cor-
tex (red).

The cross-spectra inspected above tell us how much signal
power is transferred in each frequency bin, but do not quantify
the flow of information. A frequency-resolved measure for infor-
mation transmission is the coherence function (Borst and
Theunissen, 1999) given in Equation 12 as the ratio of the squared
cross-spectrum and the product of power spectra of stimulus and
spike train, respectively. For most cells, the coherence function
did not show any decrease, but rather attained a flat shape (Fig.
7A). This implies an equally strong coding of information for
slow (low-frequent) and fast (high-frequent) components of the
input stimulus and stands in marked contrast to the low-pass
coding observed in simple model neurons (Vilela and Lindner,
2009b).

The coherence function can also be used to calculate a
lower bound on the mutual information rate (MIR; Eq. 13).
Remarkably, when plotted versus the coincidence measure I'
(Fig. 7B), the MIR approximately followed a linear relation-
ship, MIR ~ TI'. The values of the lower bound that were
achieved for strong coincidence go beyond 100 bits/s and are
thus comparable to information rates measured in various
sensory neurons (cf. Table 2 in Borst and Theunissen (1999)).
Note that for strong stimulation, resulting in only little trial-
to-trial variability, the true mutual information rate can be
significantly higher than the lower-bound estimate because of
nonlinear encoding that is not described by the coherence
function (Borst and Theunissen, 1999; Bernardi and Lindner,
2015).

Two-compartment model can reproduce neuronal behavior

Theoretical studies of the neural response to time-dependent
stimuli discussed at length how features such as temporal correla-
tions in the background noise (Brunel et al., 2001; Fourcaud-
Trocmé et al., 2003), noise coding (Lindner and Schimansky-Geier,
2001; Boucsein et al., 2009), or cooperativity among sodium
channels (Ilin et al., 2013) may endow the neuron with a slow
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Both the multicompartment model and the two-compartment model reproduce equally well the spike train statistics for a neuron from motor cortex. Comparison is shown between

simulation (red, blue, green) and experiments (black) for a motor neuron. 4, Instantaneous firing rate from the experiment is shown as a gray area and the simulated one (two-compartment model)
asared curve. B, The power spectrum S, ( f) plotted for the experiment (black), the two-compartment model (red), the one-compartment model (green), and the multicompartment model (blue).
C, Same colors as in B but for the spike-train—spike-train cross-spectrum Sx,xv( 1) D, Same colors as in B but for the stimulus—spike-train cross-spectrum S, ( ). E, Same colors as in B but for
the coherence function Coh( f). The SD (transparent color) has been calculated by performing 10 times the same simulation with different realizations of the intrinsic noise. The noise floor (gray)

is calculated by shuffling spike trains and stimuli.

decay or even a saturation of its rate-modulation factor (suscep-
tibility) at high frequencies. However, none of the suggested one-
compartment models would reproduce the feature seen in our
experiments, namely, that the modulation factor increases with
frequency well >100 Hz. Indeed, we were unable to reproduce
the spike-train statistics under nanostimulation with a simple
one-compartment IF model that included colored background
noise (as in the study by Brunel et al., 2001), high onset speed of
the AP (by an appropriate choice of the slope parameter in the
exponential IF model as in Fourcaud-Trocmé et al., 2003), or
both.

A recent computational study by Eyal et al. (2014) and in
vitro experiments and modeling on Purkinje cells by Ostojic et
al. (2015) revealed that the presence of a purely passive den-
dritic tree can enhance the response at high frequencies. We
tested whether similar models as used in these studies can
reproduce, not only the rate modulation factor, but also all of
the second-order statistics that were accessible in our in vivo
experiments: spike train power spectrum, cross-spectra be-
tween stimulus and spike train and between two different

spike trains (i.e., two different trials) for a frozen stimulus, and
the coherence function.

