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Abstract We consider a general integrate-and-fire (IF)
neuron driven by asymmetric dichotomous noise. In contrast
to the Gaussian white noise usually used in the so-called dif-
fusion approximation, this noise is colored, i.e., it exhibits
temporal correlations. We give an analytical expression for
the stationary voltage distribution of a neuron receiving such
noise and derive recursive relations for the moments of the
first passage time density, which allow us to calculate the fir-
ing rate and the coefficient of variation of interspike intervals.
We study how correlations in the input affect the rate and reg-
ularity of firing under variation of the model’s parameters for
leaky and quadratic IF neurons. Further, we consider the limit
of small correlation times and find lowest order corrections
to the first passage time moments to be proportional to the
square root of the correlation time. We show analytically that
to this lowest order, correlations always lead to a decrease
in firing rate for a leaky IF neuron. All theoretical expres-
sions are compared to simulations of leaky and quadratic IF
neurons.
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1 Introduction

Models of the integrate-and-fire (IF) type have been widely
used in the study of neural systems (reviewed in Burkitt
2006a,b). Usually, they describe neuronal dynamics via a
single variable, the membrane voltage v, complemented by
a fire-and-reset rule that is applied once a voltage thresh-
old is crossed. In numerical as well as analytical studies,
this minimal description has allowed insights, for instance,
into neuronal information transmission properties (Brunel et
al. 2001; Lindner and Schimansky-Geier 2001), the effect
of input correlations (De La Rocha et al. 2007; Salinas
and Sejnowski 2002; Moreno et al. 2002), or the dynamics
of whole networks (Brunel 2000; Softky and Koch 1993;
Shadlen and Newsome 1998). Further, it can be readily
extended to include more complex behavior, such as spike-
frequency adaptation (Liu and Wang 2001; Schwalger et al.
2010), which can then be studied in a well-understood setting.
Last but not least, exponential IF models have been shown
to be powerful predictors of the dynamics of real pyramidal
cells (Badel et al. 2008).

The synaptic input to the neuron is commonly thought of
as a sequence of stereotypical spikes with stochastic arrival
times; mathematically speaking, it is a point process where
each event is a delta function (shot noise). As such dis-
crete input with a potentially rich correlation structure is
notoriously difficult to treat analytically, many studies have
employed the so-called diffusion approximation, modeling
the massive synaptic bombardment as Gaussian white noise.
This is usually justified by arguing that the overall input is a
superposition of a large number of nearly uncorrelated spike
trains and that each individual synaptic event only has a small
weight.

However, there are various physiologically observed input
characteristics that cannot be accounted for by uncorrelated
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Gaussian fluctuations. Deviations from Gaussian white noise
occur both with respect to the stationary distribution, which
is often non-Gaussian, and temporal correlations, which can
be pronounced. In other words, a more faithful description
of the input is a non-Gaussian colored noise process.

In certain brain states, for example, the input switches
between two well distinguishable levels, so-called up and
down states of the network (Cowan and Wilson 1994; Shu et
al. 2003). Such input is not Gaussian but follows a bimodal
distribution; on a coarse level, it can be considered two-
valued. Further, in some cells, it has been shown (Markram
et al. 1997) that the assumption of many small superposed
pulses underlying the Gaussian approximation is violated and
that thus, the shot-noise character of synaptic input should
be taken into account (Richardson and Gerstner 2005).

Deviations from the assumption of white input (i.e., lack
of temporal correlations) are even more severe in many neural
systems. The activity of presynaptic cells may be correlated,
both among neurons (De La Rocha et al. 2007) and in time
(Bair et al. 1994) and superposition of spike trains does not
remove temporal correlations (Lindner 2006). This, along
with synaptic filtering (Brunel and Sergi 1998; Moreno et al.
2002) and short-term synaptic plasticity (Lindner et al. 2009),
leads to an overall input that is colored instead of white.

A simple non-Gaussian colored noise process is dichoto-
mous noise, a Markovian two-valued stochastic process. In
physics and biophysics, dichotomous noise has been pop-
ular as a modeling tool for a long time (Horsthemke and
Lefever 1984; Hänggi and Jung 1995; Bena 2006), both
due to its analytical tractability as well as its applicability
to “on-off” situations. Dichotomous noise has been used
to model a vast number of phenomena, ranging from the
movement of molecular motors (Astumian and Bier 1994)
to the switching of single spins (Rugar et al. 2004). Some
further applications arise because dichotomous noise con-
verges to Gaussian white noise or Poissonian shot noise
when taken to appropriate limits (van den Broeck 1983). In
contrast to the (likewise exponentially correlated) Gaussian
Ornstein–Uhlenbeck process, dichotomous noise is a discrete
process, possessing infinitely many cumulant correlation
functions.

In neuroscience, dichotomous noise has been used to
model the opening and closing of ion channels (Horsthemke
and Lefever 1981; Fitzhugh 1983; Goychuk and Hänggi
2000); its use as a model for neural input has been rela-
tively sparse (Salinas and Sejnowski 2002; Lindner 2004a).
However, dichotomous noise is interesting in several of the
situations mentioned above. Specifically, it can be used to
model input (i) from a presynaptic population that under-
goes transitions between up and down states, (ii) in the form
of finite pulses, and (iii) from a strong single presynaptic
bursting cell. More generally, dichotomous noise allows to
build a tractable model to explore the effect of temporal cor-

relations and non-Gaussianity of input currents on the firing
statistics of neurons.

Here, we apply the well-developed techniques for the
study of dichotomous flows (Horsthemke and Lefever 1984;
Bena 2006) to neuron models of the IF type. In doing so, the
main difference to the problems previously considered in the
statistical physics literature lies in the initial and boundary
conditions that are imposed by the fire-and-reset rule. In the
first part, we derive exact expressions for the stationary dis-
tribution of membrane voltages as well as the moments of
the first passage time density for a general IF neuron driven
by dichotomous noise with asymmetric switching rates. We
emphasize that this constitutes one of the rare cases where
the firing statistics of a stochastic neural dynamics can be
exactly calculated. As a first application, we then use these
expressions to study the effect of temporal input correlations
on neural firing. In the interest of conciseness, we restrict
ourselves to symmetric rates in this case; the general asym-
metric case is especially relevant for taking the shot-noise
limit and for modeling input from a presynaptic population
that switches between up and down states, both of which will
be dealt with elsewhere.

The impact of temporal correlations in the input on the
firing statistics of a neuron has been studied by a number of
authors, mostly using Ornstein–Uhlenbeck (OU) processes
(Brunel and Sergi 1998; Fourcaud and Brunel 2002; Salinas
and Sejnowski 2002; Brunel and Latham 2003; Middleton et
al. 2003; Lindner 2004a; Moreno et al. 2002; Schwalger and
Schimansky-Geier 2008). Specifically, one can ask whether
the firing rate increases or decreases with increasing corre-
lation time and whether firing becomes more or less regular.
Salinas and Sejnowski (2002) have investigated these ques-
tions in a setup of perfect and leaky IF neurons receiving
symmetric dichotomous noise. They give analytical expres-
sions for firing rate and CV in closed form for the perfect
IF and as a series expansion for the leaky IF. For both, they
report that firing rate as well as CV increases with increasing
correlation time τc. When varying τc, Salinas and Sejnowski
(2002) keep the noise variance fixed. As we argue below, this
is the proper choice for input with large τc, while for small
τc, fixing the noise intensity allows for a more meaningful
comparison between white and correlated input, and leads to
different results (most importantly, we find a decrease instead
of an increase in firing rate).

The outline of this paper is as follows: After describing
the model and the governing equations (Sect. 2), we calcu-
late exact expressions for the stationary probability density
(Sect. 3) of a general IF neuron driven by dichotomous noise.
We then give exact recursive relations for the moments of
the first passage time density (Sect. 4) and derive a simple
approximation for rate and CV that is valid in the limit of
long correlation times (Sect. 5). In Sect. 6, we apply these
results and study the effect of correlations on firing rate and
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CV. Specifically, we plot firing rate and CV as a function of
the correlation time, the base current, and the noise intensity
both for leaky and quadratic IF neurons and compare them
with the white-noise-driven case. In all cases, we find the
firing rate to be lower for correlated input, while the CV may
be either higher or lower. In Sect. 7, we consider the limit
of small correlation times and show analytically that to the
lowest order in τc, the firing rate of leaky IF neurons always
decreases with the correlation time. We conclude with a brief
discussion of our results in Sect. 8.

