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We consider a homogeneous population of stochastic neurons that are driven by weak common noise (stimulus).
To capture and analyze the joint firing events within the population, we introduce the partial synchronous output
of the population. This is a time series defined by the events that at least a fixed fraction y € [0,1] of the
population fires simultaneously within a small time interval. For this partial synchronous output we develop
two analytical approaches to the correlation statistics. In the Gaussian approach we represent the synchronous
output as a nonlinear transformation of the summed population activity and approximate the latter by a Gaussian
process. In the combinatorial approach the synchronous output is represented by products of box-filtered spike
trains of the single neurons. In both approaches we use linear-response theory to derive approximations for
statistical measures that hold true for weak common noise. In particular, we calculate the mean value and power
spectrum of the synchronous output and the cross-spectrum between synchronous output and common noise. We
apply our results to the leaky integrate-and-fire neuron model and compare them to numerical simulations. The
combinatorial approach is shown to provide a more accurate description of the statistics for small populations,
whereas the Gaussian approximation yields compact formulas that work well for a sufficiently large population
size. In particular, in the Gaussian approximation all statistical measures reveal a symmetry in the synchrony
threshold y around the mean value of the population activity. Our results may contribute to a better understanding

of the role of coincidence detection in neural signal processing.
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I. INTRODUCTION

Synchronous neuronal activity is ubiquitous in the nervous
system. In many neuronal systems, like in visual [1] or
olfactory [2] sensory cells, experiments revealed that the
synchronous activity of neuronal assemblies carries special
information about sensory stimuli. It is therefore believed that
precise temporal relations between the discharges of the neu-
rons impact the ability of target neurons to represent sensory
stimuli. The synchronous spiking of neuronal assemblies can
be read out by post-synaptic neurons by means of coincidence
detection. Reference [3] suggested that coincidence detection
is a prevalent operation mode of cortical neurons.

A very simple form of temporal precision becomes manifest
by joint firing of a sizable fraction of a group of neurons (pop-
ulation) within a small time window. Such synchronous events
can occur by chance in completely independent neurons, they
can arise due to recurrent connectivity, or they can be caused
by common stimuli. Here, we focus on synchrony induced
by common stimuli (due to overlapping receptive fields)
rather than by coupling between the neurons. Populations
of uncoupled neurons with overlapping receptive fields can
be found, for instance, at the first stage of sensory input
processing. Examples are auditory nerve cells [4], olfactory
receptor neurons in insects [5,6], and electroreceptors in
weakly electric fish [7]. Experimental studies on the effect
of common noise can be found in Refs. [8—11]. In particular,
the synchronizing effect induced by common noisy stimulation
was experimentally investigated in [12—14].

In the past, different groups have developed analytical
approximations for the statistics of pairs of neurons and of
the summed activity of a population under common drive
[10,15-21]. Although synchrony measures have been debated
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in the literature, the idea of a time-dependent synchronization
variable, that potentially encodes specific information on the
common stimulus, has received comparatively little attention
[14,22].

Reference [22] investigated the information transmission
between a common stimulus and the total synchronous firing
of a neuronal population. In this theoretical study a rather
strict measure of synchrony was used. A synchronous event
was defined by the joint firing of all neurons within a short
time window.

Here, we generalize the definition of the synchronous
output, for which only a certain fraction y of the population
has to fire in synchrony, which should be in large populations
a biologically more relevant scenario. It reflects the fact that a
postsynaptic cell, having some firing threshold, needs a certain
minimal number of action potentials to arrive within a short
time.

In this paper, we focus on the effect of a weak common
stimulus on the statistics of the partial synchronous output.
Our paper is organized as follows. In the next section we
introduce our model, different mathematical representations
of the partial synchronous output, and the spike-train statistics
of interest. We review previous analytical approaches in
Sec. III. In Secs. IV, V, and VI we outline our approximations
for the mean value, the cross-spectrum with the common
stimulus, and the power spectrum of the synchronous output,
respectively. In Sec. VII we inspect how the spectra depend
on the temporal correlation structure of the stimulus. We
summarize and discuss our results in Sec. VIIIL.

II. MODELS AND MEASURES

We consider a homogeneous population of N uncou-
pled spiking neurons, each of which having intrinsic,
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independent Gaussian white noise sources &(?),k €
{1,...,N} with (& ()& (")) = 8¢ 18(t — t’). Homogeneous
means, that every neuron is given by the same stochastic
dynamical system receiving identical mean input and therefore
exhibiting the same average firing rate ry. In addition, every
neuron is stimulated by the same zero-mean Gaussian white
noise process s(¢) with auto-correlation function (s(¢)s(t')) =
2¢DS(t — t'), which we will refer to as the common stimulus.
The intensity of s(¢) is therefore given by c¢D,D being the
total noise intensity each neuron is subject to (intrinsic plus
common noise) and ¢ € [0,1] is the correlation coefficient
of the input, which quantifies the identical fraction of the
total noise each neuron receives. The parameter ¢ determines
how large the common external stimulus is in comparison to
the independent intrinsic fluctuations. For ¢ = 0 (no common
stimulus), all neurons are completely independent. For ¢ = 1,
the independent fluctuations vanish such that every neuron in
the population receives exactly the same input and thus behaves
asymptotically (in the long-time limit) exactly the same way.
Here, we focus on the case of a weak common stimulus, being
small in comparison to the other inputs of the neuron (¢ < 1).

The theory we present is general and does not assume
a specific spiking neuron model. To compare our analytical
results to numerical simulations we apply our theory to a
population of leaky integrate-and-fire (LIF) neurons, given
by the single neuron voltage dynamics

U = —v + 1+ 50) + V(1 = 02Dg(1), ey

where p is the constant base current. Whenever the voltage vy
exceeds the threshold one, a spike is recorded and vy is reset
to zero. The corresponding spike trains are x;(t) = ) ; 8(r —
t.i), where the #;; are the spike times of the kth neuron. The
average firing rate ry of each neuron is the mean value of the
spike train ro = (xt)g ;. All necessary statistics for the LIF
model are stated in Appendix A.

A. Partial synchronous output

We define for a population of N neurons the partial
synchronous output Y, (t) with synchrony threshold y €
{0,1/N,2/N,...,1} in the following way:

1, ifatleast y N neurons
spike within[r — A,z] . 2)
0, else

Y, (1) =

The partial synchronous output is a two-state process and can
be interpreted as a coarse representation of a postsynaptic cell
which is activated (having the value one) if at least y N out
of N presynaptic neurons fired together in a time window
of width A (see Fig. 1 for illustration). In order for this
postsynaptic cell to act as a coincidence detector, the bin width
A (corresponding to the time over which a postsynaptic neuron
integrates incoming input) has to be small in comparison to
the inverse firing rate 1/ry of the presynaptic neurons. We
therefore demand that the product Ry := rpA is sufficiently
small. Note that the definition, Eq. (2), can be applied to the
output of model neurons or to that of real neurons alike. A
simple way to study experimentally the synchronous response
of uncoupled neurons to common noise is to use Eq. (2) for
a set of trials, in which the same neuron is driven by the
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FIG. 1. Schematic representation of the model. A homogeneous
population of N uncoupled neurons is subject to a common stimulus
s(¢) and independent noise sources &(¢), leading to variable single
neuron output spike trains x;(z). The partial synchronous output
Y, (t) measures the times where at least a fixed fraction y of the
population is active (shaded stripes). Y, (¢) can be interpreted as a
coarse approximation of the activity of a postsynaptic neuron.

same frozen-noise stimulus. For the special case of y = 1 and
N = 2 this yields very similar results for the spectral statistics
considered in this paper compared to the scenario in which
distinct neurons are driven by the same stimulus [14].

