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We consider the dynamics of two directionally coupled unequally noisy oscillators, the first oscillator
being noisier than the second oscillator. We derive analytically the phase diffusion coefficient of both
oscillators in a heterogeneous setup (different frequencies, coupling coefficients, and intrinsic noise
intensities) and show that the phase coherence of the second oscillator depends in a nonmonotonic fashion
on the noise intensity of the first oscillator: as the first oscillator becomes less coherent, i.e., worse, the
second one becomes more coherent, i.e., better. This surprising effect is related to the statistics of the first
oscillator which provides a source of noise for the second oscillator, that is non-Gaussian, bounded, and
possesses a finite bandwidth. We verify that the effect is robust by numerical simulations of two coupled
FitzHugh-Nagumo models.
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The dynamics of two coupled stochastic oscillators is a
well-studied textbook problem [1–3]. In a self-sustained
oscillator, noise results in diffusion of the oscillator’s phase,
breaking the oscillation coherence [1,4]. The coherence or
quality of oscillations is characterized by the quality factor,
which is reciprocal to the effective phase diffusion coef-
ficient [1,4]. Hence the names “good” and “bad” used in
Ref. [1] and in this Letter: the good oscillator is the one
with a high quality of oscillations and with slow phase
diffusion; the bad oscillator is characterized by a smaller
quality factor and faster diffusion of its phase. When two
such oscillators are coupled, the diffusion of their phases
can be suppressed due to synchronization [2,3]. In a
situation when unequally noisy oscillators are bidirection-
ally (nonsymmetrically) coupled, the coherence of the bad
oscillator can be improved via synchronization by the less
noisy, the good, oscillator [1,2]: the increase of coupling
strength from the good oscillator to the bad oscillator
results in suppression of the effective diffusion coefficient
of the bad oscillator. Conversely, the coherence of the good
oscillator can be degraded by the influence of the bad
oscillator; i.e., the effective diffusion coefficient of the
good oscillator increases with the increase of the coupling
strength from the bad to the good oscillators.
Unequally noisy directionally coupled oscillators serve

as a model of many natural systems, in particular, in
neuroscience: synaptically coupled neurons are an example
of directional coupling and neurons possess various kinds
of noise sources and for no reason should be assumed
equally noisy [5,6]. One particular example is the oscil-
latory sensory hair cell in amphibians, exhibiting stochastic
mechanical oscillations of the hair bundle [7,8] and less
noisy electrical oscillations of the membrane potential [9],
which are bidirectionally coupled [10].

Intuitively, it is expected that because of coupling, the
increase of noise intensity in one oscillator should degrade
the coherence of both oscillators. Here we show how and
when this intuition breaks down. We report a surprising
result that an increase of noise in the bad oscillator can
worsen the good oscillator only up to some extent. Further
increase of noise in the bad oscillator actually suppresses
the phase diffusion of the good oscillator, so that its
effective diffusion coefficient passes through a maximum.
First, we use a generic model of two coupled stochastic
phase oscillators to derive exact results for the effective
diffusion coefficients of individual oscillators’ phases.
Second, we demonstrate the generality of the observed
effect of noise-induced diffusion suppression with numeri-
cal simulation of bidirectionally coupled noisy relaxation
oscillators.
Theory for coupled phase oscillators.—We consider two

noisy limit cycle oscillators with the natural frequencies
ω1;2 governed by the equations for their phases ϕ1;2:

_ϕj ¼ ωj þGk→j sinðϕk − ϕjÞ þ
ffiffiffiffiffiffiffiffi
2Dj

p
ξjðtÞ; ð1Þ

where random processes ξ1;2ðtÞ are uncorrelated Gaussian
white noises with hξjðtÞξiðt0Þi ¼ δi;jδðt − t0Þ and
i; j ¼ 1; 2. For two coupled Stuart-Landau oscillators,
driven by complex white Gaussian noise sources ηjðtÞ,

_zj ¼ ð1þ iωjÞzj − jzjj2zj þ Gk→jzk þ
ffiffiffiffiffiffiffiffi
2Dj

p
ηjðtÞ; ð2Þ

Eq. (1) is obtained when amplitude fluctuations, zjðtÞ ¼
ρjðtÞeiϕjðtÞ, are neglected, i.e., ρj ≡ 1.
Without loss of generality, we assume that D1 ≥ D2;

i.e., oscillator 1 is bad and oscillator 2 is good.
The parameters G2→1; G1→2 ≥ 0 are the coupling strengths
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from the good to the bad oscillator and vice versa,
respectively. In the following we derive the effective
diffusion coefficients of the oscillators’ phases,
Deff;1;2 ¼ limt→∞ðd=dtÞvar½ϕ1;2ðtÞ�. Following Malakhov
[1,2], we introduce the phase difference, ψðtÞ ¼ ϕ1ðtÞ−
ϕ2ðtÞ, and a linear combination of the phases,
θðtÞ ¼ G1→2ϕ1ðtÞ þ G2→1ϕ2ðtÞ. The phase diffusion of
the first oscillator, for instance, is related to those of ψ
and θ by

