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Exact results for power spectrum and susceptibility of a leaky integrate-and-fire
neuron with two-state noise
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The response properties of excitable systems driven by colored noise are of great interest, but are usually
mathematically only accessible via approximations. For this reason, dichotomous noise, a rare example of
a colored noise leading often to analytically tractable problems, has been extensively used in the study of
stochastic systems. Here, we calculate exact expressions for the power spectrum and the susceptibility of a leaky
integrate-and-fire neuron driven by asymmetric dichotomous noise. While our results are in excellent agreement
with simulations, they also highlight a limitation of using dichotomous noise as a simple model for more complex
fluctuations: Both power spectrum and susceptibility exhibit an undamped periodic structure, the origin of which
we discuss in detail.
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I. INTRODUCTION

An important class of nonequilibrium systems is that of
excitable systems [1], in which small perturbations can lead
to large excursions. Examples include lasers [2], chemical
reactions [3], or neurons [4], in which the excitation cor-
responds to the emission of an action potential. Both the
spontaneous fluctuations of such a system (characterized, for
instance, by its power spectrum) as well as its response to a
time-dependent external driving (quantified for weak signals
by the susceptibility or transfer function) are of great interest.
Often, a realistic description requires incorporating also the
correlation structure of the noise that the system is subject to;
this means that the popular assumption of a Gaussian white
noise does not always hold and one has to deal with a colored,
potentially non-Gaussian noise [5].

In the stochastic description of neurons, power spectrum
and susceptibility are of particular interest because they are
closely linked to measures of information transmission [6]. An
important model class is that of stochastic integrate-and-fire
(IF) neurons [7,8], the response properties of which have
received considerable attention over the last decades. Exact
results for the susceptibility have been derived for leaky IF
neurons (LIF) driven by Gaussian white noise [9,10] or white
shot noise with exponentially distributed weights [11]. For IF
neurons driven by exponentially correlated Gaussian noise,
only approximate results in the limit of high frequencies
[12,13] and short [14,15] or long [14] noise correlation time
exist. The power spectrum is exactly known for perfect IF
(PIF) neurons [16] and LIF neurons driven by white Gaussian
noise [17]. For colored noise, approximate results for the
autocorrelation function (the Fourier transform of the power
spectrum) exist for LIF neurons in the limit of long noise
correlation time [18] and for PIF neurons driven by weak,
arbitrarily colored noise [19].

The dichotomous Markov process (DMP) [20,21], a two-
state noise with exponential correlation function, is the rare
example of a driving colored noise that can lead to tractable
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problems. For this reason, it has been extensively used in the
statistical physics literature for a long time [5,20]; recently,
its use as a model of neural input has been growing [22–26].
Known exact results for IF neurons driven by a DMP include
the firing rate and coefficient of variation of PIF and LIF
[22] or arbitrary IF neurons [24], the interspike-interval
(ISI) density and serial correlation coefficients of ISIs for
PIF [23,25] and LIF neurons [26], the stationary voltage
distribution for arbitrary IF neurons [24], or the power
spectrum for PIF neurons [25].

In this paper, we consider an LIF neuron driven by
asymmetric dichotomous noise and calculate exact expressions
for the spontaneous power spectrum and the susceptibility,
i.e., the rate response to a signal that is modulating the additive
drive to the neuron. The outline is as follows. We briefly
present the model and describe the associated master equation
in Sec. II. In Sec. III, we derive an expression for the power
spectrum and discuss its peculiar structure. Here, our approach
was inspired by a numerical scheme for white-noise-driven
IF neurons [27]. Reusing results for the power spectrum,
we calculate the susceptibility in Sec. IV, employing a
perturbation ansatz similar to approaches previously used for
Gaussian noise [12]. In Sec. V, we study numerically how
robust our results are when using broadband signals. We close
with a short summary and some concluding remarks in Sec. VI.

II. MODEL AND MASTER EQUATION

The evolution of the membrane potential v of an LIF neuron
is governed by

v̇ = μ − v + εs(t) + η(t). (1)

Spiking is implemented through an explicit fire-and-reset rule:
when the voltage hits a threshold vT , it is reset to vR , where it
remains clamped for a refractory period τref . In Eq. (1), μ sets
the equilibrium potential, εs(t) is a weak stimulus, and η(t) is
a potentially asymmetric Markovian dichotomous noise. Time
is measured in units of the membrane time constant.

The dichotomous noise η(t) jumps between the two values
σ and −σ at the constant rates k+ (jumping from the “plus
state” σ to the “minus state” −σ ) and k− [jumping from −σ
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FIG. 1. An LIF neuron driven by dichotomous noise and a weak signal. (a) A dichotomous noise η(t) jumps between a plus state and a
minus state at rates k+ and k−. Shown is a sample realization of η(t) and the signal s(t) (here a sinusoid) along with the resulting trajectory
of the voltage v. The spikes at threshold crossings are not dynamically generated but added for the purpose of illustration. (b) Sketch of the
probability densities and fluxes in the master equation.

to σ ; see Fig. 1(a)]. Note that this can always be transformed to
a noise with asymmetric noise values and an additional offset.
The properties of such a process are rather straightforward to
calculate and have been known for a long time [20,28,29]. In
the following, we will need the transition probabilities, i.e.,
the probability to find the noise in state i given that it was in
state j a certain time τ before:

Pi|j (τ ) := Pr(η(t + τ ) = σi |η(t) = σj ), (2)

where {i,j} = {+,−}, σ+ = σ , σ− = −σ . We will only need
the transition probabilities conditioned on starting in the plus
state, which read [29]

P+|+(τ ) = k+e−(k++k−)τ + k−
k+ + k−

, (3)

P−|+(τ ) = k+
k+ + k−

(1 − e−(k++k−)τ ). (4)

In this paper, we limit ourselves to the case μ − σ < vT .
This means that the neuron can only cross the threshold
when the noise is in the plus state. A general treatment
for different parameter regimes, as has been carried out for
stationary density and first-passage-time moments in Ref. [24],
involves much bookkeeping and is beyond the scope of
this work. Note that this choice of parameters does not
constrain the neuron to a fluctuation-driven (subthreshold) or
mean-driven (suprathreshold) regime; both μ + 〈η(t)〉 > vT

and μ + 〈η(t)〉 < vT are still possible. Our choice, however,
implies that the generated spike train in the absence of a signal
(ε = 0) is a renewal process: Because firing occurs only in
the plus state and the noise has no memory about the past
(Markov property), the interspike intervals are statistically
independent.

