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Abstract. All cellular functions arise from the transport of molecules
through a heterogeneous, highly dynamic cell interior for intracel-
lular signaling. Here, the impact of intracellular architecture and
cytoskeleton dynamics on transport processes is revealed by high-
resolution single particle tracking within living cells, in combination
with time-resolved local mean squared displacement (I-MSD) analy-
sis. We apply the I-MSD analysis to trajectories of 200 nm silica
particles within living cells of Dictyostelium discoideum obtained by
high resolution spinning disc confocal microscopy with a frame rate of
100 fps and imaging in one fixed focal plane. We investigate phases
of motor-driven active transport and subdiffusion, normal diffusion,
as well as superdiffusion with high spatial and temporal resolution.
Active directed intracellular motion is attributed to microtubule
associated molecular motor driven transport with average absolute
velocities of 2.8ums™' for 200 nm diameter particles. Diffusion
processes of these particles within wild-type cells are found to ex-
hibit diffusion constants ranging across two orders of magnitude from
subdiffusive to superdiffusive behavior. This type of analysis might
prove of ample importance for medical applications, like targeted drug
treatment of cells by nano-sized carriers or innovative diagnostic assays.
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1 Introduction

The general basis of all cellular functions are transport processes throughout the
cell interior, such as the transport of proteins regulating signal transduction [1], gene
transcription [2], reaction kinetics [3], and regulation of cell polarization [4]. As the in-
terior of living cells represents a highly crowded and dynamic environment, transport
processes are affected by collisional interactions with barriers consisting of organelles
and large molecules, as well as active processes like molecular binding events and
motor-driven transport [5—7]. Different models have been developed to theoretically
describe this complex motion in media with disordered microscopic substructures
[8-13].

Concerning the involved mechanisms, active, motor-assisted transport, and passive
diffusion states are distinguished [14,15]. Basically, diffusive motion allows for a given
species to effectively probe its local environment [16], whereas molecular motors, like
kinesins or dyneins can carry a cargo in a fast and directed way over long distances,
e.g. along microtubules [17,18]. For intracellular transport processes, these motility
modes typically alternate on a sub-second time scale, at a rate that appears optimized
for reaching a specific target within the cell as reliably and quickly as possible [19,20]
or enhancing molecular reaction kinetics [21]. Various approaches on studying these
dynamic intracellular processes have been established throughout the last years, e.g.
tracking the motion of tracer particles [22,23], organelles [24] or molecules [22,25].
These approaches use different quantification strategies for motion parameters, like
instantaneous velocities [26], step size [27], diffusion coefficient [28], and specifically
for the mean squared displacement analysis [16,25,29].

The local mean squared displacement analysis

The mean squared displacement (MSD) (r%(t)), giving the quadratic length of a
particle’s excursion, grows linear in time as (r?(t)) oc D -t for Brownian motion in
an isotropic medium, where D is the diffusion coefficient. Within a heterogeneous
environment, like the interior of living cells, the MSD scales as (r?(t)) o< D - t%,
with the non-dimensional MSD exponent a and a generalized diffusion coefficient D
characterizing anomalous diffusion [30]. Specifically, active ballistic motion (with a
certain mean velocity in a given direction) is characterized by a MSD exponent o = 2
[15], while diffusion is characterized by MSD exponents ranging from 0 < a < 2,
reflecting the amount of deviation from normal diffusion corresponding to o = 1 [31].

In general, the MSD analysis returns different results of a for anomalous transport
in living cells, as the net result of the interplay of hindering and enhancing mechanisms
[32,33]. Besides apparent subdiffusion with @ < 1 [34], on a macroscopic level also
enhanced diffusion with MSD exponents o > 1 is found [16,35], as well as transient o
values between 0.75 and 1.5 [34]. Such differences partly arise from the fact that the
MSD function reveals distinct transport states on different time scales. Short time
scales are characteristically dominated by thermal diffusion [12], while the influence
of active motion appears mostly on longer time scales [23]. In general, switching
between intracellular motility states cannot be resolved by a standard global MSD
analysis, hence information on the complex details of intracellular transport cannot be
obtained. Therefore we introduced a local MSD (I-MSD) analysis algorithm providing
an estimate of the MSD power law exponent and the diffusion coefficient as functions
of time, this way allowing for a time-resolved trajectory analysis [23]. This approach
is based on the local analysis of the MSD and directional persistence of motion,
employing an adaptable lag time window sliding along the trajectory. The algorithm
is capable of reliably separating different transport phases of a tracer by well-defined
criteria [23].
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The model organism Dictyostelium discoideum