The naming ‘synchronous output’ might be misleading in
some cases, for instance for y = Ry. Note that Rj is the
average fraction of the population which is active within a time
window of width A. This means that even if the neurons are
completely independent of each other, on average Ry N of them
fire simultaneously. Hence, only for synchrony thresholds y
that are sufficiently larger than Ry does the process Y, (¢) truly
measure (above-average) joint firing events.

We now introduce two distinct but completely equivalent
ways of representing Y,, in mathematical terms. To do so, we
first convolve each spike train of the population with the boxcar
function B(t) = 6(t) — 6(t — A) (here 6(¢) is the Heaviside
function):

br(t) := B * xx(t) =/ xx(t)Hdt', 3)
t—A

where the asterisk stands for the convolution g * g,(¢) =
ffooo g1(t)ga(t — t)dt'. The function bi(¢) can be seen as a
box train where each spike of x; at time ¢#; is substituted
by a box of hight one going from #; to #; + A (see Fig. 2
upper row). All these box trains are statistically equivalent. In
the following, an arbitrary representative of these processes
br(t),k € {1,...,N}, will be referred to by b(¢) (without an
index).

The population activity A is then the sum of these box
trains, divided by the population size

A:NZbk. 4)

The population activity A(¢) is a dimensionless discrete
variable, A € {0,1/N,2/N, ...,1}. It states the fraction of the
population that has been active within [t — A 7], i.e., it is the
normalized spike count and differs from the standard definition
of a rate [23]. If A(¢r) =0, then there was no spike within
[t — A,t], whereas A(t) = 1 corresponds to the case where all
neurons fired simultaneously (assuming a sufficiently small
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FIG. 2. Illustration of the measurement of the synchronous output Y, (¢), given by Eq. (5), for different synchrony thresholds y for a
population of N = 4 neurons. Top: Each spike train of the population is convolved with a box of hight one and width A. The population
activity A(z) (middle row) is the sum of these ‘box trains’ divided by the population size. The partial synchronous output (bottom rows) is one
whenever the population activity is larger or equal to y and zero otherwise.

bin width A, such that the probability that a single neuron fires
twice in one bin can be neglected). A synchronous event with
synchrony threshold y is then simply given if the population
activity is larger or equal to y, such that the partial synchronous
output can be written as

1
Yy=9(A—y+m), 5)

where 6(t) is again the Heaviside step function. Figure 2
illustrates this activity-based representation of the synchronous
output for a population of four neurons.

1. Combinatorial representation of the synchronous output

The Heaviside function in Eq. (5) makes a direct analytical
calculation of important statistics of Y, difficult. We can,
however, avoid the Heaviside function by generalizing an
ansatz introduced in [22]. Not only the sum of the box-
trains, but also their products contain information about the
population’s synchrony. If there are, for example, exactly n
neurons (let us say the first n neurons of the population) that
fired within [r — A,z], then the product of their box trains,
[Tiei bk = b1 - by - ... - by, isone attime ¢, whereas all higher
order products are zero. Hence, in order to check if at least y N
neurons fired, one must look at all combinations of products
of y N neurons:

YN
k=Y J]tn (6)

over all(yl\]’\,) k=1
combinations

Kk (t) is non-zero if at least y N neurons fired within [t — A,¢].
However if more fired, let us say n, then k = (VLN), because
there are (VLN) combinations that contribute with a one in
Eq. (6). In order to derive again a two-state process for the

synchronous output, one must take into account all higher
order products:

N J
Y= a > []btn Q)
J=vN overall(};{) k=1

combinations

with the combinatorial factor

_ (—1)/YN j-1

This representation of the partial synchronous output, which
we will refer to as the combinatorial approach, does indeed
coincide with the activity-based representation Eq. (5). The
derivation of the prefactors a; is given in Appendix B.

B. Statistics of interest

Our aim is to derive statistical properties of the synchronous
output, namely its average value (Y, ), its power spectrum
and its cross-spectrum with the common signal. In numerical
simulations we calculate the power spectrum of X and the
cross-spectrum between two stationary stochastic processes
X(t) and Z(t) by

st = i FrOKD) g
Swat = jim FrDZD), )

where the brackets () denote averaging over repeated trials.
The asterisk stands for the complex conjugate and X7 is finite-
time-window Fourier transform

) ) |
Xr(f) = / dt X (1)
-T2
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with T being the size of the measurement time window which
is centered around ¢t = 0.

In the analytical calculations we make use of the
Wiener-Khinchin-Theorem and derive the cross-spectrum via
the Fourier transform of the cross-covariance Cxz(t) :=
(X(0)Z(7r)) — (X)(Z) and the power spectrum by the Fourier
transform of the autocovariance Cxx (1),

Sx.z = Czx, (10)
Sy = Cxx. (11)
The tilde indicates the formal Fourier transform
o0
C(f) = f dt C(t)e'*™ /!, (12)

Note that we define the spectra without the DC-peak.

III. PREVIOUS ANALYTICAL APPROACHES
AND RESULTS

A. Linear response ansatz

For weak stimuli s(¢), the instantaneous firing rate of the
single neuron can be approximated by the linear response
relation [24-26]

r(t) = (x)e (1) = ro + K % s(1), (13)

where K (¢) is the linear response function and r is the mean
firing rate. This ansatz leads for the single box train, by =
B *x x;, to

t

R(1) : = (br)g, (1) = / r(tdt'

t—A
:r0A+B*K*S(t)
=: Ry + s.(1), (14)

where we used in the first line that (B * x;) = B % (x),
since the convolution with B is a linear operation. The
windowed firing rate R(¢) is the probability that a neuron
spikes within [r — A,¢], conditioned on a fixed realization
of the common stimulus up to time ¢. On average, a neuron
spikes with probability Ry = roA within this time window.
For small stimuli this firing probability is modulated by the
time dependent effective stimulus

Se(t) := B * K * s(t). (15)
By the convolution theorem, its Fourier transform is given by

5.0f) = B(HX(Ef), (16)

where x = K is the susceptibility of the firing rate of a neuron,
driven by the current u + \/ﬁ“g‘ (7). The stochastic process s,
is a linear functional of the Gaussian process s and therefore
Gaussian as well. Like s, the effective stimulus is centered
around zero, i.e., (s.) = 0, and its power spectrum is by Egs. (9)
and (16) given by