A common approach to the description of systems driven by
dichotomous noise is to consider two probabilities: P+(v,t)dv,
the probability to find the noise in the plus state and the
voltage in the interval (v,v + dv) at time t , and, analogously,
P−(v,t)dv [see the scheme in Fig. 1(b)]. The system is then

described by the following master equation:

∂tP+(v,t) = −∂v{[μ − v + εs(t) + σ ]P+(v,t)}
− k+P+(v,t) + k−P−(v,t)

+ r(t − τref)P+|+(τref)δ(v − vR)

− r(t)δ(v − vT ), (5)

∂tP−(v,t) = −∂v{[μ − v + εs(t) − σ ]P−(v,t)}
+ k+P+(v,t) − k−P−(v,t)

+ r(t − τref)P−|+(τref)δ(v − vR). (6)

The boundary conditions are P+(v+
T ) = 0 and P−(v+

T ) = 0.
If μ − σ > vR (the minus dynamics has a stable fixed point
between vR and vT ), one needs additionally P+(v−

R ) = 0,
P−(v−

R ) = 0 (see [24,30] for a detailed treatment of fixed points
in DMP-driven IF neurons). Here, v+

T (v−
R ) refers to a voltage

infinitesimally above vT (below vR). Supplementing these
boundary conditions with an appropriate initial condition or,
in the stationary case, demanding that the probability density
is normalized completely determines the instantaneous firing
rate r(t) (the probability flux across the threshold).

The respective first two lines of Eqs. (5) and (6) are
similar to what one would have for other systems driven by
dichotomous noise; they describe the deterministic drift within
each state and the switching between states. The third line
is more particular to this neuronal setup and incorporates the
fire-and-reset rule: trajectories are taken out at the threshold vT

at the rate r(t); after the refractory period τref has passed, they
are reinserted at vR . As we assume μ − σ < vT , trajectories
can only leave the system in the plus state; however, they
can get reinserted in both states because the noise may
have changed its state during the refractory period. This is
captured by the transition probabilities P±|+(τref). Note that
one can describe the same dynamics by omitting these source
and sink terms (the δ function inhomogeneities) and instead
using more complicated boundary conditions, P+(vT ) =
r(t)/(μ − vT + εs(t) + σ ),P−(vT ) = 0, and jump condi-
tions at vR: [P+(v)]vR

:= limδ→0 P+(vR + δ) − P+(vR − δ) =
r(t − τref)P+|+(τref)/(μ − vR + εs(t) + σ ) and [P−(v)]vR

=
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r(t − τref)P−|+(τref)/(μ − vR + εs(t) + σ ). If μ − σ > vR ,
one additionally needs P+(v−

R ) = 0 and P−(v−
R ) = 0.

III. POWER SPECTRUM

For the calculation of the spontaneous power spectrum,
we set ε = 0 in Eqs. (1), (5), and (6). According to the
Wiener-Khinchin theorem [29,31], the power spectrum is the
Fourier transform of the autocorrelation function of the spike

train:

S(f ) =
∫ ∞

−∞
dτ e2πif τK(τ ). (7)

The autocorrelation function can be expressed in terms of the
stationary rate r0 and the spike-triggered rate m(τ ):

K(τ ) = r0m(τ ) + r0δ(τ ) − r2
0 . (8)

For the case considered here, the stationary rate reads [24,30]

r0 =
⎡⎣τref + (k+ + k−)

∫ vT

vR

dx

∫ μ−σ

x

dy

∣∣μ−y+σ

μ−x+σ

∣∣k+ ∣∣μ−y−σ

μ−x−σ

∣∣k−

(μ − x + σ )(μ − y − σ )

+ 1 − e−τref (k++k−)

k+ + k−

⎛⎝−1 + (k+ + k−)
∫ μ−σ

vR

dx

∣∣ μ−x+σ

μ−vR+σ

∣∣k+ ∣∣ μ−x−σ

μ−vR−σ

∣∣k−

μ − x − σ

⎞⎠⎤⎦−1

. (9)

The spike-triggered rate is the rate at which spikes occur at
time t = τ given that there was a (different) spike at t = 0 (the
reference spike). The power spectrum can be expressed using
the Fourier transform of the spike-triggered rate, m̃(f ):

S(f ) = r0{1 + 2Re[m̃(f )]}. (10)

To calculate m̃(f ), we modify the master equation Eqs. (5)
and (6):

∂tP+(v,t) = −∂v[(μ − v + σ )P+(v,t)]

− k+P+(v,t) + k−P−(v,t)

+ m(t − τref)P+|+(τref)δ(v − vR)

− m(t)δ(v − vT )

+ δ(t − τref)P+|+(τref)δ(v − vR), (11)

∂tP−(v,t) = −∂v[(μ − v − σ )P−(v,t)]

+ k+P+(v,t) − k−P−(v,t)

+ m(t − τref)P−|+(τref)δ(v − vR)

+ δ(t − τref)P−|+(τref)δ(v − vR), (12)

with the boundary conditions P+(v+
T ,t) = 0,P−(v+

T ,t) = 0
and, if μ − σ > vR , also P+(v−

R ,t) = 0,P−(v−
R ,t) = 0. Fur-

ther, the initial condition is P+(v,τ−
ref) = P−(v,τ−

ref) = 0 (there
is no probability immediately before the refractory period that
follows the reference spike has passed). These boundary and
initial conditions completely determine the spike-triggered
rate m(t).

