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An Active Oscillator Model Describes the Statistics of Spontaneous
Otoacoustic Emissions
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ABSTRACT Even in the absence of external stimulation, the cochleas of most humans emit very faint sounds below the
threshold of hearing, sounds that are known as spontaneous otoacoustic emissions. They are a signature of the active
amplification mechanism in the cochlea. Emissions occur at frequencies that are unique for an individual and change little
over time. The statistics of a population of ears exhibit characteristic features such as a preferred relative frequency distance
between emissions (interemission intervals). We propose a simplified cochlea model comprising an array of active nonlinear
oscillators coupled both hydrodynamically and viscoelastically. The oscillators are subject to a weak spatial disorder that lends
individuality to the simulated cochlea. Our model captures basic statistical features of the emissions: distributions of 1), emission
frequencies; 2), number of emissions per ear; and 3), interemission intervals. In addition, the model reproduces systematic
changes of the interemission intervals with frequency. We show that the mechanism for the preferred interemission interval

in our model is the occurrence of synchronized clusters of oscillators.

INTRODUCTION

The sense of hearing exhibits several striking features. Our
ears are sensitive to faint sounds, but can also process
stimuli differing in power by 12 orders of magnitude, and
distinguish nearby frequencies well. These attributes,
namely a high sensitivity, a wide dynamic range, and a sharp
frequency selectivity, are associated with an active nonlinear
amplification process (1,2), which is physiologically vulner-
able and relies on the integrity of the inner ear. This cochlear
amplifier is acting on the level of mechanical vibrations
before neural processing takes place. The general attributes
of the cochlear amplifier are those of a dynamical system
close to an oscillating instability or Hopf bifurcation. It
has therefore been suggested that the cochlea contains
many oscillatory elements tuned to the proximity of a
Hopf bifurcation (2—4).

A remarkable consequence of the amplification mecha-
nism is that the ear can actively emit sounds without
external stimulation. These so-called spontaneous otoacous-
tic emissions (SOAEs), which can be detected as pressure
variations in the ear canal, were predicted theoretically by
Gold in 1948 (5) and found experimentally for the first
time by Kemp in 1979 (6). SOAEs have been reported in
many vertebrate species including lizards (7-9), birds
(10), and mammals (11,12). SOAEs are prevalent among
humans with healthy ears and have been studied both
experimentally and theoretically (13-16). An extensive
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experimental study of human SOAEs (152 ears) (14) re-
vealed a large variability of emission spectra of individual
ears, while the statistics of emissions exhibited a number
of remarkable features. Fig. 1 A and B show two examples
of typical spectra found in experiments. Emission fre-
quencies ranged from 500 Hz to 8 kHz and the distribution
of the number of emissions per ear is a monotonically
decreasing function. Interestingly, neighboring emissions
exhibit a most probable frequency difference of about 1
semitone. The existence of such a characteristic interemis-
sion interval was already pointed out earlier (16,17). In
addition, SOAEs with characteristic interemission intervals
have also been observed in other vertebrates such as lizards,
although their inner ear anatomy is strikingly different from
mammals (18). In particular, the basilar membranes of liz-
ards lack traveling waves (19).

The origin of SOAE:s is still unclear and different mech-
anisms for their generation have been suggested. Shera (13)
and Shera and Zweig (20) proposed that SOAEs are collec-
tive wavelike excitations of the basilar membrane which
are selected by repeated reflections at the middle ear and
inhomogeneities along the cochlea. According to this view,
the corresponding modes extract particular frequencies from
the broadband fluctuations of the system and generate peaks
at those frequencies in the emission spectrum. The mode
structure of the cochlea then gives rise to characteristic
interemission intervals.