S5, () = 1BAOX(PISs(f)- a7)

Here, S;(f) =2cD is the power spectrum of the com-
mon white noise. The variance of the effective stimulus
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reads
(s7) = f e (f)df (18)

_ A2 / Sn(AT P (NPS(Hdf,  (19)

where the sinc function, sinc(x) = sin(x)/x, emerges from the
Fourier transform of the box filter

IB(f)| = Asinc(ATf). (20)

Within this linear response approach the power spectrum of
the single box train reads

So(f) = IBUHPS(f), 21

where S, is the power spectrum of a single spike train [e.g., for
an LIF-neuron S, is given by Eq. (A4)]. The power spectrum
of the population activity is according to Eq. (4) given by

1 1
Sa = NSb + <1 - N)Sbk,bk/- (22)
Using the linear response ansatz Eq. (14), the cross-spectrum
between two different box trains equals the power of the
effective stimulus [17-19]

St () = S5.(f) (23)

and thus we obtain for the activity’s power spectrum

1 1
Sp = —38, 1——)S,. 24
A Nb+< N) 5, (24)

B. Large population limit—Gaussian approximation of activity

The population activity is a sum of identically distributed
stochastic processes b;. Having the central limit theorem
in mind it is therefore plausible for large population sizes
N to approximate A by a continuous Gaussian stochastic
process. The obvious constraint that impedes a rigorous
application of the central limit theorem is the non-zero global
correlation between the box trains due to the common stimulus.
However, because we only consider weak correlations, a
normal distribution of the activity is shown to be a reasonable
approximation of the true activity density distribution p4 for
large values of N [21]:

—(A — Ry)?

2
205

1
pa(A) ~ p§(A) = exp[ } (25)
2o

with mean activity (A) = Ry = roA and variance
Ry — R}
N

Note that even in the limit of an infinite population, the activity
still displays variability, which is solely due to the common
stimulus. Whenever we use this Gaussian approximation of
the population activity, we indicate it by the suffix ‘G’.

o2 = [s?) + (26)

IV. MEAN PARTIAL SYNCHRONOUS OUTPUT

How often does a synchronous event occur and how does
this depend on the synchrony threshold? This can be addressed
by looking at the mean value of the partial synchronous output.
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FIG. 3. Mean synchronous output vs synchrony threshold for
different strength of the common noise as indicated. Symbols mark
simulation results. The solid lines show the Gaussian approximation
Eq. (30) for the cases ¢ € {0,0.5}. For an infinite large population
and without any correlation (¢ = 0) (red dashed line), the mean
synchronous output is either one for y < Ry or zero for y > Ry.
For full correlation (¢ = 1) (purple circles) the mean synchronous
output equals the mean activity Ry = ryA for any y > 0 (and is one
for y = 0). LIF-parameters: u = 1.2,D = 0.01; > r, = 0.58,N =
100, Ry = 0.2 (corresponding to the box width A = 0.35).

If we use the activity-based definition, Eq. (5), the mean
value of the synchronous output reads

1
(Y},)=<9<A—y+ﬁ>>, 27)

where () denotes the average over all independent noise
sources & = {£,&,, ... &y} and the stochastic common signal
s. Equation (27) is in a simple way related to the cumulative
probability of the population activity

(Yy) =P(A = p). (28)

Hence, the mean synchronous output is simply the probability
that the activity is equal to or above y. Because P(A > y) =
P(Y, = 1), the mean value (Y, ) is the probability of having a
partial synchronous event.

To give an overview over the possible limit cases, Fig. 3
shows how the mean synchronous output depends on the input
correlation for the full range of ¢ € [0, 1]. If the driving noise is
identical for all neurons (¢ = 1), they all act asymptotically as
one neuron, such that the activity can only have one of the two
values, zero or one, and the probability for A = 1 is equal to
Ry. Consequently, the mean value of the synchronous output
is Ry for any y > 0 (see circles in Fig. 3). The other extreme is
the case where all neurons are completely independent of each
other (¢ = 0). For the limit of an infinitely large population
the activity averages out the independent noise, such that
for ¢ = 0 the activity has the fixed value A = (b) = Ry. The
probability of having a synchronous output is therefore either
one for y < Ry or zero for y > Ry (see red dashed line). For
a finite population this step function is smoothed, resulting in
a sigmoid function (see blue diamonds), because the activity
can take different values around Ry. As c is increased, (Y, )
undergoes a transformation from this sigmoid to the constant
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case for ¢ = 1. We now show how (Y, ) can be calculated for
small input correlations c.

A. Gaussian approach

If we use the Gaussian approximation of the probability
density of the population activity, Eq. (25), we can approximate
Eq. (27) by

)0 = [ pfcaa 29)
Y

TN

leading to the complementary error function
1 —Ry—1/@2N
(v,)C = —erfc(y 0o — 1/ )). (30)
2 V20,4

For increasing population size the mean synchronous output
approaches

16 = Lerge[ ¥ =Ko 31

lim (Y, )" = ~erfc

N—oo 2 2(Se2>

B. Combinatorial approach

If we use the combinatorial product representation of
Y,, Eq. (7), we can directly compute the average of the
synchronous output:

N J
SOEDITTEDD <<l_[bm> > (32)
j=vyN nver.‘all'(z}l) k=1 £ s
N
N )
= Z aj( -)((R0+Se)‘l>sv (33)
j=n N

where we used that the intrinsic noise sources &; of different
neurons are independent of each other and we applied the
linear response ansatz, Eq. (14). By the binomial theorem we
can further evaluate

J . )
(Ro+s))s =Y (i) Ry (st)- (34

k=0

Considering only orders up to the variance of the effective
stimulus, we get the following combinatorial approximation
of the mean synchronous output:

N N ) (i —1 2
v,) = Za,(j)Ré[l—i—%%} (35)

J=YN

In Fig. 4 both approximations of (Y,) are compared to
numerical simulations of LIF populations for a weak com-
mon stimulus (¢ = 0.1). Figure 4(a) shows the mean for
comparatively small populations, while in Fig. 4(b) the large
population limit is explored. As can be seen in Fig. 4(a) the
combinatorial approximation, Eq. (35), (dashed lines) is in
excellent agreement with the numerical simulations (symbols).
One limitation of its applicability, however, is the numerically
expensive evaluation of the combinatorial factors in Eq. (35),
which becomes intractable for large values of N. For this
reason we apply the combinatorial approach only to small
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FIG. 4. The probability for a synchronous event is a sigmoid
function of the synchrony threshold. Mean partial synchronous output
(Y,) = P(Y,, = 1) versus synchrony threshold y for LIF populations
of various sizes N. (a) For small populations, simulation results
(symbols) are compared to the Gaussian approximation, Eq. (30),
(solid lines) and to the combinatorial theory, Eq. (35), (dashed lines).
(b) For large populations simulations are compared to the Gaussian
theory only. The red dashed line in b marks the limit case for an
infinite large population given by Eq. (31). The vertical line marks
the mean population activity Ry. Parameters: © = 1.2,D = 0.01,c =
0.1,Rp =0.2.

or moderately sized populations (N < 50). The Gaussian
approach, Eq. (30), gives a reasonable approximation of the
mean synchronous output (see solid lines), even though we
consider only small populations in Fig. 4(a). In Fig. 4(b) we
see that for large population sizes, the Gaussian approximation
gives an adequate description of (Y, ).

