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Abstract. Nonlinear oscillators that are subject to noise and delayed interaction have been used to de-
scribe a number of dynamical phenomena in Physics and beyond. Here we study the spectral statistics
(power and cross-spectral densities) of a small number of noisy nonlinear oscillators and derive analytical
approximations for these spectra. In our paper, individual oscillators are described by the normal form of
a supercritical or subcritical Hopf bifurcation supplemented by Gaussian white noise. Oscillators can be
distinguished from each other by their frequency, bifurcation parameter, and noise intensity. Extending
previous results from the literature, we first calculate in linear response theory the power spectral density
and response function of the single oscillator in both super- and subcritical parameter regime and test
them against numerical simulations. For small heterogeneous groups of oscillators (N = 2 or 3), which
are coupled by a delayed linear term, we use a linear response ansatz to derive approximations for the
power and cross-spectral densities of the oscillators within this small network. These approximations are
confirmed by comparison with extensive numerical simulations. Using the theory we relate the peaks in the
spectra of the homogeneous system (identical oscillators) to periodic solutions of the deterministic (noise-
less) system. For two delay-coupled subcritical Hopf oscillators, we show that the coupling can enhance
the coherence resonance effect, which is known to occur for the single subcritical oscillator. In the case of
heterogeneous oscillators, we find that the delay-induced characteristic profile of the spectra is conserved

for moderate frequency detuning.

1 Introduction

Nonlinear oscillators, which are coupled with a tempo-
ral delay occur in various scientific fields, such as laser
physics [1], neuroscience [2] and developmental biology [3].
Systems with time delay generally possess stable and
unstable periodic solutions, which can coexist in phase
space [4]. This feature of time delay yields different in-
phase and out-of phase periodic solutions, e.g., for delay-
coupled Kuramoto oscillators [5], Stuart-Landau oscilla-
tors [6], semiconductor lasers [1] or neurons [7].

In many of the above systems, fluctuations influence
the dynamics strongly and have to be taken into account.
In a stochastic setting, oscillations of a finite coherence
are characterized by peaks in the power spectral density,
correlations between oscillators may also become apparent
in cross-spectral peaks.

Remarkably, intrinsic or external fluctuations can in-
duce oscillations in systems that are close to a bifurcation
(but deterministically in a stable steady state). Oscilla-
tions are most pronounced at a finite noise intensity, an
effect known as coherence resonance [8-14]. The control
of noise-induced oscillations and coherence resonance, by
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using a delayed feedback loop in single (e.g. [15,16]) or
coupled systems (e.g. [17,18]), has been investigated in
various models.

Unfortunately, no standard technique exists to calcu-
late or at least approximate spectral measures of coupled
nonlinear oscillators if both noise and delay are involved.
The aim of the current study is to put forward such an ap-
proximation scheme by combining recent analytical results
on a generic oscillator model [19] with a simple network
theory that has been successfully used in computational
neuroscience [20-23]. The latter approximation procedure
for power and cross-spectral densities can be applied to
networks with and without time delay and to single sys-
tems with delayed self-feedback loop. It does not require
a diagonalizable coupling matrix and can be used for het-
erogeneous networks with arbitrary local dynamics. The
theory relies on the knowledge of quantities of the isolated
(uncoupled) individual network elements (power spectrum
and susceptibility with respect to periodic stimuli), which
in general can be determined analytically, numerically, or
experimentally, depending on the system under study.

Here we will consider small numbers of generic non-
linear oscillators (Hopf normal forms) which are sub-
ject to uncorrelated noise and are coupled by delay
terms. We derive analytical approximations for power and
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cross-spectral densities that are based on the spectral
properties of the uncoupled system and the Fourier trans-
form of the coupling term. For the single oscillator we will
not only use the expressions for the supercritical normal
form as given in reference [19] but also derive and use
approximations for the subcritical normal form.

When interpreting our results for the spectral mea-
sures, we also compare them to oscillation patterns ob-
served in the deterministic case. As mentioned above, the
time delay induces certain deterministic periodic solutions
or oscillation patterns, which can coexist in phase space.
With noise, and depending on the noise intensity, a system
can jump between such deterministic solutions and, thus,
the power spectrum exhibits resonance peaks at different
frequencies (see for example [15,17,24]). Within a time
series, one can observe noise-induced transitions between
these delay-induced periodic solutions. We relate the char-
acteristic peaks of the power spectral density and cross-
spectral densities to temporary oscillation patterns in the
case of identical Hopf oscillators, and find that, in the
case of heterogeneous oscillators, the characteristic profile
of the spectra survives if the frequency detuning between
the oscillators does not become too large. Moreover, the
regularity of the temporary noisy oscillation patterns can
be increased, for a non-zero amount of noise, for subcriti-
cal Hopf normal forms, which constitutes a manifestation
of coherence resonance.

