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Abstract
Wecalculate the instantaneous firing rate of a stochastic integrate-and-fire neuron driven by an
arbitrary time-dependent signal up to second order in the signal amplitude. For cosine signals, this
weakly nonlinear theory reveals: (i) a frequency-dependent change of the time-averaged firing rate
reminiscent of frequency locking in deterministic oscillators; (ii)higher harmonics in the rate that
may exceed the linear response; (iii) a strong nonlinear response to two cosines evenwhen the
response to a single cosine is linear.We alsomeasure the second-order response numerically for a
neuronmodel with excitable voltage dynamics and channel noise, andfind a strong similarity to the
second-order response that we obtain analytically for the leaky integrate-and-firemodel. Finally, we
illustrate how the transition of neural dynamics from the linear rate response regime to amode-
locking regime is captured by the second-order response. Our results highlight the importance and
robustness of theweakly nonlinear regime in neural dynamics.

1. Introduction

Linear response theory is a successful tool for analyzing how a nonlinear dynamical system reacts to external
perturbations [1]. It was originally developed in physics but has also been applied in various other fields [2, 3].
The response to time-dependent signals is of particular importance for nerve cells (neurons) because the
response properties of these highly nonlinear and noisy elements determine theway that our brain perceives
sensory stimuli,makes decisions, and generates behavior. The linear response of neurons has beenmeasured in
experiments [4–6] and calculated for simplemodels [7–9]; it has been used to explore, for instance, transmission
of fast signals [10, 11] and the emergence of stable activity in recurrent networks [12].

Despite its success, linear response theory inherently cannot fully characterize the behavior of nonlinear
systems and, consequently, extensions of the theory to second and higher orders have been studied, e.g., in
nonlinear optics [13–15] andmagnetic particle imaging [16]. In neuroscience, the second-order response of
nerve cells has beenmeasured experimentally [17–20], used in theweakly nonlinear analysis of network stability
[21], and calculated for a simple Poisson neuronmodel [22]. However, a complete theory for the second-order
response for a neuronmodel with explicit voltage dynamics and an understanding of the significance of the
second-order response for biological neurons is stillmissing.

In this paper, we analytically derive the second-order response of a noisy integrate-and-fire neuron to a
general time-dependent external signal. Calculated in this way, the rate yields interesting single-neuron statistics
that can be comparedwith experimental data; it can be also regarded as the instantaneous population rate of a
group of uncoupled neurons subject to the same external drive. Hence, our results are relevant for population
coding of time-dependent signals.We illustrate the significance of theweakly nonlinear response bymeans of
signals consisting of one or two cosine functions. Bymeans of extensive numerical simulations, we verify that
our results are valid for a broad range of noise intensities.
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2.Methods

2.1. LIFmodel
We study the leaky integrate-and-fire (LIF)model inwhich the subthreshold voltage v t( ) obeys

v v s t t . 1m e x= - + + +˙ ( ) ( ) ( )
Whenever v t( ) hits the threshold v 1T = , we register a spike time (figures 1(b), (c)) and set v t( ) to v 0R = for an
absolute refractory period τ. Time ismeasured in units of themembrane time constant and the voltage in
multiples of the distance between reset voltage and threshold voltage (for details, see [23]). The voltage dynamics
are subject to a constant input currentμ and towhiteGaussian noise tx ( )with zeromean and autocorrelation

t t t D t2x x dá + ¢ ñ = ¢( ) ( ) ( ). The noise represents intrinsicfluctuations (e.g., channel noise) or external
background input fromother neurons in the network [24]. The strength of the driving signal s te ( ) (figure 1(a))
is quantified by the small parameter e.We consider the instantaneous firing rate r t( ), i.e., the probability density
of a spike at time t. The rate can be obtained numerically by averagingN trials of the spike train (figure 1(c)). For
this, we divide the fraction of trials that havefired in an interval t t t, + D[ ]by the size of the interval tD
(depending on parameters, we used N 10 108 9= – ). The rate can also be determined analytically from a
perturbation approach (see below). Already for small e, the rate can exhibit a strongly nonlinear response to the
signal as can be seen from the higher harmonic infigure 1(d).

The voltage v t( ) in equation (1) is a stochastic process whose probability density, P v t,( ), obeys the Fokker–
Planck equation [3]

P L P s t P r t v v , 2t v R0 e t d¶ = - ¶ + - -ˆ ( ) ( ) ( ) ( )
with the operator L v Dv v0 m= ¶ - + ¶ˆ ( ) and appropriate boundary condition (more details in the appendix).
The solution of equation (2) in principle allows us to fully determine the density P V t,( ) and the time-
dependent firing rate r t( ), but in practice it can only be solved via a perturbation approach.