2 Model and governing equations

We consider a general IF neuron. Between spikes, its voltage
dynamics is described by

v̇ = f (v) + η(t), (1)

where η(t) is dichotomous noise and f (v) is a continu-
ous, potentially nonlinear function. Whenever v crosses the
threshold vT , it is reset to vR and a spike is registered. Com-
mon choices for f (v) are f (v) = μ, yielding the perfect
IF neuron (PIF), f (v) = μ − v, the leaky IF neuron (LIF),
and f (v) = μ + v2, the quadratic IF neuron (QIF), where
the parameter μ quantifies a base current to the neuron. We
will use the latter two models for numerical verification of
the expressions we derive, but stress that our theory is valid
for arbitrary nonlinearities. Note that for ease of notation,
we consider non-dimensionalized dynamics where time is
measured in units of the membrane time constant.

The dichotomous Markovian process (DMP) η(t) is a two-
state process; it jumps between the values σ+ and σ− (see
Fig. 1). Jumps happen at constant rates k+ and k−, where k+
denotes the rate of hopping from σ+ to σ− (and vice versa

time

A B

C

Fig. 1 Dichotomous noise. a Dichotomous noise is a two-state process,
jumping between a “+” state with value σ+ and a “-” state with value
σ− at constant rates k+ and k−. b A sample realization of dichotomous
noise. c Voltage time course of an LIF driven by this noise

for k−). When k+ = k− = k and σ+ = −σ− = σ, η(t) is
called symmetric. Note that asymmetry in the values σ± can
always be transformed away: a system driven by such noise
is equivalent to a system with an additional bias (σ++σ−)/2,
driven by noise with symmetric values ±σ , where σ = (σ+−
σ−)/2. We assume σ+ > σ− and restrict all further analysis
to the case f (v) + σ+ > 0 for all v ∈ [vR, vT ] (thereby
excluding scenarios where the neuron would never be able
to reach the threshold).

The time evolution of dichotomous noise is described by
the master equation

d

dt
P+(t) = −k+ P+(t) + k− P−(t), (2)

d

dt
P−(t) = k+ P+(t) − k− P−(t), (3)

where P±(t) is the probability that the DMP takes the value
σ± at time t . The solution of this equation is straightforward
and well known (Fitzhugh 1983; Horsthemke and Lefever
1984); here, we list important statistics it allows to calculate.
The expectation of η(t) is

〈η(t)〉 = k−σ+
k+ + k−

+ k+σ−
k+ + k−

. (4)

It is apparent that in general, asymmetric dichotomous noise
has nonzero mean. The residence times in each state are expo-
nentially distributed with expectation 1/k±; the variance of
the process is

var(η(t)) = 2σ 2k+k−
(k+ + k−)2 . (5)

Dichotomous noise is exponentially correlated with the cor-
relation time τc given by

τc = 1

k+ + k−
. (6)

Another quantity useful for the comparison to other noise
processes is the noise intensity

D = 2σ 2k+k−
(k+ + k−)3 . (7)

In accordance with the standard approach for dynami-
cal systems driven by dichotomous noise (Horsthemke and
Lefever 1981; Bena 2006), we extend the master equation
to the full system (noise process and neuronal dynamics) by
considering P±(v, t)dv, i.e., the probability that the DMP
takes the value σ± and the neuron’s membrane voltage is in
the interval (v, v + dv) at time t . To this end, we combine
the continuity equations that link the change in P±(v, t) to
the fluxes J±(v, t) = ( f (v)+σ±)P±(v, t) with Eqs. (2) and
(3). Additionally, we need to incorporate the fire-and-reset
rule: Trajectories are removed at vT and reinserted at vR . If
f (vT ) + σ− > 0, the threshold can be crossed at both noise
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values. For the moment, we call the respective fluxes over
the threshold r+(t):=J+(vT , t) and r−(t):=J−(vT , t); they
sum to the instantaneous firing rate, r(t) = r+(t) + r−(t).
The probability density is thus governed by

∂t P+(v, t) = −∂v(( f (v) + σ+)P+(v, t))

−k+ P+(v, t) + k− P−(v, t)

+r+(t) (δ(v − vR) − δ(v − vT )) , (8)

∂t P−(v, t) = −∂v(( f (v) + σ−)P−(v, t))

+k+ P+(v, t) − k− P−(v, t)

+r−(t) (δ(v − vR) − δ(v − vT )) . (9)

This describes the stochastic switching between two deter-
ministic flows, the “+” dynamics and the “-” dynamics. The
source and sink terms r±(t)δ(v − vR) and r±(t)δ(v − vT )

can be seen as a formal way to prescribe boundary condi-
tions (cf. Richardson and Swarbrick 2010). They implement
the fire-and-reset rule and mark the most profound differ-
ence to dichotomous noise problems previously treated in
the statistical physics literature.

3 Stationary distribution

We first want to calculate the stationary probability distrib-
ution of voltages. To this end, we start from the stationarity
condition for Eqs. (8) and (9),

0 = −
(
( f̂ (v) + σ)P+(v)

)′

− k+ P+(v) + k− P−(v)

+ r0α (δ(v − vR) − δ(v − vT )) ,

(10)

0 = −
(
( f̂ (v) − σ)P−(v)

)′

+ k+ P+(v) − k− P−(v)

+ r0(1 − α) (δ(v − vR) − δ(v − vT )) ,

(11)

where we have symmetrized the DMP values by introducing

f̂ (v):= f (v) + σ+ + σ−
2

, σ :=σ+ − σ−
2

(12)

(to unburden notation, we return to calling this new function
f (v) in the following) and where we have expressed the
fluxes over the threshold by the stationary firing rate r0 and
the ratio

α:=r+/r0, (13)

which denotes the fraction of trajectories that cross the
threshold in the “+” dynamics.

Without solving the equations, we can already assess how
the probability density behaves at threshold and reset volt-
age due to the fire-and-reset rule. To this end, we integrate
Eq. (10) from vR − ε to vR + ε and let ε → 0, which yields

-1 0 1
v

0

0.5

1

p(
v)

-2 0 2
v

0

0.5

1
A B FIQFIL

Fig. 2 Stationary probability density compared to the diffusion
approximation. Input in both cases is symmetric dichotomous noise
with intensity D = 0.4 and correlation time τc = 0.15. a LIF with
μ = 0.8, vR = 0, vT = 1. b QIF with μ = −0.2, vR = −∞, vT = ∞.
We plot theory (thin lines) and simulation results (circles) and compare
them to the analytical results for white noise input with the same D
(thick lines, see e.g., Vilela and Lindner 2009). The most prominent
qualitative difference lies in the discontinuities that correlated input
induces at the (finite) reset and threshold points of the LIF

P+(v+
R ) − P+(v−

R ) = r0
α

f (vR) + σ
, (14)

where P+(v±
R ) = limε→0 P+(vR ± ε). Similarly, integrating

from vT − ε to vT + ε and taking into account that there is
no probability above threshold yields

P+(v−
T ) = r0

α

f (vT ) + σ
. (15)

Analogously, we obtain

P−(v+
R ) − P−(v−

R ) = r0
1 − α

f (vR) − σ
, (16)

P−(v−
T ) = r0

1 − α

f (vT ) − σ
. (17)

Here, we already observe an important difference to the case
of IF neurons driven by white noise: The probability density
is no longer continuous, but exhibits jumps at vR and vT (cf.
Fig. 2). This is typical for colored noise and has also been
observed for neurons driven by an OU process (Fourcaud and
Brunel 2002).

In the following, we will solve Eqs. (10) and (11) sep-
arately below vR and between vR and vT , i.e., excluding
the source and sink terms. The jump conditions can then
be satisfied by choosing the respective integration constants
appropriately.

Ultimately, we are interested in the probability that the
voltage is in an infinitesimal interval aroundv, independent of
the state of the noise. The corresponding probability density
is given by

p(v):=P+(v) + P−(v). (18)

123



Biol Cybern

We define also

q(v):=P+(v) − P−(v). (19)

Writing Eqs. (10) and (11) in terms of p(v) and q(v) and
adding one equation to the other leads to a stationarity con-
dition for the total flux which can be directly integrated,
yielding

J0 = f (v)p(v) + σq(v), (20)

where J0 is piecewise constant:

J0 =
{

0 if v < vR, v > vT ,

r0 if vR < v < vT .
(21)

Subtracting Eq. (11) from Eq. (10) yields one remaining ordi-
nary differential equation (ODE),

( f (v)q(v) + σ p(v))′ + k2 p(v) + k1q(v) = 0, (22)

where

k1:=(k+ + k−), k2:=(k+ − k−). (23)

We can eliminate q(v) using Eq. (20) and define g(v):= f (v)

J0 − ( f 2(v) − σ 2)p(v); the ODE then reads

g′(v) = − f (v)k1 − σk2

f 2(v) − σ 2 g(v)

+ J0

f 2(v) − σ 2

(
σ 2k1 − σ f (v)k2

)
.