We used the rescaled input current and additional white
Gaussian noise to stimulate the multicompartment model by
Eyaletal. (2014) without any further parameter tuning. Doing so,
we observed for a specific cell from the motor cortex in Figure 8 a
surprising agreement between simulation results of the multi-
compartment model (blue) and data (black). We also used a
two-compartment exponential IF model (equivalent circuit in
Fig. 1B) and a one-compartment exponential IF model, for which
the parameters were estimated by an optimization procedure (see
Materials and Methods). In particular, the two-compartment IF
model (red curves) could reproduce quantitatively: (1) the in-
crease of the cross-spectrum with frequency (Fig. 8D); (2) the flat
shape of the coherence as a function of frequency (Fig. 8E); and
(3) the nonlinear effect of the stimulus on the power spectrum
(Fig. 8B) and the cross-spectrum between trials (Fig. 8C) even
outside of the stimulus frequency band (i.e., here for f> 100 Hz).
In contrast, the one-compartment model (green curves) could
also reproduce the power spectrum (Fig. 8B) and the cross-
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The two-compartment model performs systematically better than the one-compartment model. 4, The goodness-of-fit measure (A) for the one-compartment model (gray) and the

two-compartment model (blue, red). The dashed line indicates the threshold for distinction between fits below threshold (blue) and above threshold (red). Cells (n = 16) are sorted according to their

two-compartment A values. The arrow marks the cell shown in Figure 8. B, Scatter plot for the trial-to-trial reliability in experiments, I"

<o and simulations, I" ;.

Data points are distributed along

the diagonal, but data for the one-compartment model are spread in a wider region. The color coding and the arrows are the same as in A. C, Scatter plot for the trial-to-trial reliability in experiment,
I, and the similarity between experiment and simulation, I',,. The two-compartment model is closer to the diagonal (performs better) than the one-compartment model. The color coding and
the arrows are the same as in A. D, Graphical representation of the nine parameter values for the two-compartment model. Each symbol/color belongs to a specific cell (some symbols have been
shifted vertically for better visibility). Only parameter values for the 10 cells with A below threshold are given.

spectrum between trials (Fig. 8C), but failed to reproduce the
input—output statistics (Fig. 8 D, E). The cross-spectrum did not
reproduce the increase with frequency (Fig. 8D) and the coher-
ence displayed a pronounced low-pass behavior in marked con-
trast to the experimental data.

A less abstract illustration of how well the two-
compartment model captures the time-dependent response of
the neuron can be gained by looking at the instantaneous
firing rate, r(t); that is, the time-dependent probability density
for observing a spike at a certain instant in time (Fig. 84). The
two-compartment model and the experiment show both
rapid, signal-related changes and their firing rates agree well.
A similar agreement in spike train statistics between the two-
compartment model and experiment can also be achieved for other
cells from motor cortex and somatosensory cortex and for a higher
cutoff frequency of the stimulus (f. = 200 Hz), whereas the one-
compartment model systematically performs worse in reproducing
all the spectral statistics.

To quantify the performance of both the one- and the two-
compartment model, we plot A, a measure for the goodness-
of-fit (Eq. 22), for 16 cells (Fig. 9A). This measures the
deviation between experiment and the region one would ex-
pect for the simulations (red transparent region in Fig. 8). In
Figure 94, the cells were sorted according to the A values
corresponding to the two-compartment model. Using this
measure, the superiority of the two-compartment model be-
came apparent. However, satisfying two-compartment fits
could not be found for all cells; beyond cell index 10, we
observed a distinct increase in A with cell index. Therefore, we
divided the population into cells (blue symbols) below the