An alternative idea is that individual oscillatory elements
become unstable and generate emissions at a particular
frequency (5,21,22). This idea is more natural for verte-
brates without a cochlea such as lizards. At the first glance,
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in such a picture it is unclear how characteristic frequency
distances between emissions could arise. Motivated by the
lizard ear, Vilfan and Duke (21), however, have shown theo-
retically that many coupled oscillating elements can give
rise to characteristic interemission intervals (see Wit and
van Dijk (23) for a similar approach in the human cochlea).
In their model, dissipative and elastic coupling of active
Hopf oscillators leads to frequency clustering, resulting in
distinct emissions with characteristic interemission inter-
vals. The biological equivalent to the individual spontane-
ously oscillating element comprises a group of hair cells
and may involve, in particular, active hair bundle motility
(24) and in the mammalian cochlea also the interplay be-
tween hair bundle motility and electromotility (25).

Several models of cochlear mechanics have discussed the
generation of SOAEs. These works have considered irregu-
larities of the frequency profile (15) or of the active gain
(26-28) within active models of cochlear waves. Despite
these efforts, there is yet no model that can reproduce all
the main features of the SOAE frequency statistics observed
in humans, e.g., the probability distribution of emissions
with respect to frequency. In this article, we introduce
a one-dimensional cochlear model based on dynamical
oscillators that are coupled both hydrodynamically and via
elastic and dissipative elements such as the tectorial mem-
brane. The individuality of a cochlea is represented by a
random disorder of the bifurcation parameter of the Hopf
oscillators. This time-independent disorder leads to a spe-
cific spectrum with identifiable SOAEs. Two examples of
calculated spectra of the pressure variations, p,, in the ear
canal for individual realizations of the disorder are shown
in Fig. 1 C and D.

We obtain statistics of numerically determined SOAEs by
simulating a comparable number of realizations as cochleas
studied in the experiments. Our model can reproduce the
statistics of SOAEs observed in humans, such as the distri-
butions of emission number and frequency and of the inter-

Biophysical Journal 107(4) 815-824

emission interval. We show how specific parameters control
interesting statistical features of these distributions. For
example, the characteristic interemission interval is set
by the coupling strength between oscillators, whereas the
amplitude and correlation length of the irregularities
of the bifurcation parameter shape the distribution of
emission numbers.

THEORETICAL APPROACHES: MODELS
AND METHODS

Physical description of the noisy cochlea
with small irregularities

We extend a previously proposed model of coupled
nonlinear oscillators (29). We describe cochlear dynamics
in a simplified one-dimensional model, based on the geom-
etry sketched in Fig. 2. Two fluid-filled chambers are sepa-
rated by the cochlear partition, which includes the basilar
membrane (BM). The vertical displacement of this partition
is denoted by h(x,t). Force balance in the fluid and conserva-
tion of fluid volume imply (29-31)

2
T = 8. M

where p is the mass density of the fluid, ¢ is the chamber
height, and p is the fluid pressure difference between the
two chambers. We consider a set of noisy dynamic Hopf
oscillators, which are distributed along the BM. The ampli-
tude and phase of an oscillator at distance x from the base
is given by the complex function z(x.r) = h(x,t) + iu(x,t),
where the imaginary part u of z is a hidden state variable.
Note that in our model we choose the real part of z to corre-
spond to the vertical BM deflection . This is motivated
by the relation of our model to a mechanical oscillator
(21). Oscillators are coupled both hydrodynamically and
via longitudinal coupling mediated, for example, by the
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A oval window

basilar membrane

helicotrema

FIGURE 2 (A) Schematic representation of the one-dimensional
cochlear model of length L, breadth b, and height 2 ¢. The cochlea is sepa-
rated by the BM (dark shaded) in two fluid-filled chambers. The oval win-
dow is at position x = 0, the helicotrema at x = L. Vertical displacements of
the BM are denoted by A(x). The BM is represented by a chain of oscillators
(indicated by dots), which are coupled via hydrodynamic interactions
(waves) and elastic and dissipative coupling (springs). (B) Profile of the
characteristic frequency w(x) (dashed line) together with a typical profile
of irregularities e(x) along the cochlea (solid line). To see this figure in
color, go online.

tectorial membrane. The oscillators obey a generalized
complex Ginzburg-Landau equation