(24)

Note that we have divided by f 2(v) − σ 2 here, which can
lead to singular behavior at points where the “-” dynamics
has a fixed point (FP); this is treated in detail below.

Solving the ODE through variation of constants and inte-
grating by parts to simplify the result yields

p(v) = e−φ(v)

f 2(v) − σ 2

[
c + J0

(
f (d)eφ(d)

+
∫ v

d
ds eφ(s)( f ′(s) + k1)

)]
,

(25)

where

φ(v):=k+
∫ v

du
1

f (u) + σ
+ k−

∫ v

du
1

f (u) − σ
. (26)

In Eq. (25), d can still be chosen freely, as long as c has
not been fixed. Equation 25 represents two solutions (one
with J0 = 0 for v < vR and one with J0 = r0 for v > vR),
each with its own integration constant c. In order to fully
appreciate how these integration constants as well as r0 and
α are determined, we first need to discuss how fixed points
of the “-” dynamics need to be dealt with.

3.1 Dealing with fixed points in the “-” dynamics

As mentioned above and noted first by Bena et al. (2002),
problems may arise at fixed points of the deterministic flows.
We only need to consider fixed points in the “-” dynamics,
f (vF )−σ = 0, as fixed points in the “+” dynamics would be
impossible for the system to overcome; such a neuron would
never fire. To see how p(v) behaves in the vicinity of a fixed
point vF , we approximate f (v) ≈ f (vF ) + f ′(vF )(v −
vF ) = σ + f ′(vF )(v − vF ). This means f ′(v) ≈ f ′(vF ),
f 2(v) − σ 2 ≈ 2σ f ′(vF )(v − vF ),

e−φ(v) ≈ |v − vF |−
k−

f ′(vF ) ·
∣∣∣v − vF + 2σ

f ′(vF )

∣∣∣
− k+

f ′(vF ) (27)

and thus

p(v) ≈
|v − vF |−

k−
f ′(vF ) ·

∣∣∣v − vF + 2σ
f ′(vF )

∣∣∣
− k+

f ′(vF )

2σ f ′(vF )(v − vF )

·
[

c + J0

(
f (d)eφ(d)

+
∫ v

d
ds eφ(s)( f ′(s) + k1)

)]
.

(28)

Further discussion of this formula depends on whether we
are dealing with a stable or an unstable fixed point.

3.1.1 Unstable fixed points

If vU is an unstable fixed point, f ′(vU ) > 0 and p(v)

diverges,

p(v) ∼ |v − vU |−
k−

| f ′(vU )| −1
. (29)

This is “clearly unphysical and mathematically improper
in view of the requirement of normalization” (Bena et al.
2002). Specifically, one would expect the probability to find
the system near an unstable fixed point to be low and not high,
and more generally, divergences in the probability density are
only acceptable if they can be integrated.

As pointed out in Bena et al. 2002, one thus needs to con-
sider separate solutions above and below such fixed points
and then choose their integration constants such that diver-
gent terms vanish at vU . In the case considered here, this
corresponds to setting c = 0 and d = vU , both above and
below vU . We can then apply l’Hôpital’s rule to calculate the
limit

lim
v→vU

p(v) = r0

2σ

(
1 + k+

f ′(vU ) + k−

)
. (30)

To see that this does indeed make sense, it is instructive
to take one step back and ask: If p(v) must not diverge at
vU , which value should it take? At a fixed point of the “-”
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Fig. 3 Behavior of the stationary probability density at fixed points
of the “-” dynamics. We plot probability densities (thin lines: theory,
circles: simulation results) as well as the nonlinearity f (v) ± σ , where
stable FPs are marked by black dots and unstable FPs by white dots. a
LIF with μ = 0.8, vR = 0, vT = 1, σ = 0.4 and k+ = 1.5. Depending
on the value of k−, p(v) can either be continuous at a stable FP (k− =
1.2) or exhibit an integrable divergence (k− = 0.8). b QIF with μ =
−0.2, vR = −∞, vT = ∞, σ = 3 and k+ = 5. Again, p(v) is either
continuous (k− = 4) or exhibits an integrable divergence (k− = 3) at
the stable FP. Note that due to a proper choice of integration constants,
it is smooth and continuous at the unstable FP

dynamics, J− = ( f (vU )−σ)P−(vU ) = 0, so that the whole
flux r0 has to be mediated by the “+” dynamics, which fixes

P+(vU ) = r0

f (vU ) + σ
= r0

2σ
. (31)

This allows to calculate P−(vU ) and thus p(vU ) as follows:
At vU , Eq. (11) becomes

0 = − f ′(vU )P−(vU ) − k− P−(vU ) + k+
r0

2σ
, (32)

which can be solved for P−(vU ), yielding indeed the limit
calculated above.

3.1.2 Stable fixed points

For stable fixed points, f ′(vS) = −| f ′(vS)| and one sees
from Eq. (28) that the previously problematic term becomes

|v − vS|
k−

| f ′(vS )| −1
. (33)

For k− > | f ′(vS)|, this does not diverge (trajectories leave
toward the “+” state faster than new ones are coming in);
for k− < | f ′(vS)|, it diverges but can still be integrated
(cf. Fig. 3). Stable fixed points thus pose no fundamental
problem; however, we still have to make sure that they lie
outside the integration boundaries of the integral in Eq. (25),
where they would cause a divergence.

3.2 Boundary conditions and full solution

In contrast to the case of white-noise-driven IF neurons,
the stationary probability density is in general not defined
for arbitrarily negative values of v. The support of p(v)

is the interval [v−, vT ], where v− is either the first fixed
point smaller than vR , if f (vR) − σ < 0, or vR itself, if
f (vR) − σ > 0 (in both cases, trajectories cannot cross this
point toward smaller values of v. It extends to negative infin-
ity only if f (vR) − σ < 0, and no fixed point exists below
of vR (such as, e.g., for a PIF with μ − σ < 0).

As pointed out above, solutions have to be given sepa-
rately for intervals that are delimited by vR , vT , and fixed
points of the “-” dynamics. The integration constants are
either determined by the jump conditions at reset voltage and
threshold or, if the interval in question neighbors an unstable
fixed point, fixed by the requirement of avoiding divergence
(see Fig. 4 for a schematic depiction). If the lower and upper
interval boundaries are denoted by a and b, the full solution
is given by

p(v) = r0e−φ(v)

f 2(v) − σ 2 ·

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ΓI(v) if b = vRand no FPs > vR

ΓII(v) if b = vR and first unst. FP at vU

ΓIII(v) if a = vU or b = vU

ΓIV(v) if a = vR and f (vR) − σ > 0

ΓV(v) if b = vT and f (vT ) − σ < 0,

(34)

where using the abbreviation h(v):=(σ (2α−1)− f (v))eφ(v),
the Γi (v) are given by

ΓI(v) = h(vR) − h(vT )

−
vT∫

vR

ds eφ(s)( f ′(s) + k1), (35)

ΓII(v) = h(vR) −
vU∫

vR

ds eφ(s)( f ′(s) + k1), (36)

ΓIII(v) =
v∫

vU

ds eφ(s)( f ′(s) + k1), (37)

ΓIV(v) = −h(vR) +
v∫

vR

ds eφ(s)( f ′(s) + k1), (38)

ΓV(v) = −h(vT ) −
vT∫

v

ds eφ(s)( f ′(s) + k1). (39)

The above expressions for p(v) still include r0, the sta-
tionary firing rate, and α, the fraction of trajectories that cross
vT during “+” dynamics. The latter can be calculated as fol-
lows: If f (vT ) − σ < 0, threshold crossings happen only
during “+” dynamics, which entails α = 1. Otherwise, the
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Fig. 4 Schematic depiction of how the integration constants for the
probability density are determined in different regions (delimited by
dashed lines). Integration constants in regions next to unstable fixed
points are always chosen to avoid a divergence; the remaining ones are
determined by the jump conditions at reset and threshold. If f (vT )−σ <

0, threshold crossing happens only via the “+” dynamics, so α = 1. If
f (vT ) − σ > 0, the integration constant in the rightmost region is

either determined by ensuring non-divergence at the nearest fixed point
(necessarily unstable) or the jump condition at the reset, if no such
fixed point exists. This allows α to be determined via the jump condi-
tion at the threshold. Roman numerals denote which of the solutions
pI(v) · · · pV(v) applies. Note that commonly used IF models have at
most one stable and one unstable fixed point

integration constant of the rightmost interval is always deter-
mined by either an unstable FP or the jump condition at vR ,
which allows us to use the remaining jump condition at the
threshold to calculate α (see Fig. 4). This yields

α = 1

2

(
1 + f (vR)eφ(vR) − f (vT )eφ(vT )

σ
(
eφ(vR) − eφ(vT )

)

+

vT∫
vR

ds eφ(s)( f ′(s) + k1)

σ
(
eφ(vR) − eφ(vT )

)

⎞
⎟⎟⎟⎠ ,

(40)

if there is no unstable FP, or

α = 1

2

(
1 + f (vT )

σ

−
e−φ(vT )

vT∫
vU

ds eφ(s)( f ′(s) + k1)

σ

⎞
⎟⎟⎟⎠ ,

(41)

if the unstable FP next to the threshold is at vU . Finally, the
stationary firing rate r0 can be determined by requiring p(v)

to be normalized.