In Eq. (11), the source and sink terms m(t −
τref)P+|+(τref)δ(v − vR) − m(t)δ(v − vT ) implement the fire-
and-reset rule [trajectories cross the threshold at a rate m(t)
and get inserted at vR after the refractory period τref has
passed]. The term δ(t − τref)P+|+(τref), together with the initial
condition, accounts for the fact that the neuron has fired
at t = 0, so that after the refractory period all probability
starts at vR [a fraction P+|+(τref) in the plus state]. Equivalent
considerations apply to Eq. (12).

The system of two first-order partial differential equa-
tions for the probability density can be transformed to an
ordinary, second-order differential equation for the

Fourier transform of the probability flux, J̃ (v,f ) =∫ ∞
−∞ dt e2πif tJ (v,t), where J (v,t) = J+(v,t) + J−(v,t) =

(v − μ + σ )P+(v,t) + (v − μ − σ )P−(v,t). After some sim-
plifying steps, it reads

0 = J̃ ′′(z) + p(z)J̃ ′(z) + q(z)J̃ (z)

−
(
p(z) + 2πif

1 − z

)
2σ	̃+(z) −

(
p(z) − 2πif

z

)
2σ	̃−(z)

− 2σ [	̃′
+(z) + 	̃′

−(z)], (13)

with the boundary conditions J (z+
T ) = 0,J ′(z+

T ) = 0;
J (min[z−

R,0]) = 0,J ′(min[z−
R,0]) = 0. Here, we have omitted

the f argument for the sake of readability, have made the
change of variables

z := v − μ + σ

2σ
, (14)

and used the abbreviations

p(z) = −z(2 − k+ − k− + 4πif ) + (1 − k− + 2πif )

z(1 − z)
,

(15)

q(z) = −2πif (1 − k+ − k− + 2πif )

z(1 − z)
, (16)

	̃+(z) = m̃(f )
1

2σ
[e2πif τref P+|+(τref)δ(z − zR) − δ(z − zT )]

+ 1

2σ
e2πif τref P+|+(τref)δ(z − zR), (17)

	̃−(z) = m̃(f )
1

2σ
e2πif τref P−|+(τref)δ(z − zR)

+ 1

2σ
e2πif τref P−|+(τref)δ(z − zR). (18)

The homogeneous part of Eq. (13) can be identified with the
hypergeometric differential equation [32], for which solutions
are known. By constructing a solution to the inhomogeneous
ODE that fulfills the boundary conditions, we show in
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Appendix A that

0=
∫ ∞

−∞
du [(k− − 2πif )	̃+(u)F(u,f ) + k−	̃−(u)G(u,f )], (19)

for general inhomogeneities 	̃±(u), provided that they vanish outside [min(zR,0),zT ]. Here, F(u,f ) and G(u,f ) are given in
terms of hypergeometric functions [33]:

F(z,f ) := 2F1(−iω,k+ + k− − iω; k− − iω; z), (20)

G(z,f ) := 2F1(−iω,k+ + k− − iω; 1 + k− − iω; z), (21)

where ω = 2πf . Equation (19) can then be solved for the spike-triggered rate, which is contained in 	̃±(u). Owing to the delta
functions in the inhomogeneities, the integration in Eq. (19) is straightforward to carry out. For the power spectrum, one obtains,
via Eq. (10),

S(f ) = r0

|e−2πif τrefF(zT ,f )|2 − ∣∣P+|+(τref)F(zR,f ) + k−
k−−2πif

P−|+(τref)G(zR,f )
∣∣2∣∣e−2πif τrefF(zT ,f ) − P+|+(τref)F(zR,f ) − k−

k−−2πif
P−|+(τref)G(zR,f )

∣∣2 . (22)

This is the first central result of this work.
For the special case of a vanishing refractory period, τref = 0, Eq. (22) takes a particularly compact form

S(f ) = r0
|F(zT ,f )|2 − |F(zR,f )|2
|F(zT ,f ) − F(zR,f )|2 . (23)

which resembles the form of the expression for the power spectrum of LIF neurons driven by Gaussian white noise [17].
In Fig. 2, we plot the power spectrum and compare it to simulations. It is apparent that the theory is in excellent agreement with

simulation results. The most striking feature of the power spectrum, especially for slow switching of the noise, is an undamped
oscillation. This is in stark contrast to what one usually expects from spike train power spectra [34,35], which saturate at the
firing rate r0. This periodicity in the spectrum, which has been previously observed in the PIF model [25], can also be seen
explicitly in the analytics by taking Eq. (22) to its high-frequency limit:

S(f � 1) = r0

1 − P 2
+|+(τref)e−2k+(T +

d −τref )

1 + P 2
+|+(τref)e−2k+(T +

d −τref ) − 2P+|+(τref)e−k+(T +
d −τref ) cos(2πf T +

d )
, (24)

where T +
d is the (deterministic) time from reset to threshold in

the plus state:

T +
d = ln

(
μ+ σ − vR

μ+ σ − vT

)
+ τref = ln

(
1 − zR

1 − zT

)
+ τref . (25)
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FIG. 2. Power spectra for two different combinations of noise
switching rates. (a) Slow switching, k+ = 1,k− = 2. (b) Fast switch-
ing, k+ = 10,k− = 20. Shown are simulation results (light blue
symbols), compared to the exact theoretical expression [Eq. (22),
dark blue solid lines] and the high-frequency limit [Eq. (24),
red dash-dotted line]. Remaining parameters: μ = 0.8,τref = 0.1,

σ = 2.4,vR = 0,vT = 1, ε = 0.

