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Spike-count distribution in a neuronal population under weak common stimulation
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We study the probability distribution of the number of synchronous action potentials (spike count) in a model
network consisting of a homogeneous neural population that is driven by a common time-dependent stimulus.
We derive two analytical approximations for the count statistics, which are based on linear response theory and
hold true for weak input correlations. Comparison to numerical simulations of populations of integrate-and-fire
neurons in different parameter regimes reveals that our theory correctly predicts how much a weak common
stimulus increases the probability of common firing and of common silence in the neural population.
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I. INTRODUCTION

Effects of noise in nonlinear dynamical systems are relevant
in various scientific disciplines [1-3]. They are often surprising
and challenging to analyze. Of special interest in many systems
is the influence of global fluctuations, so-called common
noise, that act on a whole group or network of nonlinear
elements. Common noise can arise in different situations, e.g.,
from global weather conditions for populations dynamics in
the case of the celebrated Moran effect [4], by temperature
fluctuations [5] or by coupling [6] in the case of chemical
reactions in spatially separated compartments such as cells, or
by spatially extended sensory signals in neural systems [7].

Theoretical studies have revealed that even in the simple
case of uncoupled elements, common noise can lead to
nontrivial effects such as strong synchronization of nonlinear
oscillators [8—12] or temporal oscillations [13,14]. If sta-
tistically identical elements are subject to a common noisy
stimulus, such a scenario can be also interpreted differently:
the time series of the elements can be regarded as a collection
of response trials to one and the same frozen input signal. In
this spirit, common noise has been used to test the response
consistency of nonlinear systems such as lasers [15] or nerve
cells [16].

We illustrate this simple setup in Fig. 1 for the case of a
neural population, i.e., a group of uncoupled elements, each
of which obeys highly nonlinear (spike-generating) dynamics.
All neurons are subject to acommon stimulus and in addition to
individual independent noise. To calculate statistical measures
for this common-noise problem has particular importance for
at least three reasons.

First, the aforementioned response consistency is of special
interest in the neural context because one major role of sensory
neurons is to encode information about time-dependent sig-
nals. Hence, it is of great interest how reliable they can respond
to repeated presentations of the same stimulus in the face of
complex neural dynamics and intrinsic noise sources [16—18].
Second, common noise is shaping the spontaneous activity
of the neural networks of the brain: nerve cells are subject
to common stimuli due to shared input and cross-correlations
between neurons [19]. How these sources affect correlations
in recurrent networks is still debated [20]. Third, in the
neural periphery common stimuli emerge from complex
time-dependent sensory signal, which influences many (often
uncoupled) cells in the same way [21]. In this case, it has been
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explored how strongly such a common noise will be encoded
in the synchronous activity of the population [22,23].

The statistics of the activity of a neural population receiving
a common external signal has been in the focus of several stud-
ies. Expressions of the activity distribution have been derived
by Amari et al. [24] for simple dichotomized Gaussian (DG)
neurons in the limit of infinite large populations. Recently,
Leen et al. [25] showed that when matching the mean firing
rate and correlation between two neurons, the DG-model gives
a good estimation of the activity distribution of populations
of the more complicated exponential integrate-and-fire (EIF)
neuron model. These results still require computational fitting
of model parameters.

In this paper, we derive explicit results for the activity
distribution for the case of weak common noise, an assumption
that seems to be reasonable at least in some situations [26].
Our results may contribute to a more general theory of how
sensory information is encoded in the synchronous activity of
neural populations.

II. MODEL AND STATISTICS OF INTEREST

We aim at an explicit analytical expression of the spike
count distribution of a neural population, which is driven by
a common stimulus. Specifically, we consider a homogeneous
population of N leaky integrate-and-fire neurons, each of
which obeys the voltage dynamics (k € {1, ...,N}),

O = —vi + 1+ V2D{VT = cti(t) + ek}, (1)

where ( is the constant base current, &;, j € {0,...,N}, are
independent white noise processes with correlation function
(£;(OEy(t")) =68, 78(t — '), D is the total noise intensity,
and c € [0,1] is the correlation coefficient of the input
current (see Fig. 1 for a sketch of the model). Whenever
the voltage vy exceeds the threshold one, a spike is recorded
and vy is reset to zero. The corresponding spike trains are
X (1) = Zi 8(t — tx,;), where the # ; are the spike times of the
kth neuron. The average firing rate ry of each neuron is the
mean value of the spike train ro = (xx)g, -