The probability of having a synchronous event is a sigmoid
function of the synchrony threshold y, if the input correlation
is small. If y is set notably below the mean population
activity Ry, then the probability that the activity is above
y 1is close to one. In this case the population fires quasi
always ‘in synchrony’. In the other extreme, when y is
set exceedingly above Ry, i.e., when we demand a very
large fraction of the population to fire simultaneously, the
probability that the activity exceeds the value y is close to
zero. In this scenario there is hardly ever a synchronous event.
Both extremes are therefore unfavorable to encode a weak
time-dependent signal. The common signal is encoded in the
change of the instantaneous population activity A(z). In fact,
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FIG. 5. Mean synchronous output for fixed input correlation ¢ =
0.1 and for different total noise intensities D € {0,0.01,0.2} leading
to the mean firing rates ry € {0.56,0.58,0.80}. Simulation results
(symbols) are compared to the Gaussian approximation, Eq. (30)
(solid lines). Remaining parameters: u© = 1.2, Ry = 0.2, N = 100.

for large populations, the activity is approximately given by
A(t) = (D) = Ry + s.(t) [see Eq. (14)]. If y is set too far away
from the mean activity Ry, then this small change of A will
not influence the synchronous output, which will be almost
always one for y <« Ry or almost always zero for y > Ry.
Hence, we can expect that the cross-correlation between the
synchronous output Y, and the common signal s is maximal
for y = Ry.

Figure 5 shows the mean synchronous output for different
values of the total noise intensity D for a fixed input correlation
¢ = 0.1. An increase in the total noise results in an increase of
the variance of the stimulus and with it to a larger value of the
variance ai [see Eq. (26)]. As a consequence, the integral over
the distribution py, Eq. (29), i.e., (Y, ), displays a slower decay
in y. Also for the deterministic case (D = 0), (Y,,) is a sigmoid
function if we assume an asynchronous initial state (random
initial voltage values of the single neurons), resulting in a
normally distributed activity. The Gaussian approximation,
Eq. (30), works best for weak total noise, i.e., for small values
of D.

V. CROSS-SPECTRUM BETWEEN COMMON NOISE AND
PARTIAL SYNCHRONOUS OUTPUT

An important statistics that tells us how much the syn-
chronous output is affected by the common stimulus, is their
cross-spectrum. In the following we outline how the cross-
spectrum can be approximated analytically and we test our
approximations by comparison with numerical simulations.

A. Gaussian approach

If we approximate the population activity by a Gaussian
process, we can apply the Bussgang theorem [27]. It states
that for any two stationary Gaussian processes, the cross-
correlation function taken after one of them has undergone
a nonlinear transformation is identical to the cross-correlation
of the two original signals up to a constant. In particular,
let X and Z be stationary Gaussian processes with (Z) =
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0 and variances oy and o, having the cross-covariance

Cxz(t) = (X(0)Z(7)). Then, for any transformation V, the
cross-covariance between the distorted process V(X) and the
original signal Z is given by

Cyix)z(t) = aCxz(7) (36)

with the proportionality factor
1 [o¢]
a=— / V) — (XDpxdx. ()
oy Jox

Because

00 _ 2
(Vo) = / V() _G—x) ]dx

el
exp 5
00 2oy 20

we can rewrite Eq. (37) by

o= - (v

e (38)

ox=Cconst

If we apply this theorem to the Gaussian process A(¢) and
to the transformation V(A) =6(A —y +1/(2N)) =Y, we
obtain the following relation for the cross-correlation between
the synchronous output and the common stimulus:

Cy,s =agCas = acCh. (39)
The last equality holds true because all box trains
are statistically equivalent, such that (A(0)s(7)) =

(NI Z,ivzl br(0)s(7)) = (b(0)s(7)). According to Eq. (38)
the proportionality factor is obtained by taking the derivative
of Eq. (30) with respect to the mean activity Ry:

; (=)
=Pa\Y — 7o
op=Cconst 2N

=—(Y,)¢
dR0< 2

oG

1 2
= exp |:— IB_ZVi| . (40)
/21 ai
In the last line we have expressed the dependence on y by the

important parameter

_ Y =R —1/CN)

oA

By (41)

Thus, the proportionality factor o is a Gaussian function in y,
centered around Ry + 1/2N. For a large population we obtain

lim ag(y) = ! exp|:_(y — R’
N—oo /27T<Se2)

2057 [

Turning now to the Fourier domain, by virtue of Egs. (10)
and (39), the cross-spectrum between the partial synchronous
output and the common stimulus has the same frequency
dependence as the cross-spectrum between the single box train
with the stimulus

Ss.v, (f) = ac(¥)Ss.6(f). (43)
By the linear response ansatz, Eq. (14), and because (s) = 0
Crs(t) = (R(0)s(7))s = (5.(0)s(7)), (44)
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such that
Ssu(f) = BxS;(f). (45)

The absolute value of the single box-train cross-spectrum is
therefore given by [using Eq. (20)]

|S5.6(f)] = Asinc(Az )| x (IS (f)- (46)

For the cross-spectrum between the synchronous output and
the common stimulus we obtain in the Gaussian approximation

e

Sy, ()] = Asinc(ATf)Ix (OIS (). (47)

2
2moy

B. Combinatorial approach

One can directly compute the cross-spectrum of the
synchronous output using the combinatorial product represen-
tation, Eq. (7). This ansatz leads, like the Gaussian approach,
to a cross-spectrum which is proportional to the single box
train cross-spectrum Ss (/). For the proportionality factor we
derive in the combinatorial approach

LNy |~ D(j —2) (52
ac = }:(H(j>jRé1<1+£L——§L——2%§).(4&
0

Jj=vN

The derivation of Eq. (48) is shown in Appendix C.
At the first glance surprising, using Eq. (48) in combination
with Eq. (35) yields

_d
T dRy

i.e., the general relation Eq. (38) holds true in this approxima-
tion as well.

