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Event-triggered feedback in noise-driven phase oscillators
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Using a stochastic nonlinear phase oscillator model, we study the effect of event-triggered feedback on the
statistics of interevent intervals. Events are associated with the entering of a new cycle. The feedback is modeled
by an instantaneous increase (positive feedback) or decrease (negative feedback) of the oscillator frequency
whenever an event occurs followed by an exponential decay on a slow time scale. In addition to the known
excitable and oscillatory regimes, which are separated by a saddle node on invariant circle bifurcation, positive
feedback can lead to bistable dynamics and a change of the system’s excitability. The feedback has also a
strong effect on noise-induced phenomena like coherence resonance or anticoherence resonance. Both positive
and negative feedback can lead to more regular output for particular noise strengths. Finally, we investigate
serial correlations in the sequence of interevent intervals that occur due to the additional slow dynamics. We
derive approximations for the serial correlation coefficient and show that positive feedback results in extended
positive interval correlations, whereas negative feedback yields short-ranging negative correlations. Investigating
the interplay of feedback and the nonlinear phase dynamics close to the bifurcation, we find that correlations are

most pronounced for optimal feedback strengths.
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I. INTRODUCTION

Self-sustained oscillations occur in many physical, chem-
ical, or biological systems [1]. If variations of the amplitude
are negligible, a widely used model in this context is the
well-known dynamics for the phase ¢ [2]:

¢(t) = wy — € sin[g(1)]. 1
Here w represents the oscillator frequency in the case € — 0.
Without loss of generality, we restrict our investigations on
wp > 0. By rescaling wp and the time scale, € can be set
to one (dimensionless units). The system can show both
excitable (0 < wp < 1) and oscillatory (wp > 1) dynamics.
Both regimes are separated by a saddle node on invariant circle
(SNIC) bifurcation at wy = 1, which makes the system a good
model for class I excitability [3]. Equation (1) is known as the
Adler’s equation [4] and is often used to describe excitability in
optical systems [5,6] or in neuroscience [7] and particle motion
in a tilted periodic potential or to study the onset of resistance
in superconducting Josephson junctions [8,9]. Generally, such
oscillators are studied when driven by time-dependent forces,
such as noise, when subjected to time delayed feedback [10]
or when they are coupled in networks.

For many applications, particular events in the phase
dynamics are of foremost interest, e.g., the crossings of a
threshold value ¢ = 27 as associated with, for instance, the
generation of an action potential in a nerve cell, the dropout of
light intensity in an excitable laser, the release of a messenger
by a cell, or the division of a cell. The statistics of the
intervals between these events Ar (interevent intervals, or, in
the following, IEI) in the presence of noise have been studied
intensely in the neurobiological context for the related class of
integrate-and-fire (IF) models [11,12] (here IEIs are referred
to as interspike intervals).
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In some systems, the events directly influence the dynamics
of the oscillator. Put differently, in these systems we find event-
triggered feedback mechanisms. Generally, the oscillator’s
dynamics becomes more interesting if such feedback mecha-
nisms are taken into account. For neurons, negative feedback
can arise from slow inhibitory ionic currents that change
over several IEIs. This can lead to spike-frequency adaptation
[13,14], noise shaping [15], and interval correlations [16,17].
Feedback, however, can be also positive, for instance, due to
variations in the external potassium concentration, which are
triggered by neural spiking [18,19] and act on a time scale
which is large compared to the individual IEIs [20]. In some
systems strong positive feedback can change the dynamics
fundamentally, leading, for instance, to bursting behavior [21].
In laser physics positive feedback for particular modes can
be used to self-mode-lock lasers [22] and it seems to be a
plausible explanation of positive IEI correlations, reported
in Ref. [23]. In cell biology, positive feedback loops occur,
for instance, in the lactose utilization network of Escherichia
coli, where the production of lactose permease increases its
expression level and is assumed to be a reason for bistability in
the lactose utilization [24,25]. However, the effect of positive
feedback, especially in the presence of noise, is so far only
poorly understood.

Analytical attempts to deal with an additional feedback
dynamics in a pulse generator were mainly limited to ap-
proximations of the firing rate [13,26] and weak-feedback
approximations for the IEI statistics of a very simple IF
model, the so-called perfect IF model [27]. Regarding the more
striking feature of the feedback-induced interspike interval
correlations, approximations until recently were carried out
for the perfect IF model [16], variants that deviate only by
a weak nonlinearity from it [28] or IF models subjected to a
weak feedback [29]. In Ref. [30], a general theory has been
worked out to calculate patterns of interval correlations in
multidimensional IF models. All these studies focused on a
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negative feedback, however, and did not address the generic
phase oscillator dynamics [Eq. (1)].

Here we study the dynamics of a phase oscillator in the
vicinity of a SNIC bifurcation from the excitable to the
oscillatory regime, which is subject to noise and an event-
triggered feedback. We consider feedback strengths that can
attain both positive and negative values and derive analytic
approximation for several statistical measures by considering a
large time scale separation between the phase and the feedback
dynamics.

Our results for negative feedback are in line with previous
studies: We find suppression of low-frequency power in the
power spectrum of the spike train [31,32] and negative serial
correlations in the series of N subsequent IEIs Az, ..., Aty
[13,33-35]. More remarkably, we find that positive feedback
causes a number of effects. In the deterministic system,
bistability emerges in the form of the coexistence of a
stable node (SN) and a limit cycle (LC) attractor. Second,
we study the effect of noise and feedback on the system.
Here we focus on the excitable and the oscillatory regime.
We find anticoherence resonance in the excitable regime—
IET variability is maximized at a finite noise intensity—and
observe positive IEI correlations in both the excitable and
the oscillatory regimes. Interestingly, IEI correlations for both
positive and negative feedback behave nonmonotonically with
the feedback strength, if the system is close to the bifurcation.

Our paper is organized as follows. In Sec. II we introduce
the model and the statistics of interest. We study first, in
Sec. III, the nonlinear dynamics of the system without noise
(including a bifurcation analysis) and explore the effects of
noise and feedback on the mean frequency of the oscillator.
In Sec. IV, we investigate the IEI variability and the power
spectrum of the phase oscillator with feedback. Section V is
devoted to IEI correlations. Finally, we conclude by summa-
rizing our results and discussing their broader implications.
All details concerning simulation techniques and analytical
calculations of the serial correlation coefficient are given in
Appendixes A and C, respectively.

