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Abstract We consider a two-dimensional dynamical system that possesses a heteroclinic
orbit connecting four saddle points. This system is not able to show self-sustained oscilla-
tions on its own. If endowed with white Gaussian noise it displays stochastic oscillations, the
frequency and quality factor of which are controlled by the noise intensity. This stochastic
oscillation of a nonlinear system with noise is conveniently characterized by the power spec-
trum of suitable observables. In this paper we explore different analytical and semianalytical
ways to compute such power spectra. Besides a number of explicit expressions for the power
spectrum, we find scaling relations for the frequency, spectral width, and quality factor of the
stochastic heteroclinic oscillator in the limit of weak noise. In particular, the quality factor
shows a slow logarithmic increase with decreasing noise of the form Q ∼ [ln(1/D)]2. Our
results are compared to numerical simulations of the respective Langevin equations.

1 Introduction

Stochastic oscillations are a ubiquitous phenomenon in many fields of science. In biology, for
instance, we see oscillatory behavior with a pronounced randomness in the concentration of
intracellular calcium [11], in themechanical motion of sensory organelles like the hair bundle
[15], or in the concerted activity of nerve cells [2]. In physics such stochastic oscillations are
the outcome of noisy laser dynamics [21] or of underdamped Brownian motion in a potential
well. Other examples are the stochastic Brusselator model or the repressilator system from
biochemistry [3].
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Whatever their physical origin, it is advantageous to describe stochastic oscillations in
the Fourier domain, i.e. in terms of the power spectrum and its characteristics, such as peak
frequency and line width. Simple linear systems, for instance, a harmonic oscillator with
noise and damping, can often be employed as a model of stochastic oscillations. In this case,
one can quickly determine the power spectrum by standard methods [5]. However, often
we have to deal with self-sustained oscillations subject to noisy influences, i.e. inherently
nonlinear systems driven by fluctuations.Moreover, there are systems, e.g. excitable systems,
in which only a sufficient amount of (possibly random) external driving elicits a stochastic
oscillation. Another example are heteroclinic systems [1,20,23], in which noise maintains
an oscillation, and the intensity of the driving fluctuations controls the frequency and quality
of the oscillation.

In nonlinear systems, the calculation of the key characteristics of noisy oscillations, the
power spectrum, is a non-trivial task, for which no systematic method exists (for a number
of exceptions, see [7,9,10,13]). Here, we present analytical and semianalytical results for
a heteroclinic system, in which white Gaussian noise evokes stochastic oscillations. We are
particularly interested in the weak-noise limit of the spectral statistics.

Our paper is organized as follows. In the next section, we introduce the stochastic model
and the statistical measures of interest. We then show how we can extract the power spec-
trum from the Fokker–Planck equation associated with the model. After this, we consider
the spectrum in the limit of weak noise and develop analytical approximations of varying
complexity. We conclude with a short summary of our results.

2 Model and Measure of Interest

Heteroclinic cycling was first described in a three-population competitive interaction model
by May and Leonard [16], and has been observed in models of neural systems exhibiting
“winnerless competition” [19]. Suppose a system of differential equations possesses multiple
isolated fixed points {pi }ni=1 of saddle type. If there is a sequence of heteroclinic trajecto-
ries {γi (t)}ni=1 starting and ending on the i th and i + 1st saddle points, respectively (that
is, limt→−∞ γi (t) = pi and limt→∞ γi (t) = pi+1, identifying n + 1 with 1), the union
of the paths and their original/terminal points, �, forms a heteroclinic cycle. Assuming the
unstable manifold of each point is one-dimensional, let λu,i > 0 be the unstable eigenvalue
and λs,i the stable eigenvalue with least negative real part for saddle point pi . If the product
of the saddle values ν ≡ �n

i=1

(−� [
λs,i

]
/λu,i

)
is greater than unity, then the heteroclinic

cycle is asymptotically stable, and there is a neighborhood around � within which trajecto-
ries converge towards �. Although the heteroclinic cycle may be structurally unstable, the
neighborhood around it is robust to small perturbations, and is called a heteroclinic channel
[18].

The system of interest here is a planar stochastic heteroclinic oscillator, first studied in [25]
to test a new definition of phase of a stochastic oscillation (the noiseless, i.e. deterministic
version of the model was introduced in [22]; cf. also Fig. 10.2 of [8]). It is given by the
following two stochastic differential equations

ẏ1 = cos(y1) sin(y2) + α sin(2y1) + √
2Dξ1(t),

ẏ2 = − sin(y1) cos(y2) + α sin(2y2) + √
2Dξ2(t). (1)

We consider the dynamics on the domain−π/2 ≤ {y1, y2} ≤ π/2, impose reflecting bound-
ary conditions, and restrict the parameter α ∈ (0, 1/2). For D = 0, the vector field has saddle
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Fig. 1 Deterministic and stochastic versions of the heteroclinic system. a Phase portrait of the deterministic
system with the trajectory shown in blue. The trajectory passes the four distinct saddle points (indicated by
thick black dots), slowing down progressively as it gets closer to the stable heteroclinic cycle. Modified with
permission from [22]. b The system with noise displays noisy clockwise rotations. c One of the components
in the noiseless system exhibits a slowing down. d Endowed with white Gaussian noise, the same variable
displays somewhat noisy but pronounced oscillatory behavior, resembling self-sustained oscillations which
are perturbed by noise. Parameters: α = 0.1 (all panels), D = 0.01 (b, d)

points at the four corners of the domain, each with eigenvalues λu = 1− 2α, λs = −1− 2α,
and saddle values νi = (1+ 2α)/(1− 2α) > 1, for i ∈ {1, 2, 3, 4}. The white noise sources
ξ1,2(t) are uncorrelated (〈ξi (t)ξ j (t ′)〉 = δ(t − t ′)δi, j ) and enter the equations multiplied by
a factor that involves the noise intensity D.

In Fig. 1 we illustrate the emergence of pronounced oscillations that become apparent
as noisy clockwise rotations in the (y1, y2) plane [cf. panel (B)] but can also be seen if a
single variable is plotted vs time [cf. panel (D)]. Without noise, the dynamics goes from
the neighborhood of one saddle to that of the next one [cf. panel (A)], slowing down while
approaching in this way the heteroclinic orbit (which would have an infinite period). Conse-
quently, oscillations in one of the variables have a transient nature [cf. panel (C)] and are not
self-sustained.