4 Moments of the inter-spike interval density

The expressions derived in the previous section allow us to
calculate the stationary distribution of voltages and the fir-
ing rate of an IF neuron driven by dichotomous noise. The
firing rate is inversely proportional to the average interspike
interval (ISI), i.e., the first moment of the ISI density. Higher
moments of the ISI density are also of interest; the second
moment, for example, appears in the definition of the coef-
ficient of variation (CV), which is often used to characterize
the regularity of neural firing. The ISI density is equivalent
to the density of trajectories that, starting at the reset voltage,
reach the threshold for the first time after a time T , i.e., the
first passage time (FPT) density.

In this section, we derive expressions for the moments
of the FPT density. To this end, we adopt and adapt the
approach outlined (for Gaussian white noise) in Lindner
2004b. The central argument of our derivation is the fol-
lowing: The FPT density ρ(T ) corresponds exactly to the
(time dependent) flux of probability across the threshold,
j (vT , T ) = J+(vT , T ) + J−(vT , T ), provided that all tra-
jectories start at vR at t = 0 and that no probability can
flow back from above the threshold (otherwise, we would
count re-entering trajectories multiple times). Note that we
do not need to directly consider the fire-and-reset rule in
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this case; it only enters through its impact on the initial
conditions.

For colored noise that can take continuous values, the “no-
backflow” condition is notoriously difficult to implement and
often only fulfilled approximately. Here, it amounts to the
simple condition J−(vT , t) ≥ 0. For f (vT ) − σ > 0, this is
automatically fulfilled, while for f (vT )−σ < 0, it will have
to be enforced through the boundary condition J−(vT , t) =
0. The n-th moment of the FPT density is then given by

〈
T n 〉 =

∞∫

0

dt tn (J+(v, t) + J−(v, t)) . (42)

We start by rewriting the master equation Eqs. (8) and (9)
in terms of fluxes. We introduce

j (v, t):=J+(v, t) + J−(v, t) (43)

and

w(v, t) = J+(v, t) − J−(v, t), (44)

which allows us to write

∂t

(
f (v) j (v, t) − σw(v, t)

f 2(v) − σ 2

)
= −∂v j (v, t), (45)

∂t

(
f (v)w(v, t) − σ j (v, t)

f 2(v) − σ 2

)
= −∂vw(v, t)

−γ1(v)w(v, t) − γ2(v) j (v, t), (46)

where

γ1/2(v):= k+
f (v) + σ

± k−
f (v) − σ

. (47)

We then multiply both sides by tn and integrate over t from
0 to ∞ (the l.h.s by parts); introducing the abbreviations

Jn(v) :=
∫ ∞

0
dt j (v, t)tn, (48)

Qn(v) :=
∫ ∞

0
dt w(v, t)tn, (49)

we obtain

– for n = 0

∂v J0(v) = f (v) j (v, 0) − σw(v, 0)

f 2(v) − σ 2 , (50)

∂v Q0(v) = f (v)w(v, 0) − σ j (v, 0)

f 2(v) − σ 2

−γ1(v)Q0(v) − γ2(v)J0(v), (51)

– for n > 0

∂v Jn(v) = n
f (v)Jn−1(v) − σ Qn−1(v)

f 2(v) − σ 2 , (52)

∂v Qn(v) = n
f (v)Qn−1(v) − σ Jn−1(v)

f 2(v) − σ 2

− γ1(v)Qn(v) − γ2(v)Jn(v),

(53)

where we have used that

lim
t→∞ j (v, t) = lim

t→∞ w(v, t) = 0 ∀ v < vT (54)

(eventually, every trajectory will have crossed the thresh-
old). Given suitable boundary and initial conditions (IC), we
can recursively solve these ODEs for Jn(v). Evaluated at the
threshold, this is exactly the n-th FTP moment,

〈
T n 〉 = Jn(vT ). (55)

All trajectories start at the reset voltage vR at t = 0, so
for η(0) = σ , we have the ICs

P+(v, 0) = δ(v − vR), P−(v, 0) = 0 (56)

(and vice versa for η(0) = −σ ). Thus, we actually need to
consider two conditional FPT densities

ρ(T |η(0) = σ) (57)

and

ρ(T |η(0) = −σ). (58)

The stationary FPT density is then

ρ(T ) = p(η(0) = σ)ρ(T |η(0) = σ)

+ p(η(0) = −σ)ρ(T |η(0) = −σ),
(59)

where p(η(0) = σ) = α is the probability that the last
threshold crossing happened in “+” dynamics. Due to the
linearity of the problem, we can replace this averaging over
the noise upon firing by preparing a “mixed” initial state,
P+(v, 0) = αδ(v − vR), P−(v, 0) = (1 − α)δ(v − vR). We
thus have the ICs

j (v, 0) = (σ (2α − 1) + f (v)) δ(v − vR), (60)

w(v, 0) = ( f (v)(2α − 1) + σ) δ(v − vR). (61)

Equations (50, 52) can directly be integrated,

J0(v) = θ(v − vR), (62)

Jn>0(v) = n

v∫

Cn

ds
f (s)Jn−1(s) − σ Qn−1(s)

f 2(s) − σ 2 , (63)

where θ(v) is the Heaviside step function and the integration
constant in Eq. (62) is fixed by requiring the FPT density to
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be normalized (J0(vT ) = 1). The other ODEs can be solved
by variation of constants, yielding the general solution

Q0(v) = e−φ(v)

⎡
⎢⎣D0 +

v∫

E0

ds eφ(s)

·
(

(2α − 1)δ(s − vR) − γ2(s)θ(s − vR)

)⎤
⎥⎦ ,

(64)

Qn>0(v) = e−φ(v)

⎡
⎢⎣Dn −

v∫

En

ds eφ(s)

·
(

γ2(s)Jn(s) − n
f (s)Qn−1(s) − σ Jn−1(s)

f 2(s) − σ 2

)⎤
⎥⎦ ,

(65)

where we have used φ(v) = ∫ v dx γ1(x) and where En can
be freely chosen as long as Dn is not fixed.

Unfortunately, it is evident from Eqs. (64) and (65) that
the presence of fixed points of the “-” dynamics remains
the nuisance that it was in the calculation of the stationary
probability density (see Sect. 3.1). Again, we thus need to
split the range of possible voltages [v−, vT ] at fixed points
of the “-” dynamics [note that, in contrast to the previous
section, we do not need to split at vR , as the jump condition
at vR is already incorporated through the initial conditions
Eqs. (60 and 61)].

If an interval borders on an unstable FP, we can avoid
a divergence by setting the integration constants Dn = 0
and En = vU . To see that this makes sense, one can apply
l’Hôpital’s rule to calculate the limits of Q0(v) and Qn>0(v)

for v → vU and this choice of values,

lim
v→vU

Q0(v) = 1, (66)

lim
v→vU

Qn>0(v) = Jn(vU )

+ n

2k−
(Qn−1(vU ) − Jn−1(vU )) . (67)

At an FP of the “-” dynamics, all flux occurs through the
“+” state, so there is no difference between Jn(vU ) and
Qn(vU ). This is reflected in the two limits: According to
Eq. (62), J0(vU ) = 1 (unstable FPs occur only above the
reset voltage), so we have indeed J0(vU ) = Q0(vU ). Eq. (67)
extends this to all n by induction, as from Qn−1(vU ) =
Jn−1(vU ), Qn(vU ) = Jn(vU ) follows. This also means that
no special treatment of Eq. (63) is necessary at unstable
FPs, as the divergence of the integrand cancels exactly for
Qn(vU ) = Jn(vU ).

Boundary conditions for Qn(v) are well defined in all
intervals:

– Leftmost interval. If f (vR) − σ > 0, the lower bound-
ary is the reset voltage vR , which all trajectories leave
toward the right. For t > 0, P(vR, t) = 0 and conse-
quently J−(vR, t) = 0, fixing Q0(vR) = 2α − 1 and
Qn>0(vR) = 0. Otherwise, if f (vR) − σ < 0, the upper
boundary of the interval is either an unstable fixed point
(see inner intervals) or vT (with f (vT )−σ < 0, see right-
most interval).

– Inner intervals. Inner intervals necessarily have an unsta-
ble FP as upper or lower boundary, at which Qn(vU ) =
Jn(vU ).