II. THE MODEL

In order to implement the feedback we define an event
to occur whenever the phase reaches the threshold 27, i.e.,
¢(t;) = 2w, where t; denotes the time of the ith event.
Afterwards, the phase is reset (¢ — 0). The feedback acts
on the phase oscillator by increasing (positive feedback) or
reducing (negative feedback) its frequency. Thus, we add
a time-dependent part Aw(f) to the frequency wy, which
accounts for the frequency adaptation due to the feedback.
Consequently, Eq. (1) becomes

$(1) = Aw(t) + wo — sin[¢(t)] + V2DE(®). 2
Combined with the reset condition,
if ¢ =2m, then ¢ — 0. 3)

Here we also added white Gaussian noise [(£(z)) = 0 and

(E()E(")) = 8(t — t')] with a noise strength D, where (-)
denotes averaging.
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FIG. 1. (Color online) Time evolution of x(¢), ¢(¢), and Aw(t)
(from top to bottom) for wy = 1.1,a = 0.5, t = 10, and D = 0.1.

When an event occurs, the system perceives a kick which
changes Aw. This is modeled by the additional dynamics

t%Aa)(t) = —Aow(t) + 2ra x(t), (@)

where

x(t) =Y 8t —1) )

is the sequence of kicks at the event times #;.

Equation (4) describes the dynamics of Aw, evolving on
the feedback time scale 7. Due to the first term, it decays
towards zero from any deviation. The second term models the
feedback and alters Aw by an amount of 2w a/t whenever an
event occurs (f = #;). This is illustrated in Fig. 1 for a positive
feedback strength a > 0, showing the time evolution, and in
Fig. 2 (center), illustrating the trajectory in the (¢, Aw) space.
Thus, a cycle consists first of a part where ¢ and Aw evolve
according to the Egs. (2) and (4), respectively. Second, if ¢
reaches the threshold, the reset condition Eq. (3) is applied.
Finally, in the third step, Aw is altered by an amount of 2 a/t.
Note that putting a = 0 yields in the stationary case always
the situation without feedback.

After some transient behavior, the rate becomes stationary
and we define the oscillator’s mean firing rate, which describes
the average rate at which events occur,

(@(1) 1
T = WO =5 (6)

Here the average is taken over a time interval large compared to
the individual IEIs A#; = t;,1 — ¢;, i.e., the time the oscillator
needs to reach ¢ = 27 when started at ¢ = 0.

By averaging Eq. (4), we obtain

T <j—tAw> = —(Aw) + 2ma(x(1)). @)
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FIG. 2. (Color online) Fixed points and trajectories (colored
lines) on stable (bold lines) and unstable (thick dashed line) LCs
in the phase space for the excitable regime (A), the oscillatory regime
(B), and the bistable regime (C) for D = 0 (see Fig. 4). Stable nodes
(black circles), saddles (white circles), and the velocity field (small
arrows) are depicted. The nullclines for the Egs. (2) and (4) are marked
by black lines. Labels (¢ > 0) and (¢ < 0) indicate LCs for positive
and negative feedback, respectively. Arrows on LCs illustrate the
corresponding directions. Trajectories reach the corresponding value
of Aw,. at ¢ = 2 and start with an offset of 2mwa /7t to Aw after
the reset. Here Awfc, = Aa),c(At‘gg) according to Egs. (14) and (17).
Parameters: (A) wy = 0.8, 7 = 50;(B) wy = 1.05,7 = 50,a = £0.5;
(C) wy = 0.85, 7 =50,a = 0.55.

In the stationary case, the left-hand side should be zero and
we obtain

(Aw) = 2mar. )
Using Eq. (8) in the averaged Eq. (2) yields

_ o — (sin[¢p(1)])
T 2n(l—a)

Note that ¢(¢) is the solution of Eq. (2) in the presence of
feedback.

Interestingly, the limit of @ /1 leads to infinite r if
wp > 1. In this case the unknown numerator is positive, since
(sin[¢p()]) < 1. Here / denotes the left-hand limit. For such
strong positive feedback, the deterministic decay of Aw cannot
balance the increase of Aw due to the kicks after each event

€))
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and the assumption of stationarity (Aw) = 0 does not hold.
To study the stationary regime, we therefore concentrate on
a < 1.

III. MEAN INTEREVENT INTERVAL

A. Deterministic case

At first, we concentrate on the deterministic case (D = 0).
Here, after some transient behavior, all IEIs become equal
At; = Atge for all i. If no feedback is applied, Aw will
converge to zero and the IEIs can be calculated by integrating
Eq. (2), which yields [36]

2

‘/a)g—l

Here the index 0 marks the nonfeedback solution for the mean
IEI. Note that positive real solutions for Aty o exist only in
the oscillatory regime |wp| > 1.

If, however, feedback is applied (a # 0), the dynamics
becomes more complex. Here the deterministic behavior can
be understood by evaluating the time-dependent frequency
adaptation Aw. Assume, that the system evolves on a LC, and
let Aw, be the value of Aw just before an event occurs, i.e.,

Alder,0 = (10)

lim Aw(t) = Awy. (11)
t /'t
After reset, Aw changes to Awj. + 2mwa/t, which yields
the initial conditions for the next IEI. Corresponding
phase portraits are illustrated in Fig. 2 (center) for posi-
tive and negative feedback, respectively. We can integrate
Eq. (4) for one IEI, resulting in

2ma t—
Aw(t) = | Awe + - exp| — . ,

(12)
h <t <ty + Atget.
Since after one IEI Aw reaches Awy. again, i.e.,
lim Aw(t) = lim Aw(t) = Awy, (13)
t /'t t e+ Atger
we obtain an explicit expression for Awy,:
2ra
Awye = (14)

elexp (%) — 1]

In the following, we consider a slow feedback time scale 7,
i.e., T > Atq4e. In this case, we can expand Aw(t) [Eq. (12)]
in the small parameter Atqe/7. Using that ¢ € [#;,f; + Atget]
and Awj. = 2mwa/Atger + O(Atger/T) [see Eq. (14)], the ze-
roth order Taylor expansion for Aw(r) reads

2mwa Atdet
o . 15
Atdet + ( T ) ( )

Note that the zeroth order term equals the time-averaged
frequency adaptation in Eq. (8). Using only the zeroth order in
Eq. (2) for D = 0 leads to the solvability condition
2
Atger = . (16)

(w()+ %ﬁ)z —1

Aw(t) =
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FIG. 3. (Color online) Solutions for the steady state firing rate r
for D = 0 in the limit T — oo (lines) and results from simulation
(points) for t =5 and v = 50. For positive feedback a > 0 (red
line) two solutions of Eq. (17) exist and describe oscillations on a
stable (solid line, st. LC) and an unstable (dashed line, unst. LC) LC,
corresponding to the inverse Atél‘)’(z), respectively. The solution for
a = 0 (black line) is given by Eq. (10). For a < 0 (blue line) only
one solution (Azi!)) exists, describing oscillations on a stable LC.
Independently of a a solution » = 0 (green dashed line) exists for
Wy < 1.