Of course, if y1(t) oscillates, then so do observables that are functions of y1(t). In the
following, we consider the observable

z1(t) = sin(y1(t)). (2)

In Fig. 2a, we show typical trajectories of the system’s variable y1(t) and the observable
z1(t). It will turn out that for z1(t) the determination of the power spectrum by Fokker–
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Planck methods is particularly simple. Furthermore, for later analytical efforts, it will be
helpful to consider the pair of transformed variables [z1 = sin(y1), z2 = sin(y2)], that
satisfy

ż1 = (1 − z21)(2αz1 + z2) +
√
2D(1 − z21)ξ1(t),

ż2 = (1 − z22)(2αz2 − z1) +
√
2D(1 − z22)ξ2(t). (3)

In contrast to the original system, these stochastic differential equations includemultiplicative
noise terms, that must be interpreted in the sense of Stratonovich [5].

To characterize the oscillation of the system,we study the power spectrumof z1(t), defined
in terms of the Fourier transform z̃1 = ∫ T

0 dt z1(t)e2π i f t or the autocorrelation function
Cz1,z1(τ ) = 〈z1(t)z1(t + τ)〉 by

S( f ) = lim
T→∞

〈z̃1 z̃∗1〉
T

=
∫ ∞

−∞
dτ 〈z1(t)z1(t + τ)〉e2π i f τ , (4)

respectively. (Occasionally, we will refer also to the cyclic frequency ω = 2π f .) The first
definition can be easily applied to the trajectories resulting from numerical simulations (then,
of course, only for a finite T ), while the second relation is useful in our (semi)analytical cal-
culations below. Numerically determined spectra of y1(t) and z1(t) are shown and compared
in Fig. 2b. It becomes evident that at least the main peak at small frequencies (corresponding
to the frequency of stochastic oscillations) is rather similar for y1(t) and z1(t). The main
difference between these variables is the amplitude: while y1(t) varies between −π/2 and
π/2, the variable z1(t) oscillates between ±1. Consequently, if we plot the spectrum of
(π/2)z1(t) (blue line in Fig. 2b), the spectrum is close to that of the original variable near
the low-frequency peak.

The aim of our study is to provide results for the power spectrum and the characteristics
of its main peak (frequency, peak width, and corresponding quality factor) as functions of the
noise.We are especially interested in the weak-noise limit where these statistics should attain
a simple and somewhat universal character that depends only on the fact that the system is
close to the heteroclinic cycle.
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Fig. 2 aTime series of the system’s variables y1(t) (black), y2(t) (red) and of the observable z(t) = sin(y1(t))
(blue dots). b Power spectra of y1(t) (black), z(t) (red), and the rescaled variable (π/2)z(t) (blue), which has
the same maximal amplitude as y1(t). All spectra show a peak around f = 0.06 with similar height and width
if the amplitudes are comparable (red and blue lines). Parameters: D = 0.01, α = 0.1
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3 Derivation of the Power Spectrum from the Fokker–Planck Equation

The approach to the calculation of the power spectrum of z1(t) presented in this section relies
on the Fokker–Planck formalism [21] and it should bementioned that similar techniques have
been applied for a number of other nonlinear stochastic systems (see e.g. [7,10,14]).

The transition probability density P(y, τ |y′, 0) of the stationary stochastic process y(t) =
(y1(t), y2(t)) satisfies the time-dependent Fokker–Planck equation

∂τ P(y, τ |y′, 0) = LFP(y)P(y, τ |y′, 0), (5)

with initial condition P(y, 0|y′, 0) = δ(y− y′) ≡ δ(y1 − y′
1)δ(y2 − y′

2). The Fokker–Planck
operator LFP reads in this case

LFP = ∂

∂y1

(
− cos(y1) sin(y2) − α sin(2y1) + D

∂

∂y1

)

+ ∂

∂y2

(
sin(y1) cos(y2) − α sin(2y2) + D

∂

∂y2

)
. (6)

Furthermore, the stationary probability density P0(y) satisfies the time-independent Fokker–
Planck equation,

∂τ P0(y) = 0 = LFP(y)P0(y). (7)

For any nonlinear function z(t) = f (y(t)), its autocorrelation function Czz(τ ) =
〈 f (y(0)) f (y(τ ))〉 − 〈 f (y(0))〉〈 f (y(τ ))〉 can be expressed by the following integral over
the transition probability

Czz(τ ) =
∫

d2y d2y′ f (y) f (y′)P0(y′)
[
P(y, τ |y′, 0) − P0(y)

]
, (8)

and thus we can write the power spectrum as

Szz(ω) = 2�
∫

d2y d2y′ f (y) f (y′)P0(y′)
∫ +∞

0
dτ eiωτ

[
P(y, τ |y′, 0) − P0(y)

]
,

= 2�
∫

d2y f (y1)H̃(y;ω). (9)

In the last line, we have introduced the auxiliary function

H̃(y;ω) =
∫

d2y′ f (y′)P0(y′)
∫ ∞

0
dτ eiωτ

[
P(y, τ |y′, 0) − P0(y)

]
. (10)

By a number of straightforward manipulations (one-sided Fourier transformation of the
Fokker–Planck Eq. 5, integration by parts, etc.; see [6]), we arrive at an equation for H̃(y;ω):

(LFP(y) + iωI) H̃(y;ω) = −P0(y)
[
f (y) − 〈 f (y)〉] , (11)

where I is the identity operator. The inhomogeneity in this partial (but time-independent)
differential equation involves the steady-state probability density P0(y), which can be found
from the stationary Fokker–Planck Eq. 7.

Solving the coupled system of partial differential equations, Eqs. 7 and 11, can be per-
formed numerically by expanding the solutions in an appropriate basis of functions that
satisfy the boundary conditions, and determining a sufficient number of the respective coef-
ficients by solving the resulting system of linear equations, a technique that we refer to as the
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matrix-inversion method in the following. We choose harmonic functions that automatically
satisfy the periodic boundary conditions:

P0(y) =
∞∑

m=−∞

∞∑

l=−∞
cm,l e

i(my1+ly2) (12)

and

H̃(y;ω) =
∞∑

m=−∞

∞∑

l=−∞
H̃m,l(ω)ei(my1+ly2). (13)

For this choice, the power spectrum of the specific function z(t) = z1(t) = sin(y1) has the
particularly simple form of a single coefficient

Sz1z1(ω) = (2π)2�
[
−i

(
H̃−1,0 − H̃0,1

)]
= −8π2�

[
H̃0,1(ω)

]
, (14)

where � and � denote the real and imaginary parts, respectively, and we have used for the
last equality that H̃m,l = −H̃−m,−l .