2.2. Izhikevichmodelwith ion channel noise
Wealso performnumerical simulations of amodel of excitablemembrane dynamics that was proposed by
Izhikevich [25] and is similar to the two-dimensionalMorris–Lecarmodel [26]. Following reference [27] the
model is endowedwith channel noise, which is due to the finite number of potassium selective channels. The
voltage dynamics of the Izhikevichmodel are given by

Cv I s t I v I v I v n, , 3L Na K0 e= + - - -˙ ( ) ( ) ( ) ( ) ( )

where I0 is a constant input current, IL is a passive leak current, INa is a deterministic ‘persistent sodium’ current,
and IK is a potassiumcurrent gated by thenumber of openpotassiumchannels n N0 - - . Thenumber of open
channels n t( ) comprises a time-dependent stochastic processwith voltage-dependent per capita transition rates

vor ( ) for channel opening and vcr ( ) for channel closing. In our simulations,we consider a potassiumcurrentwith
a high threshold and standardparameters: Passive leak current I g v EL L L= -( )with g 8 mS cmL

2= and
E 80 mVL = - ; ‘persistent sodium’ current I g m v v ENa p Na Na, = -¥ ( )( )with g 20 mS cmNa

2= ,
E 60 mVNa = , and voltage-dependent activation m v v1 1 exp 20 mV 15 mV ;= + - -¥ ( ) { [( ) ]} potassium
current I g n N v EK k K= -( )( )with g 10 mS cmK

2= , E 90 mVK = - , open channel number n N0 - - ,

Figure 1.Nonlinear response of the LIFmodel. (a)Cosine signal with frequency f 0.215;= (b)membrane potential; (c) spike times
for different trials (those for (b) are shown in orange); (d) instantaneous firing rate from simulations (red), linear theory (dashed line),
and nonlinear theory (solid black line) given in equation (8). Parameters: 1.1m = , D 0.001= , 0t = , 0.05e = .
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and the total number of channelsN=100.Membrane capacitance isC 1 F cm2m= . The per capita transition
rate for channel opening is v v1 1 exp 25 mV 5 mVor = + - -( ) { [( ) ]}and for closing is v v1c or r= -( ) ( ).

2.3.Weakly nonlinear response theory
Forweak signals ( 1e � ), thefiring rate r t( ) can be approximated by thefirst terms of aVolterra series [28]

r t r dt K t s t t

dt dt K t t s t t s t t, . 4
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( )
is the unperturbed firing rate (i.e., for 0e = ), andK1 and

K2 in equation (4) are thefirst- and second-order response kernels, respectively. In general, it ismore convenient
to use equation (4) in the frequency domain:

r r s d s s, , 50 1
2

2
3� � �'òw d w c w w w c w w w w w w= + + ¢ - ¢ ¢ - ¢ ¢ +˜( ) ( ) ( ) ˜( ) ( ) ˜( ) ˜( ) ( ) ( )

where the response functions 1c and 2c are defined as the Fourier transforms of the respective kernels

dt e K t dt dt e e K t t; , , . 6i t i t i t
1 1 2 1 2 1 2 2 1 21 1 2 2ò ò òc w c w w= =w w w( ) ( ) ( ) ( ) ( )

The linear response function 1c w( ) for the leaky integrate-and-firemodel has been calculated in [8, 9]; in terms
of the parabolic cylinder functions xk� ( ) [29], it reads [8]
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with v v v v D2 4R T T R
2 2 mD = - + -[ ( )] ( ).

For an illustration of the second-order effects that are quantified by 2c , we consider the sumof two cosines as
an input signal s t t tcos cos1 2a w b w f= + +( ) ( ) ( ), with a relative phase differencef. Inserting this into
equation (4), expressing the cosine functions by complex exponentials, identifying the integrals as the respective
susceptibilities, and neglecting higher than second-order terms in e yields
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where 1,2f is the complex argument of thefirst- and second-order response function, respectively. Theunderlined
terms represent the time-averagedfiring rate that is affected by the cosine signals in the secondorder, quantifiedby

,2c w w-( ). By time averaging,wemean integrationover a sufficiently long timewindowanddivision by the time
window.The time-averagedfiring rate obtained in thiswaywill contain only contributions from the time-
independent terms in equation (8), while each of the time-dependent termswill average out to zero.The bracket
... LR[ ] encloses thewell-known linear response terms at the driving frequencies (the groundmodes of the response)
which are quantified by 1c w( ).Higher harmonicsof eachdriving frequency (terms that oscillate twice as fast as the
driving oscillations) are contained in ... HH( ) and are quantified by ,2c w w( ). Last but not least, nonlinear
interactions of the two signals result in amixed response (terms in ... MR{ } ) at sums anddifferences of the two signal
frequencies quantified by ,2 1 2c w wo( ). Note that if the signal consists of two cosineswith equal frequencies
( 1 2w w= ), the last term in ... MR{ } will be time-independent andwill contribute to the time-averagedfiring rate.