0,z = [e(x)+ iw(x)]z — ;8|Z\2Z +(k + iK’)aiz — ép + &(x,1).
@)

The characteristic frequency of oscillators w(x) = wpe ¢ is

position-dependent, approximating the tonotopic map of
the cochlea (32) (dashed line in Fig. 2 B). Here, wo denotes
the maximal frequency, d is the characteristic length, and (3
is the strength of the oscillator’s nonlinearity. Coupling of
oscillators is described by an elastic and a dissipative
coupling «” and «, respectively. In addition, hydrodynamics
(Eq. 1) leads to an effective coupling of oscillators because
the pressure difference p acts on the BM. This effect is char-
acterized by the coefficient «, where the imaginary unit i
implies an elastic response and aw(x) is the local static
BM stiffness. The dynamic noise £(x,¢) accounts for intrinsic
fluctuations of the oscillatory elements. We choose zero-
mean Gaussian noise with intensity D that is uncorrelated
in space and time:

(E(x,0)EW, 1)) = 2Dé(x — x)o(r — 7).

The spatially extended dynamics (Eq. 2) uses a generic
Hopf oscillator that describes any dynamical system in the
vicinity of a Hopf bifurcation (2,3). The state of the oscilla-
tors is governed by a bifurcation parameter €, which for
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e = 0 poises the isolated oscillators at a Hopf bifurcation.
We describe cochlear imperfections by static spatial varia-
tions e(x) of the bifurcation parameter. We thus assume
that each oscillator may be slightly offset from criticality,
either in the oscillating (henceforth referred to as active)
or nonoscillating regime. In our model, this irregularity is
described by a set of stochastic variables with a Gaussian
distribution and a simple exponential correlation in space.
This disorder lends individual time-independent characteris-
tics to a cochlea and is generated by a spatial version of an
Ornstein-Uhlenbeck process via the stochastic differential
equation
d

Aae(x) = —e(x) + n(x). 3)

Here, n(x) is a Gaussian stochastic variable with zero mean
and correlations (n(x)n(x')) = 26*A6(x — x'), where ¢ and A
are the standard deviation and the correlation length of &(x),
respectively. Each realization of a stochastic process &(x)
corresponds in our model to one realization of an individual
ear. Note that our model also includes the important case of
uncorrelated Gaussian perturbations (A = 0, ¢ > 0). Corre-
lations over a finite correlation length emerge in many sim-
ple physical systems. In this context, correlations of the
irregularities could also be a result of irregularities in the
developmental process that builds the cochlea. The contin-
uum description of Egs. 1-3 was introduced for conceptual
clarity and the ease of notation. In our numerical study, we
solve a discrete version of these equations for variables #4,,
U,, Pn, and g, at N + 1 discrete sites with positions x,, =
Axen,n=0,...,N,and Ax = L/N = 10~> m. The human co-
chlea is endowed with four parallel rows of 3500 hair cells
that run along the longitudinal axis of the organ (33).
Accordingly, we choose N = 3500, i.e., each oscillator cor-
responds to one element of the organ of Corti containing one
inner hair cell and 3-5 outer hair cells (34). Boundary con-
ditions for p, and z, at the base and at the apex complement
the model. For simplicity we do not constrain zo(#) and zx(?),
corresponding to open boundary conditions for z(x,f) at both
ends. Furthermore, the helicotrema connecting the fluid-
filled chambers at the apex for x = L implies pp(f) = 0.
The boundary condition for the pressure difference p,(f) at
the base stems from the force balance at the base inside in
the cochlea,

“

Ax Pdtjo

_ppPi0) = pol?) d o),
where b is the breadth of the basilar membrane and j is the
difference in fluid volume flow in the upper and lower cham-
ber at the base (29), which is related to deflections g(f) of
the oval window jy = 2S,w¢. Here, the dots denote the time
derivative, S,,, is the oval window area, and we have ne-
glected contributions from movements of 4y(¢). The bound-
ary condition for the pressure at the base therefore reads
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SowlAX .,
pi(t) —po(t) = —2pb—£xq- 5)