Figure 6 shows the absolute value of the cross-spectrum of
the synchronous output for a population of ten simulated LIF
neurons, normalized to its maximum for different synchrony
thresholds y (colored solid lines). One sees that these rescaled
spectra almost overlap, i.e., they share approximately the
same frequency dependence, which is well described by the

ac (Yy)e, (49)

1.0 - — ~4=0.1
% v=0.2
S08F =03
% vy=04
(7)) v=0.5
2 0.6 e
&) r=u
3 . v=0.7
< 04 theory
(6]
(%]
o

02 1 1 1 |

0.0 0.5 1.0 1.5 2.0

frequency f

FIG. 6. Cross-spectrum between partial synchronous output and
common noise is proportional to the one of the single box train.
Absolute value of the cross-spectrum, |S;y, (f)|, rescaled by its
maximal value for various synchrony thresholds y . Simulation results
(colored solid lines) are compared to the theoretical prediction,
Eq. (47), normalized by the maximum (black dashed line). Parame-
ters: u = 1.2,D =0.01,c =0.1,Ry = 0.2,N = 10.
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FIG. 7. Absolute value of the cross-spectrum is maximal if
the synchrony threshold is set to the mean population activity.
The proportionality constant « quantifies how much larger the
cross-spectrum between the partial synchronous output and the
stimulus is, in comparison to the single-neuron response [S; v, (f) =
a(y)Ss.p, (f)]. ais plotted over the synchrony threshold y for various
population sizes N as indicated. In the simulations (symbols) a(y)
was taken as the ratio of the maxima of Sy, , and S; 5. The simulation
results are compared to the combinatorial approximation, Eq. (48),
(dashed lines) and the Gaussian theory, Eq. (40), (solid lines). The
red solid line marks the limit case for infinite large populations, given
by Eq. (42). The vertical line marks the mean activity value Rj.
Parameters: u = 1.2,D = 0.01,c = 0.1,Ry = 0.2.

single box train cross-spectrum |S; ;(f)| given by Eq. (46)
(black dashed line). One observes slight deviations for small
frequencies, which are not captured by the linear response
approach.

In Fig. 7 we plot both approximations of the proportionality
factor a(y) for different population sizes. The combinatorial
approach, Eq. (48), (dashed lines) is in excellent agreement
with the simulation results. The Gaussian approximation,
Eq. (40), (solid lines) slightly underestimates o« for small
population sizes, but gives very good results for larger
populations (see N = 100) where we cannot evaluate Eq. (48)
numerically any more.

VI. POWER SPECTRUM OF THE PARTIAL
SYNCHRONOUS OUTPUT

The common noise does not only affect the cross-
correlation but also the autocorrelation of the synchronous
activity. However, even if no common stimulus is present,
the calculation of the power spectrum of Y, is a non-trivial
problem. For approximations of the power spectrum, Sy, (f),
we will again employ the two different approaches.

A. Gaussian approach

For any stationary Gaussian process X and any smooth
transformation V(X) =Y, the autocovariance Cyy(t) =
(Y(0)Y (1)) — (Y)? of process Y can be expressed by the
autocovariance of X [28]:

oo

1 2
Z n—< T v<X)> Cix(o). (50)

Cyy(r) =
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If we assume the activity A to be Gaussian distributed, we can
apply Eq. (50) to get an expression of the autocovariance of
the partial synchronous output

ii dne A—y+— ! 2C (r) (51
n!'\dAn 2N AA

n=1
Although the Heaviside function is not a smooth function, we
can formally differentiate it, which leads to a §-distribution
and its derivatives. Equation (51) considers only averages
of these derivatives. These are integrals over the probability
distribution pfj and hence, it is clear how this §-function and
further derivatives need to be evaluated. For n > 1 we obtain

o
<dA” ( —y)>

1 n—1,G
_ (—1)”*‘/ 8<A y + i)—d PiA) 14
0

Cy,y, (1) =

2N ) dA"!

n—1

d
=_1n1
(=1 AT

P (A) (52)

A=y— 5N
The nth derivative of the normal distribution can be expressed
in terms of Hermite polynomials (probabilistic version),
Hey(x) 1= (—1)"e" /> 42 ¢=**/2 such that

-y : 53
- o e"(IBV)pA (J/ - ZN)v ( )

A:y—ﬁ A

Pi(A)

dA”

where B, is given in Eq. (41).
Plugging Eqs. (52) and (53) into Eq. (51), we obtain

_ﬂZ 00 H 2
Cy,y,(v) = reo? Z (n-i (),3'1/)2” Can

(). (54)

The Fourier transform of this autocorrelation function yields an
expression for the power spectrum of the synchronous output

[ S+ 3 (nef:f;!) OinfSA(f)},
(55)

Sy, () =

where S, is given by Eq. (24). By ‘*nS’ we denote the n-
fold convolution of the function S with itself (* 1S =S5x%S,

*25 = S8 *S,...). The power of the synchronous output
can be thus expressed by a weighted sum of convolutions of
the activity’s power spectrum.

Although we now have all the ingredients to evaluate
Eq. (55), it turns out that the numerical evaluation of the infinite
sum of convolutions is difficult for most parameter regimes,
i.e., the sum cannot be truncated without making a seizable
error. However, we can derive an alternative expression
[completely equivalent to Eq. (55)] for the power spectrum
as follows.

The Hermite polynomials appearing in Eq. (54) satisfy the
so-called Mehler’s formula [29]:

[e ]

> @ (Heu()? =

1 ,a’ —a
e —Xx — . 56
n=0 n! Vl—azexpl: * 1—02] ( )
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In order to apply this formula we rewrite the terms in Eq. (54):

2 n+1 A(T) n
Hel(B,) (Cmf)) _ / " dalmeg,), 61
0 n!

2

n+DI\ o2
where
Caa(z IFT(S
pa(r) = SaD) _ IO (58)
04 04

is the normalized autocorrelation function of the population
activity, which can be derived by taking the inverse Fourier
transform (IFT) of Eq. (24). With Eq. (57), the infinite
sum in Eq. (54) is replaced by an integral, resulting in the
desired alternative expression for the autocovariance of the
synchronous output

1 pa(t) 1 13)%
C T)= — da—————exp| — , (59
YyYy( ) m p[ 1 +a] ( )

2 0
and to the power spectrum

1 pa(T) 1 133
Syy(f):EFT ; da—_l_azexp _1+a ,
(60)

where FT stands for the Fourier transform.

The evaluation of the expression Eq. (60) involves three
integrals: two Fourier transforms and the integral over a. This
is manageable compared to the large number of convolutions
that potentially have to be evaluated in Eq. (55). Unfortunately,
there is no closed analytical solution of the integral in Eq. (59)
for a general value of y. An exception is the case y = Ry,
i.e., when the synchrony threshold is set to the mean activity,
leading to B, ~ 0. For this case we obtain

1
Sy, (f) = ZFT[arcsin(pA)]. (61)

In particular, if we assume that the correlation function
contributes mainly for long times where |p4] < 1 and
arcsin(ps) & pa, we can further approximate the power
spectrum by

1S
Sy (1)~ 55 (62)
A

Equation (61) describes simulation results for y = Ry in-
deed very well (see Fig. 8), and even the simple approximation
Eq. (62) gives a rough estimate. Hence, if the synchrony
threshold is set to the mean activity, the power spectrum of
the synchronous output is approximately proportional to the
power spectrum of the population activity, i.e., to the power of
all spikes.