Taking the Gaussian white-noise limit [36] σ = √
2Dk,k :=

k+ = k− → ∞ (where D is the noise intensity of the resulting

process) in Eq. (24) yields S(f � 1)
k→∞−−−→ r0, which is the

known high-frequency behavior for the Gaussian white-noise
case.

Introducing a modified switching rate,

k̂+ := k+

(
1 − τref

T +
d

)
− ln[P+|+(τref)]

T +
d

, (26)

Eq. (24) can be written compactly as

S(f � 1) = r0
sinh(̂k+T +

d )

cosh(̂k+T +
d ) − cos(2πf T +

d )
. (27)

The high-frequency limit is also shown in Fig. 2. For slow
switching, it is indistinguishable (within line thickness) from
the exact theory over most of the shown frequency range and
only deviates from it for small frequencies.

To understand in a more quantitative way how the ongoing
oscillation in the power spectrum arises, consider the structure
of the spike-triggered rate. There is a certain probability that
after a neuron has fired the noise does not switch but remains in
the plus state long enough for the neuron to cross the threshold
again. Due to the absence of further stochasticity within the two
states, this means that a nonvanishing fraction of trajectories
that have been reset at τ = 0 crosses the threshold again exactly
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FIG. 3. δ peaks in the spike-triggered rate cause the periodic
structure of the power spectrum. (a) Estimate of the spike-triggered
rate m(τ ) from an ensemble of 50 voltage trajectories with different
noise realizations that all start in a refractory state at τ = 0. (b)
Corresponding voltage traces. The line thickness is proportional to the
number of overlapping trajectories. The estimate for m(τ ) is obtained
by binning threshold crossings (bin width 	t = 0.02). The green
dotted line marks the weight of the δ peak contributions to m(τ ), given
by exp[−k̂+τ ] [Eq. (26)]. (c) Sδ(f ), the part of the power spectrum
that is due to δ peaks in the spike-triggered rate [red dashed line,
Eq. (31)], compared to the full expression [blue solid line, Eq. (22)].
Also shown are the Lorentzians that are superposed to obtain Sδ(f )
(gray lines). The length of the arrow, which marks the full width
at half maximum, is k̂+/π . Parameters: k+ = 1,k− = 2,μ = 0.8,

τref = 0.1,σ = 2.4,vR = 0,vT = 1, ε = 0.

at τ = T +
d [see Fig. 3(b)]. In the spike-triggered rate, these

trajectories become manifest as a δ peak at the deterministic
time from reset to threshold, T +

d [Fig. 3(a)]. Of course, albeit
smaller, there is also a nonvanishing probability that the noise
stays in the plus state until these trajectories hit the threshold
a second time at τ = 2T +

d , and so on. The spike-triggered
rate can thus be split into a part containing δ functions and a
continuous part:

m(τ ) = mδ(τ ) + mcont(τ ). (28)

The fraction of trajectories contributing to the first δ peak
in m(τ ) is determined as follows: After the reference spike, all
trajectories are clamped at vR during the refractory period τref .
During this time, the noise may switch, provided it switches
often enough to end up in the plus state after τref . The fraction
of trajectories for which the noise then remains in the plus
state between τref and T +

d is given by exp[−k+(T +
d − τref)].

One thus has

mδ(τ ) =
∞∑

n=1

(P+|+(τref)e
−k+(T +

d −τref ))nδ(τ − nT +
d ), (29)

or

mδ(τ ) = θ (τ )e−k̂+τ
[
IIIT +

d
(τ ) − δ(τ )

]
, (30)

where IIIT +
d

(τ ) := ∑∞
n=−∞ δ(τ − nT +

d ) is a Dirac comb and

k̂+ is given by Eq. (26). As the Fourier transform of a Dirac
comb is again a Dirac comb and multiplication in the time
domain turns into convolution in the Fourier domain, one
obtains for the part of the power spectrum that is due to

the mδ(τ )

Sδ(f ) = r0

{
1 + 2Re

[
1

k̂+ − 2πif
∗

(
1

T +
d

III1/T +
d

(f ) − 1

)]}

= r0

T +
d

∞∑
n=−∞

2̂k+
k̂2+ + (

2π
[
f − n

T +
d

])2 , (31)

where ∗ denotes convolution. This is a superposition of
Lorentzians positioned at multiples of 1/T +

d in frequency
space, the full width at half maximum of which is given by
k̂+/π . Although, at first glance Eq. (31) looks quite different
from the high-frequency limit Eq. (24) (unsurprisingly, given
how they were derived), the two expressions are equivalent
(see Appendix B).

In Fig. 3(c), we compare Sδ(f ) to the full power spectrum
Eq. (22). At higher frequencies, the agreement is excellent,
meaning that there the spectrum is dominated by the δ

contributions.
Note that the results regarding Sδ(f ) were derived without

using assumptions specific to the LIF neuron model. One can
thus conclude that the spike train spectra of all dichotomous-
noise-driven neurons exhibit a periodic structure given by
Eq. (31) (the specific model only enters via r0 and T +

d ), as long
as the dichotomous noise is the only source of stochasticity and
the parameter regime is such that firing occurs only in the plus
state and is regular.

