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Local Motion Analysis Reveals Impact of the Dynamic Cytoskeleton on
Intracellular Subdiffusion
Marcus Otten,†6 Amitabha Nandi,‡6 Delphine Arcizet,† Mari Gorelashvili,† Benjamin Lindner,‡

and Doris Heinrich†*
†Faculty of Physics and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität, Munich, Germany; and ‡Max Planck Institute for the
Physics of Complex Systems, Dresden, Germany
ABSTRACT Intracellular transport is a complex interplay of ballistic transport along filaments and of diffusive motion, reliably
delivering material and allowing for cell differentiation, migration, and proliferation. The diffusive regime, including subdiffusive,
Brownian, and superdiffusive motion, is of particular interest for inferring information about the dynamics of the cytoskeleton
morphology during intracellular transport. The influence of dynamic cytoskeletal states on intracellular transport are investigated
in Dictyostelium discoideum cells by single particle tracking of fluorescent nanoparticles, to relate quantitative motion parame-
ters and intracellular processes before and after cytoskeletal disruption. A local mean-square displacement (MSD) analysis
separates ballistic motion phases, which we exclude here, from diffusive nanoparticle motion. In this study, we focus on intra-
cellular subdiffusion and elucidate lag-time dependence, with particular focus on the impact of cytoskeleton compartments like
microtubules and actin filaments. This method proves useful for binary motion state distributions. Experimental results are
compared to simulations of a data-driven Langevin model with finite velocity correlations that captures essential statistical
features of the local MSD algorithm. Specifically, the values of the mean MSD exponent and effective diffusion coefficients
can be traced back to negative correlations of the motion’s increments. We clearly identify both microtubules and actin filaments
as the cause for intracellular subdiffusion and show that actin-microtubule cross talk exerts viscosifying effects at timescales
larger than 0.2 s. Our findings might give insights into material transport and information exchange in living cells, which might
facilitate gaining control over cell functions.
INTRODUCTION
Energy-driven dynamics and network-like organization of
the cytoskeleton, with cross-linkers and molecular motors,
affect intracellular transport, which is of particular interest
for theoretical physics, biochemistry, and pathophysiology.
A malfunctioning transport system might lead to molecular
motor deficiencies in neurodegenerative diseases such as
amyotrophic lateral sclerosis (1–3) or Huntington’s disease
(4). These medical applications motivate a detailed investi-
gation of the underlying processes.

Cellular cytoskeleton components interact to establish
multiple functions, including migration (5), division (6,7),
deformation (8), and intracellular transport (9,10). In addi-
tion, molecular motors of the dynein, kinesin, and myosin
families lead to different transport regimes involving
directed ballistic motion, in contrast to random subdiffusion
(11,12). Although molecular motors and their role in
ballistic motion are a major scientific focus, the intricacies
of nonballistic motion for relating structures with cell func-
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tion also remain unclear (13). Subdiffusion is characterized
by mean-square displacements (MSDs) obeying a power
law at exponents <1 (MSD ~ta, a < 1) (14). The hindering
or confining origins of subdiffusion can be manifold (15,16),
including trapping cages, obstruction barriers, crowding, or
stalling.

Caged dynamics is the favored model for nanoscale
displacements of beads in the living cell cytoskeleton.
Directional persistence versus antipersistence of tracer
particle motion, characterized by motion angle variations,
depends on the investigated timescales (17), yielding anti-
persistence at small timescales and persistence at larger
timescales. Collisions with the cage boundaries generate
motion reversal and antipersistence of the direction of
motion. Cage-hopping brings about persistent motion on
timescales larger than the typical cage exploration time
(17). Furthermore, cellular transport behavior in these
models depends on the presence of cytoskeleton compo-
nents (18–20), most notably microtubules (MT), actin fila-
ments (F-actin), and intermediate filaments. The motion
type is generally quantified by the nondimensional MSD
exponent a, ranging from subdiffusion to ballistic motion.
Caspi et al. (9) have observed anomalous subdiffusion using
live cell single particle tracking and MSD analysis: Tran-
sient a values of 1.5 and 0.75 indicate partly superdiffusive
and subdiffusive modes, respectively. Experiments with
both externally driven and spontaneous motion of tracer
particles anchored to the cytoskeleton lead to another
doi: 10.1016/j.bpj.2011.12.057
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conclusion. A model of soft glassy behavior features both
cages and crowding effects: Inspired by typical soft glasses,
such as crowded colloidal suspensions (15,16), an analo-
gous interpretation of the cell cytoplasm has been intro-
duced (21). This model is based on scaling laws of the
rheological moduli (22), which cannot be interpreted by
simple viscoelasticity. Instead, they indicate a continuous
distribution of relaxation time constants (23). Characteris-
tics of soft glasses involve disorder and metastability in
weakly attractive energy landscapes. The volume of the
cage does not affect the degree of subdiffusion (the MSD
exponent), but the effective diffusion coefficient. In addi-
tion, active intracellular driving forces enhance nonthermal
behavior, leading to an increase in diffusion coefficient (24).

In this work, we investigate anomalous subdiffusion
phases of intracellular transport in detail, with a particular
emphasis on the involved cytoskeleton components and
the various timescales on which they act. Our experimental
model system, the cytoskeleton inDictyostelium discoideum
cells is composed of MTs and F-actin. Intermediate fila-
ments are absent. Benomyl and Latrunculin A are used as
depolymerization agents of MT and F-actin, respectively.
To study their influence on subdiffusion, we employ a local
MSD algorithm to separate out phases of active transport
along filaments and focus on phases of subdiffusion.