Using this approach, we studied intracellular transport of tracer beads within living
cells of Dictyostelium discoideum [22,23,31,36]. D. discoideum suits very well as a
model organism, exhibiting a relatively simple cytoskeleton, which consists predomi-
nantly of a thin actin cortex close to the membrane, and a brush of microtubules (MT)
connecting the cortex to the centrosome [37], while actin stress fibers and intermediate
filaments are lacking [38]. Besides that, microscopic particles are readily endocytosed
by D. discoideum cells and are enclosed in vesicles, ready for diffusion and motor
driven transport [39]. Another method of internalization is ballistic injection [36]. In
this case no vesicles are formed around the tracers and thus no active transport along
MTs is possible.

Previous experimental investigations

The effect of motor protein activity for active transport along MTs was demonstrated
by I-MSD analysis of the motion of 1.4 ym diameter Fe3O,4 beads, endocytosed by
wild-type cells [23]. Here, the -MSD algorithm robustly distinguished active and
passive transport states, revealing a sequence of equally spaced peaks in the active
motion states. The corresponding velocities of v, = n - vy, with v; = 0.225 ums™—!
and n = 1,2,3,4 suggest the coordinated activity of a finite number of molecular
motors attached to different MTs [17,23,40-42]. In contrast, depolymerization of
microtubules by Benomyl treatment of the cells led to the disappearance of active
transport states. Analysis of passive motion corresponding to a median diffusion co-
efficient of D™d = 6.1 x 1073 um?s~! [23] yielded a relatively low estimate [43,44]
of the cytoplasm viscosity of 7. = 5 x 1072 Pas [23], as in this study purely passive
particle motion was probed. The possibility for temporal state analysis is introduced
as another algorithm feature. The distribution of active state durations exhibits an
exponential decrease with a characteristic time of 7,y = 0.65s [23], whereas passive
states show a more complex behavior characterized by a log-normal distribution of
the state duration.

Further investigations focusing on how transport dynamics are influenced by cy-
toskeleton states were performed by tracking FesO, particles of 1.0 um diameter
again internalized via endocytosis by D. discoideum cells exhibiting GFP labeled
a-tubulin [22]. Selective removal of MTs led to a near-complete extinction of ac-
tive motion states. Actin depolymerization by Latrunculin A caused a decrease in
the overall number of active transport states, exhibiting lower active velocities of
(vhathy — 0.58 yms™! [22], compared to (vVaet) = 0.62 ums™! [22] in untreated cells.

This shows that active MT associated transport is possible despite lacking anchor-
age of MTs to the outer actin cortex. This lack of anchorage yields in stronger MT
coiling, causing non-straight transport trajectories with less detectable active states
and apparently of lower speed values. The molecular motors, transporting the beads,
move along bent MTs. These unanchored MTs move within the active, crowded cell
interior. Moreover, increased D values are found suggesting a less densely packed
cell interior in absence of the actin network and thus a more effective diffusion. The
described measurements have also been performed exerting magnetic force on to the
magnetic beads.

Intracellular transport dynamics were investigated further with ballistically in-
jected polymer-coated v-Fe3O3 beads of 150 nm diameter, in combination with simu-
lation of a data driven model and lag time dependence analysis [36]. Here, diffusional
states were selectively studied with a focus on a and D using the I-MSD algorithm for
differentiation of passive motion states including subdiffusion and normal diffusion.
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The removal of MTs led to a decrease of the diffusion constant from (DWT) =
6.10x 1072 um? s~1 [36] of wild type (WT) cells to (DBm°) = 3.53x 102 um?s~* [36],
with lower a-values, caused by reduced intracellular dynamics due to the lack of MT
sweeping motion and thus a more viscous cytoplasm. Actin depolymerization caused
an increased diffusion constant of (D¥*A) = 10.7 x 1072 ym?s~! [36], and a small
drop in «. In the absence of both, MT and F-actin, intracellular diffusion resembled
Brownian-like motion with {(a) ~ 1 and low diffusion coefficients (less than 1.1 x
1072 yum?s~1), indicating a major influence of dynamic cytoskeleton components on
the cause of subdiffusion [36]. However, this only applies for lag times larger than 1.0,
while at shorter lag times subdiffusion is still found, due to cytoplasmic crowding [36].
On basis of these results it is hypothesized that in healthy cells, MT sweeping yields
a fluidization of the cytoplasm, facilitating particle diffusion on timescales ranging
from 50ms to 2.5s. The presence of filamentous actin is considered as a cause of
short-range subdiffusion due to caging effects, in addition to intracellular crowding
[36]. In addition, results from Refs. [22,36] suggest a strong influence of particle size
on the transport mechanisms. The diffusion constant remains unchanged upon MT
removal for 1.0 um diameter particles [22]. However, it declines by 42% for the 150
nm diameter particles [36]. These results relate to the complex cell interior built up
on different length scales. The actin network and MTs match length scales of smaller
particles, accounting for a strong influence on their motional behavior. Bigger particles
experience hindrance on length scales of larger cell organelles, e.g. the endoplasmic
reticulum and the golgi apparatus, or by the spatial limitations of the cell interior
(1.0 pm diameter bead means 1/5 of the average cell diameter). These obstacles on
the large scale cannot be removed without causing cell death. Therefore, our findings
indicate an impact of the depolymerized cytoskeleton parts, like the MTs and the
actin cortex, on the small investigated particle size.