IV. SUSCEPTIBILITY

How does a weak time-dependent stimulus modulate the
instantaneous firing rate of a neuron? This question can be
approached using linear-response theory, i.e., assuming that
the stimulus is sufficiently weak that its effect on the rate can
be described by convolution with a kernel K(τ ):

r(t) ≈ r0 + ε

∫ ∞

−∞
dτ K(τ )s(t − τ ). (32)

In the following, we calculate the susceptibility χ (f ), the
Fourier transform of the linear-response kernel K(τ ), for a
current stimulus [for signals that enter in a different way, e.g.,
as a modulation in the switching rate, χ (f ) can be calculated
in a similar manner; see Ref. [30]]. In linear response, it is
sufficient to consider the response to a periodic stimulus, as is
evident by plugging s(t) = exp(−2πif t) into Eq. (32), which
yields

r(t) = r0 + χ (f )εe−2πif t . (33)

The ansatz Eq. (33), together with the assumption of a
cyclostationary solution,

P±(v,t) = P±,0(v) + εe−2πif tP±,1(v,f ) + O(ε2), (34)

can be plugged into the master equation, Eqs. (5) and (6).
Keeping only the terms linear in ε, this yields a tractable
problem. As shown in Appendix C, one obtains equations of
the same form as for the power spectrum; in particular, χ (f ) is
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extracted from Eq. (19), using only different inhomogeneities:

	̃+(z) = χ (f )

2σ
[e2πif τref P+|+(τref)δ(x − vR) − δ(x − vT )] − 1

4σ 2

r0

2πif − 1
[P+|+(τref)δ

′(x − vR) − δ′(x − vT )], (35)

	̃−(z) = χ (f )

2σ
e2πif τref P−|+(τref)δ(x − vR) − 1

4σ 2

r0

2πif − 1
P−|+(τref)δ

′(x − vR). (36)

We obtain

χ (f ) = − r0

2σ

1

2πif − 1

F ′(zT ,f ) − P+|+(τref)F ′(zR,f ) − k−P−|+(τref )
k−−2πif

G ′(zR,f )

F(zT ,f ) − e2πif τref
[
P+|+(τref)F(zR,f ) + k−P−|+(τref )

k−−2πif
G(zR,f )

] , (37)

where F ′(z̄,f ) = ∂zF(z,f )|z̄ and G ′(z,f ) = ∂zG(z,f )|z̄ (see
Appendix C). This is the second central result of this work.

For vanishing refractory period, Eq. (37) can again be
written more compactly:

χ (f ) = − r0

2σ

1

2πif − 1

F ′(zT ,f ) − F ′(zR,f )

F(zT ,f ) − F(zR,f )
. (38)

This expression is of the same form as that for the susceptibility
of an LIF driven by white noise as given in Ref. [9].

In Fig. 4, we compare absolute value and phase of the
exact theory, Eq. (37), to simulations (each symbol quantifies

0.5

1

|χ
|

simulations
theory

high freq. theory

-0.5

0

0.5

ar
g(

χ)

10 15 20
0.5

0.6

0

1

2

|χ
|

0 10 20
f

-1

0

1

ar
g(

χ)

0 10 20
f

10 15 20
0.4

0.5
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FIG. 4. Susceptibility of an LIF neuron driven by dichotomous
noise. Shown are the absolute value and the complex phase for
two different switching rate combinations, once without refractory
period and once for τref = 0.1. (a) τref = 0,k+ = 1,k− = 2. (b)
τref = 0,k+ = 10,k− = 20. (c) τref = 0.1,k+ = 1,k− = 2. (d) τref =
0.1,k+ = 10,k− = 20. The insets in (b) and (d) show a zoomed
version of the same curves at higher frequencies. Each symbol
represents the result of the simulation of an LIF stimulated
with a sinusoidal signal at that frequency. Remaining parameters:
μ = 0.8,σ = 2.4,vR = 0,vT = 1, ε = 0.

the response of an LIF neuron stimulated with a sinusoid
at the indicated frequency). The theory matches simulations
perfectly within line thickness, indicating that the linear-
response assumption is fulfilled for the chosen signal strength
ε = 0.2. Like the power spectrum, the susceptibility displays
an undamped periodic structure that is more prominent for
low switching rates [Figs. 4(a) and 4(c)]. For τref = 0, the
period of this peaked structure is again given by the inverse
time from reset to threshold in the plus state [Fig. 4(a)].
Interestingly, with a nonvanishing refractory period τref > 0,
these peaks become modulated by a second oscillation with
period 1/τref [Fig. 4(c)]. This is also apparent by looking at
the high-frequency limit of Eq. (38):

χ (f � 1) = r0

2σ

1 − P+|+(τref)e−(k++1)(T +
d −τref )e2πif (T +

d −τref )

(1 − zT )(1 − P+|+(τref)e−k+(T +
d − τref )e2πif T +

d )
,

(39)

which is also shown in Fig. 4 as the red dashed line. For
a nonvanishing refractory period, the two oscillatory terms
in Eq. (39), e2πif (T +

d −τref ) and e2πif T +
d , differ slightly in their

frequencies, leading to a beating at frequency τref . The
periodic structure, along with the beating, is also apparent
for higher switching rates, although less pronounced [insets
in Figs. 4(b) and 4(d)]. Here, it is particularly noticeable that
the susceptibility does not decay to zero (with a nonvanishing
phase) in the limit of high frequencies, as it would for integrate-
and-fire neurons driven by Gaussian white noise, but instead
oscillates weakly around a finite real value. This means that
the neuron can respond to signals of arbitrarily high frequency,
a result that has been also attained for LIF neurons driven
by a different kind of colored noise (an Ornstein-Uhlenbeck
process) [9,12].