In order to determine the sets of coefficients {cm,l} and {H̃m,l(ω)}we substitute the expan-
sions Eqs. 12 and 13 into the differential equations Eqs. 7 and 11. In this way one obtains,
for each of the two differential equations, a system of linear equations to which standard
numerical matrix methods can be applied. This is a two-step process: we start by inserting
the expansion for P0(y), Eq. 12, into Eq. 7, which yields a homogeneous system of lin-
ear equations for the coefficients {cm,l}. This system has a unique solution if we add the
normalization condition

∫

�

dy P0(y) = 1, � = [−π/2, π/2] × [−π/2, π/2]. (15)

Once the coefficients {cm,l} are numerically determined they can be used to construct the
RHS of Eq. 11, where we also substitute the expansion for H̃(y;ω), Eq. 13. By solving
the resulting inhomogeneous system of linear equations on each point of a discretization
{ωi } , i = 1, . . . , N of the interval ω ∈ (0, ωmax ] (containing the relevant part of the power
spectrum) we obtain the set of coefficients {H̃m,l(ωi )}, i = 1, . . . , N and hence the power
spectrum. Appendix A provides details of the method, which was implemented in Python’s
programming language using the numpy library, and the methods for sparse matrices avail-
able in the scipy.sparse.linalg library.

In order to apply the numerical methods we first truncate the expansions Eqs. 12 and 13 at
some |m|, |l| = L , so that the size of the matrix systems to be solved increases with L . At low
noise levels, the distributions become more peaked, displaying abrupt changes on finer and
finer spatial scales. Accurately describing this fine-scale structure requires the inclusion of
modes eimy1eily2 with higher spatial frequencies |k| = √

m2 + l2 in the expansion of P0(y)
and H̃(y;ω). Representing these higher-resolution spatial scales is equivalent to increasing
L , resulting in large matrices.

Figure 3 shows the resulting spectrum and corresponding simulation results for three
noise levels, D = 10−1 (red triangles), 10−2 (blue circles), and 10−3 (green squares). The
figure illustrates the excellent agreement between Langevin simulations and the matrix-
inversion method. As expected, the spectra show a strong primary peak that narrows and
shifts towards lower frequencies for decreasing noise levels. Furthermore, for decreasing
noise, the anharmonicity of the oscillation becomes more apparent, as secondary peaks at
odd multiples of the fundamental frequency emerge (Fig. 3, black arrows).
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Fig. 3 Power spectrum of sin(y1) for three noise levels. Results from stochastic simulations (symbols) agree
with the matrix-inversion method (black solid line) for D = 10−1 (red), 10−2 (blue), and 10−3 (green)
over the frequency range shown. Black arrows indicate the frequency of the first peak and its higher (odd)
harmonics for D = 10−3. Parameters: α = 0.1

For lower noise intensities, the size of the matrices required to accurately represent the
system grows prohibitively, limiting application of the matrix-inversion method. Therefore,
we explore in the next section an analytical approach to the weak-noise regime.

4 Weak-Noise Limit of the Power Spectrum

In this section we develop an analytical approach resulting in expressions for the power
spectrum and for its characteristic features (the center frequency and width of the primary
peak), valid for small noise levels.We introduce a sequence of three successivelymore refined
approximations.

4.1 Two-State Process Approximation to the Primary Spectral Peak

First we consider an approximation valid at low frequencies, based on an alternating renewal
process.

At low noise intensity, we observe that z1(t) = sin(y1(t)) begins to resemble a dichoto-
mous process (see Fig. 4), i.e. the variable remains close to one of two states ±1 most of the
time.

In the (y1, y2) plane, one cycle consists of passage through four corners. The probability
distributions of passage times around single corners, {T1, . . . , T4}, are governed by [23]

ρD(t) = 2λu�D(t)e−�2
D(t)

√
π(1 − e−2λu t/(1 + λu/λs))

(16)

where

�D(t) = δ

(
2D

λu

(
e2λu t

(
1 + λu

λs

)
− 1

))−1/2

, λu = 1 − 2α, λs = 1 + 2α. (17)

In [23] the constant δ defines the size of a neighborhood around the heteroclinic saddle
point for which the transit time distribution is obtained. The result is exact for a linear flow.
For our nonlinear system we consider the transit time “around one corner” to be the time
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Fig. 4 Trajectory of the observable z1(t) for two values of the noise, D = 10−2 (upper panel) and D = 10−5

(lower panel). We show the approximation by a dichotomous noise, Eq. 21 (dashed black line) superimposed
on a trajectory obtained from numerical simulations (solid red line)

required to pass through one quadrant of the domain. For small noise, and initial conditions
close to the stable manifold of the saddle (the outer wall of the domain), the transit time
is determined mainly by the portion of the trajectory in a small neighborhood surrounding
the saddle point. By the Hartman-Grobman theorem, the flow of the nonlinear deterministic
differential equations is topologically conjugate to the linear flow [17]. In Appendix B we
derive a condition that identifies points on the stable manifolds of the linear and nonlinear
system, respectively, bymatching the timing of their asymptotic approach to the saddle point.
Thus we determine the parameter δ from a matching condition of the flows of the original
nonlinear system and of its linear approximation:

δ = 2

(
2

1 + 2α

) 2α
1−2α

(18)

For our system with α = 0.1 we find δ ≈ 2.27 and this indeed provides an excellent
agreement for the distribution of passage times around one corner (cf. Fig. 5).

For weak noise, the mean single-quadrant first-passage times 〈Ti 〉 may be written as a
sum of a term depending logarithmically on the noise intensity, τ(D), and an O(1) term, t0
([23], see also Eq. 35 below):

〈Ti 〉 = τ(D) + t0, as D → 0+, for i ∈ {1, . . . , 4}, (19)

where

τ(D) = λ−1
u ln

(
δ√
2D

)
(20)

is the noise-dependent part of the mean transit time and the essential parameter in the fol-
lowing.

In the case of weak noise, we can make different approximations that vary in complexity.
In the simplest approximation, we make two assumptions. First, we assume that z1(t) is well
described by a dichotomous process

zd(t) = 2[�(z1(t)) − 1/2], (21)

where �(x) denotes the Heaviside jump function. For low noise, the variable z1(t) spends
most of its time close to ±1 and makes transitions on a fixed (approximately noise-
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independent) time scale. Therefore, we assume the deviation between the two processes
will be small, in the sense of

〈(z1(t) − zd(t))
2〉 � 〈z21(t)〉 (22)

(noting that the means of both processes vanish because of symmetry). We emphasize that
although we neglect the continuous nature of the transition between the states, the transition
time itself is included in the waiting times of the two states.