– Rightmost interval. If f (vT ) − σ < 0, we need to make
sure that there is no flux of probability back across the
threshold. This amounts to imposing J−(vT , t) = 0,
implying Qn(vT ) = Jn(vT ). If f (vT ) − σ > 0, the “no-
backflow” condition is always fulfilled. In this case, we
have a condition at the lower boundary of the interval,
which is either an unstable FP (demanding Qn(vU ) =
Jn(vU )) or the reset voltage vR (with f (vR) − σ > 0, see
leftmost interval).

The integration constant of Jn>0(v) is determined as fol-
lows: If f (v−)−σ > 0, all trajectories leave v− = vR instan-
taneously toward higher values of v. Thus, p(v−, t) = 0 for
t > 0 and consequently Jn>0(v−) = 0. If f (v−)−σ < 0, v−
is at a stable FP, so that Jn(v−) = Qn(v−). Because Qn(v)

goes to zero as v approaches a stable FP, we again have the
condition Jn>0(v−) = 0.

The fraction of trajectories that cross the threshold in “+”
state, α, can be calculated using the expression given in
the previous section. An alternative derivation goes as fol-
lows: α corresponds to the time-integrated flux in “+” state,∫ ∞

0 dt J+(vT , t). Thus, it can be determined from the rela-
tion

α = J0(vT ) + Q0(vT )

2
, (68)

in which Q0(vT ) on the r.h.s. in general also depends on α.
If there are no FPs other than a stable FP at v−, we obtain

the following recursive relations

J0(v) = θ(v − vR), (69)

Q0(v) = e−φ(v)

[
eφ(vT ) − θ(vR − v)eφ(vR) +

vT∫

v

ds eφ(s)γ2(s)θ(s − vR)

]
, (70)

Jn>0(v) = n

v∫

v−

ds
f (s)Jn−1(s) − σ Qn−1(s)

f 2(s) − σ 2 , (71)
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Qn>0(v) = e−φ(v)

⎡
⎣Jn(vT )eφ(vT ) +

vT∫

v

ds eφ(s)

×
(

γ2(s)Jn(s) − n
f (s)Qn−1(s) − σ Jn−1(s)

f 2(s) − σ 2

)⎤
⎦ . (72)

This case is relevant if σ is sufficiently large, e.g., when
considering a limit close to white noise. A general solution
that is further transformed to ease numerical integration is
given in Appendix 9.

Evaluating Eqs. (69) - (72) recursively, we can now obtain
an exact expression for the n-th moment of the FPT density,
〈
T n 〉 = Jn(vT ). (73)

This allows us to calculate, for instance, the stationary firing
rate (given here for the case that there is no FP above vR),

r0 =
⎡
⎣

vT∫

v−

dx

(
θ(x − vR)

f (x) + σ
+ σe−φ(x)

f 2(x) − σ 2 ·

x∫

vT

dy
2k+θ(y − vR)eφ(y)

f (y) + σ

⎞
⎠

⎤
⎦

−1

.

(74)

Similarly, one may use J1(vT ) and J2(vT ) to obtain a
lengthy expression for the coefficient of variation CV =√〈

T 2
〉 − 〈T 〉2/ 〈T 〉 (which we do not reproduce here). These

exact expressions for firing rate and CV of a general IF neu-
ron driven by asymmetric dichotomous noise are a central
result of this work.

5 Approximation for firing rate and CV at large
correlation times

When the correlation time of the DMP is large, one can derive
a simple quasi-static approximation for the firing rate and CV.
While we have already derived exact expressions, valid over
the whole range of correlation times, in the previous sec-
tion, this approximation has its merits in allowing immediate
insights into neuronal firing at high τc, μ or σ , without the
need for numerical integration. The approach outlined below
shares similarities with those used to study PIF (Middleton
et al. 2003) and LIF neurons (Schwalger and Schimansky-
Geier 2008) driven by an OU process; however, the two-state
nature of the DMP renders the derivation considerably less
complicated.

Let us first make the notion of a “large” correlation time
more precise. If we fix the DMP η(t) in “+” state, we are
dealing with a deterministic system v̇ = f (v)+σ . We denote
the time that this system takes to go from vR to vT by T +

d .
If f (v) − σ > 0 for all v (the neuron also fires if the noise

is fixed in “-” state), we can equivalently define a T −
d . We

call the correlation time large if τc � T +
d , and, in case T −

d
is defined, if also τc � T −

d . Note that this implies the same
for the residence times in both states, i.e., 1/k± � T +

d and
1/k± � T −

d .
We start with the case where the neuron only fires in

“+” state ( f (v) − σ < 0 for some v). On average, it emits
1/(k+T +

d ) � 1 spikes while in “+” state, followed by one
long ISI in the quiescent “-” state. Neglecting “boundary
effects” at switching events of the noise, the probability that
a randomly picked ISI is a short interval of length T +

d is thus

Ps =
1

k+
1

T +
d

1
k+

1
T +

d
+ 1

, (75)

while the probability that it is a long interval in “-” state is

Pl = 1
1

k+
1

T +
d

+ 1
. (76)

The mean ISI in this limit is given by

〈T 〉 = T +
d Ps + 1

k−
Pl (77)

≈ k+ + k−
k−

T +
d , (78)

where we have used that 1/(k+T +
d ) � 1. Similarly, the sec-

ond moment is given by

〈
T 2

〉
= (

T +
d

)2
Ps +

∞∫

0

dt ′ t ′2k−e−k−t ′ Pl (79)

≈
T +

d
k+ + 2

k2−
1

k+
1

T +
d

. (80)

Firing rate and CV thus read

r0 ≈
k− 1

T +
d

k+ + k−
, (81)

CV ≈
√

2k+
(k+ + k−)2

1

T +
d

. (82)

For the case where threshold crossings happen also in “-”
state ( f (v)−σ > 0), expressions can be derived using similar
reasoning; here, we obtain

r0 ≈
k− 1

T +
d

+ k+ 1
T −

d

k+ + k−
, (83)

CV ≈
√

k+k−
(k+ + k−)2

(T +
d − T −

d )2

T +
d T −

d

. (84)
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For symmetric dichotomous noise, the expressions sim-
plify to

r0 ≈ 1

2

1

T +
d

, (85)

CV ≈
√

τc

T +
d

, (86)

if f (v) − σ < 0 for some v ∈ [vR, vT ], and

r0 ≈ 1

2

(
1

T +
d

+ 1

T −
d

)
, (87)

CV ≈
√

1

4

(T +
d − T −

d )2

T +
d T −

d

, (88)

if f (v) − σ > 0 for all v ∈ [vR, vT ].
It remains to calculate

T ±
d =

vT∫

vR

dv

f (v) ± σ
. (89)

For the LIF, it reads

T ±
d = ln

(
μ ± σ − vR

μ ± σ − vT

)
, (90)

and for the QIF

T ±
d = π√

μ ± σ
. (91)

We will discuss the implications of these formulas in dif-
ferent limits and scalings in the next section.

6 Application: impact of correlations on firing rate and
CV

Can we make general statements about the influence that
temporal correlations in the input exert on the firing statis-
tics of a neuron? Does the firing rate increase or decrease
when we replace white input by correlated input? Does fir-
ing become more or less regular? In order to address such
questions, we first need to clarify how to choose parameters
to allow for a meaningful comparison between white noise
and dichotomous noise. Here and in the following, we con-
sider symmetric dichotomous noise (k+ = k− = k), but the
discussion also applies to the asymmetric case.

When varying the correlation time τc, one faces the ques-
tion of how to parameterize the noise process. One choice is
to keep its variance σ 2 constant, which in turn means that the
noise intensity D varies proportionally to τc, as

D = σ 2

2k
= σ 2τc. (92)

Alternatively, one may choose τc and D to parameterize the
noise, with the consequence that σ 2 varies inversely propor-
tional to τc. Choosing one or the other can have a decisive
impact on the response of the system and raises questions
about how to interpret the observed behavior: Is a change in
the response really a manifestation of changed correlations
in the input? Or is it rather a consequence of the simultaneous
change in σ or D, i.e., one that would also occur if τc were
fixed and only σ or D were varied?

The fact that white noise has infinite variance, but a finite
intensity suggests that in the limit of small correlation times,
the appropriate choice is fixing the noise intensity D. This
is indeed a common parameterization in the literature when
considering the white noise limit of colored noise (van den
Broeck 1983; Broeck and Hänggi 1984; Bena 2006; Four-
caud and Brunel 2002; Brunel and Latham 2003). On the
other hand, when τc is large, a more sensible choice is fix-
ing σ 2 (Schwalger and Schimansky-Geier 2008). This is also
the parametrization chosen by Salinas and Sejnowski (2002).
We note that an alternative parameterization that interpolates
between these two extremes has been used in Alijani and
Richardson (2011).

