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We consider the diffusive properties of Brownian motion in a biased periodic potential. We relate the effective
diffusion coefficient to the solution of two coupled time-independent partial differential equations and solve these
equations numerically by the matrix-continued-fraction (MCF) method for intermediate values of the temperature
and friction coefficient. The weak-noise limit is explored by numerical simulations of the Langevin equations.
Here, we identify the regions of parameters for which the diffusion coefficient exponentially grows with inverse
temperature. In particular, we demonstrate that there is a finite range of bias forces for which such a growth
is observed (region of giant enhancement of diffusion). We also show that at small forces close to the critical
range, the diffusion coefficient possesses a pronounced maximum as a function of temperature. All results can be
interpreted in the framework of a simple two-state theory incorporating the transition rates between the locked
and running solutions.
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I. INTRODUCTION

The dynamics of Brownian particles in an inclined cosine
potential is a basic nonequilibrium model of statistical physics
that describes a surprising range of systems, including the
damped pendulum with torque [1], Josephson junctions [2],
superionic conduction [3], and the dynamics of phase-locked
loops [4]. The problem is attractive because it is simple to
formulate; it has many applications but also possesses a rich
phenomenology as a nonlinear stochastic system.

Brownian particles in a biased cosine potential

U (x) = −Fx − d cos(x) (1)

(with bias force F ) obey the following equations of motion

ẋ = v, v̇ = −γ v − U ′(x) +
√

2γ kT ξ (t). (2)

Here γ is the Stokes friction coefficient, kT is the thermal
energy, and ξ (t) is Gaussian white noise with intensity 1.
We consider particles with unit mass m = 1 and a potential
with unit amplitude (prefactor of the cosine part is 1), which
amounts to renormalization of time and space units [1].

The long-term (asymptotic) properties of Brownian parti-
cles are characterized by their mean velocity

〈v〉 = lim
t→∞

〈x(t) − x(0)〉
t

(3)

and the diffusional spreading around this mean motion,
quantified by an effective diffusion coefficient

Deff = lim
t→∞

〈[x(t) − 〈x(t)〉]2〉
2t

. (4)

The mean velocity has been explored in much detail in
the seminal work by Risken et al. [5,6] and is exhaustively
discussed in Risken’s well-known textbook [1]. The diffusion
coefficient, in particular with finite bias force, has turned out
to be a much more difficult subject [3,7–10] and remains a
vibrant topic of current research both in theory [11–15] and
experiment [16–19]. Already in the comparatively simple over-
damped limit (γ � 1), for instance, the diffusion coefficient
is enhanced and exceeds the bare diffusion coefficient of free

diffusion D0 = kT /γ by orders of magnitude if the force is
close to a critical value [9]. This enhancement of diffusion
becomes particularly pronounced for low temperatures and
implies that the diffusion coefficient will diverge for T → 0 if
we poise the bias force exactly at its critical value.

In numerical studies, even stronger amplification of diffu-
sion has been observed in the underdamped case [8,11] due to
a bistability of the velocity dynamics. The latter phenomenon
is well known since the work by Risken and coworkers [1,5,6],
who found that at low friction the velocity can be locally stable
in a locked solution (the particle is captured in a local potential
minimum) but also in a running solution [the particle gains
enough energy to overcome dissipative losses, see Fig. 1(a)
for an illustration]. To observe bistability, the constant force
should be in a range

F1(γ ) < F < F3 = 1, (5)

which can be found from solutions of the deterministic system;
this range is indicated as the shaded area in Fig. 2. With noise,
the dynamics is marked by stochastic transitions between
locked and running states [Fig. 1(b)]. These two states become
equally likely for T → 0 on a line F2(γ ) (dashed line in Fig. 2),
which can be found as the force at which the mean velocity
jumps from zero to a finite value in the limit of vanishing
temperature [1]. Our result for F2(γ ) is obtained numerically
and differs for γ close to unity from the result by Ref. [6].
The latter result was based on the matrix-continued-fraction
approach, which breaks down at low temperatures.

