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Escape rate of an active Brownian particle over a potential barrier
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We study the dynamics of an active Brownian particle with a nonlinear friction function located in a spatial
cubic potential. For strong but finite damping, the escape rate of the particle over the spatial potential barrier
shows a nonmonotonic dependence on the noise intensity. We relate this behavior to the fact that the active
particle escapes from a limit cycle rather than from a fixed point and that a certain amount of noise can stabilize
the sojourn of the particle on this limit cycle.
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The escape of a Brownian particle out of a metastable
potential well, the famous Kramers problem, is a long studied
subject in statistical physics [1] with applications in physics,
physical chemistry, biology, and other fields. This is so because
Brownian motion in a nonlinear force field can be also
employed as a model for the reaction coordinate of a chemical
reaction (the original problem Kramers was interested in), the
phase difference in a Josephson junction [2], or the membrane
potential of a nerve cell [3], to name but a few prominent
examples.

Over the last decade another class of stochastic models,
so-called active Brownian motion, has attracted much attention
[4–8]. In order to describe self-propelled or active motion of
particles in biology [9,10], such as the motility of objects at
the subcellular level (e.g., assemblies of molecular motors)
[11,12], of cells [13], or even of entire flocks of animals [14],
theoreticians have used Langevin equations that are endowed
with a speed-dependent friction coefficient. Essential for an
active particle is not the mere speed dependence of the friction
coefficient that can be also observed in equilibrium models
[15], but also that the friction coefficient is negative over a
range of velocities.

Active Brownian motion has been predominantly studied
for the cases of free motion of single and coupled particles
and for active particles subject to harmonic potential forces.
How an active Brownian particle escapes from a metastable
potential well has received comparably little attention [16]. In
this Brief Report, we study this interesting generalization of
the Kramers problem to active particles in the case of strong
but finite damping. We show that the escape rate can display
a nonmonotonic dependence on the noise intensity, a behavior
that is in marked contrast to the classical Kramers rate, which
always increases with growing noise level.

Model. The dynamics of an active Brownian particle with
a nonlinear friction function γ (v) and subject to a spatial
potential U (x) reads

ẋ = v, mv̇ = −γ (v)v − γ0U
′(x) +

√
2D ξ (t) , (1)

*Corresponding author: burada@pks.mpg.de
†benjamin.lindner@physik.hu-berlin.de

where m is the mass of the particle, γ (v) is the nonlinear
friction function (see below), and ξ (t) is Gaussian white noise
with noise strength D and correlation function 〈ξ (t) ξ (t ′)〉 =
δ(t − t ′). The spatial potential is U (x) = A(x − x3

3 ) with the
amplitude A. The potential possesses a minimum at x = −1
and a maximum (the barrier) at x = 1. Equation (1) is
integrated with a simple stochastic Euler scheme for which
we use a time step of �t = 0.001.

Note that we scale the potential force in Eq. (1) by a
parameter γ0, which we will also use as the amplitude of
the nonlinear friction function below. In the nonequilibrium
problem considered here, the strength of the active friction
function is not related with the Stokes friction coefficient, but
arises as a phenomenological parameter, which in our scaling
of the spatial potential force conveniently quantifies the time-
scale ratio of x and v. In the following, we will consider two
different nonlinear friction functions, namely, the Rayleigh-
Helmholtz (RH) friction function and the Schweitzer-
Ebeling-Tilch (SET) friction function [5], and study the
escape dynamics of the active particle over the potential
barrier.

The RH friction function reads γ (v) = γ0(v2 − u2
0). Here,

u0 > 0 is the speed the particle would attain in the long-time
limit if noise and potential would be switched off. In contrast to
passive Brownian motion, a vanishing velocity is dynamically
unstable because the friction function is negative for −u0 <

v < u0. The SET friction function is given by γ (v) = γ0(1 −
β

1+v2 ). With this friction function, Brownian particles attain a
self-propelled motion if β > 1.