In terms of a theoretical description, pure diffusion in a
highly viscous medium without active contributions is gov-
erned by overdamped Brownian motion corresponding to
a simple Langevin equation. Even in this simple situation,
the local MSD algorithm at a particular time instant does
not yield uniquely determined values of exponent and diffu-
sion coefficient but values that scatter around the expected
mean values with characteristic distributions. This is the
case because the MSD algorithm at a particular instant in
time uses only a small sample of data (otherwise it would
not be local in time anymore). It is instructive to compare
distributions obtained from simulations of a Langevin equa-
tion to those obtained from intracellular particle trajectories.
Although the two kinds of distributions are qualitatively
similar, we will discuss important differences and we
present a simple data-driven extension of the classical
Langevin model, which describes the motility of the tracer
particle within the living cell under various conditions. In
this approach, the common white (uncorrelated) Gaussian
noise of the standard overdamped Langevin equation is re-
placed by a colored (correlated) Gaussian noise accounting
for finite temporal correlations of the particle’s velocity. The
correlation function of this noise (velocity) is taken from
the experimental data measured under the respective condi-
tions in living cells. Our results indicate that important
aspects of the statistics resulting from the local MSD algo-
rithm (distributions of exponent and diffusion coefficient;
their mean values as a function of the MSD algorithm’s
timescale) can be understood solely based on such a
Gaussian model with finite velocity correlations.
We will present results and their implications on intracel-
lular transport in three consecutive steps: First, the transport
parameters are introduced for regular diffusion in glycerol
and motion in living cells. These parameters are then studied
for different cytoskeleton states for depolymerized MT
and/or F-actin. Finally, this cytoskeleton analysis is
extended to include lag time-dependent effects of MT and
F-actin on subdiffusion.
MATERIALS AND METHODS

Cell culture

D. discoideum cells of the AX2 wild-type (WT) strain (25), provided by the

Max-Planck-Institut für Biochemie (Martinsried, Germany), are maintained

at 21�C on tissue culture dishes in AX2 medium. Cells are kept in the expo-

nential growth phase and below 50% confluence by addition of fresh

nutrient medium every 48 h. To verify cytoskeleton depolymerization agent

effects, cells of the LimEDcc-GFP (26) and a-Tub-GFP (provided by the

Max-Planck-Institute for Biochemistry) strains are used. Gentamycin and

Blasticidin antibiotics are added for preservation of the mutation. Before

experiments, AX2 medium is replaced by nonfluorescent medium, lacking

yeast extract and peptone.
Nanoparticles

Nanoscreen MAG-D nanoparticles (ChemiCell, Germany) of 150 nm

diameter are added to the cell suspension at a final concentration of

18.25 nM. Before uptake, nanoparticles (NPs) are agitated by vortexing

for 10 s and by supersonication for 5 min. The sterile, green-fluorescent

magnetic NPs consist of a superparamagnetic iron oxide core (Fe2O3), sur-

rounded by a lipophilic green-fluorescent dye, with excitation wavelength

476 nm and an emission maximum at 490 nm. The dye is surrounded by

a hydrophilic outer polymer matrix of polysaccharide starch (C6H10O5).

NP uptake is performed by slow centrifugation at 3000 rpm in a Heraeus

Biofuge Pico centrifuge in four subsequent legs of 3, 4, 4, and 5 min dura-

tion, respectively, each followed by gentle agitation and 5 min at rest to

prevent undue stress on the cells. Directly after the final centrifugation,

supernatant medium is replaced by nonfluorescent medium. Excess NPs

are removed.
Cytoskeleton depolymerization agents

A Benomyl (C14H18N4O3, Sigma-Aldrich, Germany) solution in phosphate

buffered saline is added 30 min before MT depolymerization measurements

to the NP-cell suspension at a concentration of 100 mM. A diluted Latrun-

culin A (C22H31NO5S, Invitrogen, Germany) solution in phosphate buffered

saline is added 20 min before F-actin depolymerization measurements to

the NP-cell suspension at a concentration of 10 mM.
Microscopy

The sample chamber consists of a 24 mm � 40 mm glass coverslip and

an 18 mm � 18 mm teflon enclosure and is mounted on an Axiovert

135 TV microscope (Zeiss, Germany) equipped with an EC-Plan Neofluar

100�/1.3NA oil-immersion objective (Zeiss) and an Orca C4880-80

charge-coupled device camera (Hamamatsu, Germany) with a sampling

and exposure time of 49 ms per frame of size 384 � 384 pixels, where

one pixel corresponds to 0.064 mm � 0.064 mm. The fluorescence intensity

distribution is fitted by a two-dimensional Gaussian to determine the parti-

cle’s position at subpixel resolution using the OpenBox (27) software,

version 1.9.
Biophysical Journal 102(4) 758–767
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Statistics of the trajectory’s increments

We analyze the trajectory in terms of the increments in x and y between

consecutive frames (time steps) Dxi ¼ xiþ1 � xi and Dyi ¼ yiþ1 � yi. We

estimate probability densities of these increments by standard methods

and also calculate their correlation coefficient, e.g., the one for increments

in x:

rxxk ¼ hðDxiþk � hDxiþkiÞðDxi � hDxiiÞi�ðDxi � hDxiiÞ2
� ; (1)

where h.i indicates the average that is taken over the index i. We also

measure the correlations ryyk of the increments in y and those r
xy
k between

the increments in x and y. The serial correlation coefficient in Eq. 1 is

a measure for the randomization of subsequent steps: vanishing autocorre-

lation indicates complete independence, whereas unit autocorrelation indi-

cates unchanged increment values from one frame to the next. A negative

increment correlation indicates antipersistent behavior and results in

a reduced randomness on longer timescales because in the sum of the incre-

ments, i.e., in the particle’s trajectory, anticorrelated terms partially cancel.