By s(t) = v/2Dc&y(t) we denote the common stimulus
each neuron is receiving. The input correlation coefficient ¢
determines the fraction of the total noise each neuron receives,
which is common to the entire population. It determines how
large the common external stimulus is in comparison to the
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FIG. 1. Schematic representation of the model. A homogeneous
population of N neurons is subject to a common stimulus and
independent noise, leading to variable single neuron output spike
trains x;(¢).

independent intrinsic fluctuations. For ¢ = 0, i.e., when there is
no common stimulus, all neurons are completely independent.
For ¢ = 1, the independent fluctuations vanish such that every
neuron in the population receives exactly the same input and
thus behaves asymptotically (in the long-time limit) exactly
the same way.

The population activity A within a time interval I, := [t —
A,t] of width A refers to the fraction of active neurons, i.e.,
the total number of spikes of the population within this interval
divided by the population size [27]. Formally, the spike counts
can be expressed by integrals over the spike trains:

1 al ! ’ 7
A= N;[_Axk(z )dt'. )

If A is sufficiently small, the population activity can be
regarded as a proxy of synchronous behavior, as can be seen
in Fig. 2. If A(t) =0, then there is no spike within /,,
whereas A(t) = 1 corresponds to the case where all neurons
fire “simultaneously” within this time bin. Of course, even
in the absence of coupling and correlated input, neurons fire
together by chance and it is an interesting question how
this baseline “synchronization” is influenced by common
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FIG. 2. (Color online) Population activity. Spike trains of N =
10 LIF neurons receiving independent noise and a common stimulus
s(t) (low-pass filtered for illustration). The population activity is
the fraction of active neurons of a population within a time bin of
width A.
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noise. Here, we are not interested in the time-dependent
features of the population activity, but solely in its statistical
distribution py4.

Before we start with any analytical consideration, we show
in Fig. 3(a) simulation results for the distribution p, for a
moderately sized population (N = 30) and different values of
the input correlation c. With increasing correlation, the density
changes from a narrow unimodal to a bimodal distribution
(previously discussed for a similar setup in Ref. [24]). The
shift of probability toward the extremes can be regarded as
the synchronizing effect of the common noise, resulting in
common firing (A = 1) and common silence (A = 0).

To extract the synchrony that is solely induced by the
common noise, it is revealing to subtract from the activity
distribution the independent baseline activity [see Fig. 3(b)].
For our analytical calculations, we focus on the weak corre-
lation regime (¢ < 1), in which linear response theory can be
applied to approximate the distribution p4.

III. GENERAL THEORETICAL CONSIDERATIONS

In the following, we consider the width of the interval, A,
to be substantially smaller than the mean interspike interval,
1/rp, i.e., the probability for one neuron to spike more than
once in I, is negligible. Hence, the individual neuron either
spikes with probability R or it does not spike with probability
1 — R. For a fixed realization s of the common stimulus
every neuron in the population spikes within /5 with some
probability R[s] and all neurons are statistically independent
of each other. Here, R[s] = R[s(¢'),t’ < t] is a functional of
a single realization s up to time ¢ due to causality. Because
the spiking probability R[s] is the same for each neuron, the
number of active neurons in /5 obeys a binomial distribution
Bin(N, R[s]). To obtain the distribution of the population
activity A, this conditional probability has to be averaged over
all possible realizations of the stimulus:

_myN N meq (N=m)
P(A_N)-<(m)(R[s]) (1= RDY™) . @)

This equation has already been used for special neuron models
in Refs. [24,25]. The probability in Eq. (3) corresponds to the
total probability for each possible activity A = m /N, where
m € {0,1,...,N}. In order to get a probability density p4 for
A, such that

P(A) = pa(A)AA with AA=1/N, Eq. (3) must be
multiplied by 1/AA = N:

_ N A _ (1-A)1N
pA(A)—N<AN><[(R[S]) A=R[sD 1) 4

How to perform the average over all stimulus realizations
is a nontrivial problem because one must specify R[s]. We
approximate R[s] for a weak stimulus in Sec. IV. Alternatively,
one can incorporate the stochasticity of s into R directly: R can
be interpreted as a random variable with probability density
pr. If this density is known, we can express the probability
density Eq. (4) by

_ N g (1=A)N
”A(A)—N(sz)/o [RA(1 = R'1Y pe(R)R.  (5)
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FIG. 3. (Color online) Synchronizing effect of common noise. (a) Activity distribution for different values of the input correlation ¢
(from left to right: ¢ = 0.0,0.05,0.4,0.99,1.0). (b) Respective difference of the activity distribution to the stimulus-free distribution (¢ = 0).