For the considered models, the nullcline for the fast variable
v is the line (or the lines) at which v̇ = 0 in the absence of
noise, determined by γ (v) v + γ0 A(1 − x2) = 0. If we regard
this as a cubic equation in v, we see that for a given x, one,
two, or three solutions for the velocity are possible. If there
are three solutions, the middle one is dynamically unstable (in
v), while the upper and the lower branches attract trajectories.
The intersections of the v nullcline with the x nullcline (v = 0)
form only two unstable fixed points. The critical amplitude Ac

at which the bifurcation occurs can be calculated. For the RH
model it is Ac = 2 u3

0/(33/2) (≈0.38 for u0 = 1) and for the
SET model it reads Ac = [(3β − d)/(d − β)]

√
(d − 2 − β)/2

(≈0.3 for β = 2), where d = √
β(8 + β). For the simulations,
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FIG. 1. (Color online) Deterministic behavior below (a) and
above (b) the critical amplitude for the RH model. The red dashed line
in (b) is the separatrix line calculated from the deterministic equation.
Qualitative similar behavior is observed for the SET model.

if not stated otherwise, we set the parameters m = 1, u0 = 1,
β = 2, and γ0 = 20.

Typical trajectories of the deterministic system are shown
in Fig. 1 for potential amplitudes that are below [Fig. 1(a)] and
above [Fig. 1(b)] the critical value Ac. For a small amplitude
(A < Ac), the trajectory follows closely the v nullcline and
escapes quickly from the potential minimum. For a large
amplitude, in contrast, the particle remains in the minimum
and approaches a limit cycle, similar to what was observed
for active Brownian motion in a harmonic potential [6].
Because we have chosen γ0 to be large, the particle performs
relaxation oscillations and switches rapidly between the two
stable branches of the v nullcline. In Fig. 1(b) we have
marked the separatrix (red dashed line), which limits the
region of attraction for the limit cycle (the line was determined
numerically from deterministic simulations with different
initial conditions). Put differently, deterministic trajectories
started to the right (left) of the separatrix line will ultimately
escape from the minimum (end up on the limit cycle).

Escape statistics. In order to measure the escape rate, we
keep the particle in the potential minimum x(t = 0) = x0 =
−1 with a negative velocity, v(t = 0) = v0 = −1, a position
in phase space that is always on the v nullcline. We measure
the time it takes the particle to overcome a threshold of xth = 5
and repeat this numerical experiment 2000 times. The rate is
then given by the inverse of the mean first passage time from
(x0,v0) = (−1,−1) to the threshold in xth (regardless of the
velocity with which the particle arrives at xth). Other initial
conditions, as long as they are chosen left of the separatrix, do
not strongly affect our simulation results.

The escape rate of active Brownian particles is depicted in
Fig. 2 for both models. A peculiar, nonmonotonic behavior of
the escape rate can be observed. We recall that for passive
Brownian particles, in a spatial potential, the escape rate
always increases monotonically with the noise strength D [1].
For the active particle, remarkably, for a potential amplitude
A sufficiently exceeding the critical one and over a range of
D the escape rate decreases with increasing D, giving rise
to a maximum at intermediate and a minimum at large noise
intensity, respectively.

For large amplitude, the escape rate shows at very small
noise an Arrhenius-like behavior r ∼ exp(−�/D) as can be
seen in the logarithmic plots vs 1/D in the insets of Fig. 2.
In the opposite limit, for a small potential amplitude A < Ac,
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FIG. 2. (Color online) Escape rate as a function of the noise
strength for (a) RH and (b) SET models at different amplitudes of the
spatial potential. For the RH model the critical A value is 0.38 and
for the SET model it is 0.3. Insets depict Arrhenius plots of the same
data.

the particle is driven out of the potential minimum by the
deterministic dynamics as was already discussed in the context
of Fig. 1(a). Consequently, the escape rate in this case is finite
and decreases for increasing noise; this is also the only case
considered here in which the rate depends on the specific initial
conditions.

The maximum in the rate is most pronounced for A = 0.41
[i.e., a potential amplitude close to but exceeding the critical
amplitude (and also its modified value for finite γ0)]. Larger
amplitudes generally reduce the rate for all noise intensities
but particularly at weak noise. Furthermore, the location of the
maximum shifts to larger values of D. In the limit of very large
potential amplitude A, the maximum of the rate vanishes and
the rate strictly increases with increasing noise intensity. All
of this applies to both friction models, which indicates that the
rate maximization at finite noise is a robust phenomenon that
does not hinge on the fine details of the model.