In Fig. 5 A and B, we reproduce Fig. 12a of Salinas and
Sejnowski 2002, which shows firing rate and CV of an LIF as
a function of τc for different values of σ (which are kept fixed
for each curve). Additionally, we plot the same curves as a
function of D and include results for a white-noise-driven
LIF (Fig. 5C,D). Exact expressions for the white noise case
have been known for a long time (Siegert 1951, for a sum-
mary of results for LIF and QIF see e.g., (Vilela and Lind-
ner 2009). First, we note that for the parameter values for
which it converges, the series expansion for the LIF given in
Salinas and Sejnowski 2002 is in excellent agreement with
our quadrature expressions (the resulting curves are indistin-
guishable). It can be seen, however, that for small correlation
times, much of the observed effect can already be explained
by the increase in noise intensity; it is already present if the
noise does not contain any correlations at all but is purely
white (thick line in Fig. 5C,D). Put differently, the increase in
firing rate and CV with τc can be attributed to the increase of
the noise intensity D = σ 2τc at fixed variance. If we instead
fix D, the firing rate drops with increasing correlation time
(illustrated by the symbols in Fig. 5A,C).

The analysis in Salinas and Sejnowski 2002 thus applies to
input with large correlation times; in order to make statements
about input with small τc, one should instead keep the noise
intensity D fixed. This is the parameterization we use in the
rest of this section. In order to fully describe the range of
neuronal responses one may observe in this parameterization,
we also show and interpret results for large correlation times.

The bounded support of the DMP has consequences that
one needs to keep in mind when doing parameter scans: It
must be possible for the neuron to fire in the “+” dynamics,
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Fig. 5 Firing rate (a, c) and CV (b, d) of an LIF at different correlation
times/noise intensities. All parameters were chosen as in Fig. 12a of
(Salinas and Sejnowski 2002) (vR = 1/3, vT = 1, μ = 0.5). For each
of the thin lines, only τc was varied, while σ was kept constant. Both
columns show curves for the same parameters; plotted as a function
of τc = 1/(2k) in a, b (reproducing Fig. 12a of Salinas and Sejnowski
2002) and as a function of the noise intensity D = σ 2/(2k) in c, d. Four
points in parameter space are marked by symbols to ease comparison
of the two columns. The thick lines are analytical results for an LIF
driven by Gaussian white noise with the same D. The insets in the right
column show the same plots over a wider range of noise intensities. It
can be seen that for small correlation times, much of the change in both
mean firing rate and CV can already be explained by the increase in
noise intensity. As illustrated by the symbols, the firing rate drops with
correlation time if the noise intensity is kept fixed. Note that to compare
our non-dimensionalized model quantitatively to the plots in Salinas
and Sejnowski 2002, time needs to be multiplied and rate divided by
the membrane time constant τm = 10 ms

which corresponds to demanding f (v)+σ > 0 for all acces-
sible v. If the neuron is in a sub-threshold regime ( f (v) < 0
for at least some v), this imposes a constraint on the possible
parameter values. For an LIF, they must fulfill the inequality

μ − vT +
√

D

τc
> 0, (93)

and for a QIF the inequality

μ +
√

D

τc
> 0. (94)

If f (v) alone is already positive for all v, the neuron is in a
supra-threshold regime and there is no such constraint; how-
ever, for

f (v) − σ > 0 (95)

f(v) + σ

f(v) - σv
R

v
T

η(t)

v(t)

A

B

Fig. 6 Two regimes of firing (here in an LIF). Shown are nonlinearities
and FPs (a) and an example time course of input and voltage (b). A
correlation time that is much larger than the deterministic time from
reset to threshold leads to burst-like behavior if there is a stable FP in
the “-” dynamics (left column). However, if the base current is high
enough or σ is small enough, the neuron may fire even if the DMP η(t)
is in the “-” state, leading to a much more regular spike train (right
column)

the stable fixed point in the “-” dynamics disappears (see
Fig. 6). This means that the neuron may fire even if the noise
never leaves the “-” state, which has a strong qualitative effect
on the rate and, especially, the regularity of firing.

In Figs. 7 and 8, we plot the firing rate (A) and the CV (B)
of an LIF and a QIF, respectively, when τc is varied while
D is kept constant. First of all, it is apparent that fixing D
results in a vastly different picture compared to (Salinas and
Sejnowski 2002). In particular, for small τc (where this is
the appropriate parameterization), we find that the firing rate
actually decreases with increased τc; for both LIF and QIF,
it is always lower than for white noise input with the same
intensity (thick bars). The CV at short correlation times is
always larger than for white noise input in the QIF, while it
can also be smaller for the LIF in a moderately sub-threshold
regime. For larger τc, effects of our parameterization become
clearly visible: In the supra-threshold case, the decrease in σ 2

eventually leads to the disappearance of the stable FP in the “-
” dynamics (cf. Fig. 6), leading to a kink in the curves. More
dramatically, in the sub-threshold case, firing is no longer
possible when the variance becomes to small ( f (v)+σ < 0
for at least some v); consequently, curves end at such points.

The behavior for τc → ∞ in the different parameteri-
zations can also be directly read off the expressions from
the quasi-static approximation, Eqs. (85)–(88): For fixed
D and a supra-threshold μ, both T +

d and T −
d converge to

Td := ∫ vT
vR

dv/ f (v) for σ → 0, so for τc → ∞, the firing
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Fig. 7 Dependence of the firing rate (a) and the CV (b) of an LIF on
the correlation time τc. We vary the correlation time while adjusting σ to
keep D = 1 constant. Different curves correspond to different base cur-
rents: far sub-threshold (μ = −0.8), slightly sub-threshold (μ = 0.8),
and supra-threshold (μ = 1.6). Thin lines: theory (quadrature results),
circles: simulation results, dotted lines: quasi-static approximation (for
μ = 0.8 and μ = 1.6). Thick bars: theory for white-noise-driven LIF.
The firing rate can be seen to be always lower for correlated input com-
pared to the white noise case, while the CV can either be lower or higher

rate saturates (r0 → Td/2) and the CV tends to zero. In con-
trast, when σ 2 is fixed, T +

d and T −
d are independent of τc, and

one directly sees that the firing rate saturates, while the CV
either diverges ∼ √

τc (sub-threshold) or saturates (supra-
threshold). This is indeed the behavior described in Salinas
and Sejnowski 2002. The divergence of the CV ∼ √

τc was
also reported for OU noise with fixed variance (Schwalger
and Schimansky-Geier 2008).

In Figs. 9 and 10, we plot the firing rate (A) and the CV
(B) of an LIF and a QIF, respectively, as the mean input μ is
varied for three different values of τc. The firing rate shows
qualitatively the same behavior for LIF and QIF. It can be
seen to be lower for correlated than for white noise input,
and unsurprisingly, it increases monotonically with μ. The
kinks in the curves for τc = 1 and τc = 10 occur where the
stable FP in the “-” dynamics disappears (cf. Fig. 6). For the
LIF, the CV may be slightly smaller than for the white noise
case even where this FP still exists, whereas for the QIF, it
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Fig. 8 Dependence of the firing rate (a) and the CV (b) of a QIF on
the correlation time τc(D = 1). Different curves correspond to different
base currents μ as indicated. Thin lines: theory (quadrature results),
circles: simulation results, dotted lines: quasi-static approximation (for
μ = −0.1 and μ = 1). Thick bars: theory for white-noise-driven QIF.
Again, the firing rate can be seen to be always lower for correlated input
compared to the white noise case, while the CV can either be lower or
higher

is always larger than for the white noise case for small μ. In
the limit μ → ∞, both T +

d and T −
d decay ∼ (vT − vR)/μ.

Consequently, r0 diverges while the CV tends to zero (this is
true for both parameterizations).

Finally, in Figs. 11 and 12, we plot the firing rate (A) and
the CV (B) of an LIF and a QIF, respectively, as a func-
tion of the noise intensity. The firing rate can again be seen
to decrease with increasing τc. For the LIF, the CV shows a
minimum at a finite noise intensity, both for white noise input
as well as correlated input, if the correlation time is not too
large. This is a signature of coherence resonance (Pikovsky
and Kurths 1997). In contrast, the QIF is known not to exhibit
coherence resonance (in the sense that the CV is minimal at
a finite D) for white noise input; here, the CV monotoni-
cally decreases and, independent of parameters, approaches
the value 1/

√
3 for large D (Lindner et al. 2003). It can be

seen that this changes with correlated input, for which the
CV diverges with increasing D, leading again to a (poten-
tially very broad) minimum. This is true for arbitrarily small
correlation times: For any value of τc, there is a value of
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Fig. 9 Firing rate (a) and CV (b) of an LIF as a function of the base
current μ. Different curves correspond to different correlation times
as indicated; D = 1. Thin lines: theory (quadrature results), circles:
simulation results, dotted lines: quasi-static approximation. Thick lines:
theory for white noise case. No simulation results were plotted in the
top panel to avoid an overly cluttered presentation. Again, the firing
rate can be seen to be always lower for correlated input compared to the
white noise case, while the CV may be either higher or lower. The kinks
in the curves for both rate and CV occur where μ becomes large enough
that the neuron starts to fire tonically both in the “+” and the “-” state
and are qualitatively well captured by the quasi-static approximation

D at which T +
d becomes small enough that the quasi-static

approximation may be applied. From looking at Eq. (86), it is
then apparent that any non-vanishing value of τc eventually
leads to a divergence of the CV.