V. SPECTRUM AND SUSCEPTIBILITY UNDER
BROADBAND STIMULATION

The linear-response ansatz, Eq. (32), is in principle valid for
arbitrary stimuli, as long as they are weak. In theoretical and
experimental studies [37], broadband stimuli, such as band-
limited Gaussian noise with a flat spectrum, have often been
used, as they allow one to probe the susceptibility at different
frequencies simultaneously. As we have argued, the features
of power spectrum and susceptibility of neurons driven by a
slowly switching dichotomous noise arise mainly because of
the absence of further stochasticity within the two noise states.
A broadband stimulus acts as an additional noise source, and
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FIG. 5. Power spectrum and susceptibility with a broadband stimulus. Shown are simulations for the power spectrum S(f ) (orange
lines) and susceptibility χ (f ) (blue lines), compared to the theory without broadband stimulus, Eqs. (22) and (37) (black lines).
Because the focus here is on the simulations with a broadband signal, we keep the lines depicting the theory in the background.
We plot these quantities for two combinations of switching rates [slow switching, k+ = 1,k− = 2, in (a, c, d), and fast switching,
k+ = 10,k− = 20, in (b, d, e)] and three different values of the stimulus intensity Ds = ε2/(4fc), where fc = 100 is the cutoff frequency:
(a, b) Ds = 2.5 × 10−5 (ε = 0.1), (c, d) Ds = 4 × 10−4 (ε = 0.4), (e, f) Ds = 1.225 × 10−3 (ε = 0.7). Remaining parameters: μ = 0.8,

σ = 2.4,vR = 0,vT = 1.

one can thus expect it to have a qualitative effect on these
features.

In Fig. 5, we plot the power spectrum and the absolute
value of the susceptibility for two switching-rate combinations
and three different intensities of a Gaussian stimulus with a
flat spectrum of height Ss = 1/(2fc), where fc = 100 is the
cutoff frequency. The intensity of the signal is then given by
Ds = ε2Ss/2. In simulations, we use a time step 	t = 0.005,
which means that the stimulus is effectively white (the cutoff
frequency corresponds to the Nyquist frequency).

In line with our reasoning above and with previous results
for the power spectrum of DMP-driven PIF neurons [25],
additional noise (here the broadband signal) can be seen to
abolish the undamped periodicity in spectrum and susceptibil-
ity. For small signal strength, this is hardly noticeable up to
frequencies that would be considered high in neurophysiology
(note that, assuming a membrane time constant τm = 20 ms,
the dimensionless frequency f = 20 corresponds to 1000 Hz).
With increasing signal strength, the range where our expres-
sions match the simulation is shifted to smaller frequencies.
It is interesting to note that the broadband signal does not
affect spectrum and susceptibility at all frequencies; instead,

there seems to be a cutoff frequency, depending on the signal
strength, below which the additional noise has no effect.

The influence of a broadband stimulus is more noticeable
for slow switching; for faster switching, the periodicity is less
prominent in the first place. In particular for the susceptibility
with fast switching, the periodicity is hardly visible and there
are no qualitative differences between the different noise
intensities, except for the better statistics that a stronger signal
brings along.

VI. CONCLUDING REMARKS

We have studied leaky integrate-and-fire neurons driven
by an asymmetric dichotomous noise. For this particular kind
of colored noise, we were able to derive exact expressions
for the spontaneous power spectrum and the susceptibility
to an additive signal. We have verified our expressions by
comparison to numerical simulations.

A prominent difference to the classical results for LIF
neurons driven by Gaussian white noise [9,10,17] is the
periodic structure that both the power spectrum and the
susceptibility exhibit at high frequencies. For the power
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spectrum, we have explained how this structure arises through
delta peaks in the spike-triggered rate. These stem from the
fact that there is a finite probability that an ISI has a certain
length (the deterministic time from reset to threshold in the
plus state). They are thus a manifestation of the discrete nature
of the dichotomous noise. As we have shown, this periodic
structure of the spectrum is independent of the chosen neuron
model. The susceptibility shows a similar periodic structure.
However, here, we lack an intuitive explanation like we found
for the power spectrum.

Other differences between the DMP-driven and the Gaus-
sian white noise case can be traced to the fact that the noise is
colored: In contrast to LIF neurons driven by Gaussian white
noise, for which the susceptibility decays to zero at a finite
phase lag for increasing frequency [9,10], here it oscillates
around a finite value at zero phase lag. This indicates that the
system can respond to arbitrarily fast signals, a feature that has
also been observed for LIF neurons driven by exponentially
correlated Gaussian noise [9] (for an in-depth discussion for
more general IF models, see Ref. [13]).

Especially when the noise switching is slow, the spec-
tral measures are dominated by the periodic structure. By
numerical simulations we demonstrated that this feature is
robust in a certain sense against small additional fluctuations.
Although a very weak broadband Gaussian stimulus leads to a
nonpathological behavior of the spectral measures, oscillatory
features are still present in a wide frequency band. Specifically,
although the power spectrum of the spike train becomes flat and
the susceptibility decays in the limit f → ∞, both functions
still oscillate up to considerably high frequency. Remarkably,
the effective cutoff frequency is set by the noise level.

Our results are applicable to situations where nerve cells are
stimulated with a two-state input, such as a stimulus originating
in a bursting neuron or input from a population of neurons that
undergo up/down transitions. A further, nonobvious applica-
tion is the shot-noise limit of the Markovian dichotomous
noise, which allows us to obtain expressions for an LIF
neurons driven by white, excitatory Poisson input (a special
case of the setup treated in Ref. [11]). This will be pursued
elsewhere.

ACKNOWLEDGMENTS

This work was funded by the Bundesministerium für
Bildung und Forschung (FKZ:01GQ1001A), the Deutsche
Forschungsgemeinschaft research training group GRK1589/1,
and a Deutsche Forschungsgemeinschaft research grant (LI
1046/2-1).