2 Model

We consider a network of systems, which are coupled by a
delay term and subjected to independent Gaussian white
noise. A single node of the network is described by a
generic noisy oscillator, the normal form of a system close
to a Hopf bifurcation and driven by white Gaussian noise.
The corresponding stochastic differential equation for the
kth node (k =1,2,...,N) reads

Zk(t) = [)\k — wo,k + a|Zk(f)|2 + b|Zk(t)|4] Zk(t)

+ /2Dy, &(t) + 0e® > Gryzi(t—71). (1)

=1

The dynamics of the complex-valued state variable z; € C
is characterized by the bifurcation parameter A\ and the
intrinsic frequency wo . In the absence of noise (Dj, = 0)
and coupling (o = 0), the remaining deterministic part
represents the normal form of a supercritical Hopf bifur-
cation if a = —1 and b = 0 (Fig. 1a) or that of a subcritical
Hopf bifurcation if « = 1 and b = —1 (Fig. 1b). Such bifur-
cations can occur in various systems, e.g., in lasers [12,25],
chemical reaction systems [26,27], neurons [28-30] and
mechanosensory hair cells of the inner ear [31,32].

In order to model a noisy environment or internal
stochastic processes, each oscillator is influenced by in-
dependent Gaussian white noise & (t) = k.1 (t) + ¢ &k 2(t)
with noise intensity Dy, zero mean (§;,;(¢)) = 0, for all
k and [ = 1,2, and no correlation between the noise of
different nodes and the real and imaginary part of & (t),
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Fig. 1. Bifurcation diagram: (a) supercritical Hopf normal
form (Eq. (1), where a = —1, b = 0 = D;, = 0). (b) Subcritical
Hopf normal form with an additional quintic term (Eq. (1),
where a =1, b= -1, 0 = Dy, =0).

e, (ki(t) &jm(t)) = 0kj0md(t—t'). Note that in general
oscillators possess different parameters Ay, wo and Dy,
i.e., we deal with a heterogeneous network.

The oscillators are coupled via the coupling matrix
(Gyj); o€’ is a complex coupling coefficient with ampli-
tude ¢ and phase 3, and 7 > 0 denotes the time delay.
Such a coupling scheme is adequate, for example, if lasers
are coupled through optical fibers or mirrors [1,33]. By set-
ting # = 0 and adding a term —o Zjvzl Grjzi(t) in equa-
tion (1), the resulting network can be used, for instance,
to model the connection between neurons with electrical
synapses (gap junctions) [34].

In the next section, we discuss a procedure of how
one can derive analytical approximations of the spectral
properties of the system equation (1), namely the power
spectral density Sk (w) of network node z;, and the cross-
spectral densities Si;(w) (k # j) between different nodes
of the network, by only using properties of the uncoupled
system.

3 Theory

The power spectrum, or more precisely power spectral
density (PSD), Skr(w) of the kth network node is de-

fined as:
L )5 )

Skk ((.«J) - T—o0 T

; (2)
where 2 (w) = foT etz (t) dt is the Fourier transform
of the state z(t), the symbol * denotes complex conju-
gation, and the bracket (-) denotes the average over the
noise ensemble. The PSD contains information about the
frequency content of zi(t) and is, thus, particularly suit-
able for indicating periodicity.

In contrast to the PSD, the cross-spectral densities
(CS) Skj(w) comprise information about the degree of
phase correlation between different nodes. The CS is anal-
ogously defined by

k# 3. 3)

Both quantities can help us to detect, for example, a (tem-
porary) stochastic phase-locked or in-phase state of the
network, where all nodes exhibit noisy oscillations with
zero mean-phase difference among each other (Fig. 2).
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Fig. 2. Exemplary time series of two delay-coupled noisy su-
percritical Hopf normal forms: Re[z1(¢)] (red) and Re[zz(t)]
(blue). Switch from a stochastic in-phase state to a stochas-
tic anti-phase state. Parameters: A1 = Ao = —0.4, wo1 =
wo2 =2m,a=-1,b=0,0 =1, 8 =0, 7 = 20Ty, where
To,r = 27 /wo i is the intrinsic period.

Another example of an oscillation pattern of the net-
work nodes is a (temporary) stochastic splay state, which
is characterized by a fixed mean-phase difference be-
tween the oscillators. For instance, a stochastic anti-phase
state is a splay state with mean-phase difference 7 be-
tween two oscillators. Figure 2 shows a transition between
these two states of stochastic synchronization and anti-
synchronization.
As in [21], we make the linear-response ansatz

N
Zre(w) = 2k 0(w) + xk,0(w) Z oePrenGrizi(w),  (4)
j=1

where Zj o(w) is the Fourier transform of the state zx o(t)
and xx,0(w) is the susceptibility of the kth uncoupled node
(the index 0 indicates no coupling, i.e., o = 0 in Eq. (1)).
Conveniently, in the frequency domain, the delay in the
coupling is simplified to a prefactor 7. In equation (4)
the interaction with the other oscillators is treated as
a perturbation that can be captured at the level of the
stochastic realization by the linear response function (or,
equivalently, by the susceptibility) of the time-dependent
mean value of the single oscillator. The ansatz equation (4)
is suitable for networks with linear coupling function in
the limit of weak coupling and was already successfully
used for noisy leaky integrate-and-fire (LIF) neurons with
global delayed feedback [21] and for arbitrary networks of
LIF neurons [22].