Methodological considerations

In order to disentangle the influences of the analysis from the cellular properties on
the statistical distributions of parameters obtained from the I-MSD, the parameter
statistics of well-defined model systems were studied theoretically [45].

The analysis in [36] revealed that the subdiffusive phases of tracer motion can be
reproduced with a simple model of Gaussian increments. In a temporally discretized
version (suitable for comparison with experimental data), the dynamics in two spatial
dimensions is given by [36]

Ty = Tij—1 —+ UizAt, Yi = Yi—1 —+ U?At (1)

with velocities v}"¥ that are Gaussian distributed variables. The stationary correlation
functions of the v;"¥ can be extracted from the experimental increment statistics and
can be numerically implemented by an autoregressive (AR) process [46]. Focusing on
the latter, the velocity autocorrelation functions resemble the following function [45]

(wivfi) = (Co— Cret/he) + Crem Dk, (2)

Equation (2) contains three positive constants: Cy is the variance of the velocity,
(1 is the co-variance between subsequent velocities, and kg the decay constant that
quantifies the extend of the negative correlations.

Please note that C; must obey C; < (1 — eil/kd) -Cp/2. Similar correlations were
seen for v, and cross-correlations appeared to be negligible.
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For the processes specified by Eq. (2), the full mean-square displacement can be
calculated analytically [45] and is given by

(Az2) = AP {k <co + 201) ~2 (1- ek/k‘i)] (3)

€1 €7

with e; = (1 —e~!/*2). For an extended velocity correlation (kq > 1), the MSD

grows linearly with time (Az? o k) both at small times (k < kq) and asymptotically
also at large times (k > kq). In between these limits, there exists a cross-over time-
scale that is characterized by a sub-diffusive behavior. In [36] we have shown that
for finite negative correlations (C7 < 0), the region of subdiffusion is not entirely
determined by the correlation time of the increments kqAt, but also by the strength
of the negative correlations which is set by 2C1/ (e1Co).

The local mean squared displacement (I-MSD) algorithm for this model then yields
distributions of the exponent a and the generalized diffusion coefficient D that are
close to the values obtained from experimental data. This holds true not only for
tracer particle diffusion in the wild-type cells but also if cytoskeleton constituents
such as MTs or actin or both are removed by drug treatment [36]. In particular with
the removal of both MTs and F-actin, the subdiffusive behavior changes drastically
and resembles normal diffusion on intermediate time scales (~2s) with a low diffu-
sion coefficient comparable to that observed in glycerol. At very short time scales,
the motion is still subdiffusive which could possibly be due to intracellular crowd-
ing.

The correlated Gaussian velocity fluctuations used in [36] to describe the intracel-
lular motion can be referred to as a “data-driven” model, because here the origin of
the velocity correlations are taken as important model parameters from experiments.
However, the agreement between experimental data and the simple model indicates
that a non-Gaussianity of the velocity fluctuations does not seem to be responsible
for the statistical distributions of subdiffusion quantifiers. Moreover, the approach
simplifies the theoretical problem because it demonstrates that one has to look for
mechanisms that give rise to extended negative velocity correlations in order to ex-
plain subdiffusion of intracellular motion on short time scales.

When using the local MSD algorithm, the parameters for the algorithm, such as
window size or the number of MSD points, are crucial and need to be adapted to the
specific experiment type, reflecting its biological features.