Solving the resulting quadratic equation for Atzge yields

2
Aty ~ m[ +wp+ @ - 1) —aw), At <L T

0
a7

By comparison with simulations, we found that positive real
solutions Atc(ll[) correspond to the cycle period of oscillations on
a stable LC, whereas positive real solutions At(ﬁz correspond
to the cycle period of oscillations evolving on an unstable LC.

In agreement with Eq. (9), the solution At((lg runs to zero
(infinite rate) for a /1 when wy # 1. However, positive
solutions Atéiz also exist for a > 1, if wy < 1 (dashed region
in Fig. 4). They describe oscillations on an unstable LC which
separates the basin of attraction of the SN from a regime where
the system speeds up to infinite rate.

For a <1 we find three qualitatively different regimes.
Figure 3 depicts the resulting firing rates r = 1/ Atégt, fori =
1,2, and Fig. 4 illustrates the different regimes in the (wg,a)
parameter space. The corresponding dynamics is illustrated in
Fig. 2.

(A) [Fig. 2 (top)] For 0 <a < 1 and wy < +/1 — a? and
for a < 0 and wy < 1, Eq. (17) has no real solution. Here the
only stable equilibrium is the SN and only noisy excitations
can lead to new events.

(B) [Fig. 2 (center)] For a < 1 and wy > 1, only Atéif
is positive. Here the system possesses a stable LC for both
negative and positive feedback, respectively.

(C) [Fig.2 (bottom)]For0 < a < land v/1 —a? < wy <

1, Eq. (17) has the two positive real solutions Atéit) and At‘gﬁz.

Simulations of trajectories show that positive solutions of Atéit)

correspond to slow oscillations on an unstable LC (dashed
lines), which separates the basins of attraction of the stable

LC, described by oscillations with period Az} (bold lines),
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FIG. 4. (Color online) Dynamical regimes in the (wp,a) param-
eter space for T — oo. Capital letters name the excitable (A), the
oscillatory (B), and the bistable regimes (C and D). Topological
properties are denoted by SN (stable node), UN (unstable node), and
LC (limit cycle). Thick lines indicate bifurcations between different

regimes, dashed lines indicate bifurcations that occur for finite t, and
the dotted line separates the region where trajectories diverge.

and the SN (black dot). Here bistability between the SN and
the stable LC occurs.

These regimes are separated by different bifurcations,
indicated by thick lines in Fig. 4, which can be studied
using the positions of the stable (¢, Awy,) = (arcsin[wy],0)
and unstable node (¢, Aw,s,) = (r — arcsin[wy],0) and the
linearized system of the Eqgs. (2) and (4) evaluated at fixed
0 < ¢9 < 27 and Awy,

<¢>=(—COS(¢0) 11)( ¢ —¢o ) (18)
Aw 0 - Aw — Awy

Using the solutions for the mean IEI [Eq. (17)], one can also
study the existence of the LCs for t — oo. The analysis for
finite T was done by numerical simulations of trajectories.

For negative feedback (light gray region in Fig. 4) the
regime A transforms into the regime B via SNIC bifurcation
at (¢,Aw) = (7r/2,0) (black line in Fig. 4). A third regime
C and for finite t a fourth regime D exist for a > 0. Here
a stable and an unstable LC are born via saddle-node LC
bifurcation at /1 — a? = wy (red line) and the two solutions
of Eq. (17) coincide. The existence of LCs for finite T was
verified by simulations for t = 25,50,100. For finite 7, the
unstable LC approaches the UN and, finally, vanishes via a
subcritical homoclinic orbit (SHO) bifurcation [positive sum
of eigenvalues of the Jacobian in Eq. (18)] (green dashed lines),
if wp is increased. At wy =1 the two equilibria annihilate
each other in a saddle-node (off cycle) bifurcation (fold) (blue
line).

In the limit of large v the SHO and fold bifurcation
occur both at wy = 1. Here both eigenvalues of the Jacobian
[Eq. (18)] become zero (—1/7 — 0), leading to a Bogdanov-
Takens bifurcation. However, for finite T the Aw direction is
always stable, and the bifurcation at wy = 1 is of fold (a > 0)
or SNIC (a < 0) type.

We also find that the rate for finite t is higher than in the
limit © — oo (see Fig. 3) and that the range of bistability
extends to smaller values of wy. In the presence of positive
feedback, the saddle-node bifurcation of the equilibria at
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wp = 1 changes from on cycle (SNIC) to off cycle. This affects
the system’s response to a slowly increasing wy and, therefore,
its excitability class [7]. At wy = 1 the SN vanishes and events
are produced. Now, the distance to the saddle-node bifurcation
is increased by an amount of 2rra /T after each event. For small
T and large a the system leaves the vicinity of the bifurcation
after the first event and produces events at a high rate even for
wy close to one. This leads to class II excitability for a strong
positive feedback and small t.

In the following, we study the dynamics fora < 1. We refer
to the regimes as excitable (A), oscillatory (B), and bistable (C,
D) according to their properties. When studying the system in
the presence of noise, we concentrate on the excitable and
the oscillatory regimes and study how the event-triggered
feedback affects the IEI statistics.

B. Finite noise strengths

In case of finite noise strengths (D # 0) the mean IEI, of
long sequences At; (N — 00), in the absence of feedback is
given by the mean first passage time (FPT) for the system
to reach ¢ = 2z for the first time, when it was started at
¢ = 0. For this problem, the mean FPT (At;) is given by a
well-known integral formula [37,38] and related to the mean
velocity v of a Brownian particle by (At;) = 2 /v. Due to the
periodicity of the sinus in Eq. (2), our system in the absence
of feedback is equivalent to overdamped Brownian motion in
a tilted periodic potential, for which the mean FPT [39,40] is
given by

Up(x) Up(y)
1 02” dx e b fxx_zﬂ dye
— = (Atio) = o

ro D(l — g*T)

19)

Here the index 0 marks the absence of feedback. The potential
Up(¢) is given by Up(¢p) = —wpp — cos(¢). For this potential,
Eq. (19) can be written in terms of modified Bessel functions
[41]:

(20)

Here I,(y) denotes the nth modified Bessel function of the first
kind.

In order to account for the feedback, we use the approxi-
mation of slow varying Aw (see above), which holds in the
case of (At;) « t. For such 7, we can describe the effect of
feedback by substituting wy — @y + (Aw) [compare Eq. (8)]
in Eq. (19). Applying this approximation to Uy(¢) leads to the
extended potential U(¢p) = —(wo + (Aw))¢p — cos(¢p).