Second, we assume that the passage times through subsequent corners of the phase
plane are statistically independent, which holds true in the vanishing-noise limit [1]. This
assumption in turn entails that the residence times in the upstate/downstate are sums of two
independent times, drawn from the same distribution, Eq. 16 and that all residence times in
the two states are independent of each other. The probability density for this sum is given
by the convolution of the density of the single corner-passage time with itself. The con-
volution condition implies that the Fourier transformation of the residence times satisfies
ρ̃±(ω) = ρ̃2(ω) (here ρ̃ = ∫ ∞

0 dt ρ(t)eiωt with ρ(t) from Eq. 16). Assuming independence
of all residence times, we can apply the following formula for the power spectrum of an
alternating renewal process with states η± and mean dwell times τ± [24]

Sd(ω) = 2(η+ − η−)2

(τ+ + τ−)ω2 �
[

(1 − ρ̃+(ω))(1 − ρ̃−(ω))

1 − ρ̃−ρ̃+

]
= 2

〈Ti 〉ω2 �
[
1 − ρ̃2(ω)

1 + ρ̃2(ω)

]
. (23)

For our system η± = ±1, τ± = 〈T1 + T2〉 = 〈T3 + T4〉, and ρ̃±(ω) = ρ̃2(ω) are the
associated value, the mean residence time, and the Fourier transform of the residence time
probability density of the state, respectively; for the simplification in the last stepwe have used
the symmetries of the system and the aforementioned convolution relation for the residence
times.

The preceding expression Eq. 23 gives the power spectrum in terms of the densities of the
transit times through the successive quadrants (one for each saddle point) of the domain. We
therefore investigate the form of these transition time densities and their dependence on D.
For our approximation to hold, it is important that the formula Eq. 16 accurately describes
the transit time density in our system. Fig. 5 compares Eq. 16 with numerical simulations,
showing excellent agreement.

Fig. 5 suggests that ρD(t) has the form of a stereotyped shape that merely translates
as D decreases, at least for sufficiently small values of D. We wish to derive the form
ρD(t) = ρ(t − τ(D)). To this end, we first rewrite �D(t) as follows, underlining terms
referred to in the subsequent analysis

�D(t) =
(
(λ−1

u + λ−1
s )e2λu(t−τ(D)) − λ−1

u e−2λuτ(D)
)−1/2

. (24)

Here we have used δ = √
2Deλuτ , in accordance with Eqs. 17 and 20. Further, by straight-

forward algebraic manipulations we can rewrite the noise-dependent density ρD(t) as

ρD(t) = 2√
π

(
λu + �2

D(t)e−2λuτ(D)
)

�D(t)e−�2
D(t). (25)

Closer inspection reveals that for weak noise, ρD(t) is appreciably greater than zero only for
times close to τ(D). For such times, we may neglect the underlined terms in Eqs. 24 and 25,
and obtain the approximations

�D(t) ≈ �(t − τ(D))
!= e−λu (t−τ(D))

√
λ−1
u + λ−1

s

(26)
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Fig. 5 Probability density of transit times Ti through a single quadrant of the system Eq. 1 for α = 0.1
and different values of the noise intensity D, as indicated. Theoretical curves from Eq. 16 (black lines) are
compared with simulation results (symbols), choosing the fitting parameter δ = 2.27. Decreasing D causes
a rightward shift in the density (increasing the mean transit time 〈Ti 〉) while keeping its shape (including the
width) constant

and

ρD(t) ≈ ρ(t − τ(D))
!= 2λu√

π
�e−�2

, (27)

where � = �(t − τ(D)) captures the D-dependence and reflects the rightward shift of ρD

with decreasing noise. Moreover, both ρD and ρ are effectively zero for times less than τ(D)

(minus a constant O(1) offset), so we adopt ρ(t) as an approximation to ρD(t) over the entire
range t > 0.

In order to calculate the power spectrum, the Fourier transform of ρ(t) is needed; for this
function we obtain

ρ̃(ω) =
∞∫

0

dt eiωtρ(t−τ(D))=
∞∫

−τ(D)

dt̂ eiω(t̂+τ(D))ρ(t̂) ≈ eiωτ(D)

∞∫

−∞
dt̂ eiωt̂ρ(t̂) (28)

The last approximation relies on the observation that ρ(t) → 0 rapidly as t decreases
below τ(D) and hence we can replace −τ(D) in the lower integration boundary by −∞.
Remarkably, the noise dependence of the Fourier transform is confined to the exponential
prefactor.

The last integral in Eq. 28,

ρ̃0(ω) =
∞∫

−∞
dt eiωtρ(t) (29)

can be further simplified upon making the substitution

x = e−2λu t

λ−1
u + λ−1

s
(30)

to the form

ρ̃0(ω) =
(
λ−1
u + λ−1

s

)−iω/(2λu )

√
π

∞∫

0

dx x

(
− 1

2− iω
2λu

)

e−x , (31)
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which reduces to a Gamma function with complex argument

ρ̃0(ω) =
�

(
1
2 − iω

2λu

)

√
π

(
λ−1
u + λ−1

s

)iω/(2λu )
. (32)

We thus obtain

ρ̃(ω) = eiωτ(D)
�

(
1
2 − iω

2λu

)

√
π

(
λ−1
u + λ−1

s

)iω/(2λu )
(33)

The first derivative of ρ̃0 at ω = 0 gives us (together with τ(D)) the mean single-quadrant
transit time

〈Ti 〉 = τ(D) + 2 ln(2) + γ − ln(λ−1
u + λ−1

s )

2λu

= − ln(2D) + 2 ln(2δ) + γ − ln(λ−1
u + λ−1

s )

2λu
(34)

where γ = 0.57721... is Euler’s constant; hence, the second term in the first line is identical
to the additive constant t0 in Eq. 19:

t0 = 2 ln(2) + γ − ln(λ−1
u + λ−1

s )

2λu
. (35)

Differentiating ρ̃0 a second time gives the second moment, from which we can determine the
variance of the single-quadrant transit time as follows

σ 2
i = 〈(Ti − 〈Ti 〉)2〉 = π2

8λ2u
. (36)

This expression, remarkably, depends only on λu but neither on λs nor on the noise intensity
D.