This reduced long-term variability may become manifest by an apparent

subdiffusive behavior on timescales over which the increment correlations

extend.

To estimate the error bar of the correlation coefficient, we use the

following equation for the variance of the correlation coefficient (28):

VarðrkÞz
1þ 2

Pn
j¼ 1

�
1� j

n

�
r2j

ðn� kÞð1þ 2n=n� n2=n2Þ; (2)

where n is the total number of increments and n is the maximal lag taken

into account, which we set to n ¼ 20. The error bar for one measurement

is then the square root of the variance.
Local MSD algorithm

The algorithm

A conventional method of analyzing intracellular transport is based on the

MSD:�
DR2ðtÞ� ¼ �½Rðt þ tÞ � RðtÞ�2�

t

¼ �½xðt þ tÞ � xðtÞ�2þ½yðt þ tÞ � yðtÞ�2�
t
: (3)

Local MSD analysis has been introduced previously (29), yielding time-

resolved motion type information: For each point along the recorded

trajectory a local MSD is computed, considering only the neighboring 60

trajectory points. This local MSD is then fitted by a power law (linear

regression in a double-logarithmic MSD plot)

�
DR2ðtÞ� ¼ �ðRðt0 þ tÞ-Rðt0ÞÞ2�

t-T=2<t0<tþT=2-t

¼ A �
�
t

t0

�a

; (4)

yielding the same characteristics as the global MSD, but in a local, time-
resolved manner and with additional noise because of the smaller sample.

Here t0 is a reference time and A has dimensions of the square of a length.

The exponent a is a dimensionless number between 0 and 2, indicating

different types of motion: a < 1 being subdiffusive, a z 1 Brownian-

like, a > 1 superdiffusive and a z 2 ballistic. The prefactor contains an

effective diffusion coefficient (see below) or in the case of ballistic motion
Biophysical Journal 102(4) 758–767
the velocity. This analysis and fit are repeated for each point along the

trajectory resulting in time series for the parameters a and A. In this

work, we study long phases of nonballistic transport (typically subdiffusive

behavior) in terms of the statistical distributions of the exponent a and the

effective diffusion coefficient D, which is proportional to the parameter A.

Parameter settings

The timescale at which the sample is probed depends on the frame rate and

the window size. The window size determines the number of points taken

into account for the computation of the local MSD, but does not equal

the lag time range over which the power law is fitted to the data. For large

lag times of t z Mw � Dt, only a few MSD data points exist within each

window, and the statistics risk to be unreliable. Therefore, the fit data range

is chosen to be 0 < t < 1/4 � Mw � Dt. Thus, the timescale probed by the

local MSD is of the order 1/4 �Mw � Dt. We have chosen the values to be

Mw ¼ 60 and Dt ¼ 49 ms, which corresponds to 15 MSD points and

a probing at 0.735 s. Experimental and simulational data of bead motion

in glycerol were collected at Dt ¼ 55 ms and analyzed accordingly at

Mw ¼ 60. For the analysis of mean motion parameters as functions of lag

time, the window size was varied fromMw ¼ 8 frames to Mw ¼ 200 frames

in 4-frame steps, including the 60-frame window as a special case. The

4-frame increases in window size and the MSD fit data range of 1/4 �
Mw � Dt amount to a lag time resolution of 49 ms. The power law fit yields

reliable results for all investigated window sizes, which was checked using

the chi-square measure, which equals c2 ¼ 0.013 (Mw ¼ 60) and c2 ¼ 0.05

(Mw ¼ 200).

For Brownian diffusion, the MSD scales linearly with time:

hDR2i2 ¼ A� t=t0 and the prefactor A determines the diffusion coeffi-

cient: A ¼ 2d t0 D (d is the number of spatial dimensions), which corre-

sponds to D ¼ hDR2i/(2dt). For MSD power laws with other exponents,

a s 1, an effective diffusion coefficient (with proper dimension mm2/s)

is directly proportional to the prefactor A if we choose the reference time

as the time lag, i.e., for t ¼ t0 we obtain D ¼ A/(2d t0)—otherwise the

diffusion coefficient will depend explicitly on a. This definition permits

a volume-explored interpretation of this effective diffusion coefficient,

for a characteristic volume measure can be obtained from projecting the

two-dimensional MSD into the third dimension.
Models

Langevin models of intracellular motion

The standard overdamped Brownian motion in a viscous medium is

described by the Langevin equation:

dx

dt
¼ xxðtÞ; dy

dt
¼ xyðtÞ;

�
xaðtÞxbðt0Þ� ¼ 2Dda;bdðt � t0Þ;

(5)

with D being the spatial diffusion coefficient; xðtÞ is a white Gaussian noise
that models the velocity. A numerical simulation of this model at time step
Dt is realized by the simple map:

xi ¼ xi�1 þ xxi ; yi ¼ yi�1 þ xxi ;
D
xai x

b
j

E
¼ 2DDtda;bdi;j;

(6)

The numbers xxi ; x
y
i are independent Gaussian numbers with zero mean

and variance 2DDt. The differences in the trajectory between adjacent

time instances, i.e., the increments are thus statistically independent and,

in particular, uncorrelated. We used the previous scheme to simulate the

tracer particle’s diffusion in glycerol.