Deff;1 ¼
1

G2

�
G2

2→1Deff;ψ þDeff;θ þ G2→1

d
dt

hΔψΔθi
�
;

ð3Þ

where Δθ ¼ θ − hθi, Δψ ¼ ψ − hψi, and G ¼ G2→1þ
G1→2. Importantly, Deff;1 is affected not only by Deff;ψ
and Deff;θ but also by the correlation between ψ and θ. The
latter variables follow the dynamics

_ψ ¼ ν − G sinψ þ
ffiffiffiffiffiffiffi
2D

p
ξψ ðtÞ; ð4Þ

_θ ¼ G2→1ω2 þG1→2ω1 þ
ffiffiffiffiffiffiffi
2Q

p
ξθðtÞ; ð5Þ

where ν ¼ ω1 − ω2 is the frequency mismatch, ξψ ;θðtÞ are
correlated Gaussian white noises, hξψ ðtÞξθðt0Þi ¼
2Rδðt − t0Þ, with intensities R ¼ G1→2D1 − G2→1D2,
D ¼ D1 þD2, Q ¼ G2

1→2D1 þG2
2→1D2. The dynamics

of θ, Eq. (5), is just a biased diffusion with mean frequency
(velocity) h_θi ¼ G2→1ω2 þ G1→2ω1 and diffusion coeffi-
cient Deff;θ ¼ Q. The mean velocity for the phase differ-
ence ψðtÞ governed by Adler’s equation (4) has been given
by Stratonovich [11]:

h _ψi ¼ 2πð1 − e−2πν=DÞ=I : ð6Þ

The diffusion coefficient for ψ has been derived independ-
ently in Refs. [12] and [13] and can be written as follows
[13]:

Deff;ψ ¼ 4π2DI−3
Z

2π

0

dxI2þðxÞI−ðxÞ: ð7Þ

In Eqs. (6) and (7) we have used I ¼ R
2π
0 dxIþðxÞ,

I�ðxÞ ¼ D−1e∓VðxÞ=D R
x�2π
x dye�VðyÞ=D, VðψÞ ¼ −νψ−

G cosψ . Our contribution here is to calculate an exact
expression for the cross-correlation term hΔψΔθi in
Eq. (3). Malakhov [1,2] provided only heuristic arguments
limited to zero detuning, ν ¼ 0. The noise ξθ that is driving
θ can be split into a part ξ̄ψ that is independent of
ξψ [and of ψðtÞ] and one that is proportional to ξψ :ffiffiffiffiffiffiffi
2Q

p
ξθðtÞ ¼ AξψðtÞ þ Bξ̄ψðtÞ with A ¼ R=D. Using

that Δθ ¼ R
t dt0½Aξψ ðt0Þ þ Bξ̄ψðt0Þ�, we can write the

cross-correlation term as follows:

d
dt
hΔψΔθi¼A

�Z
t

−∞
dt0Δ _ψðtÞξψðt0ÞþΔ _ψðt0Þξψ ðtÞ

�

¼A
Z

∞

−∞
dτhCξ;Δ _ψ ðτÞi ¼WKTASξ;Δ _ψð0Þ¼

¼NTAχΔ _ψ ð0ÞSξψ ;ξψ ð0Þ¼2AD
dh _ψðνÞi

dν
¼def2Rμψ ðνÞ;

where we used the Wiener-Khinchin theorem (WKT) [14]
and the Novikov theorem (NT) [15] as indicated. In the
equation above, Cξ;Δ _ψðτÞ and Sξ;Δ _ψðωÞ are the cross-
correlation function and cross-spectrum between the noise
and Δ _ψ , respectively; χξ;Δ _ψðωÞ is the weak-signal suscep-
tibility of Adler’s equation (4). Additionally, we defined
the differential mobility μψðνÞ as the local derivative
of the mean frequency, Eq. (6), with respect to the detun-
ing ν. In a special case of zero detuning, ν ¼ 0, we
recover Malakhov’s result: ðd=dtÞhψΔθi ¼ 2Rμð0Þ ¼
2ðR=DÞDeff;ψ . Using the equations above for the correla-
tion term, we arrive at the main analytical result, the
diffusion coefficients of individual oscillators