7 Application: the limit of small correlation times

While our analytical expressions for firing rate and CV show
excellent agreement with simulations, it is hard to derive
general statements from them. For instance, evaluating our
expressions for specific parameters has shown the firing rate
to be lower for correlated than for white input for every para-
meter set we tried (see Figs. 7, 8, 9, 10, 11, 12), raising the
question whether this is always the case. However, it seems
impossible to answer this question just by looking at the
recursive relations Eqs. (69)–(72).
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Fig. 10 Firing rate (a) and CV (b) of a QIF as a function of the base
current μ. Different curves correspond to different correlation times
as indicated; D = 1. Thin lines: theory (quadrature results), circles:
simulation results, dotted lines: quasi-static approximation. Thick lines:
theory for white noise. No simulation results were plotted in the top
panel to avoid an overly cluttered presentation. We see qualitatively the
same behavior as for the LIF (Fig. 9)

In order to make the difference to white-noise input
explicit, we thus expand the recursive relations for the
moments of the FPT density for small values of τc, simi-
lar to what has been done for the case of Gaussian colored
noise (Brunel and Sergi 1998; Fourcaud and Brunel 2002;
Moreno et al. 2002; Brunel and Latham 2003). In this limit,
σ = √

D/τc is large, so it is sufficient to consider the case
with no unstable FP and a stable FP left of vR (for the QIF, we
will discuss the limit vR → −∞, vT → ∞ after doing the
expansion in τc). We thus start from Eqs. (69)–(72). The func-
tion appearing in the exponents, φ(v), is readily expanded,

φ(v) = U (v)

D
− τc

v∫
dx

f 3(x)

D2 + O
(
τ 2

c

)
, (96)

where we have used the potential

U (v):= −
v∫

dx f (x). (97)
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Fig. 11 Firing rate (a) and CV (b) of an LIF as a function of the noise
intensity D. Different curves correspond to different correlation times
(as indicated) and share the same base current μ = 0.8. Thin lines: the-
ory (quadrature results), circles: simulation results, dotted lines: quasi-
static approximation. Thick lines: theory for white noise. The firing rate
can be seen to be always lower than for the white noise case, while for
this particular choice of μ, the CV is always higher

Consequently, we have

eφ(v) = e
U (v)

D

⎛
⎝1 − τc

v∫
dx

f 3(x)

D2

⎞
⎠ + O

(
τ 2

c

)
(98)

As γ2(v) diverges for τc → 0, it is advantageous to rewrite
the recursive relations in terms of Q̂n(v):=Qn(v)/σ ; after
replacing σ by

√
D/τc, they read

J0(v) = θ(v − vR), (99)

Q̂0(v) = e−φ(v)

[√
τc

D

(
eφ(vT ) − θ(vR − v)eφ(vR)

)

−
vT∫

v

ds
eφ(s)θ(s − vR)

f 2(s)τc − D

]
, (100)
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Fig. 12 Firing rate (a) and CV (b) of a QIF as a function of the noise
intensity D. Different curves correspond to different correlation times
(as indicated); μ = −0.2. Thin lines: theory (quadrature results), cir-
cles: simulation results, dotted lines: quasi-static approximation. Thick
lines: theory for white noise. For a white noise driven QIF, the CV
does not diverge in the high-noise limit but monotonically approaches
a value of 1/

√
3, independent of parameters. Correlations in the input

make this universal behavior disappear, leading to a (potentially very
broad) minimum in the CV

Jn(v) = n

v∫

v−

ds
f (s)Jn−1(s)τc − DQ̂n−1(s)

f 2(s)τc − D
, (101)

Q̂n(v) = e−φ(v)

[
Jn(vT )eφ(vT )

√
τc

D

−
vT∫

v

ds eφ(s)
Jn(s) + nτc

(
f (s)Q̂n-1(s) − Jn-1(s)

)

f 2(s)τc − D

]
.

(102)

Looking at the above equations, it is apparent that the
lowest order contribution due to correlations will in general
be of order

√
τc. Expanding in powers of

√
τc and letting

v− → −∞, we obtain

Jn(v) = J 0
n (v) + √

τc · J c
n (v) + O

((√
τc

)2
)
, (103)
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where

J 0
0 (v) = �(y − vR), (104)

J 0
n>0(v) = n

D

v∫

−∞
dx e

−U (x)
D

vT∫

x

dy e
U (y)

D J 0
n−1(y), (105)

J c
1 (v) =

v∫

−∞
dx e

−U (x)
D

e
U (vT )

D − �(vR − x)e
U (vR )

D√
D

, (106)

J c
n>1(v) = n

v∫

−∞
dx e

−U (x)
D

[
e

U (vT )

D J 0
n−1(vT )√
D

+ 1

D

vT∫

x

dy e
U (y)

D J c
n−1(y)

]
.

(107)

Equations (104) and (105) give the recursive relations for
the FPT moments under Gaussian white noise input (Siegert
1951; Lindner 2004b). When the neuron is driven by dichoto-
mous noise, these FPT moments undergo a correction [Eqs.
(106) and (107)] that is in general to the lowest order propor-
tional to

√
τc. Interestingly, this

√
τc behavior was also found

for LIFs driven by an Ornstein–Uhlenbeck process (OU), a
Gaussian colored noise (Brunel and Sergi 1998; Moreno et
al. 2002).

In Fig. 13, we compare the first-order approximation to
firing rate (A) and CV (B) of an LIF to numerical simula-
tions. It is apparent that for small τc, the correction decays
indeed with the square root of the correlation time. For this
particular choice of parameters, the first-order correction can
be seen to provide a decent description over the whole range
of admissible τc values (for small τc, we always find it in
excellent agreement with simulations).

For a QIF driven by an OU, the correction to the firing
rate has been reported to be linear in τc, due to the choice of
threshold and reset vR and vT at ±∞ (Brunel and Latham
2003). Indeed, for vR → −∞ and vT → ∞, the

√
τc cor-

rections vanish also for dichotomous noise, as we show in
Appendix 10.

Finally, we can now address the question under which con-
ditions the correction to the firing rate is negative. Consider
the correction to the mean FPT:

J c
1 (vT ) = e

U (vT )

D√
D

vT∫

−∞
dx e

−U (x)
D

− e
U (vR )

D√
D

vR∫

−∞
dx e

−U (x)
D

(108)

This correction is positive if

ϑ(vT ) > ϑ(vR), (109)

0

0.1

0.2

fi
ri

ng
 r

at
e

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

τ
c

0

0.5

1

C
V

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
-3

10
-2

10
-1

10
-3

10
-2

10
-1

|Δ
r|

|Δ
C

V
|

A

B

Fig. 13 Firing rate (a) and CV (b) of an LIF in the limit of small cor-
relation times (μ = 0.5, D = 0.15). Circles: Simulation results, thick
lines: theory for white noise, thin lines: first-order (

√
τc) approximation

for dichotomous noise. The insets show the absolute difference between
a white-noise-driven LIF and simulation results (circles) as well as the
first-order correction (lines) in a log–log plot, demonstrating that, to the
lowest order, the correction is indeed ∝ √

τc

where

ϑ(v):=e
U (v)

D

v∫

−∞
dx e

−U (x)
D (110)

This is certainly the case if ϑ(v) is monotonically increasing,
i.e., ϑ ′(v) > 0 or

U ′(v)

D
e

U (v)
D

v∫

−∞
dx e

−U (x)
D ≥ −1. (111)

If U ′(v) > 0 this is always true, so let us focus on U ′(v) < 0.
In this case, if U ′(x) is monotonically increasing up to v, then
−U ′(x) ≥ −U ′(v) ∀ x < v and

1 = e
U (v)

D

v∫

−∞
dx

(
− U ′(x)

D

)
e

−U (x)
D (112)
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≥ e
U (v)

D

v∫

−∞
dx

(
− U ′(v)

D

)
e

−U (x)
D . (113)

Thus, for potential shapes with positive curvature—such as
the quadratic potential of the LIF—the correction to the mean
FPT is indeed always positive, meaning that to lowest order in
τc, the firing rate of an LIF always decreases with increasing
correlations.