Substituting Eq. 32 into Eq. 23 yields the power spectrum for the discrete alternating
process

Sd(ω) = 2

ω2(τ (D) + t0)
�

⎛

⎝
π(λ−1

u + λ−1
s )iω/λu − e2iωτ(D)�2

(
1
2 − iω

2λu

)

π(λ−1
u + λ−1

s )iω/λu + e2iωτ(D)�2
(
1
2 − iω

2λu

)

⎞

⎠ . (37)

The quality factor of an oscillation, Q, is the peak frequency, ωp, divided by the full width
at half maximum (FWHM), �ωp . For low noise values the power spectrum is narrowly
concentrated around the peak frequency ωp ≈ π/(2〈Ti 〉). When the noise is small, the mean
period is large, ωp is small, and we can find an expression for the peak width by expanding
ρ̃(ω) around ω = 0. We translate the first passage time distribution by τ(D) + t0 to give a
deviation with mean zero; the deviation has distribution ρt0 . With this notation, we may write
the expansion

ρ̃(ω) = eiωτ(D)ρ̃0(ω) = eiω(τ(D)+t0)ρ̃t0(ω) (38)

∼ eiω(τ(D)+t0)

(

1 − ω2σ 2
i

2

)

+ O(ω3), as |ω| → 0. (39)
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Expanding the power spectrum around ω = 0 then gives the low-frequency dichotomous
approximation to the power spectrum

Sd,LF(ω) = 4ωp

πω2 �

⎛

⎜
⎜
⎜
⎝

1 − eiπω/ωp

(
1 − ω2σ 2

i
2

)2

1 + eiπω/ωp

(
1 − ω2σ 2

i
2

)2

⎞

⎟
⎟
⎟
⎠

. (40)

where the approximate location of the peak is at

ωp = π/2

τ(D) + t0
, f p = 1

4(τ (D) + t0)
(41)

in cyclic and normal frequency, respectively. Therefore, for low noise, the height of the
primary peak is given by

Sp = Sd,LF(ωp) ≈ 8

πω3
pσ

2 (42)

while its width approaches

�ωp ≈ 2

√√√√
2

S(ωp)
dS−1(ω)

dω

∣∣∣
ω=ωp

≈ 2ω3
pσ

2
i

π
, � f p ≈ ω3

pσ
2
i

π2 . (43)

where in both approximations we took into account only the leading orders in ωp . Hence, in
our simplest Lorentzian approximation, the spectrum around the primary peak reads

Sd,Lorentz = 8ω−3
p /(πσ 2)

1 + π2σ−4ω−6
p (ω − ωp)2

. (44)

The calculations above provide us also with an essential characteristics of noisy oscillations,
the above mentioned quality factor, Q = ωp/�ωp , given for our system in the limit of low
noise by the simple expression

Q = π

2σ 2
i

ω−2
p . (45)

This means that we find a slow increase Q ∼ [ln(1/D)]2 with decreasing noise intensity (for
a comparison to simulation results, see below).

4.2 Smooth Approximation to the Full Process

The preceding approximations to the power spectrum based on a dichotomous process
approximation (Sd(ω), Eq. 37) and its expansion around low frequencies (Sd,LF(ω), Eq.
42), neglected the smooth transitions between z1 ≈ −1 and z1 ≈ +1 in the full system given
by Eq. 3. In this subsection we derive a correction to the discrete two-state process approx-
imation. We require two assumptions to derive the form of the correction. First, the shape
of the transitions from “down” to “up” (or vice versa) are stereotyped, and are not affected
by the interval elapsed since the preceding transition. Second, as assumed previously, the
transition times should be independent of the shape of the transition curve, and vice versa
(the transition shape is independent of D, for small D).

In Fig. 6 we compare for a low noise level the dichotomous-process approximation and
the original process z1(t) by plotting both the processes (top) and smoothed versions of
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Fig. 6 A trace of the process and its dichotomous approximation (top) and the derivatives of the two processes
(bottom) for D = 10−5. The transition of the smooth process z1(t) becomes apparent by a stereotypic pulse
in its derivative. Our theory for the power spectrum of z1(t) assumes that ż1(t) = g ∗ żd (t), where the star
denotes convolution with the pulse shape g(t), to be determined from the dynamics of the deterministic system

their temporal derivative (bottom). It becomes clear that the smooth transition in the original
process is mainly characterized by a stereotypic pulse shape 2g(t) in the process’ temporal
derivative. This suggests to approximate

ż1(t) = g ∗ żd(t) (46)

by a convolution of the derivative of the dichotomous process (which is an alternating
sequence of delta spikes) with this pulse shape. Note that we do not take into account the
white-noise fluctuations that are part of ż1(t) according to its Langevin equation Eq. 3.

Once we have found g(t) and its Fourier transform g̃(ω), the power spectrum of the
continuous process can be approximated by

Scont(ω) = |g̃(ω)|2Sd(ω). (47)

The profile g(t) and its Fourier transform can be found from an analysis of the deterministic
system. We first note that in order to describe the deterministic transition between ±1, it is
justified to set z2(t) = 1 because during the transition of z1(t) the value of the other variable
is indeed very close to 1 and the small discrepancy does not affect the time course of z1(t)
much. Neglecting thus both the variations in z2(t) and the noise ξ1(t), the dynamics of the
transition is governed by

ż1 = (1 − z21)(2αz1 + 1), (48)

which can be solved implicitly

t (z1) =
∫ z1 dz

(1 − z2)(2αz + 1)
= ln(z1 + 1)

2 − 4α
− ln(1 − z1)

2 + 4α
− 2α ln(1 + 2αz1)

(1 − 4α2)
. (49)

Furthermore, we know the derivative as a function of z1, namely ż1(z1) given by the right-
hand side of Eq. 48. Hence, we can parametrically plot both the time t and the profile g(t) as
functions of z1, i.e. [t (z1), 2g(t) = ż1(z1)], where z1 varies between ±1. This is compared
in Fig. 7a to a smoothed version of the temporal derivative and shows very good agreement
(also on a logarithmic scale, displayed in the inset).

What we need in the expression for the power spectrum though is the Fourier transform
of the transition profile. This can be simplified by changing in the Fourier transform from
time integration to an integration over z1 as follows
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Fig. 7 The derivative of the transition function (a) and its Fourier transform (b). In (a) we show two of the
pulses from Fig. 6 bottom a positive (upward) pulse and a (here inverted) downward pulse demonstrating the
symmetry between upward and downward transitions. Superimposed is the theory, Eqs. 49 and 48. In (b) the
Fourier transform according to the analytical solution, Eq. 51, is shown

g̃(ω) = 1

2

∞∫

−∞
dt ż1(t) exp[iωt] = 1

2

1∫

−1

dz exp[iωt (z)]. (50)

This integral can either be evaluated numerically or expressed by a higher mathematical
function, the hypergeometric function F1 (Appell’s Hypergeometric function of the first
kind):

g̃(ω) = −21+
iω

2−4α (1 − z)1−
iω

2+4α (1 + 2α)
1− 2iαω

1−4α2

(2 + 4α − iω)

× F1

(
1 − iω

2 + 4α
,

iω

−2 + 4α
,

2iαω

1 − 4α2 , 2 − iω

2 + 4α
,
1 − z

2
,
2α(1 − z)

1 + 2α

)
. (51)

The filter function is shown in Fig. 7b and displays a strictly monotonic decrease. As we
tacitly used in our previous pure two-state theory, the smooth transition has little effect on
very small frequencies, where the function is constant. It will be shown below that g(ω)

determines in particular the behavior of the power spectrum at intermediate frequencies.