Since (Aw) depends on (At;), Eq. (19) becomes self-
consistent:

2 Ux) -U®)
Lo o = o dre’ IXXZZN dyAe -
r D{l — exp [_%(w))]}

2
27T2|I(i w0+[()A<u))(%)|

- D sinh (—”w°+g(A‘“>) '

(Af) €T (21)
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However, for our purpose it is more advantageous to rewrite
the integral in Eq. (21) as the series

1 Ly—2m(—5)

X (A KL T
1k — m)! D2(k—2m)* ’ ! ’

0m.(k m)!'1 4+ (wo-'r(Ac’:))z

(22)

which can be done after performing some tedious calculations,
for wy + (Aw) # 0.

Assuming a weak feedback (Aw)/wy < 1, we can use a
Taylor expansion and arrive at the implicit equation

1 2ma 4%a
- = (Af) = (Atig) — — + ———B(D,w),
r wo a)o(Ati>
(23)
(Aw) € wy, (A) LT,
for the mean FPT (Af;) in the presence of feedback.
Here B(D,w,) represents the series
00 1 k k 1
B(D,wy) = — S
(D.0) ; (20) mg mi(k —m)!
Tie—om|(— % 2(k — 2m)?
k—2ml (=) ( n) 24)

2 wZ *
L D2k =2m? 4 4 (k — 2m)?
If B(D,wy) converges, Eq. (23) has the only positive solution,

2ma 412q
(At;) = (Ati) — — + ————B(D,wo),
wo  wy(Atio)
(25)

(Aw) K wy, (Af) K.

This series is our final result for the mean FPT for large 7
and weak feedback. Its evaluation compared to simulations is
illustrated in Fig. 5. More details on its evaluation are given in
Appendix B 1.

C. Strong noise approximation

In case of strong noise (D > 1), the first summand (k = 0)
dominates the series [Eq. (24)] and (At;) can be approximated
by [41]

1 2
— =(Atjo)® —, D>1, (26)
wo

o

in the nonfeedback case.
Since the function B(D,w) is of order 0(%) a similar
approximation for Eq. (25) leads to

2ma
(AL) =~ (Atig) — —,
wo
27
D> 1,

(Aw) K wg, (A) LT,

and, in combination with Eq. (26), to

1 2n(1 —a)
- = (A = T2
r wo

(28)

D> 1, (Aw)Kwy, (AL)<KLT.
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Note that this does not depend on the noise strength, as already
observed by Stratonovich in the absence of feedback [41].

D. Weak noise approximation

In the excitable regime (wp < 1), the mean IEI in the weak
noise limit can be obtained from the Kramers rate theory [43].
In the absence of feedback, the Kramers rate of generating an
event

2
1 — w; atg
rg=-——e¢€ D,

2w
Here AUy = Up max — Uo min denotes the height of the poten-
tial barrier. Up min = —V'1 — a)(z) — wp arcsin(wp) and Up max =
—mwwy+ V1 — a)(z) + wp arcsin(wp) are the values of the po-
tential at the saddle and at the SN in the absence of feedback,
respectively.

If t is large compared to the mean IEI, we can account for
the feedback by substituting wy — wp + (Aw) in Eq. (29). In
the next step, we assume a weak feedback (Aw/wy < 1) and
perform a Taylor expansion. The first order approximation for
the potential barrier reads

AU = AUy — 4mar arccos(wy),

wo<1, Dg1. (29

(30)
wp <1, DK, (Aw) <KLwy, (Af)<KLT.
0.3 .
a=0.3 =
a=0 =
a=-03 e 220.3

0.2}

01¢

series =— |
strong noise ..«
deterministic >
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1.5 . . i .
strong noise ==s= ',:'":
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Poisson g # a=0 = ',","lo
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Here AU denotes the barrier of the potential U mentioned
above. Consequently, the barrier height becomes rate de-
pendent and reduces for positive feedback and increases for
negative feedback.

Finally, in the presence of feedback the Kramers rate
[Eq. (29)] reads

[O) 2
r=ro3l —2marywy T Bl arccos|wg] ) ¢ ,

l-—w; D

wo <1, D1, (Aw) < wy, (AL)<T. 31)

In the oscillatory regime we find, using the approach of
Ref. [44], that the first nonzero correction to the deterministic
mean IEI [Eq. (17)] is of order D2

E. Results obtained from simulations

Figure 5 (top) shows the analytical results in the weak
noise limit [Eq. (17)], for a strong noise [Eq. (27)], as
well as the series approximation [Eq. (25)] in the excitable
(left) and in the oscillatory (right) regime, respectively.
A double logarithmic plot of the weak noise regime in
the excitable regime is shown in Appendix B. Analytical
results are compared to stochastic simulations of the model
[Egs. (2) and (4)]. In the excitable regime, the approximations

0.3 a=0.3 =
a=0 - a=0.3 L
a=-03 e
0.2
S~ »
0.1}
% [ X J strongsneor:gz _ |
deterministic >
(())001 0.01 0.1 1 1.0
&
A
1 ,'::""
S A&
b “ a=0.3 »
0.5 a=0 =
a=-03 e
strong noise ===
0' 1 -.,l. . weag noife —_
0.001 0.01 0.1 D 1 10

FIG. 5. (Color online) Firing rate r (top) and CV (bottom) in the excitable regime for wy = 0.9 (left) and the oscillatory regime for wy = 1.1
(right), both with T = 100. Insets show the IEI density (top left) and the power spectra (bottom) for particular noise strengths. Colors denote the
particular amount of feedback. Points represent data obtained from simulations. Firing rates: (Top) Bold lines represent the series approximation
Eq. (25), dashed lines show the strong noise approximation Eq. (27) (see details in Appendix B 1 for both approximations), and the triangles

mark the deterministic firing rates r = 1/At§3

obtained from Eq. (17). Firing rates for D < 0.02 were calculated using the rare-event method

presented in Ref. [42] and are shown in the double logarithmic plot Fig. 11 (in Appendix B 1) together with the weak noise approximation
Eq. (31). CV: (Bottom) Dashed lines indicate the strong noise approximation [Eq. (37)] and bold lines (right bottom) the weak noise
approximation [Eq. (40)] (see Appendix B 2 for details). In the excitable regime the weak noise limit is given by the Poisson process. Power
spectra (bottom, insets) and IEI density (top left, inset) are obtained from simulations.
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agree well with the simulations. Here the strong noise approx-
imation is close to the simulation results for D > 1, whereas
the deterministic firing rate approximates well the behavior
for D < 0.02. Here, an even better approximation is given by
the correction to the Kramers rate Eq. (31) (compare Fig. 11,
Appendix B). The series approximation can be used for all D;
however, strong positive feedback a = 0.3 produces deviations
from the theoretical result and small values of D require
large computation times. In the oscillatory regime we find
a similar agreement, except that the series does not fit the
simulations for strong positive feedback in the range of low
and intermediate noise strengths. Here, the assumption of weak
feedback ({Aw) < wp) does not hold anymore. Note that since
(Aw) depends on the mean IEI, the series approximation leads
to better results for low firing rates, i.e., in the excitable regime
or for a negative feedback. In general, an increasing noise
strength decreases the mean IEI, down to a constant value
given by Eq. (28).