APPENDIX A

Around z = 0 (i.e., the stable fixed point of the minus
dynamics, where v = μ − σ ), linearly independent solutions
to the hypergeometric equation [the homogeneous part of
Eq. (13)] are given by

J̃1(z) = 2F1(iω,1 − k+ − k− + iω,1 − k− + iω,z), (A1)

J̃2(z) = zk−−iω
2F1(k−,1 − k+; 1 + k− − iω; z), (A2)

where ω = 2πf and 2F1(a,b; c,z) is the hypergeometric
function [33]. In the following, we solve the inhomogeneous
ODE

J̃ ′′(z) + p(z)J̃ ′(z) + q(z)J̃ (z) = 	̃(z), (A3)

where

	̃(z) = 2σ

[(
p(z) + 2πif

1 − z

)
	̃+(z)

+
(

p(z) − 2πif

z

)
	̃−(z) + 	̃′

+(z) + 	̃′
−(z)

]
.

(A4)

The 	̃±(u) are given by Eqs. (17) and (18). However, in the
following we are only going to use the fact that they vanish
outside of the interval [min(0,zR),zT ]. Given the two linearly
independent solutions to the homogeneous ODE, a particular
solution to Eq. (A3) is known [32]:

J̃p(z) =
∫ zc

z

du 	̃(u)
J̃2(u)J̃1(z) − J̃1(u)J̃2(z)

W (u)
, (A5)

where W (z) is the Wronskian,

W (z) = J̃1(z)J̃ ′
2(z) − J̃ ′

1(z)J̃2(z), (A6)

and the upper integration limit zc can still be freely chosen.
The general solution is then given by

J̃ (z) = c1J̃1(z) + c2J̃2(z) + J̃p(z). (A7)

In order to fix the integration constants in Eq. (A7), one
needs to distinguish two possible parameter regimes: If μ −
σ < vR , corresponding to zR > 0, the fixed point in the minus
dynamics, v = μ − σ (corresponding to the singular point at
z = 0 in the hypergeometric differential equation), lies on the
lower boundary (no trajectories can move to more negative
values). In contrast, for μ − σ > vR , corresponding to zR < 0,
it lies within the interval of interest.

In the first case, the integration constants in Eq. (A7)
can be fixed over the whole interval [0,zT ] by imposing
the boundary conditions at the threshold, J (z+

T ) = 0 and
J ′(z+

T ) = 0. Because 	̃±(z > zT ) = 0, both can be fulfilled
by setting c1 = c2 = 0 and zc = ∞ (equivalent to zc = z+

T , as
the integrand vanishes for all z > zT ). Thus, for zR > 0, one
has

J̃ (z) =
∫ ∞

z

du 	̃(u)
J̃2(u)J̃1(z) − J̃1(u)J̃2(z)

W (u)
. (A8)

At z = 0, the lower boundary of the possible dynamics, the
flux needs to vanish, leading to the condition

0 =
∫ ∞

0
du 	̃(u)

J̃2(u)J̃1(0) − J̃1(u)J̃2(0)

W (u)

=
∫ ∞

−∞
du 	̃(u)

J̃2(u)

W (u)
, (A9)

where we have extended the interval of integration from [0,∞]
to [−∞,∞] (the integrand vanishes for z < 0) and used the
fact that J̃1(0) = 1,J̃2(0) = 0 [33].

In the second case, zR < 0, the fixed point in the minus
dynamics lies within the interval in which we want to obtain a
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solution for J̃ (z). As pointed out previously [21], one cannot
expect the same solution to be valid on both sides of such
a point. In particular, for the LIF neuron, this means that
the integration constants need to be chosen separately in the
intervals [zR,0] and [0,zT ]: Above the fixed point, they need
to satisfy the boundary conditions at the threshold; below it,
they need to satify those at the reset voltage (for details, see
Refs. [24,30]). The boundary conditions at the rest are satisfied
by setting zc = −∞ (or any value �z−

R ). One thus has

J̃ (z) =
{∫ −∞

z
du 	̃(u) J̃2(u)J̃1(z)−J̃1(u)J̃2(z)

W (u) zR < z � 0∫ ∞
z

du 	̃(u) J̃2(u)J̃1(z)−J̃1(u)J̃2(z)
W (u) 0 < z < zT

.

(A10)

The condition that the flux needs to be continuous at the fixed
point implies that∫ −∞

0
du 	̃(u)

J̃2(u)

W (u)
=

∫ ∞

0
du 	̃(u)

J̃2(u)

W (u)
, (A11)

which is equivalent to the condition that was obtained for the
other case, 0 < zR [Eq. (A9)]. We can thus solve Eq. (A9)
for the spike-triggered rate in both parameter regimes. In the
following, we simplify it to obtain the form given in Eq. (19).

We write

0 =
∫ ∞

−∞
du

[(
p(u) + 2πif

1 − u

)
	̃+(u) (A12)

+
(

p(u) − 2πif

u

)
	̃−(u) (A13)

+ 	̃′
+(u) + 	̃′

−(u)

]
J̃2(z)

W (z)
. (A14)

Noting that

W ′(z) = J̃1(z)[−p(z)J̃ ′
2(z) − q(z)J̃2(z)]

− [−p(z)J̃ ′
1(z) − q(z)J̃1(z)]J̃2(z) (A15)

= −p(z)W (z), (A16)

the Wronskian can be written as

W (z) = cWe− ∫ z
dw p(w)

= cW (1 − z)k+−1−2πif zk−−1−2πif , (A17)

where cW is a constant that will drop out. Further,

∂

∂z

[
J̃2(z)

W (z)

]
= J̃ ′

2(z) + p(z)J̃2(z)

W (z)
. (A18)

Integrating by parts and exploiting that 	̃±(z) vanishes at the boundaries yields

0 =
∫ ∞

−∞
du

	̃+(u)

W (u)

(
2πif

1 − u
J̃2(u) − J̃ ′

2(u)

)
− 	̃−(u)

W (u)

(
2πif

u
J̃2(u) + J̃ ′

2(u)

)
. (A19)

This can be further simplified using known properties of hypergeometric functions. Using 15.2.4 in Ref. [33],