The acceleration g of the oval window is determined by the
mechanics of the middle ear, which we describe by a passive
oscillator with an effective mass m, damping constant v, and
eigenfrequency w,,, following Talmadge et al. (15):

mg + vG+ me’,q = TSypin(t) — Soupo(t).  (6)
The oval window is subject to the force S,,,po originating in
the cochlea and the force I'S,,p;, due to incoming sound
pressure p;,. Here, S, is the area of the tympanum and I"
is a dimensionless lever factor describing middle ear trans-
mission (15). If air pressure changes are adiabatic, the pres-
sure variation in the ear canal is given by (15)

’YairP Sty F

7 q(1), (7

pe(t) = pin(t)
where v, is the specific heat ratio of air, and P and Vare the
ambient pressure in and the volume of the ear canal, respec-
tively. To study spontaneous otoacoustic emissions, we set
the incoming sound pressure to zero, p;, = 0. Spontaneous
emissions, as measured in experiments, correspond to peaks
in the power spectrum of p,(7).

Parameter values

Our model contains 24 parameters, 19 of which we adopted
from previous studies including experimental observation
and detailed models. Note that some of the parameters in
a more detailed description would depend on frequency or
position along the cochlea, but that the values stated in Table
| must be regarded as effective values. Unknown parameters
are, in particular, the strength D of dynamic noise, and the
parameters characterizing the static imperfection of the
cochlea, described by an Ornstein-Uhlenbeck process &(x)
with standard deviation ¢ and correlation length A. Two
parameters, the viscous and elastic coupling coefficients «
and «’, can have an important influence on the statistics of
spontaneous emissions.

Simulation procedures

The discretized versions of Egs. 1 and 2 can be written in the
form

dh - -
E = h(hv )a
®)
di -
E = u(h7u7p)7
4y _ 55
o = AP )
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TABLE 1 List of parameters

Parameter Definition Value Ref.

Experimentally measured parameters

o BM stiffness proportionality factor  5+10° Pasm™'  (29)
b Average breadth of BM 1.1 mm (15)
d Decay constant 7 mm 29)
Ax Distance between oscillators 10 um (33)
Y air Specific heat ratio of air 1.4 (15)
l Height of upper/lower chamber 1 mm (29)
L Length of cochlea 35 mm 29)
PO Ambient pressure in ear canal 10° Pa (15)
o Density of fluid in cochlea 10kg m™ (29)
wo Characteristic frequency at x = 0 10° Hz (29)
w(x) Characteristic frequency woe”‘/ “Hz 29)
v, Volume of ear canal 160 mm’® (15)
Parameters from previous models

g8 Nonlinearity 8:10” Hzm™2 (29)
r Lever factor 1.3 (15)
Y Middle ear damping coefficient 0.0295Nsm™" (15)
m Mass of middle ear 5.9-107° kg (15)
Sow Area of oval window 3.2 mm? (15)
Sy Area of tympanum 49 mm? (15)
Woy Eigenfrequency of middle ear 27w+1500 Hz (15)
Free parameters

D Noise strength 1072 m?s!

K Dissipative coupling 3910 m?s~!

K Elastic coupling —3:10 8 m?s~!

A Correlation length of &(x) 5 mm

4 Standard deviation of &(x) 58.5 Hz

Here, p = (po, ...,pn) is the set of values on the discrete
sites, and similarly for E, ii. The symbol A denotes the ma-
trix that discretizes the operator [ ¢ /(2p)]6§. The functions
fh, fu correspond to the real and imaginary parts of the
right-hand sides of Eq. 2. Equation 9 can be rewritten as

dfy ,  df,
—=Jh =Ju = A 10
T h+ i P (10)

and contains no time derivative. We discretize the dynamics
equation, Eq. 8, in time using finite time steps Ar = 107> s.
At each time step, the pressure is determined from Eq. 10
together with the boundary condition py = 0 and Eq. 5 by
solving a set of linear equations. Equation 6 is also discre-
tized in time, and provides the value of ¢ in Eq. 5 at each
time step. The set of oscillator parameters ¢, is determined
from sampling one realization of Eq. 3 at discrete values x,,.