4.3 Comparison of the Different Approximations to Numerical Simulations

In order to get an impression of how reliable the different approximations are, we compare
in Fig. 8 the spectra obtained from numerical simulations of Eq. 1 to the various expressions.

In Fig. 8a, b we show simulation data for a comparatively large noise intensity of D =
10−2 (filled circles). At this noise level, the Lorentzian spectrum, Eq. 44, gives a reasonable
approximation to the primary peak but also displays some deviations in peak height. This is
also the case for the other approximations (not shown). In Fig. 8b we show the spectrum on a
semi-logarithmic scale, revealing the behavior in the high-frequency range. At this noise level
both the full and the low-frequency approximations capture the shape of the primary peak but
fail to reproduce accurately the shoulder and the fall-off at higher frequencies. The latter are
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Fig. 8 Power spectra for different noise intensities as indicated. Simulation results of the Langevin Eq. 1 are
compared on linear axes to the Lorentzian approximation, Eq. 44, on the left (a, c, e); on the right (b, d, f), com-
parison in a semi-logarithmic presentation to the more involved approximations (lines): dichotomous-process
approximation, Eq. 37 (blue dotted), low-frequency approximation Eq. 40 (dashed red), and continuous-
process approximation, Eq. 47 (solid black)

caused by the smooth transition between the states as proven by the excellent improvement
with the continuous approximation, Eq. 47.

With decreasing noise intensity (D = 10−4 in Fig. 8c, d), we see a better agreement
of all approximations in their respective range of validity: the simple Lorentzian formula
(Fig. 8c) gives an excellent approximation at the linear scale, including the position and
width of the peak. The full dichotomous expression provides an excellent agreement over
the entire primary peak, and the continuous solution reproduces the entire curve including
the two higher harmonics and the overall decrease with frequencies at higher f . All these
observations can be also made for a further decreased noise level of D = 10−6 shown in
(Fig. 8e, f), except that this lower noise intensity leads to even more higher harmonics than
before.

We also have to mention that our analytical result for the power spectrum does not include
an extremely weak contribution that emerges in the high-frequency limit, i.e. beyond the
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Fig. 9 Characteristics of the oscillation—theory (lines) against simulation results (symbols) for α = 0.1.
From top to bottom frequency of oscillation, Eq. 41, peak height, Eq. 42, full width at half maximum, Eq. 43,
and quality factor, Eq. 45. Simulation results for the parameters were determined by fitting Lorentz functions
to spectra such as that in Fig. 8a

frequency range shown in Fig. 8. According to Eq. 3, the derivative ż1 does not only possess
the smooth transition function that we have discussed above but has also a component that

is directly proportional to the driving multiplicative white noise,
√
2D[1 − z21(t)]ξ1(t).

Finally, we compare our theoretical results for the characteristics of the primary peak
to numerical simulations in Fig. 9 as functions of the inverse noise intensity. The results
of the matrix-inversion method (solid lines) display excellent agreement with the numerical
simulation at larger noise intensities (left side of the plot) but is restricted to moderate to large
noise. Fortunately, at the pointwhere thematrixmethod stopsworking, theweak-noise results
(dashed lines) are already close to them. Moreover, the weak-noise formulas are confirmed
by simulation results performed at even smaller noise intensities (D ≤ 10−3).

Generally, it is remarkable how slowly the statistics changes with a decrease of the noise
intensity. The quality factor, for instance, changes by a littlemore than one order ofmagnitude
if we decrease the noise intensity by six orders of magnitude. The frequency does not even
change by one order of magnitude in the same range of noise intensities. This illustrates that
in a dynamical systemwith heteroclinic orbits already tiny amounts of noise can cause robust
stochastic oscillations with intermediate time scales and considerable variability.

5 Summary and Conclusions

In this paper we have studied the noise dependence of the power spectrum of a heteroclinic
stochastic oscillator.We used different analytical and semi-analytical methods to characterize
the spectrum.

For stable limit cycle systems that oscillate in the absence of noise, the effects of small
noise perturbations may be studied in a simple manner via reduction to a one-dimensional
phase variable [4]. For excitable systems, sustained oscillations vanish in the small noise limit
[12]. Stable heteroclinic systems [16,18–20] exist, in a sense, on the boundary between these
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two scenarios. Without noise, an autonomous heteroclinic system does not show sustained
finite period oscillation. But with increasing noise, we expect oscillations to deteriorate. It is
therefore of interest to ask how the character of the oscillations behaves as their source—the
amplitude of noise forcing—is reduced to vanishing levels. We resolved this question here
through analysis of the power spectrum, in particular the quality factor of the principal peak,
for which we find a slow but steady increase as noise intensity decreases.

In the first part we introduced a numerical scheme that is based on the Fokker–Planck
equation and gives us full access to the entire power spectrum if the noise is not too weak. It
is simple to understand the latter limitation: our solution involves the steady-state probability
density and other functions of the state-space variables that become strongly peaked in
the limit of weak noise. Because the scheme is based on an expansion into trigonometric
functions, it is evident that extremely peaked functions will require a large number of terms
in the respective expansion, making the involved matrix manipulations infeasible at some
point.

Fortunately, it turns out that the system is analytically tractable to a large extent exactly in
the weak-noise limit, in which the Fokker–Planck method fails. We developed a number of
approximations to derive more and more accurate descriptions of the power spectrum. First,
we approximated the dominant temporal variation in the observable z1(t) as a dichotomous
noise, i.e. a symmetric alternating renewal process. Using the first-transit-time results for a
passage along a saddle point by Stones and Holmes [23] and simplifying these results in
particular in the Fourier domain we derived an accurate description of the primary peak of
the power spectrum, including simple formulas for the peak frequency, the peak width and
the quality factor.

We could furthermore extend an improved formula for the power spectrum valid for higher
frequencies by taking into account the smoothness of the transitions between the states. This
led to a low-pass filter function by which the spectrum of the dichotomous process has to be
multiplied. The comparison with numerical simulations revealed a good agreement of this
full spectrum from low to intermediate frequencies for a range that accounts for almost all
of the variance of the process.