Deff;1 ¼
G2

2→1Deff;ψ þ 2G2→1Rμψ þQ

G2
; ð8Þ

Deff;2 ¼
G2

1→2Deff;ψ − 2G1→2Rμψ þQ

G2
: ð9Þ

It can be proven that both coefficients are even functions of
the detuning ν; hence, it suffices to study their dependence
on positive values of ν.
Main effect for coupled phase oscillators.—The effective

diffusion coefficient of the first oscillator Deff;1 increases
with growing noise intensity D1 [Figs. 1(a) and 1(c)]. That

FIG. 1 (color online). Effective diffusion coefficients of two
oscillators Deff;1;2 versus noise intensity in the first oscillator D1.
Symbols show the result of direct numerical simulation of an
ensemble of 220 pairs of stochastic oscillators, Eq. (1). Solid lines
correspond to the theory. (a),(b) Effect of the frequency detuning
ν, with G2→1 ¼ 0.05, G1→2 ¼ 0.1, D2 ¼ 10−3, ω1;2 ¼ 1� ν=2.
(c),(d) Effect of the coupling strength G2→1, with ω1;2 ¼ 1,
G1→2 ¼ 0.1, D2 ¼ 10−3.
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is, as expected, the first oscillator becomes more noisy as
more noise is pumped into it. However, the effective
diffusion coefficient of the second oscillator Deff;2 first
increases with D1, reaches a maximum, and then decreases
[Figs. 1(b) and 1(d)]. In other words, driving the bad
oscillator with stronger noise results in an improved
coherence of the good oscillator. The effect is observed
for various values of the detuning ν and the coupling
strength G2→1. The increase of G2→1 (coupling from the
good to the bad) decreases the phase diffusion coefficients
in both oscillators, as the good oscillator synchronizes the
bad one, which suppresses the effective diffusion of the
phase difference Deff;ψ .
Figures 1(a) and 1(b) also show that for weak noise the

phase diffusion coefficients of both oscillators are at
maximum at the critical value of νc ¼ G [blue circles in
Figs. 1(a) and 1(b)], which corresponds to the border of the
synchronization region, i.e., the saddle-node bifurcation in
the noiseless Adler equation (4). Such an enhancement of
the diffusion occurs because of the maximum in Deff;ψðνÞ
at the critical detuning νc, and was studied in detail in
Refs. [13,16,17].
To explain the phenomenon of suppression of the phase

diffusion in the good oscillator, we consider the case of
tuned unidirectionally coupled oscillators (G2→1 ¼ ν ¼ 0),
for which the effect is most pronounced [black solid line in
Fig. 1(d)]. In this case the equations for the phase diffusion
coefficients are simplified to Deff;1 ¼ D1, Deff;2 ¼
D1 þDeff;ψ ð1 − 2D1=DÞ, Deff;ψ ¼ D½I0ðG1→2=DÞ�−2,
where I0ðxÞ is a modified Bessel function [with I0ð0Þ ¼
1 and I0ðxÞ ∼ expðxÞ= ffiffiffiffiffiffiffiffi

2πx
p

for x → ∞]. For weak noise in
the first oscillator,D1 ≈D2 ≪ G1→2, the effective diffusion
of the phase difference is small, Deff;ψ ≪ D. Thus, Deff;2 ≈
D1 and increases with D1. On the contrary, for D1 → ∞,
I0ðG1→2=D1Þ ≈ 1 and Deff;2 ≈D2. That is, for large noise
in the first oscillator, the phase diffusion coefficient of the
second oscillator tends to its uncoupled value given by the
noise intensity in the second oscillator D2. We note that in
the case of unidirectional coupling, the first oscillator can
be considered as a source of noise, sinϕ1 and cosϕ1, to the
second oscillator. Unlike the uncorrelated Gaussian noise
sources ξ1;2ðtÞ in Eq. (1), the noise due to the first oscillator
is non-Gaussian, bounded, and correlated with the auto-
correlation function C1ðτÞ ¼ 1

2
e−D1jτj cosω1τ. While the

variance of this bounded noise is invariant with respect to
variations of D1, its correlation time is τcor;1 ¼ 1=D1, and
the corresponding power spectral density (PSD) is a
Lorenzian centered at ω1. In the limit D1 → ∞, this
bounded noise approaches its white limit, but because its
variance is fixed, the power within any frequency band, and
in particular within the frequency band of the second
oscillator, vanishes. Hence, the maximal value of the
effective diffusion coefficient of the second oscillator in
Figs. 1(b) and 1(d) can be understood as the consequence of
two competing tendencies. First, a small amount of noise in

the bad oscillator breaks synchronization: an increase of
noise enhances the effective phase diffusion of the good
oscillator. Second, a further increase in D1 eventually
suppresses the power that is transferred to the good
oscillator and, consequently, the second oscillator assumes
its coherent uncoupled dynamics.
The effect is robust against amplitude fluctuations.