Parameters: N = 30,u = 1.2, D = 0.2, A = 0.25.

This means, that one only needs to know the distribution of
the single neuron spiking probability within a time bin, /x,
conditioned on the common stimulus. Then, using Eq. (5), one
can analytically compute the distribution of the population
activity.

Itis instructive to consider the limiting cases for the distribu-
tion of the stimulus-conditioned firing rate, pg. In the absence
of correlation (¢ = 0), the firing rate is not modulated by a com-
mon stimulus, such that pr = (R — Ry), where Ry = roA is
the mean firing probability within /. For full correlation (¢ =
1), i.e., in the absence of independent noise, the probability to
spike is either one or zero, such that pr(R) = (1 — Ry)§(R) +
RpS(R — 1). The transition between these extremes of pg for
different input correlation is sketched in Fig. 4(a) with the
corresponding activity distributions in Fig. 4(b).
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An important connection between pg and p4 is

pr = lim py. (6)
N—oo

This relation is obtained from Eq. (5), using that the binomial

distribution converges to a normal distribution, which in turn

approaches a § function in the limit of infinite N:

: N A1 py(I—ANN _ .
N151<1>0N<AN>(R (1=RTN —s(A—R). ()

An intuitive way of deriving Eq. (6) is to think about how we
can measure pg. If we fix a stimulus realization and simulate
the response of a single neuron in » trials, we can perform an
average over the intrinsic noise. For a chosen time bin, 75, we
then obtain the firing probability R[s] by adding up the spikes

c=1
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FIG. 4. (Color online) Sketch of the qualitative change in the distributions of pg and p, for varying input correlation c. Probability density

of the stimulus-conditioned and windowed firing rate (a) and the corresponding population activity distributions (b). For comparison p4 of the
stimulus free case (¢ = 0) is shown in shaded gray. The latter sketch should be compared to the simulation results shown in Fig. 3(b).
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of all n trials within this interval and divide it by n. This value is
indeed nothing but the activity within /5 of a population of size
N = n driven by s. Hence, in order to numerically estimate
the distribution of R, one simply measures the distribution
(average over many realizations s) of the activity A for a very
large value of N.

In the following two sections we present approximations
for pr and p,4 for the case of a weak common stimulus.

IV. APPROXIMATING THE DISTRIBUTION OF
THE CONDITIONAL FIRING PROBABILITY

The probability that a single neuron spikes within [t — A 7],
given a fixed realization of the common stimulus s(¢') with
t' < t is given by

R[s] :/ r(thdt', (8
t—A

where r(t) = (xi(t))g, is the instantaneous firing rate of a
single neuron for a fixed stimulus s. In other words, R is
the windowed firing rate, which is time-dependent due to
the common stimulus. For a weak stimulus, the instantaneous
firing can be approximated by the linear response relation

r(t) =ro+ K *s5(t), 9)

where K(¢) is the linear response function and the average
firing rate for an LIF is given by [28]

w/V2D R !
ro = ﬁ/ e erfc(y)dy | . (10)
(u—1)/v3D

The asterisk in Eq. (9) stands for the convolution K xs =
ffooo s(t")K (t — t")dt'. Using Eq. (8) and Eq. (9) yields

R[s] = roA +/ K xs(t)dt' = Ry + /¢ §(). (11)
t—A

We recall that Ry = rpA denotes the firing probability of a
stimulus-free neuron (¢ = 0) within /4. The effective stimulus,
Je§ = fti A K *s(t')dt’, modulates the firing probability; in
the definition of § we extracted the explicit dependence on
the input correlation c¢. The integral operator ftt_  ®dt’ can be
written alternatively by a convolution with the boxcar function
B(t) =0(t + A) —0(1),

Jc§ =BxK *s. (12)

Because the convolution is a linear operation (for fixed 7, the
random variable § is a linear functional of the process s) and
the stimulus is a Gaussian process, the stochastic process § is
Gaussian as well. It is centered around zero, i.e., (§); = 0, and
its variance is given by the integral over its power spectrum,

<§2>s=/ |BK [P = ”(f) df

= 2DA2/OO sincX (A7 )| x (f)I*df, (13)

where a tilde stands for the Fourier transform and sinc(x) =
sin(x)/x. The power of each frequency component of the
common stimulus is given by S;, =2Dc and x = K is
the susceptibility of the firing rate of a neuron driven by
u + 2DE(t), which, for the LIF-neuron, can be expressed in
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terms of parabolic cylinder functions D, (z) [29]:

125

ro2rif  Damir-1(45) = ¢*Darip—1(J5)
VDQrif = 1) Darif(“7) = 2 Darip(45)
(14)

x(f) =

(equivalent expressions in terms of hypergeometric functions
can be found in Ref. [30]). The variance (§2), can be
therefore computed analytically and does not include any
fitting parameters. In conclusion, if one assumes a linear
response of the instantaneous firing rate, the probability

density distribution of R is given by

—(Ro — R)?

Pr(R) = 2060,

] = N(Ro,c(§%)y).
(15)

1
exp
27 c(§2), [

This normal distribution has to be regarded as a coarse
approximation for pg. It has one clear limitation: as a
probability, R is supposed to take values only on [0, 1], whereas
the density in Eq. (15) is formally distributed (and normalized)
on R. However, if § is small enough, the main support of pg
will be on [0,1].

In Fig. 5 we compare the linear response approximation
Eq. (15) with the numerically measured pr(R) for various
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FIG. 5. (Color online) Probability distribution of the stimulus-
conditioned firing rate. Simulation results are compared to the
linear response approach Eq. (15) in the suprathreshold regime with
= 1.2 (a) and in the subthreshold regime with u = 0.9 (b) for
different values of the input correlation ¢ (from left column to right:
¢ =0.001,0.1,0.2) for total noise intensity D = 0.01 (top row) and
D = 0.1 (bottom row), respectively. Remaining parameters: Ry =
¥ ()A =0.1.
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FIG. 6. (Color online) First three central moments of the
stimulus-conditioned rate vs. input correlation. Simulation results
(blue solid) compared to linear response approximation (red dashed).
Parameters: D = 0.01, u = 1.2.

parameter settings. For all plots, Ry = 0.1 and the bin width A
is adjusted such that ryA = Ry. For weak common noise (¢ =
0.01), the normal distribution Eq. (15) provides an adequate
description both in the suprathreshold regime, i.e., where the
mean current p is larger than the firing threshold, such that
the system is in the tonic firing regime [Fig. 5(a)], as well
as in the subthreshold regime, i.e., the mean current is
below threshold, such that noise is necessary to induce firing
[Fig. 5(b)]. For higher input correlations c, the distribution of
R differs from a Gaussian. In particular, the density becomes
significantly skewed. This is not surprising if we think of
the bimodal shape that the density approaches for strong
correlations, cf. our discussion of Fig. 4(a).

In Fig. 6 we compare the first three moments of the
density pg from numerical simulations to the linear response
prediction pr. While the mean value remains Ry [Fig. 6(a)],
the variance first increases in a linear fashion with the
input correlation ¢ but shows a stronger growth for larger ¢
[Fig. 6(b)]. The skewness of the density increases [Fig. 6(c)]
in a nonlinear fashion.

V. APPROXIMATIONS OF THE ACTIVITY DISTRIBUTION

Combining the general result for the activity distribution
with the linear response result from the previous section yields
an integral expression for p,4. In the following we also derive
a simpler Gaussian approximation of this distribution, which
is based on a central-limit argument. Both expressions are
then compared to results of numerical simulations in different
dynamical regimes of the LIF model.

A. Integral (linear response) approximation

By inserting approximation Eq. (15) into Eq. (5) we obtain
an integral expression of the activity distribution, which should
be valid for weak input correlation (¢ < 1):

N _ N : A (1—A)IN 2
PA(A)—N<AN>fO [R°(1 - R) 1" pr(R)dR.  (16)

Because in the asymptotic limit (N — 00), p4 becomes
equal to pg [cf. Eq. (6)], the linear response approximation
implies that p4 approaches a normal distribution for large
N. Hence, for large N the discrepancy between p, and the
true distribution is the same as the discrepancy between pg
and pg.
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Our result, Eq. (16), still requires the numerical evaluation
of an integral. Next we derive a Gaussian approximation for
the activity distribution.