The ansatz equation (4) constitutes a linear system
of equations, for which the matrix of power and cross-
spectral densities is obtained as [22]

S=(1-F) SO -F)T, (5)

in terms of a matrix F, the elements of which are given by

(6)

In equation (5) the superscript T' denotes the transposed
matrix, Sp; = Sp(w) (power spectral density for k = [),
and SY;, = 6,59, is the matrix that has the spectra of the
isolated oscillators on its diagonal and is otherwise zero.
Below we will evaluate the general solution in two specific

ij (w) = Xk7006i(5+wT)ij.
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situations, yielding explicit expressions for the power and
cross-spectral densities in the system.

The susceptibility xx.0(w) of the single oscillator can
be computed from the linear response to a weak periodic
or broadband stimulus s(¢). In the latter case, the sus-
ceptibility is given as the ratio of the input-output cross-
spectrum and power spectrum of the input signal

(Tr8%)

Xko(w) = lim lim (55°)

(s2)—=0T—00 (7)
and the second limit indicates that we should compute the
spectra in the limit of weak stimulation.

Based on the procedure proposed in [19], one can ap-
proximate the susceptibility x,o0(w) and power spectrum
SY, of the isolated Hopf oscillator as follows:

1
= 3 8
Xk70<W) i/lk(wo,k — w) + Kk ( )
4Dy Ay
Sk = 9
METR2 4+ A2 (wok —w)? )
see equation (10) above,
2Dy,

N o0 dp pn+167Wk/Dk

pry=to e
fO dp pe Wk/Dk

)\k a b

Wk:_(2 p2+4p4+6p6)- (13)

The above equations were already derived in reference [19]
for the case b = 0 (supercritical case). In the low noise
limit (D — 0), the moments in A and K}, can be simpli-
fied by means of a saddle-point approximation (for details
we refer the interested reader to [19,35]). We will, however,
use the full expressions and calculate the integrals numer-
ically. For analytical results on the nonlinear response of
the stochastic Hopf oscillator in the case of strong periodic
stimulation, see [36].

Before discussing some results for specific network mo-
tifs, we will compare the theoretical results for SY, and
Xk,0 With numerical simulations on the one hand, and,
on the other hand, with an alternative approximation of
S2. [12].

4 Testing the theory with numerical
simulation
4.1 One isolated oscillator

In order to approximate the spectral properties of a cou-
pled system, we need a good approximation of the PSD
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Fig. 3. Power spectral density (PSD) of (a) a supercritical and
(b) subcritical Hopf normal form for different bifurcation pa-
rameters \; and noise intensities D;. The symbols correspond
to numerical simulations, the solid lines display the analytical
results (Eq. (9)), and the black dotted lines represent the ana-
lytical result from reference [12]. Parameters: wo,1 = 27, 0 = 0,
in(a)a=-1,b=0andin (b)a=1,b=—1.

59, (w) and susceptibility x1,0(w) of the uncoupled system
(c =0and N =1 in Eq. (1)).

Starting with the power spectrum, Figure 3 shows the
numerical results (symbols) and the approximation (solid
line) of SY;(w) equation (9) for different bifurcation pa-
rameters A1 and noise intensities D;. Figure 3a corre-
sponds to the supercritical and Figure 3b to the sub-
critical Hopf normal form. In all cases, the theoretical
results agree with the results of numerical simulations.
The black dotted lines correspond to an approximation of
reference [12], which becomes equivalent to ours if A; = 1.
The authors of [12] derived their approximation for small
noise intensity and closely below the first deterministic
bifurcation point A, (A. = 0 and A, = 0.25 in the super-
critical or subcritical case, respectively, see also Fig. 1).
For such a choice of parameters, the numerical results
(symbols) are in good agreement with their approximation
(black dotted lines). However, for larger noise intensities
and above )\, the numerical results emphasize that Aq,
which contains higher-order moments, becomes important
for the stochastic dynamics of the uncoupled system. In
this case, our approximation provides a more appropri-
ate estimate. For A > A, in the deterministic regime of a
stable limit cycle, the resonance peaks of both oscillator
types correspond to noisy self-sustained oscillations. The
higher the noise intensity, the broader the resonance peaks
become. In this regime, noise diminishes the coherence of
the oscillations.

For A\ < )., in the regime of noise-induced oscillations,
the dependence of the peak height and peak width of the
PSD on noise differs qualitatively for the two types of
bifurcations (see Fig. 4). While in the supercritical case
the height and width of the PSD is a monotonic func-
tion of the noise intensity, the PSD of the subcritical case
behaves non-monotonically [12]. In the latter case, if the
peak height is maximal and the peak width is minimal
for a certain optimal amount of noise, the noise-induced
oscillation achieves the highest degree of regularity. This
interplay between noise and nonlinearity is called coher-
ence resonance (see, e.g., [8,10,12,14] for a more detailed
discussion).
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Fig. 5. Susceptibility x1,0(w) of (a) a supercritical (red),
where D; = 0.01, and (b) subcritical (green) Hopf normal
form, where D; = 0.1. The symbols correspond to numeri-
cal simulations, the solid lines display the analytical results
(Eq. (8)) of the real part and the dashed lines of the imaginary
part of x1,0(w). Parameters: wo,1 = 27, 0 =0, in (a) a = —1,
b=0andin (b)a=1,b=—1.