In this work, we also consider a generalization of the previous equation,

in which we replace the white (uncorrelated) Gaussian velocity noise by
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a colored (correlated) Gaussian velocity noise. We will work exclusively

with a discretized version of the Langevin equation and also use a linear

map, an autoregressive process (AR) for the generation of the colored noise:

xi ¼ xi�1 þ vxiDt; yi ¼ yi�1 þ vyiDt;

XK �
xy y

�

FIGURE 1 Tracking of single NPs, transported in living D. discoideum

cells, yields this type of trajectories. Cytoskeleton depolymerization agents,

namely Benomyl and Latrunculin A, are used to discern the influence of

particular cytoskeleton constituents, MT and F-actin, on the intracellular

transport. Trajectories are analyzed using a local MSD algorithm shifting

a rolling window across the NP trajectories.
vxi ¼
k¼ 1

cxxk v
x
i�k þ ck vi�k þ xxi ;

vyi ¼
XK
k¼ 1

�
cyxk v

x
i�k þ cyyk v

y
i�k

�þ x
y
i :

(7)

Noise sources in x and y can be correlated but are always uncorrelated in

time, i.e., hxxi xxj i ¼ di;js
2
xx; hxyi xyj i ¼ di;js

2
yy; hxxi xyj i ¼ di;jsxy. Note that for

cxxk ¼ cyyk ¼ cyxk ¼ cxyk ¼ sxy ¼ 0 (for all k) and s2xx ¼ s2yy ¼ 2D=Dt, the

model reduces to the simple Brownian motion in Eq. 6.

For each data set, we determine the coefficients of the AR process from

(see, e.g. (30).)

cx ¼ B�1
x jx; cy ¼ B�1

y jy: (8)

Here, cx ¼ ðcxx1 ; cxx2 ;.; cxy1 ;.; cxyK Þ; cy ¼ ðcyy1 ; cyy2 ;.; cyx1 ;.; cyxK Þ and

jab
k ¼ hvai�kv

b
i i ¼ hvai vbi irabk give the r.h.s. by jx ¼ ðjxx

1 ;j
xx
2 ;.;jxy

1 ;.;

j
xy
K Þ;jy ¼ ðjyy

1 ;j
yy
2 ;.;jyx

1 ;.;jyx
K Þ and

Bx ¼

2
6666664

jxx
0 . jxx

K�1 j
xy
0 . j

yx
K�1

. . . .

jxx
K�1 jxx

0 j
xy
K�1 j

yx
0

j
yx
0 . j

xy
K�1 j

yy
0 j

yy
K�1

. . . .

j
yx
K�1. j

yx
0 j

yy
K�1. j

yy
0

3
7777775
;

By ¼

2
6666664

j
yy
0 . j

yy
K�1 j

yx
0 . j

xy
K�1

. . . .

j
yy
K�1 j

yy
0 j

yx
K�1 j

xy
0

j
xy
0 . j

yx
K�1 jxx

0 jxx
K�1

. . . .

j
xy
K�1. j

xy
0 jxx

K�1. jxx
0

3
7777775

(9)

Once the coefficients have been found from solving Eq. 8, the variances

and covariance of the noise sources can be calculated from

s2
xx ¼ jxx

0 �
XK
k¼ 1

�
cxxk j

xx
k þ cxyk j

xy
k

�
;

sxy ¼ j
xy
0 �

XK
k¼ 1

�
cxxk j

xy
k þ cxyk j

yy
k

�
;

s2
yy ¼ j

yy
0 �

XK
k¼ 1

ðcyyk jyy
k þ cyxk j

yx
k Þ:

(10)

To sum up, if we know the covariance, the variances, and the correlation

coefficients of the increments in x and y up to lag K, we can determine an

AR model, that has Gaussian increments and the same linear correlations as

the data. For simulation of all intracellular data, we used Eq. 7 withK¼ 100

(dimension of the AR process). The large set of correlations coefficients
K ¼ 100 is only needed to reproduce correctly the long-term behavior

(see Fig. 5) for the mean values as a function of maximum lag time.
RESULTS AND DISCUSSION

Our study of the cytoskeletal influence on intracellular
subdiffusion draws on the combination of experimental
NP trajectories and simulations thereof, which are analyzed
using a local MSD algorithm (29). We observe internalized
NPs inside living cells using fluorescence microscopy.
Frame-by-frame tracking yields NP trajectories, which
are evaluated by a local MSD analysis, as laid out in
the Methods section and depicted schematically in Fig. 1.
Local MSD transport variables are studied in various
D. discoideum cytoskeleton environments, including partial
or complete depolymerization. In this work, we select diffu-
sive motion states exclusively, disregarding active intracel-
lular transport phases, mediated by motor-driven filament
attachment. This distinction is performed by the local
MSD analysis (29). In this study, we use only the subdiffu-
sive motion phases to compare the impact of different cyto-
skeleton depolymerization states for finite size experimental
tracks.
Increment statistics