B. Gaussian approximation

The population activity Eq. (2) is a sum of stochastic
processes,

1 N
A= — by, 17
N;k (17)

where by(t) := fzth xi(t"dt' can be considered as a “box
train,” which equals one, if the kth neuron spiked within
[t — A,t] and is zero otherwise. For fixed 7, A(¢) is a sum
of random variables, having similar distributions, which are
only weakly correlated due to the common stimulus. Having
the central limit theorem in mind, it is plausible to approximate

A by a Gaussian process for large N. The mean value of A

(average over all noise sources &, k € {0,1, ... N}) is given
by
| X
A) = — R[s])s = Ro, 18
(A) N; [s1)s = Ro (18)

where we used that R[s] = (by)g, by definition Eq. (8) and
stationarity. The second moment of A reads

2 1 2 /
(A% = m[N(bk) + N(N = D{(bebi) ], k # k.
The two factors in the last term can be separately averaged
over the independent noise sources & and &, which yields
for each of them the stimulus-conditioned firing rate. Using
furthermore that b,% = by, because by € {0,1} we obtain

1
(A%) = ~ (RIsD + (N — D{(RIsT)s)- (19)

This relation for the second moment holds true for arbitrary
correlation strength. Using again the linear response ansatz,
Eq. (11), R[s] = Ry + §, we can further approximate Eq. (19)
by

! ) R =Ro) o)

A =R +c(8H(1— —

(A7) = Ry +c(87) N N
Hence, if we assume in the case of large N, a normal
distribution A ({A),var(A)) for the population activity, its
density can be approximated for weak common stimulus by

. N 1 Ro(1 — Ro)
Pac =N|:R0,C(Sz>s(1 - ﬁ) t—N
As N increases to infinity, both approximations, p4 and p4 g,
approach a normal distribution centered at the mean windowed

firing probability Ry with a standard deviation of /¢ (§2);.

:|. 2n

C. Comparison to simulation results

In Fig. 7 both approximations, ps and p4 g, of the
activity distribution are compared to simulation results of
populations of LIF neurons in the supra- and subthreshold
regime and various combinations of population size and
correlation strength. In addition, we show the difference of
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FIG. 7. (Color online) Activity distribution and difference to the uncorrelated case. Comparison of simulation results of the activity
distribution (blue/dark gray lines) with the linear response approximation Eq. (16) (red dashed lines) and the Gaussian approximation Eq. (21)
(green solid lines with circles) for the suprathreshold (a) and the subthreshold regime (b) of the LIF model for different values of the system
size N (from left column to right: N = 10, 30, 100, 500) and input correlation ¢ (from top row to bottom: ¢ = 0.01, 0.1, 0.2). Respective
differences between distributions with and without common noise in (c¢) and (d) for ¢ = 0.1 (top row) and ¢ = 0.2 (bottom row). Remaining
parameters: D = 0.01,7r0A = 0.1, u = 1.21in (a, ¢), and u = 0.9 in (b, d).

the distributions for the activity in the presence and absence
of the common stimulus, which directly illustrates the effect
of the common drive.

For weak input correlation, ¢ < 1 (in Figs. 7(a) and 7(b),
top row ¢ = 0.01) the simulation results are well approximated
by the linear response approach, Eq. (16), for all values of the
system size. The Gaussian approximation, Eq. (21), works well
at larger system size; for instance, the Gaussian is a reasonable
description of the histogram for N > 30. As anticipated, both
approximations converge for large N.

For larger input correlations, ¢ =0.1 and ¢ =0.2
(Figs. 7(a) and 7(b), middle and bottom rows) there are
small deviations between the linear response theory and
the simulation results. These deviations are larger for the
subthreshold than for the suprathreshold regime and—as can
be expected—are larger for c = 0.2 than for ¢ = 0.1. The main
character of the distribution is nevertheless still captured by the
linear response theory, which, in particular, nicely predicts the
difference between the activity distribution and the distribution
of the uncorrelated case [Figs. 7(c) and 7(d)].

Itis worth discussing the discrepancies between simulations
and theory both for large and small population size. First of
all, we recall that for large N, p4 approaches the distribution
of the firing probability, pg. This implies that the deviations of
paand py (e.g.,for N = 500 as in Fig. 7, right column) are the
same as those between pg and pg, which we already observed
in Fig. 5. Second, and in marked contrast, at small population
size (e.g., N = 10 as in Fig. 7, left column) the deviations

between the linear response theory, p4, and the simulations
are extremely small.