corresponding threshold (dashed line in Fig. 9A) and cells (red
symbols) above threshold. Note that the two-compartment
model provided the better fit even for the cells for which sta-
tistics could not be reproduced well (red symbols).
Deviations between model and experimental data can be
also described in terms of the spiking times and the associated
coincidence measure I'. Using the same color code as in Figure
9A, the performance of both models in terms of the I factors is
given in Figure 9, B and C. Figure 9B shows the trial-to-trial
reliability within simulations (I',) versus that of the experi-
ment (I'..). For both models, the data are aligned to the diag-
onal, which corresponds to the same degree of reliability in
model and experiment. Clearly, the two-compartment model
remains closer to the diagonal, indicating that it reproduces
the trial-to-trial reliability better than the one-compartment
model. Figure 9C shows the similarity between simulation and
experiment, I, versus I',,, revealing again superior perfor-
mance of the two-compartment model, the values of which are
close to the diagonal. When comparing the two-compartment
model for different cells, those performing well in terms of the
spectral statistics (blue symbols below threshold in Fig. 9A)
tended to be distributed closer to the diagonal than those with
suprathreshold values of A (red symbols above threshold in
Fig. 9A). In Figure 9D, the different parameters that belong to
the 10 cells below threshold are presented. For some of the
parameters, specific values can be found in the literature (Rall,
1959; Koch et al., 1996; Badel et al., 2008; Bekkers, 2011; Har-
rison et al., 2015; Ostojic et al., 2015), whereas, for others (D,,
Dy, I,..), the order of magnitude can be estimated based on
biophysical considerations. For all parameters, we found a
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Figure 10.  Prescribed spike times can be evoked reliably in vivo. A, Example stimulus
calculated to evoke a desired spike train in a particular cell. B, Raster plot of spike trains
(black dashes) generated by stimulation with the current shown in A. The desired spike
times are marked as gray stripes in the raster plot and align precisely with the evoked
spike times. C, The trial-to-trial reliability in phase 2 (Fﬁe) (blue filled triangle symbol)
and the similarity between trials and desired spike train (I'2,) (red filled circle symbol) are
plotted against the trial-to-trial reliability in phase 1 (I".,). In phase 2, spike trains were
more reliable than in phase 1. The similarity between trials and desired spike train I';,
even exceeds the trial-to-trial reliability I'Z,. The arrow marks the cell shown in 8. Note
that, for one point, the two symbols overlap.

reasonable agreement between the expected order of magni-
tude and the values shown in Figure 9D. However, because the
two-compartment model is still a strongly simplified biophys-
ical description, these values should be regarded as effective
parameter values only.

Neurons can be stimulated to generate prescribed spike times

in vivo

As outlined in the Materials and Methods section, we could stim-
ulate the neuron to fire a prescribed spike train with a high accu-
racy. In this two-phase experiment, we first estimated the mean
firing rate, the C, of the ISI, and the transfer function of an
individual cell (phase 1). We then generated a target spike train
that had about the same rate and C,. Furthermore, by means of
the transfer function and an iterative procedure, we computed a
Gaussian stimulus with vanishing power beyond our cutoff fre-
quency that approximately elicited this spike train. Finally, we
applied the computed stimulus several times to the neuron under
investigation (phase 2).

In total, we used five neurons from motor cortex from
which we created seven datasets (two cells have been explored
with two stimulus intensities). Figure 10A shows the stimulus
and Figure 10B the corresponding raster plot for one example
cell for which the spikes appeared with high precision close to
the prescribed times. Population data for the coincidence fac-
tors measured in the two phases of the experiment (Fig. 10C)
show that the trial-to-trial similarity in phase 2 was at least as
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large as in phase 1 and for most cells even substantially larger.
This is due to the still somewhat pulsatile nature of the com-
puted stimulus (Fig. 10A). The similarity of the phase 2 trials
with the target spike train was even higher than the self-
similarity in phase 2, which is plausible because the desired
spike train lacks the intrinsic noise of the individual trial. In
conclusion, this method demonstrates the ability to prescribe
spikes in a precise and reliable manner using juxtacellular
stimulation in vivo in cortical neurons.