The simple formulas for the peak frequency and quality factor of the primary peak illus-
trated a rather weak dependence of the heteroclinic system on the noise intensity. The quality

factor essentially increases as
[
ln(D−1)

]2
as the noise intensity is decreased. This implies that

already tiny perturbations can lead to pronounced stochastic oscillations, which is certainly
related to the fact that we are exactly at a bifurcation point. The heteroclinic connections
between successive saddles are not structurally stable, and can be broken by a static pertur-
bation such as adding a twist to the vector field. For instance, writing the system Eq. 1 as
ẏ1 = f1(y1, y2) + √

2Dξ1(t) and ẏ2 = f2(y1, y2) + √
2Dξ2(t), the perturbed system

ẏ1 = f1(y1, y2) + μ f2(y1, y2) + √
2Dξ1(t),

ẏ2 = f2(y1, y2) − μ f1(y1, y2) + √
2Dξ2(t) (52)

when D = 0 and 1 � μ > 0 has a stable limit cycle in the domain −π/2 < {y1, y2} < π/2.
As shown in [22], the deterministic system’s infinitesimal phase response curve (iPRC)
exhibits extreme sensitivity to perturbations at specific phases of the limit cycle, whenμ > 0
is small, consistent with our observation here of a large impact arising from small stochastic
perturbations. However, asμ is increased, we expect a smoothened dependence on the noise.

The methods that we have used in this paper may be also employed for the study of power
spectra of other systems with heteroclinic cycles. If a projection of a variable on a two-state
process is sufficient, we can use the same alternating renewal formula but have to modify the
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residence time probability densities in the respective states accordingly. If a small number
of states is involved (but more than two), the formulas for the two-state process [24] may
be generalizable. More difficult appear extensions to cases, in which the noise acts only on
one of the dynamical variables or in which fluctuations are correlated in time or have non-
Gaussian statistics. We hope, nonetheless, that the example system studied in our paper may
give some guidance in the study of power spectra in more complicated systems.

Acknowledgements JGB, PJT, and BLwould like to acknowledge funding by La Caixa andDAAD (program
50015239), the National Science Foundation (Grant DMS-1413770), and BMBF (FKZ: 486 01GQ1001A)
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Appendix A: Details on the Numerical Determination of the Spectrum from
the Fokker–Planck Equation (Matrix-Inversion Method)

In Sect. 3 we derived two partial differential equations that determine the power spectrum.
Here we show how these equations can be solved numerically by an eigenfunction expansion
(for further details, see [6]).

Expansion into a Complete set of Functions

The power spectrum Szz(ω) is given in Eq. 9 in terms of an auxiliary function H̃(y;ω),
which is defined in Eq. 10 and satisfies the two-dimensional, second-order, partial differential
equations,

LFP(y)P0(y) = 0, (7 revisited)

(LFP(y) + iωI) H̃(y;ω) = −P0(y)
[
f (y) − 〈 f (y)〉] , (11 revisited)

where P0(y) is the stationary probability distribution and LFP is the Fokker–Planck operator
associated to y(t). The solution to this systemof partial differential equationsmay be found by
expanding P0(y) and H̃(y;ω) into an appropriate basis of functions that satisfy the boundary
conditions.

The heteroclinic oscillator systemEq. 1with reflecting boundary conditions on the domain
� = [−π/2, π/2] × [−π/2, π/2] can be shown to be equivalent (for certain observables
f (y), such as zi = sin(yi )) to a systemwith periodic boundary conditions on�′ = [−π, π]×
[−π, π] and the same dynamics. Thus, we expand the solutions into the basis of harmonic
functions with period Li = 2π in both y1 and y2, i.e.

P0(y) =
∞∑

m=−∞

∞∑

l=−∞
cm,l e

i(k1my1+k2ly2) =
∞∑

m=−∞

∞∑

l=−∞
cm,l e

i(my1+ly2). (12 revisited)

and, similarly,

H̃(y;ω) =
∞∑

m=−∞

∞∑

l=−∞
H̃m,l(ω)ei(my1+ly2). (13 revisited)

Inserting Eq. 12 into Eq. 7, grouping the terms associated to each basis function eimy1eily2 ,
and requiring that these terms should vanish for every combination m, l, we obtain for the
coefficients of the steady state distribution

0 = − 1
4

[
(m − l)cm−1,l−1 + (m + l)cm+1,l−1 − (m − l)cm+1,l+1
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Table 1 Summary of the conditions imposed by symmetries (other than 2π -periodicity on y1 and y2) on the
auxiliary function H̃(y; ω) and its expansion coefficients H̃(ω)

Symmetry transformation H̃(y; ω) H̃m,l (ω)

y �→ −y H̃(y; ω) = −H̃(−y; ω) H̃−m,−l = −H̃m,l

(y1, y2) �→ (y1 + kπ, y2 ± kπ), H̃(y1 + kπ, y2 ± kπ; ω) = −H̃(y1, y2;ω) H̃m,l = 0, if m + l = 2k

k ∈ Z

−(m + l)cm−1,l+1 + 2αmcm−2,l + 2αlcm,l−2

−2αmcm+2,l − 2αlcm,l+2 + 4D(m2 + l2)cm,l

]
, ∀m, l ∈ Z. (A1)

Additional symmetries present in the system impose further constraints on the set of coef-
ficients {cm,l}: (i) because LFP(−y) = LFP(y) the density is symmetric under inversion,
P0(−y) = P0(y), from which we find c−m,−l = cm,l ; (ii) LFP(y) is also invariant under the
translations (y1, y2) �→ (y1 + 2πk, y2) and (y1, y2) �→ (y1, y2 + 2πk), from which we can
infer that cm,l = 0 ifm+l = 2k+1, k ∈ Z; (iii) because P0(y) is real-valued, c−m,−l = c∗

m,l .

Finally, from the normalization condition follows c0,0 = π−2.
If we insert the expansions Eqs. 13 and 12 into Eq. 11 with f (y1) = sin(y1) and follow

the derivation for P0(y) above, we obtain

−1

4

[
(m − l)H̃m−1,l−1 + (m + l)H̃m+1,l−1 − (m − l)H̃m+1,l+1 − (m + l)H̃m−1,l+1

+ 2αl H̃m,l−2 + 2αmH̃m−2,l − 2αmH̃m+2,l − 2αl H̃m,l+2

+ (
4D(m2 + l2) − 4iω

)
H̃m,l

]

= 1

2i

[
(2π)2cm,l(c1,0 − c−1,0) − (cm−1,l − cm+1,l)

]
, ∀m, l ∈ Z. (A2)

This defines an infinite inhomogeneous system of linear equations. From the underlying
symmetries of the problem follow further conditions on the coefficients (see Table 1).

Finally, to obtain the power spectrum Szz(ω) in terms of the coefficients, we plug Eq. 13
into Eq. 9 and use the orthogonality relations for the Fourier basis:

Sxx (ω) = 2(2π)�
[
∑

m

H̃m,0

∫
dy1 f (y1)e

imy1

]

.

Choosing our observable to be z = f (y1) = sin(y1) = (eiy1 − e−iy1)/(2i) and using
H̃m,l = −H̃−m,−l leads to

Sxx (ω) = 2(2π)2�
[
i H̃0,1(ω)

]
= −8π2�

[
H̃0,1(ω)

]
, (14 revisited)

where �[·] denotes the imaginary part of the argument.