Returning to the diffusion problem, in Ref. [11] it has been
suggested that the maximal diffusion coefficient grows with
inverse temperature like a power law and that the force range
of diffusion enhancement shrinks to zero when approaching
zero temperature. The first claim has been recently disputed in
Ref. [14], where it was shown that the growth of the maximal
diffusion coefficient follows an exponential dependence on the
inverse noise intensity (temperature). This is consistent with
another example of noise-driven bistable velocity dynamics,
the one-dimensional active Brownian motion [20,21].
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FIG. 1. Underdamped particles in the inclined potential show
a bistable velocity dynamics. Underdamped Brownian motion in a
biased periodic potential as shown in (a) switches between a running
state (red particle), in which the gain from potential energy balances
the dissipative losses and a locked state (blue particle), in which the
particle oscillates stochastically around the potential minimum. In the
velocity, transitions (green arrows) between the states (red and blue)
can be easily identified (b). Parameters: γ = 0.4,F = 0.721.

Our study contributes a number of results to the diffusion
problem in the underdamped case. First, we derive an ex-
pression for the diffusion coefficient in terms of the solution
of two coupled time-independent partial differential equations
and explain in the Appendix how these equations can be solved
by the matrix-continued-fractions techniques. Second, we use
extensive numerical simulations to determine for all values
of the friction coefficient the range of forces in which the
diffusion coefficient diverges in the zero-temperature limit.
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FIG. 2. Range of bistability of the model (Risken plot). Bistability
is only observed if force and friction are within a particular parameter
region (gray area), which is further subdivided into regions above
and below F2(γ ) [dashed line in (a)], in which the running or the
locked state is more stable, respectively, in the zero-temperature limit.
Parameters used in Fig. 1 are indicated by the magenta cross.

We show in particular that in the underdamped case, the
range of forces for which diffusion is enhanced does not
vanish. Third, we underpin our numerical findings with a
simple two-state theory, previously developed for an active
Brownian motion model with bistable velocity dynamics [21]
and applied in the current context to the problem of maximal
diffusion in Ref. [14]. In addition, this theory predicts that for
certain forces the diffusion coefficient should display a strong
maximum upon variation of temperature, a finding that we
confirm numerically.

II. DIFFUSION COEFFICIENT DETERMINED FROM THE
FOKKER-PLANCK EQUATION

As outlined in the following, we can determine mean
velocity and diffusion coefficient from the Fokker-Planck
equation for the probability density P (x,v,t) corresponding
to the Langevin Eq. (2):

∂tP = L̂FPP, (6)

which is defined in terms of the operator

L̂FP(x,v) = −v∂x + ∂v(γ v + d sin x − F + γ kT ∂v). (7)

The stationary solution is found from

L̂FPP0(x,v) = 0 (8)

and allows to calculate the mean velocity [1]

〈v〉 =
∫ ∞

−∞
dv

∫ ∞

−∞
dx v P0(x,v). (9)

The time-dependent solution of the Fokker-Planck equation
in the form of an eigenfunction expansion can be used to
determine the diffusion coefficient [7]. Here, we pursue an
alternative approach that does not require us to solve for the
eigenvalues of the Fokker-Planck equation but instead consists
of solving two coupled time-independent equations.

In order to connect the effective diffusion coefficient to the
solution of Eq. (6), we recall the Kubo relation

Deff =
∫ ∞

0
dτ 〈[v(τ ) − 〈v〉][v(0) − 〈v〉]〉, (10)

in which we can express the velocity autocorrelation function
by the transition probability density P (x,v,τ |x0,v0,0) as
follows:

〈v(τ )v(0)〉 − 〈v〉2

=
∫

dv0

∫
dv

∫
dx0

∫
dx v v0

× [P (x,v,τ |x0,v0,0) − P0(x,v)]P0(x0,v0), (11)

where all integrals run from −∞ to ∞ both in space and
velocity variables.