Discussion

In the present study, we investigated whether and under which
conditions juxtacellular stimulation can evoke reliably spike tim-
ing in single sensory and motor pyramidal neurons in vivo. We
found that nanostimulation in the form of strongly fluctuating
inputs with Gaussian statistics can evoke reproducible spike tim-
ing comparable to what has been achieved previously by intracel-
lular stimulation in vitro (Mainen and Sejnowski, 1995) and by
visual stimuli in vivo (Buracas et al., 1998). This is especially
important in experiments in which the relevance of single spikes
for a behavioral response is tested (Brecht et al., 2004; Houweling
and Brecht, 2008; Doron et al., 2014).

In addition, we investigated the ability of single neurons to
track high-frequency modulations and to encode information
on rapidly changing signals. Consistent with previous in vitro
(Kondgen et al., 2008; Boucsein et al., 2009; Ilin et al., 2013)
and in vivo (Tchumatchenko et al., 2011) results, we found
that the neuronal response (i.e., modulation of the instanta-
neous firing rate) and information transmission (spectral co-
herence function) is not limited to frequency bands below the
mean firing rate or inverse membrane time constant. The
maximum in the vector strength observed in Figure 6B ap-
proximately agrees with recent in vitro observations for Pur-
kinje cells (Ostojic et al., 2015).

Different explanations for the transmission of high frequen-
cies have been suggested, among them the effect of temporal
noise correlations (Brunel et al., 2001) and the sharpness of spike
onset (Fourcaud-Trocmé et al., 2003; Naundorf et al., 2006;
Boucsein et al., 2009). However, our attempts to capture the sta-
tistics of our data in a one-compartment model with intrinsic
colored noise and/or with arbitrarily sharp onset dynamics failed.
Only if a second compartment representing the dendrite were
included in the model could we reproduce the instantaneous
firing rate, power spectra, cross-spectra between trials, and in-
put—output statistics with great accuracy. Our results are in qual-
itative agreement with the recent study by Ostojic et al. (2015),
who investigated the high-frequency transmission of time-
dependent stimuli in Purkinje cells.

Coming back to the issue of spike control, as demonstrated
by stimulation with white Gaussian noise stimuli, we were able
to generate reproducible spike trains when stimulating the
neurons with fluctuating Gaussian stimuli. However, using
this approach, the exact timing of the APs remains uncon-
trolled in advance because the applied stimuli are random
(frozen) noise realizations. Here, we extended the feature of
generating reproducible spike trains to spike trains of which
the AP timing is prescribed in advance. Specifically, we calcu-
lated the stimulus to evoke a desired spike train by considering
the susceptibility of the neuron under investigation and apply-
ing an iterative procedure to ensure Gaussianity and finite
frequency support (cutoff frequency). The desired spike train
had similar statistical characteristics (mean firing rate and ISI
Cy) as the spike trains evoked by broadband nanostimulation.
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Repetitive application of this stimulus forced the neuron to
generate spike trains that showed a larger intrinsic reliability
(trial-to-trial similarity) than was the case for stimulation with
frozen white Gaussian noise. In addition to the high intrinsic reliabil-
ity, the generated spike trains were evoked precisely at the desired
spike times. Remarkably, the similarity between desired and evoked
spike train was therefore at least as good as the trial-to-trial reliability
in the white noise experiments.

We limited our analysis to spike trains with a similar sta-
tistics (rate and Cy) and found that, although our procedure of
the stimulus computation is somewhat approximate, such a
target spike train can be evoked with high accuracy and tem-
poral precision. It is an interesting task to investigate how far
this can be extended to target spike trains that deviate in their
statistics significantly from what the inspected neuron would
do under a Gaussian white noise stimulus with a given mean
and variance.

In summary, we showed here that juxtacellular stimulation in
vivo allows for high control over the activity of individual stain-
able neurons. This might be of particular interest for reverse
physiology experiments, in which the influence of single-neuron
activity on neuronal network dynamics or the animals’ behav-
ioral response is investigated.
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