8 Summary and discussion

In this paper, we have theoretically studied IF neurons driven
by asymmetric dichotomous noise. We have derived exact
analytical expressions for the stationary probability distribu-
tion of voltages as well as for the moments of the ISI density.
In doing this, we have taken care to ensure the proper treat-
ment of fixed points in the “-” dynamics, which has allowed
us to obtain valid expressions in all parameter regimes.

As a first application, we have used our theory to study
the impact of temporally correlated input on neural firing,
using symmetric dichotomous noise. We have argued that it
is advantageous to keep the noise intensity fixed when explor-
ing the effect of input with short correlation times, as opposed
to keeping the variance fixed (Salinas and Sejnowski 2002),
which is the more appropriate choice for long correlation
times. We have then studied the firing rate and CV of LIF
and QIF neurons when varying either the correlation time τc,
the base current μ, or the noise intensity D. We have found
that, compared to neurons driven by Gaussian white noise
with the same D, the firing rate always decreases when the
input is correlated, while the CV can be either higher or lower.

When varying the base current μ, we find that CVs change
abruptly at a certain value of μ when τc is large, but not for
small or vanishing τc. This could in principle be used to infer
properties of presynaptic activity from single cell recordings
in vivo. By measuring the spiking activity of a cell at different
values of an injected current, an experimenter could replicate
Figs. 9B and 10B. According to our theory, input that can be
described by a two-state process with a long correlation time
would manifest itself in a sudden drop of the CV as μ is
increased. Such input could for example arise due to up and
down states of a presynaptic population. Conversely, input
with short or vanishing correlation times would lead to a
smoother and weaker dependence of the CV on μ.

Finally, varying D, we found that under correlated input,
the CV of a QIF no longer converges to the universal value
of 1/

√
3 for large D, as found for white noise (Lindner et al.

2003), but instead diverges. This means that with correlated
input, also QIF neurons may exhibit a weak form of coher-
ence resonance (in the sense that the CV is minimal at a finite
value of D).

We have studied the recursive relations for the ISI
moments in the limit of small correlation times and found
that, in general, the first-order correction with respect to the
diffusion approximation is proportional to

√
τc. The same

had previously been observed for LIF neurons driven by
an OU process, a different colored noise (Brunel and Sergi
1998; Moreno et al. 2002). For QIF neurons driven by OU
processes, the firing rate correction has been shown to be of
order τc (Brunel and Latham 2003), which is also recovered
in our case, as for vR → −∞, vT → ∞, the corrections
proportional to

√
τc can be shown to vanish. We have also

used the expansion in small τc to prove that for potentials
with positive curvature (as is the case for LIF neurons), cor-
rections to the firing rate are always negative (to the lowest
order in τc).

In addition to the qualitative similarities between neurons
driven by dichotomous and OU processes at small correlation
times, we have found that they agree well even quantitatively
(results not shown). We thus expect our conclusions for small
correlation times to be relevant also for other noise processes
and think that they may help to clarify the effect of input cor-
relations on neural firing, as well as its dependence on the
specific choice of neuron model. Beyond the study of input
correlations, our theory allows for the exploration of excita-
tory shot-noise input, as well as the effect of network up and
down states. These applications will be pursued elsewhere.

9 Appendix: FPT recursive relations in the general case,
transformed to ease numerical integration

Here, we transform the recursive relations for the moments
of the FPT density in order to facilitate stable numerical inte-
gration near fixed points. We start by considering how Eqs.
(62)–(65) behave at unstable FPs. As pointed out, setting
Dn = 0 and En = vU ensures that Q0(v) and Qn(v) do
not diverge at an unstable FP vU . Also, this choice entails
Qn(vU ) = Jn(vU ), which means that the no divergence
occurs in the integrand of Eq. (63),

lim
s→vU

f (s)Jn−1(s) − σ Qn−1(s)

f 2(s) − σ 2 (114)

= lim
s→vU

( f (s) − σ) Jn−1(s)

( f (s) − σ)( f (s) + σ)
= Jn−1(vU )

2σ
. (115)

Numerically, however, relying on this cancellation turns out
to be problematic. It is thus advisable to rewrite the recursive
relations, as shown in the following.

We define

Hn(v):= σ

f 2(v) − σ 2 (Qn(v) − Jn(v)) . (116)
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With this, Jn>0(v) becomes

Jn>0(v) = n

v∫

v−

dx
Jn−1(x)

f (x) + σ
− Hn−1(x), (117)

where we have already satisfied the boundary condition for
Jn>0(v) by setting the lower integration limit to v−. This
means that, going from {Jn(v), Qn(v)} to {Jn(v), Hn(v)},
we now only need to pay attention to unstable FPs in the
calculation of Hn(v), instead of in both calculations. For the
calculation of Hn(v), we again need to split the voltage range
v− to vT into intervals at fixed points of the “-” dynamics.

Expressions for the solution in the i th interval, Hi
n(v)

can be obtained by plugging Eqs. (62)–(65) into Eq. (116).
Exploiting that,

J0(v) = θ(v − vR), (118)
2k+

f (v) + σ
= φ′(v) + γ2(v), (119)

J ′
n(v) = n

(
Jn−1(v)

f (v) + σ
− Hn−1(v)

)
, (120)

one may rewrite the integrand to obtain

Hi
0(v) = σe−φ(v)

f 2(v) − σ 2

v∫

ci

dx
(

2(α − 1)δ(x − vR)−

2k+
f (x) + σ

θ(x − vR)
)

eφ(x), (121)

Hi
n>0(v) = e−φ(v)

f 2(v) − σ 2

v∫

ci

dx
(

n( f (x) + σ)Hn−1(x)

2k+
f (x) + σ

σ Jn(x)
)

eφ(x). (122)

As for Qn(v), the solutions in different intervals differ only
in their integration constant ci .

It is easily verified that the boundary conditions for Qn(v)

(see Sect. 4) are satisfied by the following choice for ci :

ci =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

vR if f (vT ) − σ > 0 and the left interval boundary isvR

vU if one of the interval boundaries is an unstable

FP at vU

vT f (vT ) − σ < 0 and the right interval boundary is vT

(123)

Denoting the index of the rightmost interval by N and the
left and right boundaries of the i th interval by li and ri , we
have

α = 1 −
k+

vT∫
cN

dx eφ(x)

f (x)+σ
θ(v − vr)

eφ(vT ) − θ(vR − cNi )e
φ(vR)

(124)

J0(v) = θ(v − vR), (125)

Jn>0(v) = n
N∑

i=1

min(ri ,v)∫

li

dx
Jn−1(x)

f (x) + σ
− Hi

n−1(x). (126)

These equations, together with Eqs. (121) and (122), allow
for a recursive calculation of the n-th ISI moment in the
general case.

10 Proof that the
√

τc correction vanishes for a QIF

Consider first the correction to the mean FPT:

J c
1 (vT ) = e

U (vT )

D√
D

vT∫

−∞
dx e

−U (x)
D

− e
U (vR )

D√
D

vR∫

−∞
dx e

−U (x)
D

(127)

If U (v) → ∞ as v → −∞ (as is the case for a QIF),
l’Hôpital’s rule can be used to show that the second term
goes to zero as vR goes to −∞. It then remains to show that

lim
vT →∞

ϑ(vT )√
D

:= lim
vT →∞

e
U (vT )

D√
D

vT∫

−∞
dx e

−U (x)
D = 0. (128)

If the potential additionally has the properties

1. U (v) → −∞ for v → ∞,
2. there is an a such that U ′(v) < −Dv ∀ v > a,

as is the case for the cubic potential of a QIF, then

lim
vT →∞ ϑ(vT ) (129)

= lim
vT →∞ e

U (vT )

D

vT∫

−∞
dx e

−U (x)
D (130)

= lim
vT →∞

[ a∫

−∞
dx e

U (vT )−U (x)

D +
vT∫

a

dx e
U (vT )−U (x)

D

]
(131)

≤ 0 + lim
vT →∞

vT∫

a

dx − U ′(x)

Dx
e

U (vT )−U (x)

D (132)

= lim
vT →∞

[
1

vT
− e

U (vT )−U (a)

D

a
+

vT∫

a

dx
e

U (vT )−U (x)

D

x2

]
(133)

≤ lim
vT →∞

[
1

vT
− e

U (vT )−U (a)

D

a
+

vT∫

a

dx
1

x2

]
(134)

= 1

a
. (135)
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Thus, limvT →∞ ϑ(vT ) is smaller than any finite value c,
because we can always choose an a > 1/c. The same rea-
soning can be used to show that the

√
τc contribution to the

n-th FPT moment vanishes.
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