We first compare the motion of fluorescent NPs in glycerol
and in living WT cells’ cytoplasm. This exemplifies the
analysis method, highlights the differences between Brow-
nian motion and intracellular motility, and yields insight
into the importance of increment statistics. Increment statis-
tics consist of a size distribution and their temporal autocor-
relation function, which are shown in Fig. 2, a and b, for
trajectories in glycerol and in WT cells’ cytoplasm, respec-
tively. Gaussian fits to the experimental data are also shown.
Biophysical Journal 102(4) 758–767
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FIGURE 2 Comparison of NP motion in glycerol and WT D. discoideum cells. (a) The autocorrelation of frame-to-frame increments fluctuates around

zero for the glycerol data (upper panel) but shows statistically significant negative correlations for the intracellular data (lower panel). Using the autocor-

relation function and the increment’s variance, an autoregressive process for the increments with the same correlation statistics can be simulated; increments

for this simulated process are distributed according to a Gaussian. (b) The size distribution of frame-to-frame increments can be approximated by Gaussian

distributions (lines show fits to the data), with slight deviations at large increment values. (c) Distributions of local mean-square exponent values a and (d)

effective diffusion coefficients D (middle panels) for glycerol (upper panel) and the WT cell (lower panel); experimental data (histograms) and simulations

(solid lines). (e) Joint distributions of mean-square exponent a and diffusion coefficientD for glycerol (upper panel) andWT cell (lower panel); experimental

data (left) and simulations (right).
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Increment correlations are mostly close to zero for diffu-
sion in glycerol, as expected from the simple Langevin equa-
tion (cf. rxxk in Fig. 2 a). However, due to time-dependent
drifts in the z direction and limitations in the tracking algo-
rithm, we sometimes observed small-scale oscillations at
the first few lags (cf. ryyk in Fig. 2 a) or variability of the corre-
lation coefficient at lag one (not shown); this drift effect in the
z direction is not as pronounced in cell data. Correlations at
higher lags were, however, consistently close to zero. There-
fore, we regard only correlations at higher lags as significant.
Correlations for NPmotion in theWT cells are negative over
the first 50–100 lags (except for lag one) corresponding to
a timescale of the velocity fluctuations of seconds. The latter
result resembles recent experimental findings for the velocity
correlations of chromosomal loci and RNA-protein particles
in bacteria (31). As outlined previously, negative correlations
of the increments are indicative of elastic restoring forces,
which are naturally linked to subdiffusion and will lower
the mean of the exponent a on small timescales. Trajectories
are simulated using the white-noise model Eq. of the
Methods section for the NPmotion in glycerol and the corre-
lated velocity model Eq. 7 for NP motion in WT cells. The
Biophysical Journal 102(4) 758–767
resulting distributions of the local exponent a and the local
diffusion coefficient D are compared to those obtained
directly from the experimental trajectories. The good agree-
ment of these a (Fig. 2 c) and D (Fig. 2 d) statistics of
the experimental and simulated trajectories show, that
simple Langevin-based models might be sufficient to
explain important features of intracellular subdiffusion, if
the autocorrelation of increments is taken into account.

Apart from the marginal distributions of a andD, it is also
instructive to consider their joint distribution (Fig. 2 e). For
all data (intracellular or glycerol, experiment or simulation),
there is a clear positive correlation between the values of
a and D. This is a nontrivial consequence of the way in
which a and D are determined by the power law fit, which
is performed by linear regression in a double-logarithmic
plot of data that are subject to a finite sample noise. This
noise is positively correlated along the MSD curve. In other
words, if the finite-size average estimate of the MSD over-
estimates the true MSD, for instance, at time t ¼ t0=2, it
will be most likely also overestimated at a later time, e.g.,
at t ¼ t0. The positive correlation, in turn, causes a positive
correlation of the estimates of slope (yielding the exponent
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a) and intercept with the log[MSD]-axis (yielding the diffu-
sion coefficient). (Even if the finite-sample noise would be
uncorrelated and equal in intensity for each data pair
½log ðt=t0Þ; log ðMSDðtÞÞ�, the estimates of a and D would
be positively correlated, although weaker than in the case of
positively correlated MSD fluctuations.)

In all cases, probability is distributed along and around
a line in the a-D plane, the position and slope of which
agrees fairly well for experimental and simulation data.
For the glycerol data in Fig. 2 e, also the width of the distri-
bution is in good agreement for experiment and simulation.
For the WT data, however, there is a significant difference
between model simulations and experimental results: the
experimental data exhibit a broader distribution around the
aforementioned line. This difference is found for all intra-
cellular data (see Fig. 4 c). The larger width of the experi-
mental distribution may be caused by inhomogeneities
within the cytoplasm, not incorporated in our model, such
as the weak non-Gaussian statistics of the increments or
higher-order correlations (the autoregressive process Eq. 7
reproduces only the second-order statistics). However, we
expect slight experimental errors for the glycerol and WT
cell experiments.
Subdiffusive phenomena after cytoskeleton
depolymerization

We extend increment statistics based on the analysis of WT
cells to modified cytoskeleton states. D. discoideum cells
show the rare capacity to survive despite cytoskeleton
depolymerization. The four investigated cytoskeleton states
are WT cytoskeleton, depolymerized MT (Benomyl), depo-
lymerized F-actin (Latrunculin A), and simultaneous depo-
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FIGURE 3 Increment correlation coefficient in x (a) and histograms of

increments in x (b) in three different cytoskeleton states: WT cells (black

lines without error bars) as reference, Benomyl-assisted MT depolymeriza-

tion (first row), Latrunculin A-assisted F-actin depolymerization (second

row), and simultaneous MT and F-actin depolymerization (third row).