In Ref. [45] the dependence of the distribution measures were studied for the simple
model of velocity correlations given in Eq. (2), which included the equilibrium case
of overdamped Brownian motion for C; = 0, implying uncorrelated increments. An
interesting technical question is whether there is an optimal number of MSD points
with respect to the reliability of the estimated motion measures. The exponent «, for
instance, is obtained for a time window 7' as the slope of the double-logarithmically
plotted MSD. We could use a small number of MSD points (corresponding to short
sub-windows) with good statistics (there are many short sub-windows). We could,
however, also include more MSD points (corresponding to larger sub-windows) to
apparently improve our estimate — these additional points, however, are more noisy
(there are fewer large sub-windows within 7).

In [45] it was numerically shown that few MSD points are generally the better
choice with respect to the reliability of the estimate. For overdamped Brownian mo-
tion, just two or three MSD points yield the narrowest distribution of the exponent a.
For two MSD points and a sufficiently large time window (20-100 points), the statis-
tical (joint and marginal) distributions of @ and In (D) can be well approximated by
Gaussian functions. In particular, this implies that D obeys a log-normal distribution,
which approximates well the distribution of D obtained from experimental data. For
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a correlation function of the form given in Eq. (2), explicit expressions can be derived
for the variances and covariances characterizing the Gaussian distributions. In fact,
for comparable time window and MSD points, simple Brownian motion yields distrib-
utions of similar width although with different mean values compared to intracellular
motion.

Effect of dimensionality

In [31] we performed 3D tracking of fluorescently labeled DNA polyplexes with a
hydrodynamic radius of 200 nm (diameter ~400nm) within D. discoideum cells ex-
hibiting GFP labeled a-tubulin.

Here, the local MSD analysis was performed in 3D and compared to the 2D
projection of the 3D path. It was shown that about one third of the active transport
phases are incorrectly assigned to diffusive motion upon a 2D projection of the 3D
data. In contrast, in analog experiments with human HuH-7 cells the identification
of the active phases was barely affected when projecting the data to a 2D plane.
This can be explained by the more flattened shape of the HuH-7 cells, where active
transport is already tied to the quasi-2D cytoskeleton structure. The 3D particle
tracking in D. discoideum yields a smooth log-normal distribution of the absolute
active transport velocities, exhibiting a peak value of U,y = 0.58 ums~! and an
average of (v,et) = 0.69 ums—! [31].

The obtained absolute velocities of the active transport phases are comparable
to velocity values of other tracer species of larger diameters [22,23]. These findings
elucidate that specific particle properties, like shape and chemical surface properties,
are influencing motor-driven active transport in living cells.

Upon 2D projection, the active velocities in D. discoideum cells decrease to approx-
imately two third of the 3D values, showing isotropic behavior. In contrast, passive
diffusion is found to be anisotropic yielding a deviation by a factor of 0.67 for the
3D diffusion coefficient compared to that of the 2D projection, whereas Brownian
diffusion should remain unchanged [31]. The effect of dimensionality on the diffusion
coeflicient is found to be even stronger for HUH-7 cells, which may be explained by
a different cytoskeleton structure, causing a higher degree of deviation (0.31) from
normal diffusion, e.g. due to the presence of intermediate filaments [34].

Besides this, intracellular transport phenomena were also examined in 1D by
studying trajectories of very small fluorescent quantum dots (QD) of 20 nm diam-
eter within straight axons of pheochromocytoma cells (PC12) [47]. Here, we found
events of fast directed transport along MTs with velocities of vae; = 2-7 ums™!,
while QD motion was predominantly subdiffusive with a median diffusion constant
of D™¢d = 0.41 ym? s~ in the narrow axon geometry [47].

The work described above shows a complex picture of intracellular dynamics,
justifying further detailed studies for the identification of specific transport mecha-
nisms upon interaction with cytoskeleton constituents, acquired with specific imaging
techniques. In this view, we report on quantitative investigations of particle trans-
port within wild-type cells of D. discoideum, performed by spinning disk confocal
microscopy (SDCM) at very fast frame rates of 100fps and with very high spatial
resolution. Imaging is restricted to one fixed focal plane only. In particular, we use
highly uniform small fluorescently labeled silica particles with a diameter of 200 nm.
For microscopic tracking experiments, the particles are introduced into wild type
cells of D. discoideum by endocytosis, allowing for motor driven active transport.
Particle motion is analyzed in terms of active and passive motility states using
the 1-MSD algorithm. This way, we obtain the statistical distributions of state
parameters [22,23,31,36] and can dissect passive motional phases into phases of sub-
diffusion, normal diffusion and superdiffusion.
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2 Methods
Cell culture:

The axenic D. discoideum strains AX2 wild type and LimEAcc-GFP expressed in
LimEAcc-null (obtained from Dr. Glinther Gerisch, MPI for Biochemistry,
Martinsried, Germany), were cultivated below a confluency of 40% in HL5 medium
(ForMediumTM, Norfolk, United Kingdom) adjusted to pH = 6.7, for Lim-GFP in
Lim-null complemented by antibiotic Gentamycin (G-418, Biochrom AG, Berlin,
Germany) and Blasticidin (Blasticidin S hydrochloride, Sigma Aldrich Chemie GmbH,
Taufkirchen, Germany) at a concentration of 10 u g mL !, respectively. Measurements
have been performed with WT cells, LimEAcc-GFP expressed in LimEAcc-null cells
have been imaged for Fig. 1la. For microscopy experiments, HL5 medium was substi-
tuted by phosphate buffered saline, adjusted at pH = 6.0. The cell-PBS-suspension
with a cell density of 2 x 107 cm ™2 was incubated for 20 min with a concentration of
2 x 107%gem ™3 silica particles. Subsequently, the excess particles were removed by
centrifugation of the suspension at 1000 rpm for 4 min (Eppendorf MiniSpin® Plus,
Eppendorf AG, Hamburg) and the cells were redispersed in 1ml PBS. The cell-PBS
suspension was filled into the observation chamber (composed of a cover glass and
custom-made Teflon® frame) and rested for 20 min, allowing the cells to settle down.
Experiments have been performed in less than 2h, before onset of starvation, to ensure
cell viability.

Silica beads:

Custom-made 200 nm diameter fluorescent silica beads where fabricated according
to Larson et al. [48] by an adapted Stober synthesis. A precursor solution consist-
ing of ethanol (0.17ml, VWR International GmbH), (3-aminopropyl)triethoxysilane
(186.5 mmol, Sigma Aldrich) and tetramethylrhodamine isothiocyanate (9.3 umol,
Sigma Aldrich) was stirred overnight. Subsequently, ethanol (74.3 ml), ammonium hy-
droxide (6.9 mmol, 30%, Rotipuran®) and water (0.5mol) were added and stirred for
30 min. After that, ethanol (6.0 ml) and tetraethoxysilane (6.7 mmol, Merck Millipore)
were added drop wise over 7hours. The suspension was continuously stirred for
24 hours and the newly formed silica particles were washed and dispersed in ethanol
for further use.

Characterization by scanning electron microscopy showed uniform spherical silica
beads with a diameter of 195 4+ 15nm. The particles where dispersed in PBS by
10 min sonification before adding particles to the cell suspension.

Microscopy:

Fluorescence live cell imaging was performed by spinning disc confocal microscopy.
The microscope consists of an inverted microscope (Ti-E, Nikon, Japan), a spin-
ning disk unit (UltraVIEW™ VoX, PerkinElmer®, USA), a CCD camera (C9100-50
Hamamatsu, Germany) and lasers (488 nm and 561 nm, Yokogawa Electric Corpora-
tion, Japan). The imaging was performed in a fixed z-plane with a 100X immersion oil
objective with a NA of 1.45 at a frame rate of 100 fps, achieving a spatial resolution
of ~600nm in z-direction and of ~200nm in x,y-directions. The tracking algorithm
yields center of mass accuracy in the imaging plane of ~20 nm.
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Data analysis:

Particle trajectory analysis was performed using an established tracking routine [49].
Previously, we described a local mean squared displacement (I-MSD) analysis al-
gorithm able to reliably distinguish periods of active and passive motion from 2D
trajectories of particles in living cells [23]. This approach is based on the analysis of
the local MSD and the directional persistence of the average angle between steps. In
short, a I-MSD is calculated for every time point ¢; of the particle path over a rolling
window of M = 28 frames (corresponding to a duration 7' = 280 ms) as a function of
different lag times 7 according to [36]:

(AR? (1)) = (R (t: +7) = R(t))) 1 /ncr, cti1)o- (4)

The directional persistence of the bead motion Ay; (7) is measured by the standard
deviation of the angle correlation function within the rolling window [23].

The obtained (AR? (7)) is fitted by a power law of the form

<AR2(T)>—A><<T>a (5)

l2 T0

where [ = 1 um is a chosen unit reference length and 79 = 1s is a reference time, so
the prefactor A carries no physical dimension [45].