2.4. Numericalmeasurement of thefirst- and second-order response functions
Thefirst- and second-order response functions can be also determined fromnumerical simulations (here
applied for the Izhikevichmodel) or from experimentalmeasurements of neural spike trains in response to a
sumof two cosine stimuli with 1a b= = , 0f = , and 1 2w w> . To this end, we consider the Fourier transform
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of equation (8) (here only for 0w > )

r
2

4
, 2 , 2

2
, , . 9

LR

HH

MR

1 1 1 1 2 2

2

2 1 1 1 2 2 2 2

2

2 1 2 1 2 2 1 2 1 2

w
e

c w d w w c w d w w

e
c w w d w w c w w d w w

e
c w w d w w w c w w d w w w

»+ - + -

+ - + -

+ - + + - - -

⎜ ⎟

⎡
⎣⎢

⎤
⎦⎥

⎛
⎝

⎞
⎠

{ }

˜( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ( )) ( ) ( ( )) ( )

Now, in order to determine the response functions numerically, wefirst numerically estimate the time-
dependent firing rate by simulatingN realizations of a spike train and dividing the fraction of trials that have
fired in an interval t t t, + D[ ]by the size of the interval tD . Then, by performing a discrete Fourier transformof
the estimated rate, we obtain r̃ and,finally, we determine the numerical estimates of the response functions by
inverting equation (9):
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wherewe neglected higher-order terms in e. Employing the symmetry relations for ,2 1 2c w w( ) that we explain
below,we can extract the second-order response function for all frequency arguments.

3. Results

3.1.Weakly nonlinear response of the LIFmodel
Using a perturbation ansatz for r t( ) and P v t,( ) in equation (2), we obtain a hierarchy of equations (details in
the appendix) that determine the second-order response of the LIFmodel (see [21] for the treatment of a similar
problem). Solving this hierarchywith the appropriate boundary conditions, we arrive at the Fourier transform
of the second-order response kernel
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The function 2c obeys the symmetries , ,2 1 2 2 2 1c w w c w w=( ) ( ) and , ,2 1 2 2 1 2*c w w c w w= - -( ) ( ) (where the
asteriskdenotes the complex conjugate),which implies inparticular that ,2c w w-( ) is real. These symmetries
becomeapparent infigure2,whereweplot the absolute value and the complex argument for twodistinctfiring
regimes of theLIFmodel [23]. Values along thewhite solid diagonal (infigures 2(a), (b), (c), (d))quantify the second-
order contributionof a cosine signal to themeanfiring rate (seeunderlined terms in equation (8)), values along the
white dasheddiagonal quantify the second-order contributionsof a single cosine tohigher harmonics in the output
(see terms contained in ... HH( ) in equation (8)), and the areaoff thewhite diagonals quantifies thenonlinear
interactions of two cosine signals (see terms contained in ... MR( ) in equation (8)). Values of the second-order response
functions along theblack lines infigures 2(a) and (c) ( , 0 0,2 2c w c w=( ) ( ) ) are proportional to thederivative of
the linear response functionw.r.t. the base current, d d1c w m( ) (seeAppendixB for details). For a subthresholdbase
current 1m < , noise required to reach the threshold and spike trains are typically irregular [interspike intervals have a
high coefficient of variation (CV)]whereas, for a suprathreshold base current 1m > , themodel exhibits sustained
firing even in the absence of noise and spike trains aremore regular (theCV is low). In the subthreshold regime
(r 0.140 » ,CV 0.4» ), the dependenceof 2c on the two frequencies is limited to twobroadpeaks that for our choice
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of parameters are located at f f 0.21 2= » o (figure 2(a), (b)). In the suprathreshold regime (r 0.420 » ,CV 0.02» )
the second-order response displays a rather different shape in the formof triangular structures (figures 2(c), (d)).

Because themagnitude of 2c ismuch larger in the suprathreshold regime than in the subthreshold regime
(see figures 2(a), (c)), wemainly focus our subsequent analysis on the suprathreshold regime and proceed to
discuss quantitatively the nonlinear effects of the sumof cosine signals on higher harmonics, the time-averaged
firing rate, and themixed response.

3.2. Excitation of harmonic oscillations
Wecompare the amplitude of the harmonic oscillation to the amplitude of the groundmode (orange circles and
blue diamonds, respectively, infigure 2(e)) that is excited by a single cosine ( 1a = , 0b = in equation (8)). The
amplitude of the second harmonic exhibits one pronounced peak at f 0.421 » (at the unperturbed firing rate)
and another at f 0.211 » (half the unperturbed firing rate), where it even slightly exceeds the amplitude of the
groundmode, implying that for these frequencies the excitation of the harmonic oscillation ismost pronounced.
This is exactly the case that we illustrated infigure 1. The linear response theory is in this case particularly
misleading because the higher harmonic is stronger than the groundmode.Note that the theory put forward by
Ostojic and Brunel [30], which is based on the incorporation of a static nonlinearity (linear-nonlinearmodel),
cannot capture the dominance of the higher harmonics for certain values of the driving frequency. In fact, for the
parameter set used infigure 1, theOstojic/Brunel theory yields practically the same curve as the linear response
(not shown) because the stationaryfiring rate (i.e., the static nonlinearity) is essentially linear over the relevant
range of signal values. The observed nonlinear effect in our theory and in the simulations arises from the true
dynamic second-order response to signals with a time scale that is comparable to the time scale of the system
(inverse firing rate).

3.3. Change of the time-averagedfiring rate
The time-averaged firing rate does not change in linear response. Second-order effects for a single cosine signal
( 1a = , 0b = in equation (8)) are illustrated infigure 3 for the two differentfiring regimes of themodel.