Finally, Figure 5 shows that the simulations (symbols)
and the analytical estimates (solid and dashed lines) of
the real and imaginary part of the susceptibility x1,0(w)
(Eq. (8)) are in good agreement. We have tested the valid-
ity of our approximations for a range of noise intensities
and found deviations from the simulations if the noise in-
tensity Dy becomes too large (i.e., if D; = O(1)).

Now that we have seen how reliable the approxima-
tions are, and how the local spectral properties of a single
node are influenced by noise, we consider small network
motifs of coupled oscillators.

4.2 Two symmetrically coupled oscillators

From the general result equation (5) stated above, we can
obtain explicit results by choosing a specific topology. For
the example of a symmetric (2 X 2)-coupling matrix

(Grj) = <(1) é)

the analytical results for power and cross-spectral densi-
ties are given in Appendix A.

For identical oscillators, it holds that x1,0 = Xx2,0 =
Xo(w) (Eq. (8)) and 8P, = S5 = So(w) (Ea. (9)).

(14)


http://www.epj.org

Eur. Phys. J. B (2014) 87: 31

(a) s
o
Fs
o
ol
3
o 2|
E
= 8 X 11 ; 08 08 1 11 12
Frequency mio)o Frequency m!mo

(C‘):.B (d 2c=03
F
P
Al
T 8
S, "
o
E L]
8 09 K -4

1 11 12

08 09
Frequency o/, Frequency o/o)

Fig. 6. Two delay-coupled identical subcritical Hopf nor-
mal forms in the regime of noise-induced oscillations: the-
oretical result (Eq. (15)) of (a) the power spectral density
(PSD) and (c) the cross-spectrum (CS) in the (w,7)-plane.
Panel (b) shows the theoretical and numerical result of the
PSD and (d) of the CS for a fixed time delay 7 and for two
different coupling strengths o. Parameters: A1 = Ao = —0.4,
Ld()’l:w072EUJ():271',(1:1,1):71,0':0.5,[3:0,
D1 IDQED=0.3 and To 227T/(U0.

Then, the PSD and CS in Appendix A simplify signifi-
cantly and are given by

Skr(w) = g(w)So(w),  Skj(w) = h(w)So(w),  (15)
where
_ 1+ |xo[?0?
9D =1 1 xoliot — 2lxof202 cos[2a]’
hw) 2|x0|o cos|a]

It Ixo|*0% — 2|x0|?02 cos[2q]

and o = wr+ f+arg(xo). The PSD Sk and CS Sy; of the
coupled system depend on the PSD Sy of the uncoupled
system and are scaled by the functions g and h, which con-
tain the susceptibility xo and the coupling parameters o,
8 and 7. The cosine function in g and A implies that the
coupling induces periodicity.

For identical subcritical oscillators in the regime of
noise-induced oscillations, Figure 6 shows theoretical and
numerical results for Sy, and Sij, where k,7 = 1,2 and
k # j. As expected, the spectra exhibit repetitive maxima
and minima. Similar spectra have been observed theoret-
ically in single and coupled systems, which operate in the
regime of noise-induced oscillations [15-17,24,37,38] and
experimentally in coupled lasers [1,39,40]. In our model,
the characteristic profile of the spectra does not change
qualitatively if we replace the subcritical oscillators by su-
percritical ones, or if we poise the bifurcation parameters
A in the regime of self-sustained oscillations. For moderate
coupling strengths, i.e., if 0 > ¢ > 0.5, our approximation
of the spectra is in good agreement with the numerical
simulations (see for example Figs. 6b and 6d).
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Fig. 7. For the same example given in Figure 6, (a) shows the
PSD Si1 = S22 and (b) the CS S12 = S21 together with the
deterministic in-phase (black lines, Eq. (16)) and anti-phase
solution (white lines, Eq. (17)) in the (w, 7)-plane. The dashed
lines indicate unstable solutions and the solid lines indicate
stable solutions. Parameters: see Figure 6.

Generally, for two mutually delay-coupled Hopf nor-
mal forms without noise, multiple branches of in- and
anti-phase periodic solutions appear [4,5]. In our case, the
rotating wave ansatz (i) z; = 2o = re™? (in-phase so-
lution) and (i) 21 = —z2 = re™! (anti-phase solution)
satisfies equation (1), where Dy = 0 Vk, N = 2, A} = )y,
Wwo,1 = Wo,2 = Wo if

for (i):
for (ii):

w=wg + osin(f — wr),

(16)
(17)

w=wg — osin(f — wr).