The value of the o exponent together with the trajectory’s angle deviation are
used to classify a local trajectory into four motional types

(i) active motion when [a =2+ 04| and [Ap = +0,)]

(ii) diffusive motion when [a =1+ 0],

(iii) subdiffusive motion when [0 < a < 0.7],

(iv) and superdiffusive motion when state is not active and [1.3 < a < 1.7]

with o, = 0.3 and o, = 0.9rad. For diffusive motion, a generalized diffusion coef-
ficient D can be retrieved from the prefactor A of the power-law fit of Eq. (5) by

(AR?(7y)) Al
2d7’00 n 2d7’0 (6)

D =

where d is the number of spatial dimensions [45]. This way, diffusion coefficients
Dgub, Daig and Dg,per are calculated for subdiffusive, normal diffusive and superdif-
fusive states, respectively. Note that for anomalous diffusion, the value in Eq. (6)
will strongly depend on the window size. For active states a new fit of the data is
performed with o = 2 , returning the local absolute velocity vact by

(AR (7)) = vyt - 7°. (7)

The distributions of the particle motion parameters obtained by the 1-MSD analysis
are fitted with empirically chosen functions. The absolute velocities of all events and
of the diffusive states are fitted with generalized log-logistic functions of type Burr
XII [50]. The distributions of the active motion state velocities and of the diffusion
coeflicients are fitted with log-normal distribution functions.
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Fig. 1. Bead trajectory analysis in living D. discoideum cell. (a) SDCM fluorescence image
of a 200 nm silica particle (red) within a living D. discoideum cell with GFP labeled lim
proteins (green). (b) Color-coded 2D track of the silica particle highlighting motion phases
of active transport (red), sub- (cyan), normal (blue), and super-diffusive (green) motion as
derived from the 1-MSD analysis. (¢) Local MSD of the silica particle as a function of lag
time 7 over experiment time, with corresponding 1-MSD exponent « illustrated by color-
code. (d) Time courses of particle motion parameters, from top to bottom: silica particle
position R, I-MSD exponent «, angle deviation oa,, diffusion coefficient D retrieved during
the passive diffusive states, instantaneous particle velocity vins: (light gray) and algorithm-
retrieved velocity vact during the active transport states (red).

3 Results and discussion

In this work, we study the intracellular transport of endocytosed silica particles of
spherical shape and 200 nm diameter. Imaging was performed in a fixed narrow focal
plane (2D imaging) by spinning disk confocal microscopy (SDCM), minimizing pro-
jections and therefore diminishing misinterpretation of motion states that can reach
into the third dimension. Silica particle were tracked in 25 different cells, yielding a
total of 132,000 data points.

Figure la shows an example of a fluorescence image of a 200 nm particle (red) in
a D. discoideum cell with GFP labeled lim proteins (green). Four motility states of
a particle are distinguished by the I-MSD analysis, as illustrated by the color-coded
trajectory in Fig. 1b, showing phases of active transport (red) and diffusive motion,
where the latter phase is subdivided into sub- (cyan), normal (blue), and superdiffu-
sive (green) states. In Fig. 1c, local MSDs are displayed as a function of experiment
time and different lag times 7, with the corresponding a-exponents illustrated by
color code. Further, motion parameter analysis is visualized as a function of experi-
ment time in Fig. 1d, displaying the silica particle position R, the 1-MSD exponent
a, the standard deviation of the angle deviation oa, the diffusion coeflicient D, and
the instantaneous velocity vinss.
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For quantitative analysis, motion states are evaluated by the statistical distribu-
tions of parameters obtained from the 1-MSD algorithm. Figure 2 shows the distrib-
utions of the exponent a (a), the absolute instantaneous velocity v-distributions of
all motion events (b), and the absolute velocity |vac| during active states (c). The
distributions of diffusion coefficients Dgup, Daig (suffix “diff” refers here to normal
diffusion states) and Dgyper retrieved during the passive motion phases are shown
in Fig. 3a. The corresponding average and median values are given in Table 1, to-
gether with the peak values of the distributions, which are determined by fitting with
empirically chosen functions.

The distribution of the calculated 1-MSD exponents « is shown in Fig. 2a, elu-
cidating the partitioning into four motion states assigned to active transport (red),
sub- (cyan), normal (blue) and superdiffusion (green). The overall distribution peaks
below a = 1, with a mean value of (o) = 0.87 and a median a™*? = 0.83. We notice
that the contribution of active states is quite low compared to results obtained by
former studies of endocytosed particles within living cells of D. discoideum, where a
frequent appearance of exponents a > 1 indicated a generally high directed transport
activity [22,31]. In the present study, we selectively obtain tracks of particle motion
in x,y-dimensions by confocal imaging within a fixed focal plane. Therefore, events
of fast, directed active transport are underrepresented in the obtained distribution of
motion states, because in most cases tracer particles only cross the narrow focal vol-
ume and cannot be tracked for longer times. On the other hand, this selective tracking
of planar motion in x,y-planes allows to obtain particle velocities with particularly
high precision.