Solving the Full Linear System

We start by solving the system Eq. A2 for the coefficients cm,l of the expansion of P0(y);
this allows us to construct Eq. A2, which is then solved for the coefficients H̃m,l(ω) of the
expansion of H̃(y;ω) at each ω. From there, the power spectrum Eq. 14 is evaluated.
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In the first place, we truncate the set of basis functions {eimy1eily2},−L ≤ m, l ≤ L and
choose a specific ordering of its elements, according to which the coefficients cm,l (resp.
H̃m,l(ω)) are arranged into a column vector c (resp. hω) which looks as follows

c(L) = [
c−L ,−L , . . . , c−L ,L , · · · , c0,−L , . . . , c0,L , . . . , cL ,−L , · · · , cL ,L

]T
,

where T denotes transposition and c(L) indicates that the size of c depends on the truncation
parameter L . Note that each entry of c(L) corresponds to a coefficient cm,l associated to a
basis function eimy1eily2 , i.e.

[
c(L)

]

m(2L+1)+l
= cm,l , −L ≤ m, l ≤ L .

One can define hω analogously. The chosen ordering is also used to set the elements of the
matrices M and Aω of coefficients of the linear systems Eqs. A1 and A2, as well as the
inhomogeneity f on the RHS of Eq. A2.

With the previous ingredients we can write the equivalent of Eqs. 7 and 11 in matrix form
as

M(L)(D, α)c(L) = 0, (A3)

A(L)
ω (D, α;ω)h(L)

ω = f (L), (A4)

where we have indicated the dependences ofM andAω on the noise intensity D, the stability
parameter α and the frequency at which we evaluate the power spectrum ω. After solving
Eq. A3 once, we can determine f and solve Eq. A4 for hω at a set of discrete frequencies
{ωi }, i ∈ 1, . . . , N to evaluate the power spectrum S(ω) in a given frequency window.

The applicability of the numerical method outlined above is limited by the size of the
matrices M(L) and A(L)

ω , which is determined by the truncation parameter L . In particular,
the dimension ofM(L) and A(L)

ω grows as (2L + 1)2 × (2L + 1)2, thus even small values of
L yield large matrices. Solving linear systems described by large matrices is memory- and
CPU-demanding. However, the use of efficient sparse matrix methods (M(L) and A(L)

ω have
very few non-zero entries) may alleviate these problems.

The issue of the high-dimensionality of the system becomes manifest prominently in the
low-noise regime, which feature probability distributions displaying very abrupt changes on
small spatial scales. In such cases, one must increase L in order to include modes eimy1eily2

with higher spatial frequencies |k| = √
m2 + l2 in the expansion of P0(y) and H̃(y;ω).

This will limit in practice the applicability of the matrix-inversion method in the weak-noise
regime, even if using sparse methods.

Appendix B: Estimating the Parameter δ(α)

Here we show how to calculate the value of δ from a matching condition.
For our original system Eq. 1 in the absence of noise, i.e. for

ẏ1 = cos(y1) sin(y2) + α sin(2y1),

ẏ2 = − sin(y1) cos(y2) + α sin(2y2) (B1)

the eigenvalues at the saddle points are±1−2α, and the saddles are located at (±π/2,±π/2).
Consider the saddle located at (π/2, π/2). The quadrant surrounding this point is the region
bordered by the ingress boundary (y1 = 0, 0 < y2 ≤ π/2) and the egress boundary (0 <

y1 ≤ π/2, y2 = 0) (cf. Fig. 10). At this saddle, the stable eigenvector is (1, 0) and the
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Fig. 10 For illustration, we show
simulated trajectories for
different noise intensities as
indicated. Referring to the saddle
point at (π/2, π/2), the vertical
and horizontal blue lines indicate
the ingress and egress
boundaries, respectively
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unstable one is (0, 1). The difficulty in estimating the effective value of δ is that the flow in
this square is nonlinear.

Consider the deterministic linearization of the flow around the saddle at (π/2, π/2) in
terms of the variables u1 and u2:

u̇1 = (−1 − 2α)u1 (B2)

u̇2 = (1 − 2α)u2. (B3)

We are interested inmatching the properties (namely the first passage time distribution) of the
linearized and nonlinear systems when the noise is very small. Thus, we aim to establish an
explicitmapping between the deterministic flowof the linearized system and the deterministic
flow of the nonlinear system, because for small noise the effect on the trajectories only comes
into play close to the fixed point, where the linearization is accurate.

For the linearized system the ingress boundary is given by u1 = δ, 0 ≤ u2 < δ. In order
to determine δ we use the matching properties of the flows. In particular, we consider the
flow along an invariant subset, namely the solution

u1(t) = δe(−1−2α)t , u2(t) = 0 (B4)

which corresponds to the solution of the initial value problem starting from the ingress
boundary

y1(0) = 0, y2(0) = π/2. (B5)

Thus we wish to solve the initial value problem

ẏ = cos(y) + α sin(2y), y(0) = 0, (B6)

and choose δ so that the linearized flowmatches as the trajectories approach the saddle point.
That is, we wish to choose δ so that

lim
t→∞

π
2 − y(t)

δe(−1−2α)t
= 1. (B7)

Or, equivalently, we set

δ = lim
t→∞

[
e(1+2α)t

(π

2
− y(t)

)]
. (B8)
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We can simplify this as follows: We use the relation y1(t) = arcsin(z1(t)) and the implicit
solution for z1(t), Eq. 49 in the asymptotic limit t → ∞. In this limit, z1 is very close to
1 and the time variable t (z1) is dominated by the logarithm ln(1 − z1). For a more precise
approximation of Eq. 49 in the asymptotic limit, we can set z1 = 1 in the other two logarithmic
terms

t (z1) = ln(2)

2 − 4α
− 2α ln(1 + 2α)

1 − 4α2 − ln(1 − z1)

2 + 4α
= ts − ln(1 − z1)

2 + 4α
, (B9)

where ts is the constant defined by the first two terms. This equation can be quickly solved
for z1:

z1(t) = 1 − exp [−(2 + 4α)(t − ts)] , t → ∞ (B10)

Making use of the series expansion

arcsin(1 − ε) ≈ π

2
− √

2ε, ε � 1 (B11)

we find exactly the inverse of the diverging prefactor and the finite limit for δ:

δ = lim
t→∞ e(1+2α)t

√
2e−(1+2α)(t−ts ) = √

2 exp [(1 + 2α)ts] , (B12)

which can be further simplified by Eq. B9, yielding Eq. 18.
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