In the subthreshold regime ( 0.9m = ), a signal with a low or intermediate frequency can only increase the
time-averaged rate (figure 3(a)). High-frequency signals have practically no influence on the rate, as expected
from the low-pass nature of the LIFmodel. Amaximum is attained at an intermediate frequency that is larger
than thefiring rate and depends on the specific choice ofμ andD.

In the suprathreshold regime ( 1.1m = ), the signal can both increase and decrease the rate depending on the
signal frequency (figure 3(b)).While fast signals do not change the time-averaged rate, as for 0.9m = , a low-
frequency signal ( f 0l ) decreases the time-averaged rate inmarked contrast to the subthreshold case. The

Figure 2. (a), (c)Amplitude and (b), (d) complex argument of the second-order response function (equation (13)) as a function of the
two frequency arguments. (a) and (b) show the subthreshold regimewith 0.9m = , D 0.005= , and 0t = . (c) and (d) show the
suprathreshold regimewith 1.1m = , D 0.001= , and 0t = . Note the different scales in (a) and (c). (e)Amplitude of the ground
mode 1ea c w∣ ( ) ∣ (diamonds) and amplitude of the second harmonic 1 2 ,2 2

2e a c w w( ) ∣ ( ) ∣ (circles) for a single cosine ( 1a = , 0b = ,
0.05e = ) in the subthreshold regime. (f) Same asfigure 2(e) but for the suprathreshold regime.Nonlinear response depends on signal

frequency and can sometimes even exceed the linear response. The theory (black) infigures 2(e) and (f) is obtained by evaluating
equations (7) and (13). Note that the frequency dependence of the amplitude of the second harmonic in figures 2(e) and (f) can be
obtained by looking at the dashedwhite diagonal infigures 2(a) and (c).

5

New J. Phys. 19 (2017) 033038 SOVoronenko andBLindner



different effects of slow periodic signals on the time-averaged rate can be understood from aTaylor expansion of
thefiring rate. For slow signals, the time-dependent firing rate can bewritten as the unperturbed firing ratewith
amodulated base current, r s t0 m e+( ( )). A Taylor expansion then yields

r s t r
dr

d
s t

d r

d
s t

1

2
. 140 0

0
2

0
2

2 2m e
m
e

m
e+ » + +( ( )) ( ) ( ) ( )

For the time-averaged rate of an LIF driven by a slow cosine signal, this leads to

r t r
d r

d4
. 15T 0

2 2
0
2

e
m

á ñ » +( ) ( )

Hence, the change of the time-averaged rate due to periodic low-frequency signals is related to the curvature of
the sigmoidal rate function r0 m( ). The curvature of this rate function is positive for the subthreshold regime (at
the foot of the sigmoid) and negative for the suprathreshold regime (close to the plateau of the sigmoid).

Another feature in the suprathreshold regime is a precursor of frequency locking, which has already been
studied in the deterministic [31] and stochastic [32] versions of the LIFmodel. A signal with a frequency close to
themodelʼs unperturbed firing rate can entrain themodel within a limited frequency range (inset infigure 3(b)).
A signal with f r0> will speed up thefiring, while a signal with f r0< will slow down themodel. Hence, the
second-order response kernel provides a link between the deterministic nonlinear behavior of the LIFmodel
and its stochastic firing rate.

3.4. Interaction between two periodic signals
In order to study themixed response, we now consider two cosines ( 1a b= = in equation (8)). For the
subthreshold regime ( 0.9m = ), the second-order response function has a pronounced peak on thewhite dashed
diagonal (quantifying the amplitude of the higher harmonics) but only weak contributions off thewhite
diagonals, indicating aweakmixed response (figure 2(a)). However, in the suprathreshold regime ( 1.1m = ), the
second-order response function exhibits pronounced peaks and stripes off thewhite diagonals, indicating a
strongmixed response (figure 2(c)).

In the latter regime,wefirst stimulate theneuronby the sumof twocosines (figures 3(c), (d)) and record the rate
response (rednoisy curve infigure3(e)). The two signal frequencies are chosen such that they lie on theoff-diagonal
stripe infigure 2(c), satisfying f f r1 2 0+ » . In order to extract the significance of themixed response (terms
indicated by ... MR{ } in equation (8)), we then stimulate theneuronby the twocosines separately. The greynoisy
curve infigure 3(e), obtainedby summingup the respective responses and subtracting themeanfiring rate, r0, iswell
representedby the linear theory (keeping only zero andfirst-order terms in equation (8)), indicating that the
harmonics inducedby the cosines are negligible.The striking difference between grey and red lines shows that the
response to the sumof twocosines canbe stronglynonlinear even in a regimewhere the responses to the single
cosines are linear. Linear response theory in this case (dashed line) fails to grasp themodulationof thefiring rate (red
noisy line)bothwith respect to its overall amplitude aswell as to the timingof localminima andmaximaof the rate.