Detection of spontaneous emissions

From our simulations, we obtain, via Eq. 7, the time traces
of the ear canal pressure variation p.(f) over 300 s. From
these time traces, we compute the spectral density S(f) by
averaging the squares of the Fourier coefficients obtained
for 1 s intervals. Here, we define spontaneous otoacoustic
emissions as peaks in the spectrum S(f) that rise above the
background level by more than a threshold level, which
we choose at 20 dB (see dark shaded line in Fig. 3). The
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FIGURE 3 Detection of spontaneous emissions. Example of a power
spectrum obtained in our model (black solid line) in a small frequency in-
terval exhibiting four emissions at frequencies f;—f;. Emission frequency in-
tervals are denoted Af. The running average over 1000 Hz (dashed line) of
the spectral density and the threshold line 20 dB above the average (dark
shaded line) are used to identify emissions (for details see text).

background is defined as the running average of the spec-
trum over a 1000-Hz interval (dashed line in Fig. 3). We
compare the statistics of the so-defined spontaneous otoa-
coustic emissions, completely characterized by their fre-
quencies, to those determined in experiments by Talmadge
et al. (14). For the peak detection in experimental spectra,
slightly different criteria were used because of considerable
amounts of noise affecting both the background as well as
introducing additional AC peaks (14). Because such arti-
facts are absent in our simulations, we can detect peaks by
the simpler criterion stated above. We stress that a detailed
description of spectral peaks at emission frequencies as well
as of the background spectrum is beyond the scope of our
study.

The uniqueness of steady-state emission spectra is caused
in our model by the irregularities of the bifurcation param-
eter ¢, in a given realization. From the procedure specified
above, we obtain for a given realization of ¢, a discrete
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sequence of peak frequencies f,, with m = 1,....M, where
M is the number of emissions in the spectrum. To compare
the statistics of SOAEs in our simulations with human
cochleas, we use 152 different realizations of ¢,, which
corresponds to the number of individual cochleas studied
in the experiment (14).

RESULTS

Two examples of emission spectra of our model are pre-
sented in Fig. 1, C and D. Shown below are the correspond-
ing irregularities ¢ as a function of characteristic frequency
w(x)/(2m). The spectra typically contain emissions in fre-
quency regions where oscillators are active (i.e., &(x) >
0), whereas the converse is not necessarily true, i.e., posi-
tive excursions of € do not necessarily lead to emissions in
the spectra. This is so because emissions result from the
synchronization of groups of active oscillators (see below),
which also depends on global features of the system. Emis-
sions are not caused by individual oscillators. Model
spectra can be compared to those observed in experiments
(Fig. 1, A and B). Although spectra differ in number and
frequencies of the emissions for different ears (experi-
mental data) or realizations of disorder (simulation data),
numbers and frequencies fall into comparable ranges.
Furthermore, peak power in experiments and of calculated
spectra are similar. Note that the backgrounds of simulated
spectra differ from those of experimental spectra, because
in our model we neither include microphone noise nor all
of the possible biological noise sources. In the following,
we focus exclusively on the statistics of SOAE frequencies,
but do not intend to describe the shape of SOAE peaks and
background spectra.

In the experimental data (14), the number of emissions per
cochlea M varied broadly; 67 of the 152 cochleas studied did
not show any SOAESs, and emission numbers beyond 20 were
observed occasionally. A histogram of emission numbers
in the experiments and the frequency histogram are shown
in Fig. 4 A (circles) and Fig. 4 B (solid line), respectively.