IV. EFFECT OF FEEDBACK ON OUTPUT VARIABILITY

In order to study the variability in a series of IEIs two
different measures can be used. The first one is the coefficient
of variation (CV),

c, - ((Af; — (Ati»z)’ 32)
(Af;)

in which the standard deviation of the At; is compared to
its mean. Therefore, C, = 0 corresponds to the most regular
sequence and, consequently, to the most coherent one, whereas
C, =1 is obtained for a completely random spike train,
in which all spikes are independent of each other (Poisson
process).

As a second measure of spike train regularity, one can study
the power spectrum [45],

oo
S(f) = / dt’ (x(t)x(t + 1) e*™ /", (33)
—0o0
which measures the spectral components of x(¢). In the power
spectrum, a narrow peak (possibly accompanied by more peaks
athigher harmonics) indicates more coherent sequences of At;.
In order to calculate the CV of At;, its mean and its standard
deviation v/ ((At; — (At;))?) are needed. We first calculate the
variance var(At;) of At;. In the absence of feedback, Aw will
approach zero and we can apply the formula from Ref. [40],
which was derived for the variance of the FPT density in the
case of Brownian motion in a tilted periodic potential,

2 Upv))

2
3/ dvye D
D2[1 —exp (—Z2)]" Jo

D

Vi —Up(vp) 2 puit2r Up()
X dv,e D dye . (34
v —2m vy

Here Uy (x) is the potential used in the previous section. Apply-
ing several simple but tedious steps, similar to those used in the
prior section, we end up with a series representation, which,
after substituting wy — wo + (Aw) and a Taylor expansion
with respect to the strength of the feedback ({Aw)/wy), yields

var(At;) =
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the first order correction to the variance,

2ma
(At; o)

[ 3 + 207 C(D )] } (35)
X |—4+ —— , ) ,
wo var(Ati,o)wg 0

var(Af;) ~ var(At; ) {1 +

(Aw) €K wy, (Af) KL T.

Here var(At; o) denotes the variance in the absence of feedback
(a = 0) and C(D,wy) is a infinite series.

Strong noise approximation. Fortunately, C(D,wy) van-
ishes in the strong noise limit D — oo. Therefore, we can
derive the analytical approximation for the variance,

2ra 3
At) &~ Aty 1-— — 1,
var(Qi) ~ var ”( mme

(36)
D>1, (Aw)<Lwy, (Af) KT,

for the strong noise regime. In this regime, the variance
decreases for positive and increases for negative feedback.

Using Egs. (36) and (27), we obtain the first order correction
to the CV,

C, ~ Cpo1- -T2
vl wo(AL) )’

D> 1, (Aw)<<Kwy, (Af)<KLT.

for the strong noise and weak feedback. Here C, o denotes
the CV for a = 0. Therefore, positive feedback decreases the
CV, whereas negative feedback leads to higher variability
in the strong noise regime. Comparing the strong noise
approximation [Eq. (37)] to simulation [Fig. 5 (bottom)], we
find that it fits the numerical results well for D > 1.

Weak noise approximation. In the weak noise limit, we
distinguish between the excitable regime, where the IEI
statistics is Poisson-like (C, ~ 1), and the oscillatory regime,
where the results of Ref. [44] can be applied. In the latter case,
i.e., for wy > 1 and in the absence of feedback, the first order
approximation for the variance reads

(37)

2w D
var(At; o) ~ 2 dp——
(A0) A ¢ o —simigy’
1+ 202
~ 2 +—wg w>1, DK1. (38)
2 /2
(@5 —1)

Using this in the CV and the weak noise approximation for the
mean IEI yields

wo>1, DK1. (39

Using the substitution wy — wy + (Aw), we can account for
the feedback in case of a slow feedback time scale (At;) < T.
By assuming a weak feedback (Aw) < wy, we obtain the C,
up to first order in D:

Co~C |:1 Ta a)(z)(7+2w(2)) :|
v ™~ L0 - )
' (

Atio) (0 — 1)(1 + 20})
(40)
wy>1, D<K,

(Aw) K wp, (Af) KL T.
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Consequently, the CV decreases for positive feedback and
increases for negative feedback and hence, qualitatively, the
effect of the feedback in the oscillatory regime is similar at
weak and strong noise [cf. Eq. (37)].

Figure 5 (left bottom) shows the Poisson limit C, = 1.
However, for slightly larger D the CV varies strongly with the
feedback strength. This variation is due to the dynamics of
Aw (see below) and cannot be described by our approach
for a slow feedback time scale. In the oscillatory regime
[Fig. 5 (right bottom)] the weak noise approximation [Eq. (40)]
fits the data well for negative feedback and D < 0.005. For
the positive feedback a = 0.3, however, the weak-feedback
approximation seems to break down and, as a consequence of
this, Eq. (40) produces slightly negative CVs. However, we find
that for a weaker feedback with a = 0.15 the approximation
fits the numerical results well (data not shown).

A. Excitable regime

In excitable systems increasing the noise strength does not
necessarily result in higher spike train variability. Instead,
there exists a minimum variability at a finite noise level.
This phenomenon is known as coherence resonance (CR) and
becomes apparent by a local minimum in the CV or by a
pronounced peak in the power spectrum attained at an optimal
value of the noise intensity. CR can occur in excitable systems
due to an interplay of at least two different time scales [46,47]
and has been observed in the noisy Adler’s equation without
feedback [3,48] and experimentally in laser systems [49,50],
an electric circuit [51], a chemical reaction system [52], and
electrochemical systems [53,54].

Figure 5 shows the CV (left, bottom) and the power
spectrum (left bottom, inset) in the excitable regime for a
slow feedback time scale t = 100. Here CR can be observed
for intermediate noise strengths, where the C, possesses a
local minimum, already in the absence of feedback (a = 0).
In the presence of negative feedback (a < 0), the C, slightly
increases in those regions but reduces for lower noise strengths.
Consequently, it increases the region of low C, towards lower
noise strengths. Positive a, however, affects C, in the opposite
direction. Such feedback improves CR for intermediate noise
levels. Note that the CV in our model in the excitable regime
is always above 1/+/3 ~ 0.577. This is similar to a quadratic
IF model with noise (but without feedback) and is in marked
contrast to the range of CV observed in a stochastic leaky IF
model [55]; for differences in signal transmission properties
of these models, see [56].