Figure 3.Weakly nonlinear effects of a sinusoidal stimulation. (a)Nonlinear change of the time-averaged firing rate versus signal
frequency for a single cosine ( 1a = , 0b = ) in the subthreshold regime ( 0.9m = , D 0.005= , 0t = ). Simulations (symbols) are
compared to theory (solid lines, underlined terms in equation (8)) for 0e = (diamonds), 0.05e = (circles), and 0.1e = (squares).
(b)As in (a) but for the suprathreshold regime ( 1.1m = , D 0.001= , 0t = ). In the suprathreshold regime, a cosine signal can both
increase and decrease the time-averaged rate. Inset in (b): For a strong signal and f close to r 0.420 » , themean rate follows closely the
input frequency (identity shown in green), reminiscent of 1:1 frequency locking. (c), (d), and (e) shownonlinear response to a sumof
cosines in the suprathreshold regime ( 0.05e = and remaining parameters as in (b)). (c) Input signal with 1a = , 0b = , and
f 0.1;1 = (d) input signal with 0a = , 1b = , and f 0.33;2 = (e) sumof responses to the individual signals from (c) and (d)with
subtracted unperturbed rate r0 (grey) versus the response to the sumof the two signals (red). Only the nonlinear theory, equation (8)
with 1a b= = (black solid line), describes the response to the sumof cosines correctly.
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Theweaklynonlinear theory (equation (8), solid line) in contrast captures both these aspects quitewell. Themixed
response is the strongest second-order effectweobserve in theweakly nonlinear regimeof theLIFmodel.

3.5.Weakly nonlinear response of the Izhikevichmodel with ion channel noise
In order to test the robustness of the results obtained for the LIF neuronmodel, we performed numerical
simulations for a biophysicallymore complex neuronmodel with ion channel noise, equation (3), that is driven
by a cosine stimulus (figure 4(a)). In contrast to the integrate-and-fire neuron, themembrane voltage
(figure 4(b)) of the Izhikevichmodel exhibits excitability (i.e., it generates spikes) and does not rely on afire-and-
reset rule. As for the LIFmodel, wefind that for a suprathresholdmean current (I 4.510 > ), thefiring rate of the
Izhikevichmodel exhibits harmonic oscillations (figure 4(d)), i.e., the response r̃ at 2 1w w= is equally strong or
even stronger than the response at the driving frequency itself ( 1w w= ).

The numericallymeasured second-order response function (figures 4(e)–(g)) shows a striking resemblance
with the second-order response function thatwe calculated analytically for the LIFmodel (figure 2), indicating a
high robustness of theweaklynonlinear theory for the response of spiking neurons. In particular, weobserve the
following similarities: the triangular structure of the second-order response amplitude (withpeaks located at half
thefiring rate) in the suprathreshold case, the broadly peaked structure in the subthreshold case, and the overall
dependenceof thephase on the two frequency arguments in both regimes.However, there are also differences: (1)
for the Izhikevichmodel, the amplitude is larger in the subthreshold than in the suprathreshold regime (the other
way around for theLIFmodel); (2) the detailed behavior of the phase along the diagonal in the suprathreshold
regime,which is almost constant for the Izhikevichmodel but decreases byπ in the same range for the LIFmodel;
(3) in the suprathreshold regime, the peak on the diagonal is larger than thepeaks on the frequency axes. Points (1)
and (2) couldbedue to the specific choice of parameters or could reflectmore substantial differences in the two
models.Note inparticular thatweused the samenumber of channelsN for the two regimes for the Izhikevich
model infigure 4 but different values of thenoise intensityD for theLIFmodel infigure 2. Thedifference (3) could
be causedby thefinite-amplitude simulation fromwhich the second-order response is estimated for the Izhikevich
model. Aswehave verified also for the LIFmodel, a too-large signal amplitude e leads to an underestimation of the
second-order response at themaximaon the frequency axes (not shown). For the computationally costly
Izhikevichmodel, it is not possible to reduce emuchmore than the valueswehaveused here.

3.6. Transition from linear response to stochasticmode locking via theweakly nonlinear regime
Let us return to the LIFmodel and illustrate underwhich circumstances theweakly nonlinear response becomes
manifest in the activity of spiking neurons.

First,we consider anLIFneuron that is drivenby a cosine stimulus of increasing amplitude (figure 5(a)) and is
subject to a backgroundnoise of constant strength (figure 5(b)). (Becausewe cannotdirectly plot thewhite noise tx ( )
(it possesses an infinite variance), weuse infigures 5(b) and (f) afiltered versionof thenoise,

t dt D t2
t

t t
òh x= ¢ ¢+D( ) ( ).)Forweak signal amplitudes ( 0.08e < ), thefiring rate of theneuron (rednoisy curve

infigure 5(e)) iswell describedby the linear response theory (dashedblack line). For large signal amplitudes
( 0.15e > ), thefiringof theneuron showspronouncedperiods of silencewhichbecomeapparent from the raster
plot (figure5(c)). In this regime,whichwe call stochasticmode locking, theneuronfires twicewithin eachperiodof

Figure 4.Weakly nonlinear response of theNaKmodel. (a) Input signal; (b) voltage trace obtained fromnumerical simulations of
equation (3) in the suprathreshold regime ( 0.3e = , I 5 A cm0

2m= ); (c) raster plot; (d)firing rate; (e) and (f) show absolute value and
argument of the second-order response function for the subthreshold regime (I 4.4 A cm0