In Figure 7, the time delays 7 and frequencies w for possi-
ble oscillation patterns of the two deterministic oscillators
are plotted on top of the PSD and CS. The black lines
correspond to the deterministic in-phase solution and the
white lines correspond to the deterministic anti-phase so-
lution. The comparison shows that, if we add noise (a
perturbation), not all deterministic solutions appear as
resonance peaks in the spectra. The branches, which do
not occur in the spectra, are apparently unstable and thus
denoted by dashed lines in Figure 7. In addition, we also
see peaks at frequencies that are not present in the de-
terministic case, namely, those at w = 0.87 and w = 1.13
in Figure 6b. These peaks can be understood as resulting
from a noise-induced broadening of the spectral maxima
in the (w, 7)-plane, shown in Figure 7.

When we compare the deterministic solutions with the
spectra, we can relate the resonance peaks in the spectra
at a fixed time delay and frequency to a certain oscillation
pattern, which the system shows for a limited time: for
example, the primary resonance peak in the PSD (Fig. 7a)
for w = wy and

7 =nTp, (18)

where n = 0,1,2,... and Ty = 27/wp is the intrinsic os-
cillation frequency, corresponds to (temporary) stochastic
in-phase oscillations. For the same parameters, the CS ex-
hibits maximal correlation (Fig. 7b). In contrast to this,
the CS exhibits strong anti-correlation and the PSD is
maximal at w = wg and for

1
T = <2+7’L)T0

Here, the primary resonance peak corresponds to (tempo-
rary) stochastic anti-phase oscillations.

(19)
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In the deterministic case, the time-delay induces in-
and anti-phase solutions, which coexist for large delays
(see Fig. 7). On the one hand, with noise, the system can
jump between those oscillation patterns, which thus be-
come visible as secondary peaks in the PSD and CS. On
the other hand, the branches of in- and anti-phase solu-
tions are smeared out due to the noise and thus appear as
remaining peaks at the edge of the spectra (see Figs. 6b
and 6d). This characteristic of the system is independent
of the bifurcation parameter A (compare also Egs. (16)
and (17) which is independent of A) and can be observed
in the regime of noise-induced oscillations, as well as in
the regime of noisy self-sustained oscillations. For large de-
lay, within a sufficiently long time series, one can observe
jumps between the different noisy oscillation patterns (see
for example Fig. 2).

In the uncoupled system, we already observed coher-
ence resonance for the subcritical Hopf oscillator closely
below the saddle-node bifurcation (see Fig. 3) in accor-
dance with the results from [12]. This was indicated by
a non-monotonic behavior of the height and width of the
peak in the power spectrum for increasing noise intensity.
Now, in the coupled system of two identical oscillators,
one can observe the same phenomenon. Figures 8a, 8d
and 8b, 8e show the height and width of the primary reso-
nance peak of the power spectrum at w = wq as functions
of the noise intensity for a fixed delay 7 and different
coupling strengths o. Remarkably, for stronger coupling
(larger o), peak height and width show a more pronounced
maximum and minimum, respectively. This can be inter-
preted as an enhancement of coherence resonance due to
the delayed coupling. With increasing coupling strength
the optimal noise at which maximal peak height is at-
tained, shifts to smaller values. The coupling does not af-
fect much the optimal noise intensity at which the peak
width is minimized, although there is an overall reduction
in peak width with increasing coupling strength o. Also,
with growing o the deviation between our theoretical and
numerical results increases, in particular, with respect to
the peak height (theory is expected to work best for weak
coupling). However, the theory still predicts the qualita-
tive changes that occur in the spectral characteristics upon
changing the coupling.

For 0 = 0.3 the appearance of coherence resonance
is illustrated by the trajectories at different noise val-
ues in Figures 8c and 8f. At intermediate noise intensity
D = 0.05 the most regular oscillations in both coupled
oscillators are observed. Note that we did not observe co-
herence resonance for the delay-coupled system in the case
of supercritical Hopf oscillators, similar to what was found
for the isolated oscillator.

The theory of the deterministic in- and anti-phase so-
lutions (Egs. (16) and (17)) predicts that, for coupling
phase parameters 5 # 0, the branches experience a fre-
quency shift. This prediction agrees with the analytical
and numerical results of the spectra (see Fig. 9). For ex-
ample, for 7 = 47Ty and 8 = 0, 27, the primary resonance
peak at w = wy in Figures 9a and 9c corresponds to a tem-
porary and noisy in-phase oscillation pattern, whereas for
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Fig. 8. Two delay-coupled identical subcritical Hopf oscil-
lators in the regime of noise-induced oscillations: analytical
(lines) and numerical results (symbols) of (a)+(d) the peak
height and (b)+(e) the peak width of the primary resonance
peak of the PSD S11 = S22 at w = wp as a function of the noise
intensity D for different coupling strengths o. Here, the pri-
mary resonance peak for the metadata in (a) and (b) can be
related to a stochastic in-phase oscillation pattern (7 = 1.07p)
and for the metadata in (d) and (e) the primary resonance
peak belongs to a stochastic anti-phase oscillation pattern be-
cause 7 = 0.57p. (¢)+(f) Time series of node 1 (red) and node
2 (blue) for different D and o = 0.3, where the stochastic in-
phase (and stochastic anti-phase) oscillation pattern exhibits
its highest regularity (coherence resonance) for D # 0. Param-
eters: A1 = A2 = —0.6, wo,1 =wo2 =wo =27, f=0,a =1,
b= -1, (c) 7 =1.0Tp and (f) 7 = 0.5Tp.