Correlations and histograms were similar for all cases when measured for

the increments of y instead of x.
lymerization of MTand F-actin (Benomyl and Lat A). Fig. 3
shows the autocorrelation of increments for these four
different cytoskeleton states. The former three conditions,
characterized by the presence of at least one of the cytoskel-
eton constituents, show very similar behavior: the increment
autocorrelation function is consistently negative at higher
time differences. The case of simultaneous depolymeriza-
tion of both cytoskeleton constituents displays significantly
different increment statistics with positive autocorrelation at
higher time differences. These findings indicate a funda-
mental difference between partial and complete cytoskel-
eton depolymerization, but do not yield direct insight into
the consequences on intracellular transport. In addition,
increment distributions show in some cases deviations
from the fitted Gaussians at large arguments, which can be
interpreted as an indication for a nonequilibrium dynamics
at work in the cell.

We applied the local MSD analysis algorithm to both,
experimental trajectories and simulations using experimental
increment statistics. Indeed, the four cases can bewell differ-
entiated by their local a and D distributions, as depicted in
Fig. 4. Experimental and simulated distributions again
show good agreement. The a distributions in Fig. 4 a show
various degrees of subdiffusion, quantified by themeanvalue
of the MSD exponent hai. The experimental mean values for
hai are 0.85 (WT), 0.76 (Benomyl), 0.79 (Latrunculin A),
and 0.90 (Benomyl and Latrunculin A). Furthermore, the
mean diffusion coefficient shows characteristic behavior
for each cytoskeleton state: In total absence of both MT
and F-actin, the mean diffusion coefficient hDi equals
0.86 � 10�2 mm2/s. In contrast, presence of at least one
cytoskeleton constituent leads to enhanced diffusion
coefficients, with mean values of hDi amounting to 6.10 �
10�2 mm2/s (WT), 3.53 � 10�2 mm2/s (Benomyl), and
10.7 � 10�2 mm2/s (Latrunculin A), as shown in Fig. 4 b.

The joint a-D distributions are shown in Fig. 4 c. As
already discussed for the WT data in Fig. 2 e, the widths
of the joint distributions are larger in the experiment than
in the simulational data, in particular in the case of complete
cytoskeleton depolymerization by application of both
Benomyl and Latrunculin A. Thus, the increase in the width
of the joint distribution can be attributed to an effect, which
is not mediated by F-actin or MT. The large spread of the
experimental P(a,D) is not accounted for in our model
and may be resolved by further intracellular transport
studies whose scope extends beyond the influence of the
cytoskeletal main players.

Microtubule and F-actin depolymerization

After removal of MT and F-actin, we observe a Brownian-
like diffusion characterized by a z 1 and a low D, contrary
to enhanced subdiffusion in WT cells, characterized by a <
1 and a high D. In the absence of both, MT sweeping motion
and actin cortex rearrangement, no other active cytoskeleton
components, driven for example by ATP-consuming
Biophysical Journal 102(4) 758–767
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FIGURE 4 Distributions of a (a), of D (b), and their joint distribution (c) in various cytoskeleton states: WT cells (top row), Benomyl-assisted

MT depolymerization (second row), Latrunculin A-assisted F-actin depolymerization (third row), and simultaneous MT and F-actin depolymerization

(bottom row) for both experimental data (red bars) and simulations (black lines). In a mean values of a are indicated by vertical dashed lines.
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molecular motor cross-links, are capable of inducing active
behavior or specific forces due to the polymerization of
actin or MTs. This result is a strong indicator for the impor-
tance of the enhancing effect of actively driven cytoskeleton
components on subdiffusion (24). D. discoideum cells
survive instantaneous depolymerization of the actin cortex
and of MT, as depolymerization of cytoskeleton compo-
nents in the living cell can never be complete. Small
amounts of F-actin and little MT-stumps persist in the
cell, enabling the bare survival of the cell by contributing
little to active processes. It is thus in concordance with
our model with velocity correlations to assume a nonequilib-
rium system, even in the case of simultaneous MT and
F-actin depolymerization.

Microtubule depolymerization

Selective removal of MTs alters cell behavior: ballistic
transport via biomotors is impossible (32). However, this
effect is filtered from our subdiffusive motion data by
analysis with the local MSD algorithm. In the context of
subdiffusion, the MT sweeping causes long range effects
for the NPs: Active MT sweeping motion renders the cyto-
plasm more fluid-like and viscous, its absence thus more
solid-like. We expect a decrease in spatial extent of the
volume probed by the particle. As the effective diffusion
constant is directly calculated from local MSD values, it
gives an estimate of the volume probed per unit time and
Biophysical Journal 102(4) 758–767
our experimental results do show a slight decrease in D in
the absence of MTs.