2m= ). (g) and (h) show absolute value and
argument of the second-order response function for the suprathreshold regime (I0 as infigures 4(b)–(c)). Figures 4(e)–(h)were
obtained from simulationswith 0.05e = and 0.1e = , employing equations (11) and (12).
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the driving signal (2:1mode locking) andnoise only shifts the spike times but doesnot induce any skipping offiring.
The transition (0.08 0.15e< < )between the regimes of linear response and stochasticmode locking iswell
describedby the second-order theory (black solid line infigure 5(d)). For 0.15e > , the second-order theory still
predicts the positionof the peaks in thefiring rate quitewell but attainsunphysiological negative values between the
peaks (results not shown). The regionsof thedifferent regimes cannot be sharplydefinedbut here are chosen tobe
determinedby computing the relativemean squared errorbetween theory andprediction (computedover one signal
period), and terminating the theorywhere the error exceeds 10%.

Another transition inwhich theweakly nonlinear response becomesmanifest is depicted infigures 5(e)–(h).
Here, we consider an LIF neuron that is driven by a cosine stimulus of constant amplitude (figure 5(e)) butwhere
the strength of the intrinsic noise decreases slowlywith time (figure 5(f)).While the rate response is well
described by the linear theory for large noise strengths (dashed line infigure 5(h)) and the activity exhibits 2:1
mode locking for lownoise strengths, the transition between the two regimes is well captured by the second-
order theory (black solid line infigure 5(h)). The transition from the linear to the nonlinear regime controlled by
noise is consistent with the known linearizing effect offluctuations [33].

4.Discussion

In this study, we derived an analytical expression for the second-order response function of the LIFmodel and
illustrated the significance of theweakly nonlinear regime. Combinedwith the linear theory, our result
(equation (13)) predicts thefiring rate of a neuron (or, equivalently, the population rate of uncoupled neurons)
for an arbitrary signal up to the second order in the signal amplitude. Since the temporalmodulation of the rate
is thought to be an essential channel in neural information transmission [28], understanding and predicting it
theoretically for a broad range of signal frequencies is crucial.

The response of noisy systems toweak periodic stimuli can be successfully described by linear response
theory. In particular in computational neuroscience, this theory has been used to investigate, for example, the
influence of noise on signal transmission [8, 9, 34–36], the stability of the autonomous activity in recurrent
neural networks [12], and themagnitude and speed of information transmission in neural populations [10, 11].
However, in the case of strong periodic stimulation, linear response theory fails and tools fromnonlinear
dynamics are predominantly employed; in particular,measures ofmode locking and synchronization [37]. For
general nonlinear systems, some features of the transition between these extremes, linear response andmode
locking, can be described by the theory of stochastic synchronization [38, 39]. However, in the context of neural
oscillators, the complete transition is analytically poorly understood.

Here,wedescribed indetail the transitionbetween the linear-response regime and the stochasticmode-locking
regime for anoisy neuron.This transition emerges in twoways: eitherwith increasing signal amplitudeor by

Figure 5. In the suprathreshold regime ( 1.1m = , 0t = ), the transition from linear response tomode locking is well described via the
weakly nonlinear theory for a signal of changing amplitude (left) and a constant signal amplitude but changing noise strength (right).
(a)Cosine signal ( 1a = , 0b = , f 0.211 = )with increasing amplitude ( t0 0.18e< <( ) ); (b) a filtered version of thewhite noise,

t dt D t2
t

t t
òh x= ¢ ¢

+D( ) ( ), shown atmultiples of the time step tD with (D t0.002, 0.01= D = ); (c) raster plot; (d)firing rate (red)
with the linear theory for small signal amplitudes (dashed black line) andweakly nonlinear theory for intermediate signal amplitudes
(solid black line); (e) cosine signal ( 1a = , 0b = , f 0.211 = , 0.18e = ); (f)filtered version of the white noise,

t dt D t2
t

t t
òh x= ¢ ¢

+D( ) ( ), shown atmultiples of the time step tD with decreasing noise strength ( D t0.014 0.001> >( ) ,
t 0.01D = ); (g) raster plot; (h)firing rate (red)with the linear theory for large noise intensity (dashed black line) andweakly nonlinear

theory for intermediate noise intensity (solid black line). For the theoretical prediction of the rate in figures 5(a)–(d)we employed
equation (8), where we updated the parameter e in every time step; for the theoretical prediction infigures 5(e)–(h), we also employed
equation (8) and updated the parameterD in equations (7) and (13) in every time step.
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decreasing the intrinsic noise of theneuron (both illustrated infigure 5). Bothmanifestations of this transition arewell
capturedby the second-order response thatwederived in this paper.Wealso demonstrated anumber of striking
features of the second-order response such as a higher harmonic that can exceed the groundmode (figure1), or the
highly nonlinear response to a sumof cosine signals (figure 3(c)). Beyond the analytically tractable LIFmodelwith
whiteGaussian current noise,we alsomeasurednumerically the second-order response function in abiophysically
more realistic spikingneuronmodelwith channel noise.We found the features of this response function to be very
similar to those calculated for theLIFmodel.Given thedifferences in thenoisemodel (discretemultiplicative
temporally correlatednoise insteadof additive uncorrelatedGaussiannoise) and thedifferences in theneural
dynamics, this similarity is surprising. It suggests that the discussed features donot hinge on theparticularities of the
model and are, thus, general.