(8 = m the primary resonance peak belongs to a temporary
and noisy anti-phase oscillation.

In summary, many features of the spectra of noisy os-
cillators can be traced back to the delay-induced determin-
istic in- and anti-phase periodic solutions. We now turn to
the case of heterogeneous oscillators and inspect how the
spectral shapes discussed so far change.

Starting with randomly chosen parameters, Fig-
ures 10a and 10b show the power spectral density Si;
of node 1 and Ss5 of node 2 in the w-7 plane for two cou-
pled non-identical Hopf normal forms. Figures 10c and 10d
display the corresponding cross-spectra. Below each spec-
trum, one can see that our theoretical predictions (lines)
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Fig. 9. Two delay-coupled identical supercritical Hopf normal
forms: theoretical result (Eq. (15)) of (a) the PSD and (c) of
the CS in the w-f8 plane for 7 = 4T;. (b) and (d) show the
theoretical results (lines) and results of simulations (symbols)
of the PSD and the CS for different coupling phases . Pa-
rameters: Ay = Ay = —0.1, wo,1 = wo2 = 27, a = —1, b =0,
oc=0.5, 7=4Ty and D; = D2 = 0.3.

are in good agreement with numerical simulations (sym-
bols). Due to the local heterogeneities, the spectra become
asymmetric but the characteristic profile of alternating
temporary and noisy in- and anti-phase oscillation pat-
terns remains. As long as the frequency detuning between
the two oscillators wp,1 and wp 2 becomes not too large,
the theory and numerics show that this profile is retained.

4.3 Three asymmetrically coupled oscillators

Next we use the general formula equation (5) to compute
an approximation of the power spectral density (PSD) Sk
and the cross-spectrum (CS) S, of a directed ring net-
work of three delay-coupled heterogeneous nonlinear os-
cillators whose coupling matrix,

010
001
100

(Gij) = ; (20)

is asymmetric. The results for the PSD and CS are given
in Appendix B.

For identical oscillators, it holds x1,0 = Xx2,0 = X3,0 =
Yo(w) (Eq. (8)) and §% = 53, = S% = So(w) (Eq. (9)).
Then, the PSD and CS in Appendix B simplify signifi-
cantly and are given by

Skk(w) = v(w)Sp(w),

where

v(w) =

Skj(w) = ww)So(w),  (21)

1+ [xol*0® + [xo|*o*
1+ |x0[%0% — 2|x0|303 cos[3a]’
ealxol (olxol + €** (1 + 02|x0[?))
a3]xol?® + €% @a3|xo[* — e (14 05|x0%)

w(w) = —

and o = wt + G + arg(xo).
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Fig. 10. Two delay-coupled non-identical supercritical Hopf
normal forms: theoretical result (Appendix A) of (a) the PSD
S11 and (b) Sa2, (c) the real part of the CS Si2 = S21 and
(d) the corresponding imaginary part of the CS in the (w,7)-
plane. The theoretical results (lines) and results of simulations
(symbols) of the spectra for a fixed time delay are shown below
the corresponding spectra. Parameters: A1 = —0.24, Ao = 0.47,
wo,1 = 1.647‘r7 wo,2 = 1.037‘r7 D, = 0.351, Dy = 0.253, ﬁ =
0.147, 0 = 0.6, a = —1 and b= 0.

Figure 11 displays the theoretical and numerical re-
sults of the spectra for identical subcritical Hopf normal
forms. As in the previous section, the resonance peaks
can be related to deterministic delay-induced periodic so-
lutions, which coexist in the phase space for larger 7. The
rotating wave ansatz (i) 21 = 22 = 23 = re! (in-phase
solution); (ii) z; = e=27/32, 21/3 25 = re't (splay
state 1) and (iii) z; = 612“/32 = e 27/3 25 = et (splay
state 2) satisfies equation (1), where Dy = 0 Vk, N = 3,
Al = A2 = A3, wo,1 = wo,2 = Wo,3 = wo if

= €

for (i): w = wp + osin(f — wr), 22)
for (ii): w=wy + osin(f + 27/3 — wr),
for (iii): w=uwp + osin(f — 27/3 — wr).

The solutions of these equations are plotted, for 7 € [0, 2],
in Figure 11c, which shows the real part of the CS in
the (w, 7)-plane. The CS exhibits the strongest correlation
when the PSD (Fig. 11a) takes its maximum at w = wp
(primary resonance peak) if

(25)

By comparing this with the deterministic solution (black
line in Fig. 11c), we can relate these primary resonance
peaks to (temporary) stochastic in-phase oscillation. The
PSD is maximal at w = wq if

1 2
T= (3+n>TO or T= <3+n>T0.