We show the distribution of the obtained absolute particle velocities (grey) in
Fig. 2b, together with the distributions of the four investigated motional states. All
these distributions are fitted by empirically chosen functions. The distribution of
the active velocities is fitted to a log-normal distribution function with a peak value
of (Vaet) = 2.5 ums™1, while the passive phase distributions are corresponding to
generalized log-logistic functions of Burr type XII. For the subdiffusive phase we
find a peak value of vsy, = 0.9 ums~?!, for normal diffusive phases a peak value of
vaig = 1.2 ums™! and for superdiffusion a peak velocity of vsyper = 1.5 ums~!. The
overall distribution of the absolute velocities also shows Burr-shape, with a peak value
of Vingt = 1.1 ums~!. Comparing the distributions, we notice a trend of increasing
particle velocity with increasing o exponents, as expected. The obtained velocity val-
ues for particles with 200 nm diameter are significantly higher than absolute velocities
found before for latex particles of 520 nm diameter and for Fe3O4 beads of 1.42 ym
diameter [43], suggesting a size-dependence of active and passive motion speed of
particles within living cells.

Active transport states

The distribution of active absolute values of velocities of silica particles with 200 nm
diameter moving within D. discoideum cells is shown in Fig. 2c, together with the
corresponding cumulative distribution. By quantitative analysis, we find a mean value
of the absolute velocities during the active states of (vac) = 2.8 ums™!, which is
significantly higher than in previous studies [22,23], where active transport of Fe3O4
beads with 1.4 pm [23] and with 1.0 um diameter [22] in D. discoideum cells was
observed with average absolute values of velocities of (vact) = 0.39 pms~! [23], and
(Vact) = 0.35 pm g1 [22], respectively. Earlier investigations with Fe3O,4 particles of
1.4 pm diameter vs. small latex beads of 520nm diameter suggested an increase of
active absolute velocities with decreasing particle size, from a range of 0.5-1.5 yms~*
up to a range of 1-3 yums~! [43]. Assuming an increase of absolute active velocities
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Fig. 2. Analysis of active and passive transport in living cells of D. discoideum. (a) Distrib-
ution of I-MSD a-exponents, showing different states assigned to active transport (red), sub-
(cyan), normal (blue) and superdiffusion (green). (b) Distributions of absolute velocities of
all events (gray), and of the different motion states corresponding to Fig. 2(a). Distributions
of absolute velocities fitted by Burr-function of type XII. (c¢) Distribution of active state
velocities obtained by the I-MSD algorithm, fitted with a log-normal function. Inset shows
corresponding cumulative distribution function with log-normal fit (dashed line).



1180 The European Physical Journal Special Topics

Table 1. Motion parameters obtained by 1-MSD analysis, exponents «;, instantaneous ve-
locities v, diffusion coefficients D, and transport velocities during active states of 200 nm
silica particles within WT cells of D. discoideum.

Mean Median Peak value
Y 0.87 0.83
Qsub 0.41 0.43
Qi 0.96 0.95
asuper 150 149
Qlact 1.8 1.8
Vinst (pms~ ") 1.9 1.6 1.1
Vinst,sub (pms™ 1.6 1.3 0.9
Vinst, diff ums—lg 1.9 1.6 1.2
Vinst,super (Hms ") 2.2 2.0 1.5
Day (pm? sflg 6.6 x 1072 1.0 x 1072 1.6 x 1072
Dgup (pm?s™ 4.4 x 1073 2.8 x 1073 8.7 x 1073
Daige E,umz s—lg 4.9 x 1072 3.0 x 1072 7.8 x 1072
Dsuper (pm*s™") 3.0 x 107* 2.2 x 107¢ 3.8 x 1071
(vact) (,um sfl) 2.8 2.7 2.5

with decreasing particle size, the different velocity values found for the silica particles,
as compared to larger Fe3O,4 particles, appear well consistent with former results.

Tracking of DNA polyplexes with a hydrodynamic radius of 200nm (twice as
large in diameter as the silica beads) yielded an average absolute active velocity of
active states (vger) = 0.58 ums~! [31], consistent lower than the present results with
silica beads [15]. Probably the different chemical surface entities and the non-spherical
shape of the particles led to even bigger vesicle formation around DNA polyplexes,
slowing down active transport by the crowded intracellular environment.