Many papers [4, 40–45] have studied the response of biological neurons to periodic stimulation in different
firing regimes, and it is crucial tofind a theoretical description that can capture the regimes’ response properties.
We expect theweakly nonlinear regime to be relevant in experimental preparationswhere neurons are subject to
weak noise, e.g., in vitrowhere a small-amplitude periodic current stimulation is applied andwhere channel
noise is themain source of fluctuations.However, theweakly nonlinear responsemay also be relevant
in situationswhere network fluctuations are weak, e.g., in networks with very low firing rates [46] andwhere
networkmechanisms lead to the emergence of either one ormultiple global oscillations [47].

Possible extensions of the framework presented here are the application of the Richardsonmethod [48] for
an efficient numerical estimation of higher-order response functions, the computation of the second-order
response for neuralmodels with synaptic filtering [10, 36], and the inclusion offinite synaptic potentials [49].
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AppendixA. Calculation of the second-order response function

Here, we present the calculation of the second-order response function for an LIF neuronwithwhite Gaussian
noise. For completeness, we also sketch the first-order response (see [50] for a detailed presentation or [36] for an
alternative approach to the perturbation calculation). The nonlinear response for one cosine signal (an
important but not the complete second-order response)was already calculated by Brunel andHakim in [21].

The voltage v t( ) in equation (1) is a stochastic process whose probability density, P v t,( ), obeys the Fokker–
Planck equation [3]

P L P s t P r t v v , A.1t v R0 e t d¶ = - ¶ + - -ˆ ( ) ( ) ( ) ( )

with theoperator L v Dv v0 m= ¶ - + ¶ˆ ( ) and an absorbingboundary at the thresholdwhich leads to the boundary
conditions P v t, 0T =( ) and DP v t r t,T- ¢ =( ) ( ), where theprimedenotes apartial derivativewith respect to v
(see [50]). Additionally, the density is continuous everywhere, integrable andnormalized to 1. For the computationof
thefirst- and second-order response functions in equations (4) and (8), we choose a signal that consists of a sumof
cosines.Note that in general, thefirst- and second-order response functions describe the response to signalswith
arbitrary timedependence.The signal here (a sumof two cosineswithdifferent frequencies), however, is chosen
because it is amenable to an analytic calculation and still completely probes the second-order responseproperties of
theneuronal dynamics (i.e., it allows computationof the response function 2c for all possible combinations of
frequency arguments). This is also themaindifference to a similar calculationperformed for the second-order
response function [21]where, due to adifferent choice of probing signal, themixed response (see equation (8)) is not
present andhence the second-order theory is incomplete.With s t t tcos cos1 1 2 2a w j b w j= + + +( ) ( ) ( ), the
Volterra expansionof the thefiring rate (equation (4)) canbewritten as

r t r e e e e c c

e e e e c c

e e e e c c

2
. .

2
, ,

4
, , . .

2
, , . . , A.2

i t i i t i

i t i i t i

i t i i t i

0 1 1 1 2

2
2

2 1 1
2

2 2 2

2
2

2 1 1
2 2 2

2 2 2
2 2

2

2 1 2 2 1 2

1 2 2 2

1 1 2 2

1 2 1 2 1 2 1 2

e
ac w bc w

e
a c w w b c w w

e
a c w w b c w w

e ab
c w w c w w

= + + +

+ - + -

+ + +

+ + - +

w j w j

w j w j

w w j j w w j j

- - - -

- - - -

- + - + - - - -

( ) ( ( ) ( ) )

( ( ) ( ))

( ( ) ( ) )

( ( ) ( ) ) ( )( ) ( ) ( ) ( )

where c c. . denotes the complex conjugate. In analogy to equation (A.2), wemake the following ansatz for the
density P v t,( ):
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Inserting equations (A.2) and (A.3) into equation (A.1) and sorting out the termswith the corresponding time
dependence, we obtain the following hierarchy of equations:

L P v r v v0 , A.4R0 0 0d= + -ˆ ( ) ( ) ( )
L i P v e v v P v0 , , A.5i

R v0 1 1 0w w c w d= + + - - ¶wt( ˆ ) ( ) ( ) ( ) ( ) ( )
L i P v e v v

P v P v

0 , , ,
1

2
, , . A.6

i
R

v v

0 1 2 2 1 2 2 1 2

1 1 1 2

1 2w w w w c w w d

w w

= + + + -

- ¶ + ¶

w w t+( ˆ ( )) ( ) ( ) ( )

( ( ) ( )) ( )

( )

Dropping the frequency arguments, the corresponding boundary conditions read

P v 0, A.7T0,1,2 =( ) ( )

DP v
r k

k
for 0,
for 1, 2.