T =nly.

(26)
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Fig. 11. Three delay-coupled identical subcritical Hopf nor-
mal forms: theoretical result (Appendix B) of (a) the PSD Six,
(c) the real part of the CS Si; together with the determinis-
tic in-phase solution (black lines, Eq. (22)) and the two splay
state solutions (white and blue lines, Egs. (23) and (24)) in the
(w,7)-plane. (e) Shows the theoretical result of the imaginary
part of Si2. The theoretical results (solid lines) and results of
simulations (symbols) of the spectra are shown in (b), (d) and
(f) for 7 = 4To and for two different coupling strengths o. Pa-
rameters: A1 = A2 = A3 = —0.6, wo,1 = wo2 = wo,3 = 27,
a=1,b=—-1,0=0.5,=0and D; = D; = D3 =0.3.

The comparison with the deterministic solutions (white
and blue lines in Fig. 11c¢) shows that these primary res-
onance peaks correspond to (temporary) stochastic splay
states 1 and 2.

For a network of heterogeneous supercritical Hopf os-
cillators, we compute the spectra shown in Figures 12a—12f
and, as in the case of the two oscillators, despite the het-
erogeneities, the characteristic profile of the spectra is con-
served and our approximation holds as long as the fre-
quency detuning is moderate.

5 Conclusion

In this paper we have studied the spectral statistics of
small network motifs of delay-coupled noisy nonlinear os-
cillators. In the first part of this work, following refer-
ence [19], we have derived approximations for the power
spectral density and the susceptibility of a generic oscil-
lator that are valid for weak noise and cover the cases in
which the system is close to a supercritical or to a subcrit-
ical Hopf bifurcation. For the subcritical case, as a testbed

Eur. Phys. J. B (2014) 87: 31
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Fig. 12. Three delay-coupled non-identical supercritical Hopf
normal forms: theoretical result (Appendix B) of (a) the PSD
S11, (b) S22, (¢) Sss, (d) the real part of the CS Si2 and
(e) the corresponding imaginary part of the CS in the (w,7)-
plane. The theoretical results (lines) and results of simulations
(symbols) of the spectra for a fixed time delay are shown be-
low the corresponding and spectra. Parameters: A1 = —0.24,
Ao = 0.47, )\3 = 0.56, wo,1 = 1.577‘1’7 wo,2 = 1.187‘1’7 wo,3 = 1.967T7
D; = 0.174, D, = 0.260, D3 = 0.247, 8 = 0.537, 0 = 0.6,
a=—1and b=0.

for our theory, we have reproduced the phenomenon of co-
herence resonance (first discussed and analytically studied
for this system in Ref. [12]), which is encountered for the
system on the non-oscillating side of the bifurcation. We
found that our theory also works well beyond the bifurca-
tion as long as the noise intensity is not excessively large.

In the second part, an approximation of the power
and cross-spectral densities for delay-coupled heteroge-
neous Hopf oscillators was derived and validated by nu-
merical simulations of two or three oscillators. We have
related the characteristic peaks of the spectra to delay-
induced deterministic oscillation patterns, for example, to
in- and anti-phase oscillations. The larger the time de-
lay, the more peaks appear in the spectra. The heights
and widths of resonance peaks can be non-monotonic
functions of the noise intensity if we consider coupled
subcritical Hopf oscillators implying coherence resonance.
Here, for a non-zero optimal amount of noise, this specific
noisy oscillation pattern can achieve highest coherence
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Ski(w)

Re[Sk;](w)

Im[S12](w) = —Im[S21](w) = a(Ix1,0

S11(w) =

n(w) 1+ Ix1,0021x2,01%[x3,0/20% = 2[x1,0][x2,0
Soo(w) =

2w = + [x1,012[x2,0[2[x3,01205 — 2|x1,0/[X2.0
Sz3(w)

1+ x10l?x2.0l?lxs.0[20% — 2[x1,0Ix2.0

Re[S12](w) = Re[S21](w)
_ U(|X1’0|(Sg2 + |x2,0

14 |x1,01%x2,0?]x3,020% — 2|x1,0
Im[Su}(w) = —Im[S’gl](w)
_ a(Ix1,0[(S% + [x2,0[*5830°) sin[8 + wr + arg(x1,0)] — [x2,0l[x3,0
B L+ [x1,0[%x2,00%|x3,0[20% = 2[x1,0/[X2,0
RG[SQ;;}(OJ) = Re[ng}(w)

_ o (Ix2,0/(5%5 + [x3.0
L+ [x1,0%[x2.0

Im[Sa3](w) = —Im[Ss2](w)
_ o(Ix2,0/(S8s + |x3,0
1+ Ix1.00%x2,0

Re[S‘&l}(UJ) = Re[Slg}(w)

_ U(|X3,0|(S?1 + |x1,0
L+ |x1,0%x2.0

Im[S51](w) = —Im[S13](w)
_ U(|X3’0|(S?1 +|x1,0
L+ [x1,002Ix2,0[%[x3,0105 — 2|x1,0

2|x3,0/?05 = 2|x1,0

250 2

2|x3,0/0% — 2[x1,0l|x2,0

2|x3,0/205 = 2|x1,0

[x2,0

(regularity). This coherence resonance can be enhanced
by tuning the coupling strength appropriately.