J̃ ′
2(z) = [zk−−2πif · 2F1(k−,1 − k+; 1 + k− − 2πif ; z)]′

= (k− − 2πif ) · zk−−2πif −1 · 2F1(k−,1 − k+; k− − 2πif ; z), (A20)

and thus, via 15.2.25 in Ref. [33],

2πif

1 − z
J̃2(z) − J̃ ′

2(z) = −zk−−2πif −1(1 − z)−1(k− − 2πif ) · 2F1(k−, − k+; k− − 2πif ; z), (A21)

and (15.2.17 in Ref. [33])

2πif

z
J̃2(z) + J̃ ′

2(z) = zk−−2πif −1k− · 2F1(1 +k−,1− k+; 1− k− − 2πif ; z). (A22)

Plugging in Eq. (A17) for the Wronskian and using 15.3.3 in Ref. [33], one finds

1

W (z)

(
2πif

1 − z
J̃2(z) − J̃ ′

2(z)

)
(A23)

= −c−1
W (k− − 2πif ) · 2F1(−2πif,k+ + k− − 2πif ; k− − 2πif ; z) (A24)

= −c−1
W (k− − 2πif )F(z,f ), (A25)

and

1

W (z)

(
2πif

z
J̃2(z) + J̃ ′

2(z)

)
(A26)

= c−1
W k− · 2F1(−2πif,k+ + k− − 2πif ; 1 + k− − 2πif ; z) (A27)

= c−1
W k−G(z,f ), (A28)

and thus arrives at the expression given in Eq. (19).

012411-9



FELIX DROSTE AND BENJAMIN LINDNER PHYSICAL REVIEW E 95, 012411 (2017)

APPENDIX B

Here, we show the equivalence of Eqs. (24) and (31). We
start from Eq. (31). Introducing the abbreviations

a := k̂+T +
d

2π
, b := f T +

d , (B1)

it takes the form

Sδ(f ) = r0

T +
d

∞∑
n=−∞

2̂k+
k̂2+ + (

2π
[
f − n

T +
d

])2 (B2)

= r0

2π

∞∑
n=−∞

2a

a2 + (b − n)2
(B3)

= r0

2π

[
2a

a2 + b2
+

∞∑
n=1

1

a + i(b − n)
+ 1

a + i(b + n)

+ 1

a − i(b − n)
+ 1

a + i(b + n)

]
(B4)

= r0

2π

[
2a

a2 + b2
+

∞∑
n=1

2(a + ib)

(a + ib)2 + n2

+ 2(a − ib)

(a − ib)2 + n2

]
. (B5)

Using 1.421.3 in Ref. [38],

coth (πx) = 1

πx
+ 2x

π

∞∑
n=1

1

x2 + n2
, (B6)

we have

Sδ(f ) = r0

2
{coth (π [a + ib]) + coth (π [a − ib])}. (B7)

Using coth x = (exp[x] + exp[−x])/(exp[x] − exp[−x]) and
reinserting a and b, it is straightforward to show that this yields

Sδ(f ) = r0
sinh(̂k+T +

d )

cosh(̂k+T +
d ) − cos(2πf T +

d )

= S(f � 1), (B8)

i.e., the compact expression for the high-frequency limit,
Eq. (27).

APPENDIX C

It is convenient to transform the dynamics Eq. (1) by using

x := v + ε
1

2πif − 1
e−2πif t . (C1)

This yields a system without additive signal,

ẋ = μ − x + η(t), (C2)

at the cost of introducing time-dependent reset and threshold
values:

xR(t) = vR + ε
1

2πif − 1
e−2πif t ,

xT (t) = vT + ε
1

2πif − 1
e−2πif t . (C3)

The new master equations read

∂tP+(x,t) = −∂x[(μ − x + σ )P+(x,t)] − k+P+(x,t) + k−P−(x,t) + r(t − τref)P+|+(τref)δ[x − xR(t)] − r(t)δ[x − xT (t)],

(C4)

∂tP−(x,t) = − ∂x[(μ − x − σ )P−(x,t)] + k+P+(x,t) − k−P−(x,t) + r(t − τref)P−|+(τref)δ[x − xR(t)], (C5)

with the same trivial boundary conditions as above. Plugging in Eqs. (33) and (34), Taylor expanding the δ functions for small
ε, and keeping only the linear order in ε yields

−2πif P+,1(x) = − ∂x[(μ − x + σ )P+,1(x)] − k+P+,1(x) + k−P−,1(x) + χ (f )[e2πif τref P+|+(τref)δ(x − vR) − δ(x − vT )]

− r0

2πif − 1
[P+|+(τref)δ

′(x − vR) − δ′(x − vT )], (C6)

−2πif P−,1(x) = − ∂x[(μ − x − σ )P−,1(x)] + k+P+,1(x) − k−P−,1(x) + χ (f )e2πif τref P−|+(τref)δ(x − vR)

− r0

2πif − 1
P−|+(τref)δ

′(x − vR). (C7)

This has the same structure as the Fourier-transformed version of Eqs. (11) and (12). The correction to the flux, J1(x), with

J (x,t) = J0(x) + εe−2πif tJ1(x), (C8)

then follows the ODE Eq. (13), if the inhomogeneities 	̃±(x) are appropriately chosen, and Eq. (19) can be used to extract χ (f ).
The derivatives of F(z,f ) and G(z,f ), which appear when integrating by parts, are given by [33]

F ′(z,f ) = −2πif (k+ + k− − 2πif )

k− − 2πif
2F1(1 − 2πif,1 + k+ + k− − 2πif ; 1 + k− − 2πif ; z), (C9)

G ′(z,f ) = −2πif (k+ + k− − 2πif )

1 + k− − 2πif
2F1(1 − 2πif,1 + k+ + k− − 2πif ; 2 + k− − 2πif ; z). (C10)
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