Diffusive motion states

We selectively assess subdiffusion, normal diffusion as well as superdiffusion phases
and the respective diffusion coefficients. Figure 3a shows distributions of the diffusion
coeflicients for these three states, fitted by log-normal functions. The inset of Fig. 3a
shows the overall distribution of the diffusion coefficients, also fitted by a log-normal
function. All distributions of the diffusion coefficients are in good agreement with the
log-normal fits [45].

Upon comparison with former results [22,23,36], we notice that the average dif-
fusion coefficient of all diffusive states (D) = 6.6 x 10~2 ,um2 s~! obtained for the
endocytosed 200 nm silica particles within WT cells is of the same order of magnitude
as the diffusion constant (D) = 6.1 x 1072 um? s~! [36] obtained with polymer-coated
particles of 150 nm diameter in WT cells [36]. On the other hand, the overall diffu-
sion constant for the 200 nm particles deviates from passive diffusion coefficients of
(D) = 6.1 x 1073 um? s~ ! [23] and of (D) = 9.8 x 1073 yum?s~! [22] obtained before
with FesOy4 particles of 1.45 ym [23] and of 1.0 pm diameter [22], respectively. This
suggests a general dependence of intracellular passive diffusion coefficients on the size
of the tracer particles [9,34,51,52]. Also the different materials of the tracer particles
may render significant effects on passive intracellular diffusion, as suggested in par-
ticular by comparison with a diffusion constant (D) = 8.8 x 1073 um?s~! obtained
before with DNA polyplexes of ~400 nm diameter [31].

By extracting the motion phases for I-MSD a-values of about 1, we selectively
assess states of normal diffusion of our 200 nm silica particles. Using the average
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Fig. 3. Distributions of passive transport state paramters: (a) Distributions of coefficients
of subdiffusive Dyu, (cyan), normal diffusive Daig (blue), and superdiffusive Dgyper (green)
states. Inset shows overall distribution of all diffusion coefficient values D,;. Distributions
of the diffusion coefficients are in agreement with log-normal fits [45]. (b) Joint distribution
of a- and D-values showing monotonous, yet nonlinear relation.

value (Dgi) = 4.9 X 1072 um? s~ !, we calculate an effective cytoplasm viscosity of
Ne = 4.4 x 1072 Pas in good agreement with [23].

The sectioning of motional states by a-values, as shown in Fig. 2a, yields the
mean values (agp) = 0.41 for the subdiffusive and (agupery) = 1.50 for the su-
perdiffusive states. This partitioning yields mean values of the diffusion constants
of (Dsyp) = 4.4 x 1073um? s~ ! and (Dgyper) = 3.3 x 10~ um? s71, respectively. The
spread of the diffusion coefficient over two orders of magnitude can be explained by
the inhomogeneous intracellular regimes the bead is exploring. While a very crowded
intracellular milieu yields low diffusion coefficients, regions of less crowding and active
processes in the cell exhibit higher values of diffusion coefficients. Figure 3b shows
the joint distribution of the a- and D-values, revealing a monotonous, yet nonlinear
relation in accordance to former results for WT cells [36].
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4 Conclusion

We studied intracellular transport of 200 nm silica particles within living cells of
D. discoideum by spinning disk confocal imaging in one focal plane at a frame rate of
100 fps. Using single particle tracking and local mean squared displacement (1-MSD)
analyses, we demonstrate the impact of intracellular architecture and cytoskeleton dy-
namics on anomalous diffusion and active transport. Significantly, active motor-driven
processes can be reliably differentiated from diffusive processes, which are divided into
states of sub-, normal, and superdiffusive motion. Furthermore, important parameters
like particle velocity and the local diffusion coefficient are determined. In particular,
the average active transport velocity found to be (v,.) = 2.8 ums™!, derived by a
high accuracy imaging method. Moreover, we show that the diffusion constants of
200 nm silica particles in D. discoideum wild type cells span more than two orders of
magnitude, reflecting the spread in local micro-environments of the cell interior.

By our results, we highlight the potential of the I-MSD analysis for unravelling
intracellular dynamics with high-resolution microscopy imaging. This approach can
also be used for detailed investigations of cellular motion behavior [53,54]. These
investigations will prove of ample importance for medical applications like targeted
treatment by nano-sized drug carriers or innovative diagnostic-assays.
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