B. Combinatorial product approach

The derivation of the power spectrum in the combinatorial
product approach is much more cumbersome than the respec-
tive calculation in the Gaussian approach and delegated to
Appendix D. The main result for the power spectrum of the
synchronous output in case of independent spike trains (¢ = 0)
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FIG. 8. For y = Ry the power spectrum of the synchronous
output is approximately proportional to the power spectrum of the
population activity. Power spectrum of the partial synchronous output
if the synchrony threshold y is set to the mean activity Ry. Simulation
results (circles) are compared to the Gaussian approximation Eq. (61)
(solid line) and to Eq. (62) (dashed line). The spectra have their maxi-
mum at roughly the single neuron firing rate ry = 0.58 (vertical dotted
line). Parameters: u=1.2, D=0.01,¢=0.1,Ry = 0.2, N = 100.

reads

N minGj.j) *
_ Z i+ Z Jod'sm &
Syy = ajaerO o m— le (63)
Jj.j'=yN m=max(l, j+j'—N)"0

with S,(f) = Sy(f) + R28(f) and

_(N\(N—m\ (N —j
4 [ A

We only present the spectrum in zeroth order of the common
stimulus power because this result already gives a reasonable
approximation of the frequency dependence of Sy, (f) for
weak stimuli. For completeness, we also state the result in
first order of the common stimulus’ variance in Eq. (D7) in the
Appendix.

C. Discussion of the power spectrum

Equation (60) illustrates that within the Gaussian approach
the power spectrum depends on the synchrony threshold y only
through the key parameter ;‘35. The parameter B, Eq. (41), is
essentially the distance between y and the mean activity Ry,
normalized by the activities standard deviation. Note that for
any y < Ry there is always a ' > Ry, namely y’ = 2Ry +
I/N —y, such that 87 = B’.. Hence, the Gaussian theory
predicts that the corresponding power spectra of Y,, and Y,
are equal.

In Fig. 9 we compare the Gaussian approximation, Eq. (60),
to simulations of a population of 100 LIF neurons. The theory
agrees well with the simulation results and illustrates that the
overall synchrony power is maximal for y = Ry (8, ~ 0) and
the magnitude of power spectra drops as ,3)% increases. As
predicted by theory, the power spectra corresponding to y-
values with the same ﬂg-value are very close to each other,
especially for larger frequencies. Atlow frequencies, the power
spectrum for y < Ry is larger than for y’ > Ry, if ,35 = ,3)%,
(see inset in Fig. 9).
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FIG. 9. The distance of the synchrony threshold y to the mean
activity determines the magnitude of the power of the synchronous
output. Power spectrum of the partial synchronous output for a pop-
ulation of N = 100 LIF neurons for various synchrony thresholds y.
The Gaussian theory Eq. (60) predicts the identical result for y-values
which lead to the same value of B, = (y — Ry — 1/(2N))*/o;. The
inset shows the power spectrum for small frequencies. Parameters:
n=12,D=0.0l,c =0.1,R, = 0.2,N = 100.

In Fig. 10 we compare both theories with simulation results
for an LIF population of only ten neurons. As expected for
small populations, the Gaussian theory (black solid lines)
does not work as well as for N = 100, but still gives a
reasonable approximation. The main limitation of the Gaussian
approach is that it does not distinguish between y-values
which lead to the same value of /3)% but yield different spectra
in the simulations, cf. data for y = 0.1 (blue triangle right)
and y = 0.4 (green diamond). The combinatorial approach,
Eq. (63), (dashed lines) gives a different result for every y
value and approximates the simulation results better. Because
we neglect in Eq. (63) the influence of the weak common
stimulus, this approximation underestimates the magnitude
of the power spectrum of the synchronous output. We have
verified that Eq. (63) describes perfectly well simulation results
of the power spectrum for ¢ = 0 (not shown).

V=02 _
. 5= 03”01
>~ T=04y g
W10} by =017
= A v=05;82=35
E — Gauss theory
"8' \ X ---=- Combi theory
& 0.051 N
T RSz
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0.0 0.5 1.0 1.5
frequency f

FIG. 10. For small populations, the combinatorial approach
works better than the Gaussian one. Power spectrum of the partial
synchronous output for a small population of ten LIF-neurons for
various synchrony-thresholds y as indicated. Simulation results
(symbols) are compared to the Gaussian approximation Eq. (60)
(black solid lines) and the combinatorial approximation (dashed lines)
Eq. (63). Parameters: u = 1.2,D = 0.01,¢c = 0.1,Ry = 0.2,N = 10.
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What happens as y — 1, i.e., when the synchronous output
is non-zero only if all neurons fire simultaneously? In this case
the distance parameter ﬂ)% is large, such that the integrand in
Eq. (59) is very small, i.e.,

L [— &] <1 (65)
V1—a? Pl71+a

unless a is close to one, which only occurs if pa(7) & 1. As
a consequence, the correlation function is strongly peaked
around t = 0, leading in the Fourier domain to a flat power
spectrum

Sy,_.,(f) ~ const. (66)

This behavior is not surprising. If y is close to one, syn-
chronous events become very rare and statistically independent
of each other, i.e., we deal with a rare-event statistics which
is Poissonian (flat power spectrum). The argument involving
Eq. (65) also holds true in a large population for y — 0
because ,35 attains high values in this case as well. The
variability of the synchronous output is then determined by
the rare events of (almost) complete silence in the population.

The limits of extreme y values are explored in Fig. 11.
In panel (a) the logarithmic scale for the spectra illustrates
the strong reduction in their magnitude for both, y — 1 and

a 0 _
(@ 100 y=02=Ryp2=0
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& 10—2,
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| e X
g 107" y=04; g2 =11
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g 10710~ v =0.6; B =45
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©
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g
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FIG. 11. The power spectrum of the synchronous output con-
verges to a constant as y — 1 or y — 0. Power spectrum of the
partial synchronous output for various synchrony threshold values
y. (a) Total value in log-scale. (b) Sy, scaled by its maximal
value. The power spectrum is maximal and the most peaked for
¥ = Ry (red line). As y approaches one or zero, the power spectrum
converges to a flat spectrum as predicted by Eq. (66). Parameters:
n=12,D=0.0l,c=0.1,Ry = 0.2,N = 100.
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y — 0. The flattening of the spectra in these limits is better
seen on a linear scale [Fig. 11(b)], in particular if the spectra are
rescaled by their maximal value. The power spectrum becomes
indeed constant as y approaches one and is already rather
flat for y > 0.6 in the shown frequency range. The flattening
effect for y — 0 (see y = 0.01) is less pronounced, because

2 2

y=0 < /3 y=1*

VII. APPLICATION TO NON-WHITE COMMON STIMULI

So far, in all simulations, we considered the common noise
to be white, which is useful in order to see how the system
reacts to an arbitrary frequency component of a common
input. However, white noise is certainly not a very natural
stimulus. We can in principle employ our results to a Gaussian
stimulus of arbitrary temporal correlation as long as it is weak.
For instance, we can consider the Ornstein-Uhlenbeck process
(OUP)

7,8 = —5 + V2Dc& (1), ©67)

where & is Gaussian white noise. The intensity of s (integral
over its autocorrelation function) is again Dc, but now it has
a positive autocorrelation time t,. The power spectrum of
process Eq. (67) reads

2Dc
I+ Qnfg)?