Combining this expression with Eq. (10), we can write

Deff =
∫

dv v

∫
dx G(x,v), (12)

where

G(x,v) =
∫

dx0

∫
dv0

∫ ∞

0
dτ v0P0(x0,v0)

×[P (x,v,τ |x0,v0,0) − P0(x,v)]. (13)
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In order to derive an equation for G(x,v), we multiply the time-
dependent FPE, Eq. (6), [governing P (x,v,τ |x0,v0,0)] and the
stationary FPE, Eq. (8), [governing P0(x,v)] with v0P0(x0,v0).
Switching left-hand and right-hand sides of the equation and
integrating the difference over the full range of x0,v0 and over
time we obtain

L̂FP(x,v)G(x,v)

=
∫

dx0

∫
dv0 · v0P0(x0,v0)

×
∫ ∞

0
dt∂t [P (x,v,t |x0,v00) − P0(x,v)]

=
∫

dx0

∫
dv0v0[P0(x,v) − δ(x − x0)δ(v − v0)]P0(x0,v0).

(14)

Hence, the equation governing G(x,v) is an inhomogeneous
partial differential equation of second order and in two
variables:

L̂FP(x,v)G(x,v) = P0(x,v)(〈v〉 − v). (15)

Instead of the densities over the entire x axis, it suffices to
consider functions (similar to the treatment of Reimann in
Ref. [22])

p(x,v) =
+∞∑

k=−∞
P0(x + k · 2π,v), (16)

g(x,v) =
+∞∑

k=−∞
G(x + k · 2π,v), (17)

which are by definition periodic in x, i.e.,

p(0,v) = p(2π,v), g(0,v) = g(2π,v). (18)

Furthermore, p(x,v) is normalized on the interval x ∈ [0,2π ]
and v ∈ (−∞,∞)∫ 2π

0
dx

∫ +∞

−∞
dv p(x,v) = 1, (19)

whereas the double integral over g(x,v) yields zero by virtue
of Eq. (17) and Eq. (13)∫ 2π

0
dx

∫ +∞

−∞
dv g(x,v) = 0. (20)

For the velocity variable, natural boundary conditions hold
true for both functions

lim
v→±∞ p(x,v) = 0, lim

v→±∞ g(x,v) = 0. (21)

To sum up, we have to solve

L̂FP(x,v)p(x,v) = 0, (22)

L̂FP(x,v)g(x,v) = p(x,v)(〈v〉 − v) (23)

with periodic boundary conditions, Eq. (18), in x, natural
boundary conditions, Eq. (21), in v, and the normalization
conditions Eq. (19) and Eq. (20). The mean velocity in the
steady state and the diffusion coefficient in the asymptotic
limit are then given by

force F

D /D

friction

FIG. 3. Diffusion coefficient in the underdamped limit. As a result
of the bistable velocity dynamics in the underdamped regime (gray
area in the Risken plot in Fig. 2), the diffusion coefficient Deff

becomes much larger than the free diffusion coefficient (indicated
by the plane) for forces around F2(γ ). We show Deff in units of
the free coefficient D0 = kT /γ as a function of friction and bias
force for kT = 0.1 (numerical result by the matrix-continued-fraction
method).

〈v〉 =
∫ +∞

−∞
dv

∫ 2π

0
dx vp(x,v), (24)

Deff =
∫ +∞

−∞
dv

∫ 2π

0
dx vg(x,v). (25)

The equation for p(x,v) and 〈v〉 has been solved by the
matrix-continued-fraction method [1]. The same can be done
for the full system for p(x,v) and g(x,v) to determine Deff as
outlined in the appendix.

The MCF method works well for moderate to large values
of the temperature and allows us to plot Deff as a function
of friction coefficient γ and bias force F down to moderate
γ � 0.35 (Fig. 3). This plot confirms known results from the
literature. The enhancement of diffusion, defined by

Deff/D0 > 1, (26)

occurs in the overdamped case [9] around the critical force
F = 1 at which minima and maxima of the potential merge. A
much larger (truly giant) diffusion enhancement is observed for
γ < 1.1 in the underdamped case [8,11]. Here, the maximum
diffusion coefficient is attained around the force F2(γ ) that
is well within the region in which the deterministic velocity
dynamics is bistable. We have verified the MCF results by
numerical simulations and by the analytical result in the
overdamped limit [9,10], which is close to the MCF result
already for γ = 2.