I T
—Oexperiment |
— omodel

FIGURE 4 (A) Histogram of SOAE number per
| cochlea detected in experiments on 152 individual
ears (circles), together with the histogram of SOAE
number per cochlea obtained in our model from
152 realizations of the irregularities (squares).
(Inset) Average number of SOAEs per cochlea as
a function of the standard deviation ¢ of the irreg-
ularities. (B) Histograms of emission frequency in
the experiments (solid line) and the model (dashed
line). (Shaded regions, A and B) Standard deviation
around the average determined from 10 repetitions

A100fF———————3 B 80—
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of 152 realizations in the model. To see this figure
in color, go online.
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We can quantitatively account for the key features of
these observations by our model. Using the known parame-
ters given in Table 1, we find that the dissipative coupling «
as well as the standard deviation ¢ and the correlation length
A of the irregularities ¢, have a strong influence on the
average and the distribution of the total count M. In addition,
o and A also affect the frequency distribution of emissions.
For the choice of k, ¢, and A given in Table 1, the histograms
obtained in simulations and in experiments correspond
closely (Fig. 4). In particular, the shoulder in the experi-
mental histogram at about M = 5 in Fig. 4 A, the maximum
at 1.5 kHz, and the range of emissions (0.5-8 kHz) in Fig. 4
B are reproduced by the model. Of particular interest is the
statistics of intervals Af = f,, — f,,_; between adjacent emis-
sions. We consider the inverse relative interval f/Af, where
f=(fi fn)l/ 2 and alternatively, the interval in Cent units,
defined as

1(fusfor) = 1200 = 1og, (fu/fi1)-

Both interval measures have been used before to charac-
terize SOAEs (13,17,35). Fig. 5 A shows experimental
data for the inverse relative intervals as a function of mean
frequency f, scattering around f/Af = 15. In addition, there
is a trend toward larger f/Af for increasing frequency: The
probability to find an interval with f/Af attains a maximum
close to a straight line corresponding to a power law (13),

L
af

v

1)

A value of »=0.3 0.1 was estimated in Shera (13). Using
the data shown in Fig. 5 A, we estimate v =0.4 + 0.2 and indi-
cate the respective power law by a dashed line in Fig. 5 A.
(Note: For both experiment and model, we determined » as
follows: The data were divided in 12 logarithmically binned
frequency intervals. For each interval, the value of f/Af

Fruth et al.

where the histogram count is maximal was determined.
The exponent v was determined by a fit of a power law to
the 12 data points. Each point was weighted by the number
of points lying in each interval. If an interval contained
<20 counts in the experimental data, the weight was set to
zero both in the evaluation of experimental and model data.)

We can compare these statistics to the interemission inter-
val statistics obtained in our model, shown in Fig. 5 B. In
the model, there are more of the shorter frequency inter-
vals f/Af >100 than in experiments, presumably caused
by different peak detection schemes in experiments and sim-
ulations. However, the general features of the scatterplots in
Fig. 5, A and B, such as the trend of inverse relative intervals
described by the exponent v, are similar. From the simula-
tions, we estimate v 0.3 = 0.2. This is consistent with
the experimental values mentioned above.

Distributions of intervals in Cent units both of experi-
ments (solid line) and model (dashed line) are shown in
Fig. 5 C. In the experimental data the most probable interval
occurs at about 100 Cent, corresponding to one semitone
(17,35). We find a similar histogram in the model (dashed
line) that captures not only the maximum at 100 Cent but
also the asymptotic behavior for large Cent values. In partic-
ular, this histogram does not display peaks at multiples of
100 Cent, even if we use a subset of cochleas with many
emissions (not shown), which is in agreement with experi-
mental data (36). The most probable interval I,,,, depends
on the value of the elastic coupling coefficient k' (see inset,
Fig. 5 C). To gain some insight into the variability of the his-
tograms, we have generated 10 realizations of 152 cochleas
and indicate the mean value plus/minus one standard devia-
tion as shaded areas in Figs. 4 and 5. These figures demon-
strate that our model can account for all statistical features
that characterize experimentally observed emissions and
emission intervals. In addition, we note that our model