Figure 12 shows the cross- and power spectrum of the
synchronous output with synchrony threshold y = 0.25 of
an LIF population driven by a common OUP for two
different autocorrelation times. The power spectrum of the
corresponding stimulus is shown in the inset in Fig. 12(a). We
see that the theory agrees well with simulation results, also in
the case of colored input.

For small autocorrelation times 7, (see purple circles in
Fig. 12) we see a similar behavior to the white noise case. For
larger values of 1 (see triangles in Fig. 12) the power of the
stimulus (and of the effective stimulus) is diminished already
at moderate frequencies, such that the cross-spectrum between
the synchronous output and the stimulus is concentrated at low
frequencies. As a consequence, the ratio between the power of
the synchronous output at low and high frequencies increases
with 7, [see Fig. 12(b)]. Because we fix the noise intensity, an
increase in the autocorrelation time 7, leads to a decrease in
the variance of the stimulus, such that the mean magnitude of
the power of the synchronous output is decreased as well.

S(f) = (68)

VIII. SUMMARY

In this paper we have studied the statistics of the partial
synchronous output of a neuronal population which is driven
by a weak common noise. This synchronous output can be
regarded as a simple model of a postsynaptic coincidence
detector which is only activated if at least a fixed fraction
y of the presynaptic population fires simultaneously. Here,
we derived analytical approximations for the statistics of
the partial synchronous output: for its mean value, power
spectrum, and its cross-spectrum with the stimulus. We
investigated how these statistics depend on the activation
threshold y .
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FIG. 12. Theory is also applicable to colored noise. Spectra of the
partial synchronous output (y = 0.25) for an LIF population which is
driven by a common Ornstein-Uhlenbeck process, given by Eq. (67),
with two different autocorrelation times 7, as indicated. (a) Cross-
spectrum between synchronous output and the common stimulus. The
inset shows the power spectrum of the OUP. (b) Power spectrum of the
synchronous output. Symbols mark simulation results and the solid
lines show the theoretic predictions (47), (68), and (60). Remaining
parameters: © = 1.2,D = 0.01,c = 0.1,Ry = 0.2,N = 100.

For the analytical approximations we employed two differ-
ent approaches. In the Gaussian approach the synchronous
output is a threshold function of the summed population
activity A(¢) and the activity is assumed to have a Gaussian
distribution. Under this assumption, all statistics of the
synchronous output can be expressed in terms of the statistics
of the population activity. The Gaussian approach results in
reasonable, sometimes even excellent approximations of the
investigated statistics, especially for large populations. The
advantage of the Gaussian approach is the simplicity of the
formulas, making the role of y more transparent. For instance,
it predicts a particular symmetry in the dependence of power
and cross-spectra on y. The statistics is indistinguishable if
the synchrony threshold has the same distance to the mean
activity Ry, i.e., for values of y that lead to the same value
of |By] =1y — Ro— 1/(2N)|/o4. In numerical simulations
this symmetry is found to be valid to a good approximation. It
reflects the similarity of joint firing and joint silence of neurons
in the population.

In the combinatorial approach, the synchronous output is
expressed by products of the box-filtered spike trains. This
yields generally more accurate results. In contrast to the
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Gaussian approach it differentiates between y -values that lead
to the same value of |8, | and can quantitatively describe the
small differences between these cases. However, the resulting
equations are quite cumbersome and do not provide much
insight about the roles of parameters. In addition, in practice
they can be evaluated only for small populations because of the
required numerical effort to compute the combinatorial factors
occurring in the formulas.

We showed that for all values of y and for any population
size, the cross-spectrum of the synchronous output with
the common stimulus is approximately proportional to the
cross-spectrum between the single neuron and the stimulus.
This result is in line with Ref. [22], where the authors showed
this proportionality for small populations for the case y = 1.
It also implies that the cross-spectrum between synchronous
output and stimulus displays the same frequency dependence
as the cross-spectrum of the population activity with the
stimulus. In conclusion, the temporal correlations between
the synchronous events and the stimulus are similar to those
between the single or summed spike trains and the stimulus.
This is somewhat surprising because the synchronous output
is a strongly non-linear function of the population activity.
Apart from the frequency dependence, the amplitude of the
cross-spectrum is mainly determined by the aforementioned
distance |B,| of the threshold y to the mean activity, and
decays exponentially (~e~#7).

The most demanding challenge in our study was the
approximation of the power spectrum of the synchronous
output. For this spectrum the synchrony threshold does not
only influence the magnitude (which again decreases with
|8, 1), but also the frequency dependence. We showed that
for y = R, the power spectrum is approximately proportional
to the power spectrum of the population activity. This is
due to the fact that in this case the synchronous output is a
symmetric two-state version of the population activity. In the
opposite limits, as y goes to one or zero, the power spectrum
approaches a flat function, revealing the Poisson-like character
of synchronous events if the synchrony threshold is set far away
from the mean activity.

Summarizing, the amplitude of the synchronous output’s
spectra is most drastically reduced if the synchrony threshold
differs strongly from Ry (i.e., for |B,| > 1). With respect
to temporal aspects, the synchronous output differs mainly
in its autocorrelation statistics from those of the population
activity and again these differences are most pronounced for
|8, | > 1. As we pointed out in the introduction, it is simple to
extract the synchronous output of a homogeneous population
from repeated trials of frozen-noise stimulation in experiment.
Hence, it should not be too complicated to test our theoretical
predictions with real experimental data.

What are the consequences for the postsynaptic cell that
we wanted to mimic with Y, ? The postsynaptic cell sets
the value of Ry by the time it integrates incoming input.
It also determines the synchrony threshold y by its firing
threshold. For y = Ry the synchronous output is most sensitive
to changes in the common stimulus. However, in this case, it
does not properly reflect true synchronization events but rather
represents a binary version of the summed population activity.
In order for the postsynaptic cell to measure synchronization
that is beyond average, and therefore to encode different
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information than the summed activity does, the synchrony
threshold should not be too close to the mean activity. Beyond
average synchronization is measured if y > Ry + o4 (joint
firing) orif y < Ry — o4 (jointsilence). Furthermore, for large
values of N, a real postsynaptic neuron is not likely to operate
in the extreme regime where y is close to zero or one. We
have seen that for these limit values, the synchronous output
resembles a rare-event pulse train and is not variable enough
to encode any information about an incoming weak stimulus.

It is an interesting question how exactly the information
transmission of the synchronous output is influenced by the
choice of y. Does the synchronous output preferentially
encode certain frequency bands of the stimulus as shown
for y = 1 and small N in Refs. [14] and [22]? The question
of information filtering can be approached by computing the
coherence function between the synchronous output and the
common stimulus (for some limitations of this approach, see
[30]), for which we have derived all necessary quantities in
this paper. Thus, our results will be useful in future studies
to explore how the readout mechanism of a postsynaptic cell
influences its information selection.