A.8k T
k

0

c
- ¢ =

=
=

⎧⎨⎩( ) ( )

Additionally, everyPk is continuous everywhere. The zeroth-order equation, equation (A.4), with the respective
boundary conditions can be integrated twice to yield a result for P v0 ( ). Enforcing the normalization condition
for the zeroth-order density ( dvP v r 10 0ò t+ =( ) ), one can determine r0. Thewell-known result [51, 52] reads

r dx e xerfc . A.9
v D

v D
x

0
2

2 1

R

T 2

òt p= +
m

m

-

- -⎡
⎣⎢

⎤
⎦⎥( ) ( )

( )

( )

For the solution of the first- and second-order equations, equations (A.5) and (A.6), we introduce the notation

P v e q v , A.10h

v v
D h4

R
2 2

=
m m

-
- - -

( ) ( ) ( )
( ) ( )

wherewe again dropped the frequency arguments for the sake of notation and consider the homogeneous
equation

L i P v v v

e D i
v

D
q v v v

0

1

2 4
, A.11

h R

v v
D v h R

0

4
2

2R
2 2

w d

w
m

d

= + + -

= ¶ + + -
-

+ -
m m

-
- - - ⎛

⎝⎜
⎞
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( ˆ ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( )

which, after enforcing continuity everywhere and using boundary condition, equation (A.7) is solved by the
Greenʼs function

q v
e

Dd v

d v d v d v d v d v v v
d v d v d v d v d v v v

for
for .

A.12h
T

T T R R

R T T R R1

1 2 1 2 1

1 2 1 2 1

v vR
D

2 2

4
=

- >
- <

m m- - - ⎧⎨⎩( )
( )

[ ( ) ( ) ( ) ( )] ( )
[ ( ) ( ) ( ) ( )] ( ) ( )

( ) ( )

Here,

d v
v

D
d v A

v

D
and A.13i i1 2� �

m m
=

-
= -

-
w w

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟( ) ( ) · ( )

are parabolic cylinder functions [29] and linear independent solutions of

D i
v

D
d v0

1

2 4
. A.14v

2
2

1,2w
m

= ¶ + + -
-⎛

⎝⎜
⎞
⎠⎟

( ) ( ) ( )

The factorA in equation (A.13) is chosen such that

d v d v d v d v 1. A.151 2 1 2¢ - ¢ =( ) ( ) ( ) ( ) ( )
The relations equations (A.10) and (A.12) can nowbe employed tofind solutions to the inhomogeneous
equations (A.5) and (A.6) and, after exploiting the boundary condition equation (A.8) and relation
equation (A.15), we can find explicit expressions for thefirst- and second-order response functions
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First, for the sake of simplicity, we employ the notation f v e, i
v

D

v vT
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. Secondly, we note

that the function f obeys the relation

Df v v f v i f v0 , , , , A.18w m w w w= ´ - - ¢ +( ) ( ) ( ) ( ) ( )
which can be verified by insertion of the parabolic cylinder function. Finally, by partial integration, employing
the differential equation equation (A.4)with the respective boundary conditions, assuming that the functions P0
and fdecay sufficiently fast for v l -¥, and employing the relation equation (A.18), wefind

dv P v f v
r

i
f v f v,

1
, , , A.19

v

R T0
0T

ò w
w

w w¢ =
-

¢ - ¢
-¥

( ) ( ) ( ( ) ( )) ( )

dv P v f v
f v e f v

i

i
dv P v f v

, ,
, ,

1
1

1
, , A.20

v R
i

T

v

1 1,2 1 2
1 1,2 1 2 1 2

1,2 1 2

1,2 1 2
0 1 2

T

T

1

ò

ò

w w w
c w w w w w

w w w

w w w
w w

¢ + =
¢ + - ¢ +

+ - -

+
+ - -

¢ ¢ +

w t

-¥

-¥

( ) ( ) ( )( ( ) ( ))
( )

( )
( ) ( ) ( )

dv P v f v
r

i
f v f v,

2
, , . A.21

v

R T0 1 2
0

1 2

T

ò w w
w w

w w¢ ¢ + =
- +

´ - ´
-¥

( ) ( )
( )

( ( ) ( )) ( )

Using equations (A.19–A.21) and exploiting some properties of the parabolic cylinder functions [29], we can
simplify equations (A.16) and (A.17) andfind the alreadywell-known result for thefirst-order response function
(equation (7)) and themain result of this paper, the second-order response function (equation (13)).

Appendix B. Response to the sumof fast and slow cosine

In order to obtain a better interpretation of the second-order response function, wewill consider a signal
consisting of a sumof two cosines s t t tcos cos1 2a w b w f= + +( ) ( ) ( ( ), wherewe take 02w l . In this limit,
the time-dependent term tcos 2b w f+( ( ) can be interpreted as amodulation of the constant base currentμ in
equation (1) such that the response to the sumof two cosines can be reduced to a response to a single cosine
(equivalent to equation (8)with 0b = ) butwith a time-dependent parameter t tcossig 2m m eb w f= + +( ) ( ):
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Expanding the time-dependent functions in equation (B.1)with respect to e and neglecting higher than second-
order terms yields
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Comparing equation (8) in the limit 02w l with equation (B.2), wefind

dr
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