Interestingly, it also leads to an local maximum of the C,, at
alow noise level (D ~ 0.02—0.03). Such a maximum indicates
anticoherence resonance (ACR) [57] or incoherence reso-
nance [3] and has been observed in models as a consequence
of either damped subthreshold oscillations [57] or due to a
finite refractory period [47]; for an experimental verification,
in a laser system, see [58].

For large noise strength the behavior of the C, can be
directly understood from the analytical result Eq. (37) and
is a consequence of the increased or decreased distance to the
point (wp + (Aw) = 1) [47], where the system can pass the
maximum of the ¢ nullcline.

PHYSICAL REVIEW E 89, 032138 (2014)

Aw =25 A
A higher probability o

—
for fast escapes
— N\

lower probability

for fast escapes
T g

’ ¢

FIG. 6. (Color online) Sketch of the dynamics close to the SN
for large 7 and small t (inset). Black lines represent nullclines, black
dots the stable nodes, and white dots the unstable nodes, bold colored
lines the deterministic trajectories, and dashed arrows the escapes

from the stable branch. Thin blue arrows in the background depict
the velocity field (¢, Aw). Parameters: wy = 0.8, a = 0.5,0,—0.5.

. —

™

The behavior in the weak noise regime, however, results
from the dynamics of Aw, which is illustrated in Fig. 6 and
leads, in contrast, to the oscillatory regime, to a qualitatively
different behavior of the CV in the strong and in the weak
noise regime, respectively. For positive feedback, trajectory
enters new cycles with positive Aw. Since the Aw dynamics
is usually slower than the ¢ dynamics, the system reaches the
¢ nullcline above the SN and then relaxes slowly toward the
stable fixed point. During the relaxation, however, the system
can escape the SN’s basin of attraction much easier than for
Aw = 0, because the distance to the unstable branch and the
potential barrier are smaller. This leads to higher probability
for small IEIs and a long tail in the FPT density [see Fig. 5
(top left, inset)], the latter resulting from the Poisson-like
statistics for leaving the SN. Since the FPT density shows
more probability at times much smaller than the mean IEI, the
CV increases [57].

If negative feedback is applied, the trajectories enter new
cycles with negative Aw [see Fig. 6]. Once they reach the stable
branch the probability for escapes is very low and increases
when Aw relaxes to zero. This reduces the FPT density [Fig. 5
(top left, inset)] for times At < 7 and, consequently, reduces
the CV.

Whether the feedback, finally, enhances or diminishes the
CR effect depends on the interplay of both the CV modulation
in the strong noise regime due to the altered distance to
the point wy + (Aw) = 1, described by Eq. (37), and the
modulation in the weak noise regime, which is dominated
by the dynamics of Aw, illustrated in Fig. 6. Figure 7 shows
the CV for different values of t. Note that a change in the
feedback time scale T has two effects. On the one hand, it
affects the increase of Aw when an event occurs (2ra/7) and,
on the other hand, it directly alters the time scale separation
between the ¢ and the Aw dynamics. Typical trajectories for a
small 7 are depicted in the inset in Fig. 6. Small t enhance the
modulation of the CV due to the dynamics of Aw mentioned
above, leading to higher CV in the weak noise (ACR) regime
for a > 0 and to lower CV for a < 0. For negative feedback,
the region of low C, is shifted to higher noise strength when
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FIG. 7. (Color online) Coefficient of variation C, plotted over
the noise strength D for different values of 7 obtained from
simulations, for positive a = 0.3 (top), negative a = —0.3 (bottom),
and without feedback a = 0 (black). Black arrows indicate the
qualitative behavior for an increasing 7.

T decreases. This occurs due to the larger distance to the point
wo + {(Aw) = 1 and has been observed in Ref. [47], too.
Analyzing the power spectra, we find very different quali-
tative behavior in the regions of ACR and CR, respectively.
For intermediate noise strength (D = 0.2) CR occurs [see
Fig. 5 (left bottom)] and the spectrum possesses a well pro-
nounced peak. For low frequencies S(f — 0), all simulated
feedback strengths show quite similar low power. The limit
of high frequencies, however, is given by the firing rate
S(f — o00) = r and, therefore, power increases for positive
feedback. In the region of ACR (D = 0.02-0.03), the spectrum
shows even more interesting behavior. Here, positive feedback
leads to more power at low frequencies and increases the power
in the peak. In between the spectrum possesses a minimum.
Consequently, the system operates in two different frequency
regimes, possessing bursting behavior. Such behavior leads to
clusters of small IEIs followed by clusters of large ones.

B. Oscillatory regime

Figure 5 (right bottom) shows the CV and the power
spectrum (inset) in the oscillatory regime. In this regime,
the irregularity of spiking increases monotonically with the
noise intensity. Interestingly, positive feedback highly reduces
spike train variability for low and intermediate D. Studying
the power spectrum, we find that the power at low frequen-
cies is reduced, whereas the peak at f ~ r becomes more
pronounced, if positive feedback is applied.

V. FEEDBACK-INDUCED CORRELATIONS

The dynamics of Aw also causes correlations of subsequent
IEIs. A measure to quantify correlations of IEIs of lag n is the
serial correlation coefficient (SCC) [59]

At; — (A)) (At — (AL
/On=<( li = (AL)(Align — ( t))). @n
var(At;)
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FIG. 8. (Color online) SCC over several lags (top left) for D =
0.04, the sum of the first N = 100 SCCs plotted over noise strength
(top right) in the excitable regime (wy = 0.9) (top) and SCC over
several lags in the oscillatory regime (wy = 1.1) (bottom). Excitable
regime (top): All results are obtained from simulation. Oscillatory
regime (bottom): Numerical results (sim.) are shown together with
the analytical approximation [Eq. (43)]. Parameter: T = 100.

If correlations are positive (p, > 0),longer At; are, on average,
followed by longer At; 1, (and/or shorter Az; by shorter At;.,,).
Negative correlations between adjacent intervals (p; < 0)
could be caused by an alternation between short and long
intervals. The low-frequency limit of the power spectrum is
also connected to the SCCs. It holds [59]

}I_IH) S(f) =rC? (1 —i-ZZpk). (42)

k=1

Consequently, cumulative IEI correlations can be also studied
using the power spectrum.