Numerical simulations of coupled Stuart-Landau oscilla-
tors, Eq. (2), yielded the same nonmonotonic dependence
of the phase diffusion coefficient of the less noisy oscillator
on the noise intensity of the more noisy oscillator (not
shown). The main effect of the amplitude fluctuations is
that for D1 → ∞, the phase diffusion coefficient of the
second oscillator Deff;2 is somewhat larger than that of the
corresponding pure phase oscillators.
Simulation results for coupled nonlinear oscillators.—

The theory developed above suggests that the effect is
generic and should be observed in a wide range of direc-
tionally coupled oscillators. In particular, nonsymmetric
directional coupling underlies the interaction of neurons via
chemical synapses. Here we demonstrate the effect using
numerical simulation of two bidirectionally coupled
FitzHugh-Nagumo (FHN) neuronal oscillators [18]. The
model’s equations read

_vj ¼ vj −
v3j
3
− wj þ Iext þ Gk→jvk þ

ffiffiffiffiffiffiffiffi
2Dj

p
ξjðtÞ;

_wj ¼ 0.01ðvj þ 0.7 − 0.8wjÞ; ð10Þ

where j; k ¼ 1; 2; the fast variables v1;2 are the membrane
potential of a cell and w1;2 are slow recovery variables. The
term Gk→jvk mimics a synaptic current from the kth to the
jth neuronal oscillator. As before, the Gaussian white noise
terms in Eq. (10), ξ1;2, are uncorrelated, and D1 > D2, so
the first is the bad oscillator, while the second is the good
one. In the following, we set the value of the “external
current” parameter Iext to 0.4, so that in the deterministic
uncoupled case each oscillator is in a stable limit cycle
regime.
For weak noise in the first oscillator, neurons are

synchronized [Fig. 2(a1)] and show coherent periodic
firing, as indicated by a narrow peak at their natural
frequency in the PSD and by slowly decaying autocorre-
lation functions [Figs. 2(b1) and 2(c1)]. For an intermediate
value of D1 the first neuron fires faster than the second
[Figs. 2(a2) and 2(b2)]; synchronization breaks down as
indicated by two distinct peaks at the mean firing rates of
neurons in the PSD of the second neuron [Fig. 2(b2)]. This
deteriorates the coherence of the second oscillator, as
indicated by rapidly decaying autocorrelation in
Fig. 2(c2). Large noise in the first oscillator results in fast
irregular firing [Fig. 2(a3)] with a flat and low PSD and
peaked autocorrelation [Figs. 2(b3) and 2(c3), dotted lines].
In marked contrast, the second neuron regains its oscil-
lation coherence expressed by a sharp peak in its PSD and
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by slowly decaying autocorrelation function [Figs. 2(b3)
and 2(c3), solid line]. The instantaneous phases of FHN
oscillators ϕjðtÞ were estimated from the sequences of their

spike times tðjÞi , i ¼ 1;…; Nj, where NjðtÞ is the number of
spikes of the jth neuron during the time ð0; t� and j ¼ 1; 2

[3], ϕjðtÞ ¼ 2π½t − tðjÞi �=½tðjÞiþ1 − tðjÞi � þ 2πi, tðjÞi < t < tðjÞiþ1.
As our theory for the coupled phase oscillators predicts, the
phase diffusion coefficient of the second neuron shows
nonmonotonic dependence on the noise intensity in the first
oscillator (Fig. 3). The effect is most pronounced for
unidirectional coupling G2→1 ¼ 0, and the peak of Deff;2

shifts towards larger values of D1 for increasing values of
the coupling strength G2→1.
Conclusions.—To summarize, we have derived exact

analytical expressions for the phase diffusion coefficients
of coupled unequally noisy phase oscillators, a generic
model serving various applications in natural sciences.
Our theory predicted the counterintuitive effect of a

nonmonotonic dependence of the diffusion coefficient of
the less noisy oscillator on the noise intensity of the more
noisy oscillator. This effect is distinct from other noise-
induced phenomena, such as coherence [19], anticoherence
[20], or incoherence resonance [21]. While the former are
observed in a single oscillator and rely on specifics of
excitable systems, the effect studied here is based upon
generic properties of noisy limit cycle oscillators: (i) an
oscillator is most sensitive to external perturbations within
a band around its natural frequency (for an experimental
verification, see, e.g., Ref. [7]); (ii) because of the phase
diffusion, the oscillation’s power spreads over a wide range
around the oscillator’s natural frequency with the increase
of noise intensity. When two such oscillators are coupled
and noise is increased in, say, the first one, the power
transmitted to the second oscillator within its relevant
frequency band decreases and so eventually the fluctuations
of the second oscillator are mainly due to its internal noise
source. Our result shows a strikingly simple example of
how the non-Gaussian and temporally correlated nature of
fluctuations affects oscillations in unexpected ways.
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