III. LANGEVIN SIMULATION RESULTS FOR SMALL
FRICTION AND LOW TEMPERATURE

Of central interest in this work is the behavior of the
diffusion coefficient of underdamped particles in the weak-
noise limit T → 0. To this end, we have to resort to extensive
numerical simulations of the Langevin dynamics Eq. (2). For
all combinations of F,γ , and T shown in the following,
we simulate 100 particles with a time step of �t = 0.01
for a time window of tmax = 105 (at the smallest noise
intensities we ran simulations with tmax = 106). We ensure that
asymptotically the mean-square displacement grows linearly
and avoid the range of extremely small γ < 0.01, in which
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FIG. 4. Finite force range for a giant enhancement of diffusion
(a) Mean velocity (top) and diffusion coefficient Deff (bottom) for
γ = 0.4 as a function F for different temperatures as indicated.
Three critical values of the force are shown: F1 ≈ 0.49 and F3 = 1 in
between the velocity dynamics is bistable (gray shaded area), F2 at
which the velocity jumps in the weak noise limit from zero to a finite
value (intersection of velocity curves for different temperatures in
the top panel). The behavior of the diffusion coefficient for vanishing
temperature defines the critical range of bias (orange), corresponding
to enhanced diffusion. (b) Risken plot with the three critical forces
F1,F2,F3 and the orange band of γ -dependent forces that yield giant
enhancement of diffusion. The width of the band passes through a
maximum (bottom). Numerical simulation results in (a) and (b) are
supported by arguments from a Markovian two-state theory (see text
and next figure), that allows for an independent determination of the
critical force range [plus signs in (b)] and the diffusion coefficient
[dotted lines in (a)].

exceptionally long transients are observed [12]. Besides the
diffusion coefficient Eq. (4) we also measure the transition
rates from locked to running state and vice versa, respectively.

The results of such simulations for γ = 0.4 are shown in
Fig. 4(a) for varying bias force and different small values
of the temperature. The mean velocity (top) displays the
well-known sigmoidal behavior and approaches a threshold
nonlinearity with decreasing temperature. All velocity curves
intersect approximately at the same value of F2 defined above.
Remarkably, the diffusion coefficient (bottom) reveals a strong

enhancement in a finite range of the bias force (marked in
orange) and attains a pronounced maximum at Fmax ≈ F2. The
force values FGD,− and FGD,+ that limit the region of enhanced
diffusion are well within the region of bistability and can be
approximately determined from the intersection points of the
diffusion curves Deff(F ) for different temperatures (some sub-
tleties regarding these intersection points are discussed below).

We have simulated the system for different values of
γ and determined at each value the range of forces with
diffusion enhancement. This range corresponds in the (γ,F )
plane of Fig. 4(b) to an area marked in orange. The width
FGD,+ − FGD,− of this area is shown in the bottom panel of
Fig. 4(b) and attains a maximum at γ ≈ 0.25. The finite region
of diffusion enhancement constitutes the most important result
of our study that we will now further support by additional
theoretical considerations.

IV. TWO-STATE THEORY OF THE GIANT DIFFUSION IN
THE UNDERDAMPED CASE

Within the region of bistability, mean drift and diffusion
are shaped mainly by the transitions between locked (L) and
running (R) states, which can be represented by a Markovian
two-state process in the velocity space. This is a discrete
approximation of the velocity dynamics in an effective bistable
potential in energy [1] (see also the related heuristic treatment
in Ref. [15]).

Given the transition rates rR→L and rL→R between the two
discrete states, the diffusion coefficient reads [23]

Deff = (F/γ )2rR→LrL→R

(rR→L + rL→R)3
, (27)

where we assumed for simplicity that the velocity in the
running state is F/γ (slightly overestimating the true velocity
[1]), while in the locked state the velocity is zero. Using
the transition rates measured in our simulations, we show in
Fig. 4(a) the values of the diffusion coefficient according to
Eq. (27) by dotted lines. We find an excellent agreement with
the corresponding values as obtained in direct simulations.
This corroborates the conjecture that the amplification of
diffusion in the underdamped case can be fully understood
by means of the transition rates for the velocity.