Figure 3 shows the behavior of the escape rate for different
amplitude γ0. We recall that γ0 in our scaling of the potential
determines the time scale between x and v. For larger γ0,
the intrawell limit-cycle oscillations turn into pronounced
relaxation oscillations. At the same time, the escape over the
barrier also becomes more difficult because the particle is
strongly attracted to the stable branches of the v nullcline.
As a consequence, we observe for increasing values of γ0 an
overall reduction in the rate and shift of the local rate maximum
toward larger noise intensity. For large values of γ0 and for very
weak noise, we observe again a Arrhenius-like behavior as was
already illustrated by the insets in Fig. 2. Going to the opposite
limit of moderate-to-small γ0 (e.g., γ0 = 1), the maximum vs
noise intensity vanishes and decay of the rate in the weak-noise
limit turns into a saturation. Hence, a pronounced but not
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FIG. 3. (Color online) Escape rate as a function of the noise
strength for (a) RH and (b) SET models at different strengths γ0

of the nonlinear friction function. Here, we set the amplitude of the
spatial potential A = 0.43 for the RH model and A = 0.34 for the
SET model.

perfect time-scale separation between x and v seems to be
precondition for a maximum of the escape rate.

In order to understand the peculiar dependence of the escape
rate on the noise strength for A > Ac, we now analyze the
escape statistics in more detail, restricting ourselves to the
RH model. The dynamics is illustrated by sample trajectories
for various noise levels in Fig. 4. In the deterministic case
[D = 0, Fig. 4(a)], the particle sticks to the limit cycle
and cannot escape over the barrier. With a finite but small
amount of noise [Fig. 4(b), e.g., D = 0.003], the particle
follows the limit cycle for many rounds but can finally escape
across the separatrix through the bottleneck around x = 0
and v = 1/2. A further increase of D [e.g., to the level
D = 0.05 shown in Fig. 4(c)] increases the probability to
escape already after only a few rounds on the limit cycle.
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FIG. 4. (Color online) Escape trajectories at different noise
strengths for γ0 = 20 and A = 0.41. The black lines are nullclines
and the red dashed line is the separatrix line of the deterministic
motion in Eq. (1).
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FIG. 5. (Color online) (a) probability distribution of points of
switching between the upper and lower stable branches of the v

nullcline; (b) probability distribution of escape points across the
separatrix region. Inset in (a): mean cycling time vs noise intensity.
Parameters are same as in Fig. 4.

At this specific value the escape rate is maximum and its
growth with increasing noise is so far not surprising. However,
if we further increase the noise, we stabilize the motion on
the limit cycle and thus reduce the probability of escape
through the bottleneck by the following mechanism. As the
particle passes along the upper stable branch of the v nullcline,
a competing escape event becomes feasible, namely, the
early jump to the lower branch of the v nullcline. Strong
noise increases this switching rate and, consequently, keeps
the particle from reaching the critical region close to the
separatrix.

Further support for this mechanism comes from the statis-
tics of the switching points x at which the particle either
(i) crosses the line v = 0 when jumping from the upper
stable branch of the v nullcline to the lower one [probability
Pv(x) in Fig. 5(a)] or (ii) crosses the separatrix and escapes
from the potential minimum [probability Ps(x) in Fig. 5(b)].
We normalize the histograms for both densities in x to the
total number of events (i.e.,

∫ xth

−∞ dx[Pv(x) + Ps(x)] = 1).
In addition, we also calculate 〈τ 〉, which is the mean time
difference between two successive turns on the limit cycle
[mean cycling time, shown in the inset in Fig. 5(a)]. As
demonstrated in Fig. 5, the switching distribution Pv(x)
broadens considerably when we reach the range of noise values
where the escape rate drops with increasing noise, indicating a
substantial increase in the probability of early transitions from
upper to lower branch. In the same range of noise values the
mean cycling time 〈τ 〉 decreases only little and the distribution
of escape points over the separatrix remains for all noise levels
located in a narrow region around x = 0. We take this as
an indication that the stabilizing effect of noise is mainly
related to the switching on the limit cycle and not so much
to the escape once the particle has reached the vicinity of the
separatrix.

Summary. We have shown that the escape dynamics of
active Brownian particles, with a nonlinear friction function, in
a spatial cubic potential is distinctly different from the passive
case. We have found that the combination of two nonlinearities,
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in space and velocity, gives rise to a nonmonotonic escape rate
as a function of the noise strength, an effect that robustly occurs
for different friction functions. The maximum in the rate could
be understood by the stabilizing effect of noise on the dwell
time in the potential minimum.

As the model studied here has been shown to qualitatively
approximate the dynamics of coupled molecular motor sys-
tems [12], it would be an interesting task to study the escape
problem for the latter system. Furthermore, the nonmonotonic

rate dependence on noise is most likely not restricted to
one-dimensional models but could be also expected in higher
dimensions. Particularly interesting should be the dependence
in systems in which the existence of metastable states hinges
on the presence of nonlinear friction (see, e.g., the Toda chain
studied in Ref. [17]).
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