A. Numerical results in the excitable regime

In the excitable regime, the dynamics of Aw not only
leads to ACR in the weak noise regime, but also causes
serial correlations. The SCC of several lags is depicted in
Fig. 8 (top left). It shows strong, slowly decaying positive
and strong, fast-decaying negative correlations for a noise
strength of D = 0.04, close to the value at which the ACR
is observed for positive feedback [compare Fig. 5 (left
bottom)]. This can be understood by studying the trajectories
depicted in Fig. 6. If positive feedback (a > 0) is applied,
fast escapes from the SN, on average, will lead to higher
Aw at ¢ = 27w (compare Fig. 6). Consequently, Aw will be
higher in subsequent IEIs, which increases the probability for
fast escapes (small At;), and, therefore, causes positive IEI
correlations. However, for negative feedback, the opposite
behavior occurs. Here a fast escape (short A¢;) leads, on
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average, to lower Aw for subsequent cycles and, therefore,
further reduces the probability for short At;,,, which leads to
negative IEI correlations.

Analyzing the sum of the first N SCCs [Fig. 8 (top right)],
we find that correlations possess a maximum in the regime of
ACR. This can be understood as follows: If D is small, the
mean [EI is larger than the feedback time scale t; therefore,
perturbations of Aw are already relaxed when the system can
escape the SN, leading to less correlated IEIs. However, if
D is large, noise dominates the dynamics and leads to less
correlations in the sequence, too. Close to the local maximum
of the C,, however, we find strong positive (for a > 0) and
strong negative (for a < 0) serial correlations. Combining
these findings with Eq. (42) and using that C, is of order
1, we find that the increase in the power at low frequencies
[see Fig. 5 (left bottom, inset)] reflects these correlations.

B. Approximation for a slow feedback time scale
in the oscillatory regime

If the system evolves on a LC, the SCC in the weak noise
limit can be expressed by a product of the form

on=0VY o, n=1, w>1, DKl (43)

This result was derived for the perfect IF neuron [16] and
for a general IF neuron [30], both subjected to an adaptation
current (negative feedback), respectively. It can be generalized
to positive feedback as long as a LC exists.

The first correlation coefficient p; is given by

1—n?V
=—n1-V)——. 44
==V sy (44)
Here 7 is determined by the deterministic IEI Aty [Eq. (17)],
Alge
N = exp (——d) : (45)
T
and the term V reads
Awy, + 24
v=l-——T 7 @, (46)

T

where O is accessible by the phase response curve (PRC) Z(z)
(30]

Atdel .
0= —/ dt Z(t)e . @7
0

These formulas have been developed for a perfect [16]
or general multidimensional IF models [30] with a spike-
triggered linear dynamics for a negative feedback. We have
verified that the approach of Ref. [30] also applies to the case
of positive feedback as long as a steady state exists, i.e., for
a < 1.

For our system, the PRC can be approximated for a slow
feedback time scale (Atfger < 7) (see Appendix C). In this
limit, ® reads

O=—(l—e ™) ———
(wo + Awye)
y 147 4+ t2(wo + (Aw))?
1+ 2[(wo + (Aw))? — 1]
Atger K T.

, (48)
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FIG. 9. (Color online) Influence of the distance to the bifurcation
on the SCC at lag 1 for a < 0 (left) and a > O (right). The theory
Eq. (43) (lines) is compared to simulations for a very low noise
level D = 0.001 (points). Close to the bifurcation (w = 1.01), p;
behaves nonmonotonically, possessing a local minimum for negative
feedback and a local maximum for positive feedback, respectively.
If the distance to the bifurcation is increased (w = 1.05, w = 1.3),
the local minimum moves to stronger negative feedback. For positive
feedback, however, the local maximum vanishes in a large distance
to the bifurcation. Consider the difference of the total range of a and
p1 in the two panels. Parameters: T = 100.

Here, © is always negative and n is close, but smaller than
one. Consequently, V is larger than one for a > 0 and smaller
than one for a < 0. This causes p; to have the same sign as a
[compare Eq. (44) for n < 1].

C. Comparison of theory and numerical results
in the oscillatory regime

1. Distance to the bifurcation

Figure 9 shows the analytical results Eq. (44) for p
compared to those obtained from simulations for different dis-
tances to the saddle-node bifurcation at wy = 1. Interestingly,
maximal positive correlations (for @ > 0) become stronger,
whereas maximal negative correlations (for a < 0) become
weaker by approaching the bifurcation. Note that close to the
bifurcation or for strong negative feedback, At4¢ becomes
comparable to t [see Fig. (3)] and the assumption of a slow
feedback time scale (Atgey < T) does not hold anymore. For
this reason the approximation fails quantitatively for large
negative values of a.

2. Nonmonotonic behavior

Another interesting observation can be made in Fig. 9:
Stronger feedback does not necessarily increase p;. Instead,
the SCC at lag 1 possesses a minimum for negative feedback
and a maximum when positive feedback is applied. The
maximum for positive feedback, however, vanishes if the
distance to the bifurcation is increased.

In order to understand how stronger feedback can lead to
smaller py, it is helpful to consider the particular trajectories,
shown in Fig. 2 (center). Suppose that the system evolves on
the LC and highly negative feedback is applied. In that case,
its trajectory looks like the lower one in Fig. 2 (center). Such
trajectories spend the main part of the IEI close to the stable
branch of the ¢ nullcline. The system slowly evolves along
the ¢ nullcline until wy + Aw > 1. Close to the bifurcation
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FIG. 10. (Color online) Influence of T on the SCC at lag 1 in the
weak noise limit for a < 0 (left) and a > 0 (right) obtained from
Eq. (43) using Eq. (C5) for ® (PRC) and from simulations (sim)
using D = 0.001. Close to the bifurcation (top), decreasing t shifts
the maximum of p; to higher a. Due to the reduced feedback time
scale, subsequent IEIs become more uncorrelated if weak feedback is
applied. However, for @ — 1 the mean IEI runs to zero and becomes
comparable to 7, even with small 7. For negative feedback, small ©
highly reduce p;.

(wo 2, 0), however, this requires Aw to approach small values.
Consequently, information on perturbations, for instance, due
to prior longer (or shorter) IEIs is reduced, which decreases p;
for strong negative feedback. In the case of positive or weak
negative feedback this effect acts in the opposing direction,
since Aw does not have to increase to pass the maximum of the
¢ nullcline. Here slightly higher Aw(#;) lead to disproportional
shorter IEIs At;, whereas initially slightly lower Aw(¢;)
lead to much longer Af;y;, if the system is close to the
bifurcation point. Consequently, strong positive correlation
between subsequent lags occurs. However, for highly positive
feedback, the LC is far from the ¢ nullcline (see Fig. 2, center).
Here these nonlinear effects disappear and p; decreases again.