Why does the linear response approximation work so well
for small populations? For small values of N, the first two
moments of the distribution of R matter the most for the
activity distribution. For example, for N = 2, only the mean
and variance of R appear in Eq. (4):

ol

The mean, (R), is equal to Ry by construction [cf. Fig. 6(a)]
and the variance is well described by the linear response theory
up to ¢ = 0.2 [cf. Fig. 6(b)]. Hence, p4 is expected to be
well described for N = 2. For larger N, also higher central
moments and by that also higher cumulants will enter Eq. (4),
which are not captured by the Gaussian description of pg.
However, their values are much smaller compared to the first
two cumulants [see, e.g., the skewness in Fig. 6(c)]. Only when
higher-order cumulants make up many terms in Eq. (4), as for
larger N, these will notably contribute.

We can quantify the deviations between theory and
simulations more systematically. To this end, we use the
normalized Jensen-Shannon (JS) divergence [25,31] between
the approximation p 4 and the measured distribution p 4, which
is given by

m
A=—

2 _
)=2< )((R)m(l—R)2 ";me{0,1,2}. (22)
2 m

Dxr(pallM) + DxrL(PalIM)

JS-div =
2In(N)

) (23)
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FIG. 8. (Color online) Jensen-Shannon divergence between the-
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divergence, Eq. (23), between the simulated population activity distri-
bution p4 andits linear response approximation p 4 vs. population size
for two different input correlations c as indicated (a, b). JS divergence
vs. the total noise intensity D for a population of N = 1000 neurons
(c, d). Remaining parameters: 7oA = 0.1, u = 1.2 in (a, c), and
n=0.9in (b, d).

where M = (pa + pa)/2 and
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is the Kullback-Leibler divergence. The JS divergence quan-
tifies the discrepancy between two probability densities. In
Fig. 8 we see that even for moderate input correlations c, the
approximation p,4 is very similar to the real distribution if
the population is small enough. As N increases the deviation
grows and reaches a plateau (corresponding to the difference
between pgr and pg) for the considered range of N. For
stronger input correlation, the plateau is reached for smaller N.

Finally, we discuss how the range of validity of the
approximation depends on the total noise intensity [Figs. 8(c)
and 8(d)]. This dependence differs for the suprathreshold and
subthreshold firing regimes of the LIF model. Increasing the
total noise intensity D has three effects: (i) the mean firing
rate grows [32]; (ii) the intrinsic noise is increased, leading to a
linearization of the neuron model [30]; (iii) the signal intensity
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is increased, potentially leading to nonlinear rectification and
saturation effects in the modulation of the firing rate. The
last effect results in pronounced non-Gaussian features of
the firing-rate distribution and leads in the suprathreshold
regime to a growth of the JS divergence with increasing noise.
Remarkably, we observe a minimum of the divergence in
the subthreshold regime at a nonvanishing value of the noise
intensity. This implies that our linear response theory works
best for an intermediate total noise level.

VI. SUMMARY AND CONCLUSIONS

We have derived analytical results for the activity of a
homogeneous population of uncoupled neurons that is driven
by a weak time-dependent common stimulus. Our general
results, Eq. (16) and Eq. (21) together with Eq. (13) and
Eq. (15), require only the knowledge of the average firing rate
and the susceptibility of the neuron. Thus, it can be applied
to any population model or also to any real cell population,
for which these single-cell statistics can be measured or
calculated.

In this paper, we tested our results for populations of
cells described by the popular leaky integrate-and-fire model
with white Gaussian noise. By comparison with numerical
simulations, we found an excellent agreement of our theory
for weak correlations (¢ < 1) and a still reasonable agreement
with only minor deviations between theory and simulations for
a moderate value of the input correlation coefficient (¢ = 0.2).
Because input correlations are typically not strong [20], we
believe that the results put forward in our study will be useful
to analyze the effect of common noise in biologically relevant
situations.

A suitable experimental system where our theory could be
tested are in vitro neural cultures [33]. In such preparations the
connections between neurons can be gradually removed [34],
which corresponds for complete removal to our situation of
uncoupled neurons. In addition, the activity response to an
external common stimulus can be monitored in detail.

Our results will be particularly useful for the problem
of how a common stimulus is encoded in the synchronous
output of a neural population [22,23]. So far in Ref. [23], the
synchronous output was defined by the event that all neurons
of a population fire in the same time bin. If we relax this
assumption by defining the synchronous output by the event
that at least m out of N neurons fire, the first basic statistics
of interest is the mean value of this synchronous output. This
mean value can be related to the cumulative distribution of the
population activity A, i.e., to an integral over the statistical
measure p, that we have approximated in this paper. Hence,
our results will be useful to explore how sensory signals are
encoded by neural populations.
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