F-actin depolymerization

F-actin mediates migration, so F-Actin-depleted cells show
accompanying effects, such as rounding up and immotility,
in addition to changes in intracellular transport. We find that
depolymerization of F-actin causes a slight drop in a with
respect to WT cells, a sign of enhanced elastic properties
of the cytoplasm and lack of actin pushing forces. As in
the case of MT depletion, this more elastic-like behavior
can be attributed to the absence of myosin II motors along
actin filaments and actin polymerization dynamics. Second,
we find increasing hDi values, which is a sign of a larger
volume probed by the tracer particle, in the absence of
a densely packed actin network. These seemingly contradic-
tory observations result from the absence of myosin-actin
activity.

The closely cross-linked actin cortex undergoes active re-
arrangements, driven for example by ATP-consuming acto-
myosin (33). Entangled actin networks, which were
reconstituted in vitro, were probed by bead microrheology
(34). It was found that viscosity is prevalent at high frequen-
cies, down to 1 Hz, which corresponds to a probing on the
1 s timescale. The scaling of the viscoelastic moduli as
u3/4 yields a MSD exponent of a ¼ 3/4 at these timescales,
similar to values observed experimentally for tracer
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particles (35). At larger times, the elastic properties prevail
and the MSD exponent a experiences a drop down to ~0.32.
These data, both in vitro (34) and in living cells, as reported
in this work, support the hypothesis of a viscosifying effect
of F-actin at timescales smaller than or comparable to 1 s.
The exact crossover time depends on filament length (34)
and probe size (36). It seems plausible that it also depends
on motor presence and ATP concentration, which must be
kept in mind when comparing quantitative in vitro and
in vivo data.
Lag-time dependence

Up to now, effects of cytoskeleton disruption were investi-
gated at one specific maximal lag time of 0.735 s. We
now investigate the lag-time dependence and, in particular,
the lag time-dependent a and D statistics by varying the
window size from Mw ¼ 8 frames to Mw ¼ 200 frames,
always keeping the MSD fit data range at 1/4 � Mw points.
This corresponds to a range of the maximal lag times from
0.098 to 2.45 s. The results of these experiments and simu-
lations are shown in Fig. 5, again for the previously studied
four cytoskeleton states: WT, MT depolymerization, F-actin
depolymerization, and simultaneous depolymerization of
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FIGURE 5 Lag-time dependence of the local MSD exponent hai (a) and
the mean effective diffusion coefficient hDi (b) in various cytoskeleton
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Benomyl-assisted MT depolymerization (exp: blue triangles, sim: blue

line), Latrunculin A-assisted F-actin depolymerization (green squares,
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MT and F-actin. The a statistics show good agreement
between experimental and simulation results at all maximal
lag times (Fig. 5 a); for comparison, we show the mean
alpha for NP diffusion in glycerol, which remains close to
one for all lag times. The cytoskeleton states with only
one depolymerized component display qualitatively similar
behavior to WT, whereas the case of simultaneous depoly-
merization of both components is qualitatively different.
Here, we find a smaller degree of subdiffusion. This is
indicated by larger mean a values at maximal lag times
>0.6 s. The respective diffusion coefficients are smaller
(Fig. 5 b). At lag times larger than ~1 s, the mean diffusion
coefficients approach plateau values, with actin-depleted
cells exceeding WT and MT-depleted cells’ plateau values.
Overall, the strong variations of the mean alpha versus
maximal lag time is another indication that intracellular
motility is far more complicated than simple Brownian
motion (cf. hai for the glycerol data, which does not vary
much—even if one excludes active transport along fila-
ments and focuses on apparently passive phases of motion.
A weak variation of mean alpha versus maximal lag time
can be also expected from simple Brownian motion; see
our simulation results, which yield hai close to but slightly
smaller than one. This will be studied in detail elsewhere.)

Microtubule and F-actin depolymerization

In cells of simultaneous MT and F-actin depolymerization,
response is twofold: At lag times larger than 1.0 s, intracel-
lular motion is nearly Brownian with a z 1 and low diffu-
sion coefficients, consistently below 1.1 � 10�2 mm2/s,
comparable to the glycerol data. This result stresses the
active role these cytoskeleton components play in subdiffu-
sion and highlights the importance of the cytoskeleton at
these lag times. In this case, subdiffusion can be observed
up to lag times of 0.8 s with diffusion constants of 7.6 �
10�3 mm2/s at lag times between 0.25 and 0.30 s. This is
a sign of near standstill of the tracer particle motion, due
to absence of MT and F-actin dynamics. However, remnants
of the polymer networks persist, acting as cages on small
timescales, in addition to intracellular crowding effects.

In the case of an intact WT cytoskeleton, the drop in
a from diffusion to subdiffusion at hai z 0.75 occurs
over a lag time range from hundreds of ms to ~2 s, as inves-
tigated in other cell types in (11). At lag times of tens of
seconds, a return to diffusive behavior is expected to occur,
which is not investigated in this context.