A 1000 ; T LI T T T T T ;
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100 ° 3 - . )
E 8 3 C T ' I ' I ™ ] FIGURE 5 Statistics of emission frequency in-
L‘a ;o Qgg": 2w T T T T tervals. (A) Scatter;plot of the inv_erse relative fre-
1= 10 3 : %%D o3 100 g | || quency intervals f/Af, where f = (flfz)]/2 and
F 2 " Say %o ] 1 O, 100 1 | Af=f,—f; for adjacent emissions in 152 individual
r o2 %%S’ ‘ Foo 4 | g | cochleas in the experiment as a function of f. (B)
1 E ° eoro E é - : - i | I | 14 Same as in panel A, but for model data. (Dashed
B 1000 Eg++++ i — = 8 | 00 ‘ b : 4 : 5 line in panels A and B) Power-law growth
F 3 rd i . . .
- model ] S 50 - 1 © [10—8 Hz - f/Af ~f Wlth v = 0.4. (C) Histogram of.relatlve
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1 = 0 ©°© 8¢ E 1 [Cent] maximum as a function of elastic coupling strength
S| | I R k'. To see this figure in color, go online.
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also produces BM vibrations in response to a sinusoidal
external pressure stimulus p;,(f), which exhibits the main
features found in the frequency domain description of an
active cochlea based on critical oscillators (29).

Some of the key features of emission statistics in our
model can be understood as follows: Each realization of &,
defines regions in which &€ > 0 and the oscillators are active
(see Fig. 6 A). The length of these regions is of the order of A.
Within an active region, oscillators tend to oscillate sponta-
neously, albeit at a gradually varying characteristic fre-
quency w(x,). Because of elastic and dissipative coupling
between neighboring elements, clusters of synchronized
oscillators appear. These clusters correspond to plateaus in
the local frequency, defined as the average number of oscil-
lation periods per unit time determined for oscillator n in our
simulations (Fig. 6 B, solid line). This local frequency has to
be distinguished from the characteristic oscillator frequency
w(x,)/(2m) (Fig. 6 B, dotted line). The corresponding spec-
trum of emissions p.(?) is shown in Fig. 6 C, revealing spec-
tral peaks at frequencies that correspond to the plateaus,
indicated by dashed lines. Thus, the number of oscillators,
Ngyn, that participate in a synchronized cluster, determines
the distance between two emissions. In the realization of
the model shown in Fig. 6, Ny, = 40, corresponding to
f/Af =15. Note that Ny, < //Ax, implying that the synchro-
nized cluster is smaller than the number of correlated oscil-
lators. Put differently, the active regions typically break up
in several synchronized clusters.

The typical intervals

2wAf = w(x,,_Nsyn/z) - (U(-er-Nsyn/Z)

between emissions are related to the size Ny, of synchro-
nized clusters. Using
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FIGURE 6 Oscillation frequencies of a small active cochlear region. (A)
Bifurcation parameter ¢, for a range of oscillator index n. The shaded area
indicates active oscillators (¢, > 0). (B) Local oscillation frequency deter-
mined from the inverse average oscillation period in the simulation (solid
line) together with characteristic frequency (dotted line). (C) Spectral den-
sity of ear canal pressure variations in the simulation (solid black line).
Emissions are identified by a threshold (shaded line) and correspond to fre-
quency plateaus (dashed lines).

821
28] = Non (0(311) — 0/(3)
and
O61) = 0() = — SO0 = 6(x)A¥/d
we find
Aif:Ns::Ax' (12)

To discuss the typical intervals between emissions, we need
to understand the size Ny, of synchronized clusters (29,37).
There exists no general theory for the cluster size of coupled
nonlinear oscillators. For purely dissipative coupling of
strength k, the maximal cluster size Ny, obeys (37)

(w(xn) - w(xn—l))styn
8k

~1. (13)

Using this relation as an approximation even in the presence
of elastic coupling, by means of Eq. 12 we obtain Eq. 11
with v = 1/2. This value is slightly larger than the values
from the experimental data (v = 0.3,0.4) and from the
model simulation (v = 0.3). Our consideration, however,
illustrates why the differences between emission fre-
quencies drop systematic