In this paper we exclusively study a neuronal population,
where the neurons do not influence each other. It would
be worthwhile to extend our theory to recurrently coupled
networks. These can reveal a broad diversity of synchrony
states [31,32] and it is a deeply interesting question how the
network state impacts signal transmission of the synchronous
activity.
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APPENDIX A: SPECIFIC EQUATIONS FOR THE
LIF-MODEL

To implement our theory to the special case of the
stochastic leaky integrate-and-fire neuron model with the
voltage dynamics

b= —v+ u+V2DE®) (A1)

with (£(1)&(¢")) = 8(t — t'), zero reset value and threshold one,
the following expressions are necessary.
The mean firing rate is given by [33]

WV B
ro= |/ e’ erfc(y)dy | . (A2)
(n—=1)/~/2D

The susceptibility of the firing rate can be expressed in terms
of parabolic cylinder functions D,(z) [34,35]

ro2mif  Darig—1(“75) — € Darig—1(J5)

VDQrif —1) DZm‘f(%) - eGDZm'f(\/LB)

(A3)
where € = (2 — 1)/(4D). The power spectrum (without DC
peak) of the spike train reads [36]

[ Daris (42) | = €[ Danis (25)[°
ro 5 -

[Daniy (475) = € Dais (45))]

x(f)=

Se(f) =

(A4)
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APPENDIX B: COMBINATORIAL PRODUCT DEFINITION
OF THE PARTIAL SYNCHRONOUS OUTPUT

The prefactors a; of the combinatorial definition of the
partial synchronous output, Eq. (7), can be derived in the
following way. Let «; be the sum over all combinations of
products of j box trains

J
> T]en.

N —
over all(j) k=1
combinations 7

Kj(l) = (B1)

Let n be the actual number of simultaneously spiking neurons
attime ¢,i.e.,n = N - A(t). Then «;(t) = (%), ifn > j and it
is zero otherwise.

The synchronous output can be described by

N
Y ()= a;- ;). (B2)

J=YN
where we still have to determine the prefactors a;. If n < y N,
then Y, () = O (as it should be) because «;(t) =0 forn < j

by definition. If n > y N terms with j > n do not contribute
to the sum and we obtain

n

v,mn=Y a]<';>

J=yN

(B3)

In order for Y, (¢) to have the value one for any n with N >
n > y N, the following recursive formula must hold:

ay=1— Zl a; (”) (B4)
= N
which can be translated to the explicit form
aj = (—l)f—VN< s ) (BS)
J—VvN

APPENDIX C: ANALYTICAL DERIVATION OF THE
CROSS-SPECTRUM USING THE COMBINATORIAL
PRODUCT DEFINITION

Using the combinatorial product definition of Y, Eq. (7),
the cross-covariance between the partial synchronous output
and the common stimulus reads

s(r)>
s

Cy, s(v) = (¥, (0)s(1))

- > o X ([0

J=vyN overall( ) k=1

combinations b

N

N .
= > aj(j)<<b<0)>gs<r))x,

J=vN

(ChH

where we used that the stimulus ({s) = 0) is independent of
the intrinsic noise and that all individual box trains, b.(1),
are independent and identically distributed. Using the linear
response ansatz Eq. (14), we further evaluate Eq. (C1) up to
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the second order of the variance of s:

(b)) s(D), = ((Ro + 5.(0))s(D)); (C2)

= J RS {se(O)s(D))s + (g) Ry (s s, (C3)
where we used again the binomial formula Eq. (34) and that
the stimulus s and the effective stimulus s, are both Gaussian
processes with zero mean value, such that (sf(O)s(t)) =
0. For any Gaussian random variables Xi,X5,X3,X4
with zero mean holds (X;X,X3X4) = (X1 X2)(X3Xy4) +
(X1X3)(X2X4) + (X1X4)(X2X3), such that (s}(0)s(1)), =
3(s3)(se(0)s(t))s. The cross-covariance Eq. (C1) reads there-
fore

Cr, 5(7) = aCy, (1) (C4)

with the proportionality factor

N . . 2
N i — DG —2)(s;
o= Za,(,)jzeg ‘<1+—(J )2(’ )(R—2)>. (C5)

j=rn N 0
Because of Eq. (14), Cs, s = Cp 5 and thus Eq. (C4) reads in

the Fourier domain

Ss,Yy(f) = aSs.b(f)~ (C6)

APPENDIX D: ANALYTICAL DERIVATION OF THE
POWER SPECTRUM USING THE COMBINATORIAL
PRODUCT DEFINITION OF Y,

Using the combinatorial definition, Eq. (7), the autocorre-
lation function of the partial synchronous output reads

(¥, (0)Y, (v)) = Cy,y,(v) + (¥,)*
N

Y ¥ T )
J.J'=yN over all(N) over all(//)
combinations 7 ¢ombinations 7/
(DD)
where
PIY = Hbm(O) 1"[ by (7). (D2)

k'=1

The mean value of P depends on the number of matching
pairs, bi(0)bi(7), i.e., when the same neuron index appears
twice in Eq. (D2). If there are exactly m matching pairs we
find

(PLL) = (b)) (bONL ™ (b)) ™).

If we neglect the influence of the weak stimulus s(¢), Eq. (D3)
reads

(D3)

<’P]{[ rr’> — (Cbb(t) + RO) RJ+J 72m,

where Cpp(1) = (b(0)b(1)) — (b(0))? is the autocovariance
of the single box-train. Hence, instead of summing over all

(D4)
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combinations 7 and 7’ in Eq. (D1), we only need to sum over
the number of matching pairs m, resulting in

Cy,y, (1) + (Y,)?

min(j, j") 2
Crp(7) + Ry
= ¥ wak Y (LY
0

J.j'’=yN m=max(0, j+j' —N)

(D5)

where #; ;1 ,, = (m )(IjV r’:)( jN_}fl) is the number of combina-
tions of having exactly m matching pairs given fixed values of
j and j’. By the convolution theorem we obtain for the power

spectrum of Y, (f # 0):

0
S
N min(j, ;")
- #iom kK 4
— J+i JoJj'sm
= 2wk Y0 = TS
P o T 0
J,j'=yN m=max(l,j+j —N)

(D6)

with $,(f) = S,(f) + RS(S(f) being the power spectrum of
the single box train including the DC-peak. Taking into
account the §-function in S, is important, because it affects
the convolutions.
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We only state the linear-response approximation for the
power spectrum up to the first order of the variance of the
common stimulus

N o min(j,j’) #.
Sy ()= D aja;R}" > ;sz,n'”w” (),
J.j'=yN m=max(l,j+j'—N) 0
(D7)
where
_ j=m j—m (sf) *k .
w_{(1+[( ; )+( . )]Ré K,
L ORPG —mG —mys, xS,
m—1
; '/_2 2 * S,
+ mlj+ m](se>m_2 )
+ m[j—|‘j/—2}’f’l—|-l]SY * * Sb
sk

+ R§m(m — 1)[(s§)m>|j 35+ 8, * mﬂj 3§b]}.
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