Microtubule depolymerization

Benomyl-treated cells show a faster transition from diffu-
sion to subdiffusion between t ¼ 100 ms and t ¼ 750 ms
than WT cells. The mean value of a decreases from 1 to
hai ¼ 0.75, as investigated in other cell types in (11). In
WT cells, the latter value is approached not until a time
lag of ~2 s. For large lag times, the WTand Benomyl-treated
cells show similar hai values, indicating a vanishing
Biophysical Journal 102(4) 758–767
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contribution of MT sweeping motion at large lag times. The
effect of MT seems to be viscosifying, as indicated by
consistently higher a values in the presence of MT. A
possible explanation for the enhanced viscous properties is
given by MT motion actively stirring the cytoplasm. The
viscosifying effect is most pronounced at lag times between
0.5 and 1 s, in accordance with previous findings on MT
sweeping motion, highlighting their pronounced motion
and activity at lag times of ~1 s (37).

F-actin depolymerization

Latrunculin A-treated cells show a decrease in a from ~1 to
0.75 in the lag time range from 0.1 to 1.2 s, for shorter lag
times than in the WT case and larger than in the Benomyl
case. Actin-depleted cells show smaller hai values than
WT cells. This leads us to conclude that F-actin exerts a vis-
cosifying effect on the cytoskeleton, accounting for higher
a values and apparently enhancing the motion of tracer
particles, possibly by active driving forces generated by
actin cortex rearrangements. At the same time, the diffusion
coefficient is consistently smaller in the presence of F-actin,
resulting from mostly lag time-independent hindrance of
tracer particle motion, possibly in a cage-like fashion.
Compared to WT cells, this might also indicate that MT
motion is hindered by the presence of actin polymerization,
as observed in neuronal growth cones (38).
CONCLUSION

We quantified the influence of MT and F-actin on subdiffu-
sion in living cells and identified typical timescales. Our
results clearly show that for a complete description of
diffusive and subdiffusive motion phases in intracellular
nanoscale transport, we have to consider both, the MSD
exponent and the effective diffusion coefficient to under-
stand cooperative and counterbalancing effects of MT and
F-actin dynamics. We applied a local MSD analysis to
distinguish ballistic from diffusive intracellular motion
states, as extracted from NP traces and focused purely on
subdiffusive motion states.

Our study revealed that subdiffusive dynamics can be
described by a Brownian motion with correlated Gaussian
velocity fluctuations. Although the real increments of
intracellular motion are Gaussian only to a certain approxi-
mation and although we did not incorporate higher order or
nonlinear correlations in our model, we were able to repro-
duce the marginal distributions of local exponent and diffu-
sion coefficient (resulting from the local MSD analysis).
Our data-driven Gaussian model helped us to understand
which aspects of the parameter distributions are intrinsic to
the algorithm (typically, the width of distributions, which is
mainly determined by the finite-sample noise) and which
are characteristic of intracellularmotion (e.g., themeanvalue
of a). We showed that reasonable approximations, i.e.,
Biophysical Journal 102(4) 758–767
assuming Gaussian increment statistics and neglecting
higher-order correlations, allowed for a great simplification.
Our aim was not to find a minimal model here. We want to
illustrate that for a variety of cytoskeletal states, the more
complicated statistics of the local MSD algorithm could be
understood as a consequence of the much simpler increment
statistics of the randommotion, so the second-order statistics
of the increments and a Gaussian assumption (the simpler
statistics) to a large extent explains the more complicated
statistics of the local MSD algorithm (a and D distribution),
which is not used as fitting statistics. However, it is worth
pointing out that our data-driven model does not give a
physical description of intracellular motility. Future
modeling of subdiffusive intracellular motion (e.g., in the
framework of active gel theory incorporating fluctuations)
can nevertheless profit from our simplification because
such modeling can be limited to capture the correct linear
increment correlation—a task that is certainly more readily
accomplished than matching in a model a specific local
MSD statistics (joint and marginal distributions of a and D).

To summarize our results on intracellular motion, we
found that i), microtubule sweeping liquefies the cytoplasm
on all investigated timescales, ii), actin-microtubule cross
talk generates a viscosifying effect at timescales larger
than 0.2 s, and iii), the F-actin-induced decrease in effective
diffusion coefficients occurs at all investigated timescales
(50 ms–2.5 s). It is the interplay of these effects, at these
particular timescales, which mediates viable transport in
living cells. These timescales are of particular interest
because they correspond to the typical durations of alter-
nating ballistic and diffusive phases. In the absence of
both, MT sweeping motion and actin cortex rearrangement,
intracellular motion becomes more similar to Brownian
motion, which is an indicator for the major influence of
dynamic cytoskeleton components on subdiffusion.

Alternations between subdiffusive and ballistic phases
occur when a particle reaches close proximity to a MT.
Thus, motor-driven, directed long-distance transport along
MT shuttles NPs across the cell, but remains ineffective
without well-defined short-range subdiffusion for the
binding to targets (24). This brings about major biological
implications, mostly for transport-driven cellular processes,
such as migration (14): Cellular movements build upon the
reliable supply of essential signaling molecules. Actin poly-
merization-related proteins, most notably PIP3 (phosphati-
dylinositol (3,4,5)-trisphosphate) accumulate at the cell
membrane and lead to enhanced local actin polymerization.
In consequence, cell protrusions are generated for migra-
tion. This process was shown to be controlled by spatio-
temporally controlled, external chemotactic stimuli (39).
A detailed understanding of the role of subdiffusion for
governing complex cellular functions might promote
a wide range of applications, aiming at externally control-
ling cell functions. This could be accomplished by means
of NPs, carrying stimulus drugs, which are then inserted
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into living cells to controllably induce cell functions, for
example directed migration.
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