Previous results on both types of transition rates have all the
form of an Arrhenius or Kramers law r ∼ exp[−�U/(kT )]
but differ in the temperature dependence of the prefactor
depending on the exact values of F and γ [5,6,24–26]. From
our measurement of the rates for different small temperature
values, we can extract effective potential barriers from an
Arrhenius plot [see Fig. 5(a)]. Moreover, we also fit a
Kramers-like formula with a power-law prefactor (i.e., r ∼
T α exp[−�U/(kT )]) and obtain similar values of the potential
barriers. Importantly, we find by this latter procedure that the
rate from the running to the locked state is best fit with a power
law of α ≈ 0.22, whereas the transition from the locked to the
running state has α = 0 (simple Arrhenius dependence). These
values are only approximate and hold true for intermediate
values of γ and forces around F2.

The two-state formula for the diffusion coefficient com-
bined with the Kramers-like transition rates predicts that
critical values of the force FGD,− and FGD,+ are determined
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FIG. 5. Extracting effective barriers. The logarithms of the rates
plotted as a function of the inverse temperature [Arrhenius plot in (a)
for γ = 0.4,F = 0.67] yield estimates of effective potential barriers
(see text). Estimates based on the mean slope (dashed line) or a
nonlinear fit that includes a power-law dependence of the prefactor
(orange lines) give similar values of the barrier height. Barrier heights
are plotted as functions of the force F in (b). Two-state theory
based on Kramers rates predicts that critical forces are those for
which one potential barrier [solid lines in (b)] equals twice the other
barrier [dashed lines in (b)]; the resulting values of the critical forces
[indicated by arrows in (b)] are shown in Fig. 4(b) by plus signs.

by the condition that one barrier height equals twice the other
barrier height [21]. Plotting the values of these heights [solid
lines in Fig. 5(b)] and twice these values (dashed lines) as
functions of F , we obtain from the two intersection points
of solid and dashed lines alternative estimates of FGD,− and
FGD,+. These are shown for selected values of γ by plus signs
in Fig. 4(b). Consistent with the above line of reasoning, the
plus signs are close to the border of giant diffusion marked in
orange. Moreover, within the range (FGD,−,FGD,+) the diffu-
sion coefficient grows exponentially with inverse temperature.

The simple picture we have drawn so far assumed that:
(i) all diffusion curves intersect at two points defining FGD,−
and FGD,+; (ii) the value of force F2 corresponding to the
intersection point of the velocity curves coincides with the
force maximizing the diffusion coefficient. A closer inspection
of Fig. 4(a) reveals two features that indicate small deviations
from this. First, the intersection points of pairs of diffusion
curves at the left boundary do not coincide exactly. Second,
the intersection of the velocity curves corresponds to a force
(F2 ≈ 0.73), which is slightly different from the one that
maximizes the diffusion coefficient (Fmax ≈ 0.72). Both points
should be attained for the force F2(γ ) that makes the running
and the locked states equally probable. Within the two-state
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FIG. 6. Finite-temperature effects. Using the two-state theory
Eq. (27) with rates rR→L = 0.06(kT )0.22 exp[−(2.1F − 1.3)/(kT )]
and rR→L = 0.082 exp[−(1.4 − 1.5F )/(kT )], we can reproduce
finite-temperature effects on the intersections of diffusion curves
[arrows in (a)] and difference between the forces that maximize
diffusion [dotted vertical lines in (a)] and that lead to a transition in
velocity [dashed vertical line in (a)]. In (b) we show the temperature
dependence of Deff for a force F close to but smaller than FGD,−. As
a consequence of the temperature sensitivity of the left intersection
points shown in (a), we observe in this case a pronounced maximum
in the diffusion coefficient as a function of temperature [black line in
(b)]. This maximum is also present if we plot Deff in units of the free
diffusion coefficient D0 [red line in (b)].

picture, we can understand these small deviations as finite-
temperature effects, if we take into account the different values
and temperature dependences of the prefactors in the rates.