3. Influence of the feedback time scale

In Fig. 10, we show p; as a function of the feedback
strength for different v. Here, interestingly, smaller t may
lead to stronger correlations for a > 0, whereas p; decreases
for a < 0. This occurs due to the increased distance to the ¢
nullcline, which leads to smaller IEIs for positive feedback.
Since the mean IEI runs to zero for a — 1, these correlations
are present for strong positive feedback, even for very small
7. However, negative feedback leads to larger IEIs, so that
perturbations of Aw cannot survive.

VI. SUMMARY AND DISCUSSION

We have studied the effect of event-triggered feedback on
the dynamics and output statistics of a noise-driven phase
oscillator.
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Analytical results for the mean IEIs were derived, which
show besides the emergence of a bistable regime, that positive
feedback leads to a change the bifurcation structure of the
system and the excitability class. Investigating the influence
of the feedback on the output statistics in the excitable regime,
we observed that whereas CR can be observed even without
any feedback, only positive feedback leads to ACR at low
noise strengths.

For both kinds of feedback, we found serial correlations in
the sequence of IEIs, which can be approximated analytically
in the oscillatory regime for a weak noise and a large time
scale separation between the phase and the feedback dynamics,
which can be found in cases of spike-triggered feedback due
to slow inhibitory currents or slow decaying variations in
external ion concentrations in neural systems. Close to the
bifurcation from the excitable to the oscillatory regime, we find
a nonmonotonic behavior of the correlation between adjacent
IEIs and the feedback strength, which indicates that maximal
correlations occur at an optimal feedback strength.

Our general approach can be used to understand the
role of individual slow processes on the IEI statistics in
neurons, excitable lasers, or other pulse-generating systems
that operate close to a SNIC bifurcation (class I excitability)
or to identify the source of serial correlations in the IEI
sequence. Our results illustrate that event-triggered feedback
can be used to reduce (or increase) the output variability. This
is particularly interesting in information processing systems,
in which this variability is the limiting factor for a reliable
signal transmission.
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APPENDIX A: SIMULATION TECHNIQUES

All simulations were performed, using the Euler method
for the numerical integration of the system Egs. (2) and (4).
The integration time step was chosen to be 10~* for D < 1 and
1079 for larger D. After an equilibration time of 1007, IEIs
were recorded up to an ensemble of 10° IEIs. From this series
of At;, the mean firing rate, the CV, the power spectrum, and
the SCC were calculated.

In the excitable regime, the firing rate becomes very
low, especially for low noise levels. For such weak noise
(D < 0.02), we used the rare-event method presented in
Ref. [42]. Here the parameters, named according to the
notation in the reference, read as follows: borders of the
simulated area, Ly = —m/2, Ly, = —2m, L, = —wo, Lt =
1.5; walkers per box, N = 2; size of a time step, h = 0.1;
box size in ¢ direction, A¢pox = 0.14/2Dh; box size in Aw
direction, Awpox = 1/(27). Simulations were performed for a
time Ty, = 20000. After entering the stationary regime, the
probability current through the absorbing boundary at ¢ = 27
was recorded and, finally, averaged to get the mean firing rate.
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FIG. 11. (Color online) The firing rate in the excitable regime
obtained from simulations (points) for a weak noise compared to the
analytic approximation [Eq. (31)] (lines). Note the double logarithmic
scale. Simulations for D < 0.01 were performed using the rare-event
method presented in Ref. [42]. Parameters: wy = 0.9, 7 = 100.

APPENDIX B: DETAILS OF FIG. 5

1. Firing rates

The series approximation was calculated by using Eq. (25).
For B(D,wg) theterms (k = 1,2, ...,500) were evaluated with
high numerical precision. (At; o) was obtained from Eq. (20).
For large D fewer terms are needed to approximate the firing
rate well. However, for D ~ 0.01 a few hundred terms are
needed and must be calculated with high precision. For even
smaller values of D the computation time becomes too large.
Therefore, the series approximation in Fig. 5 (top) is shown
for D > 0.01.

The strong noise approximation is given by Eq. (27). Here
(At; o) was obtained from Eq. (20), too.

The weak noise approximation [Eq. (31)] was evaluated
using Eq. (29) for ry and is illustrated in Fig. 11 together with
results from simulations.

2. Coefficient of variation

The strong noise approximation was calculated from
Eq. (37), where Eqgs. (20), (34), and (32) were used for (At o)
and C, o.

The weak noise approximation in the oscillatory regime was
obtained from Eq. (40), where Egs. (20) and (39) were used
for (At,‘,0> and Cv,o.
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APPENDIX C: CALCULATION OF © USING
THE PHASE RESPONSE CURVE

We can calculate ®, using Eq. (47), i.e., by calculating the
PRC. In our case the PRC is given by [30]

Alger
Z(t) = Zey(Atger) €Xp {—/ dl/COS[Qﬁzc(t/)]}- (CI)

Here Z.,(Atger) = 1/(wo + Awy.) is the inverse ¢ velocity
when an event occurs, if the system evolves on the deter-
ministic LC and ¢,.(¢) is the corresponding ¢ solution.

In order to calculate the PRC, we first solve Eq. (C1) for
the nonfeedback case and account for feedback by substituting
wy = wy + (Aw) afterwards. In the nonfeedback case, ¢;.(¢)
can be obtained by integrating Eq. (1), considering ¢;.(0) = 0
and the smoothness of ¢;.(¢) in the interval ¢ € [0, Atge]. This
yields

(,blc(t)

1 1 Qo
w 2arctan [ — {1 — Qqtan |arctan [ — | — —¢ .
w( Q() 2

(C2)

Here Qy:=,/w§ — 1 and = denotes equality modulo 27.
Putting ¢;.(¢) into Eq. (C1), the PRC in the nonfeedback case
can be calculated. After some tedious steps, we get
1 + Qg sin(2pt) — cos(2p?)
R

Z(t) = Zev(Atdet) |:1 +

(C3)

The result for ® can be obtained from Eq. (47). This
yields

l+7+ 1%
Zey(Atge)) T ——————5—~.
) ev( del) 1 + Tz(w(z) — l)

Finally, we account for the feedback by substituting wg —
wp + (Aw), which yields

ZAldet

@:—(l—e g

(C4)

—Atgey T 147+ 2wy + (Aw))?

e = —(1 —e T ) ,
(wo + Awye) 1+ T2 [(wo + (Aw))? — 1]

T3> Alge. (C5)

Expanding this for large T >> 1, the zeroth order term reads
. Atge(wo + (Aw))
(@0 + (Aw))* — 1

9 T >> Atdet- (C6)
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