Eventually, we have demonstrated that the character-
istic profile of multiple resonance peaks within the spectra
persists in the case of delay-coupled heterogeneous Hopf
normal forms if the frequency detuning between the os-
cillators is not too large. Due to the heterogeneities, the
spectra become asymmetric and frequency shifted, but
the delay-induced deterministic oscillation patterns, which
cause the multiple resonance peaks, can still be observed.
Consequently, the main characteristics of these spectra are
robust against moderate local heterogeneities.

Interesting extensions of our work concern the applica-
tion of the general theory to larger networks of nonlinear
oscillators or the inclusion of common and/or colored in-
stead of white noise (then the individual nodes would not
be independent anymore, and there might also be tem-
poral correlations in the noise). Further, an interesting
application of our theory would be the analytical calcula-
tion of emission spectra in models of so-called oto-acoustic
emissions, which are self-generated tones in the inner-ear
organs of vertebrates. This fascinating phenomenon has
been described by arrays of noisy nonlinear oscillators

© L+ xolxz0l?0t = 2[x10lx2,0
_ o(|xk0lSY cos[B + wT + arg(x.0)] + [Xj.0
L+ x0l2x20l?0% = 2[x10lx2,0
S92 sin[B + wr + arg(x1,0)] — [x2,0
© L+ xolxz0l?0t = 2[x10llx2,0

289502) cos[B + wr + arg(x1,0)] + |x2,0
Ix2,0/[x3,0/0% cos[3(8 + wT) + arg(x1,0) + arg(x2,0) + arg(xs,o)]

25710%) cos[B + wT + arg(x2,0)] + |x1,0
110°) sin[B + wr + arg(x2,0)] — |x1,0llx3,0
Ix3,0]0% cos[3(B + wT) + arg(x1,0) + arg(xz,0) + arg(xs,0)]

%59,0%) cos[B + wT + arg(xs,0)] + |x1,0
Ix2,0[x3,0l0% cos[3(8 + wT) + arg(x1,0) + arg(x2,0) + arg(xs,0)]

?59,0%) sin[B+wr +arg(x3,0)]— x1,0/[x2,0/5%30 sin[2(B4+wT) +arg(x1,0) +arg(x2,0)])
[x3,0/03 cos[3(B + wT) + arg(x1,0) + arg(xz,0) + arg(xs,0)]
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Sik cos[B + wT + arg(x;,0)])
02 cos[2(f + wT) + arg(x1,0) + arg(xz,0)]’
SY, sin[8 + wt + arg(x2,0)])

02 cos[2(B + wT) + arg(x1,0) + arg(xz,0)]

(A1)

S% + Ix1,020%(S% + |x2.01°9%:07)
Ix3,0]0°% cos[3(8 + wT) + arg(x1,0) + arg(x2,0) + arg(xs,0)]’
532 + |x2,01%0%(5%5 + |x3,0/°St10°)
Ix3,0l0% cos[3(8 4 wT) + arg(x1,0) + arg(x2,0) + arg(xs,0)]’
S35 + [x3,020% (ST + |x1,0/*9%207)
Ix3,0l0 cos[3(8 + wT) + arg(x1,0) + arg(x2,0) + arg(xs,0)]’

St10 cos[2(8 + wT) + arg(x2,0) + arg(xs,0)])

[x3,0

)

Stiosin[2(8 + wr) + arg(x2,0) + arg(x3,0)])

Ix3,00% cos[3(B + wT) + arg(x1,0) + arg(xz,0) + arg(xs,0)]

5920 cos[2(8 + wr) + arg(x1,0) + arg(xs,0)])

Ix3,0

Ix2,0[x3,0l0% cos[3(8 + wT) + arg(x1,0) + arg(x2,0) + arg(xs,0)]

S350 sin[2(8 + wr) + arg(x1,0) + arg(xs,0)])

5930 cos[2(8 + wT) + arg(x1,0) + arg(x2,0)])

[x2,0

)

(B.1)

(see, e.g. [41]) and is thus accessible to the kind of analysis
we have presented in this paper.

This work was supported by DFG in the framework of SFB
910 and by the BMBF (FKZ: 01GQ1001A).

Appendix A

The power spectral density PSD Sy and cross-spectral
densities CS Sj; of two symmetrically coupled nonlinear
oscillators (Egs. (1) and (14)) is given by:

see equation (A.1) above

where k # j, k,j = 1,2, arg(-) denotes the argument
(phase) and | - | the modulus of a complex number.

Appendix B

The PSD Six and CS Si; (k # jand k, j = 1,2, 3) of three
asymmetrically coupled nonlinear oscillators (Egs. (1)
and (20)) is given by:

see equation (B.1) above.
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