In Fig. 6 , we plot mean velocity and effective diffusion
coefficient of the two-state theory for potential barriers
obtained from linear fits of the barriers in Fig. 5(b) and with
temperature-dependent prefactors corresponding to the typical
values obtained from the nonlinear fit in Fig. 5(a). Clearly, we
observe the two effects also present in Fig. 4(a): (i) intersection
points of the diffusion curves (indicated by arrows) close to
FGD,− fan out whereas those around FGD,+ are very close to
each other; (ii) forces at which diffusion is maximized (dotted
vertical lines) depend on temperature and are generally
slightly smaller than the force at which the different velocity
curves intersect (dashed vertical line). Summarizing, we can
regard these deviations as a consequence of the different
temperature dependence of the Kramers rates. It is also
worth emphasizing that according to the two-state theory the
deviations vanish for T → 0. However, in the continuous
system Eq. (2) a much smaller temperature than we have used
would require exponentially larger simulation times.

A remarkable consequence of the finite temperature de-
pendence of the diffusion curves is demonstrated in Fig. 6(b)
for the original system Eq. (2). Choosing a subcritical force
F = 0.67, which is close to but smaller than FGD,−, we
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find a pronounced maximum in the diffusion coefficient as
a function of temperature. When we plot this in units of the
free diffusion coefficient D0 (proportional to the temperature),
we still obtain a maximum because outside the critical force
range, the diffusion coefficient goes exponentially to zero
for T → 0.

V. SUMMARY AND CONCLUSIONS

In this paper we have studied the underdamped Brow-
nian motion in an inclined periodic potential, a standard
problem of statistical physics of nonequilibrium systems.
Based on the Kubo relation, we found a connection between
the effective diffusion coefficient and the solution of two
coupled time-independent partial differential equations. The
derived connection may also provide the basis for analytical
approximations for the diffusion coefficient. Here we showed
how the system of equations can be solved numerically by the
matrix-continued-fraction (MCF) techniques.

Although the MCF method permitted the efficient nu-
merical solution over a wide range of values of friction
coefficient and temperature, the procedure is limited in the
low-temperature case that turns out to be of special interest. For
this reason, we resorted to long stochastic simulations of the
Langevin equations in order to explore the asymptotic behavior
of the diffusion coefficient in the limit of weak noise. Our
results illustrate that, contrary to speculations in the literature,
the diffusion coefficient of underdamped Brownian particles
is enhanced in a finite range of forces that is well within the
region of bistability of the deterministic velocity dynamics.
We could support these findings and explain them in greater
detail by means of a two-state theory for the velocity, in which
switching rates depend in a specific way on the temperature.
One consequence of this theory is that for certain values
of the bias force the diffusion coefficient passes through a
maximum as a function of temperature. These results underpin
the importance of a thorough theoretical exploration of the
transition rates between locked and running states in and close
to the parameter region of giant enhancement of diffusion.

Summarizing, we have unveiled asymptotic weak-noise
properties of a simple but important model of statistical
physics. We hope that our investigation may trigger exper-
imental work aiming at verifications of the finite range of
forces and the maximized diffusion vs temperature.

APPENDIX: SOLUTION OF THE
DIFFUSION COEFFICIENT IN TERMS OF

MATRIX-CONTINUED FRACTIONS

Here we show how to apply the matrix-continued-fraction
techniques to the problem of solving the partial differential
equations Eq. (22) and Eq. (23) and to obtain the velocity and
diffusion coefficient. We start with the problem of solving for
the stationary density and the mean velocity, a task that has
been achieved already by Risken et al. and is also presented
in some detail in his textbook [1] (chapters 9 and 11). We
nevertheless include this calculation here in order to make the
presentation self-contained and to introduce the basic idea of
the method and the notation.

We expand the desired functions in a set of eigenfunctions
chosen appropriately according to the boundary conditions:
harmonic functions with respect to x and Hermite functions
with respect to the velocity. We start with the stationary density
p(x,v) and then repeat the derivation for g(x,v).

1. Determination of the coefficients for the stationary solution

Following Ref. [1] we make the ansatz

p(x,v) = φ0(v)
∞∑

p=0

+∞∑
m=−∞

cm
p eimxφp(v), (A1)

where φp are the Hermite functions obeying

yφp = α√
2

(
√

p + 1φp+1 + √
pφp−1), (A2)

(φ0φp)′ = − 1

α

√
2(p + 1)φ0φp+1, (A3)∫

dyφpφq = δpq. (A4)

with a still undetermined scale factor α.
If we insert Eq. (A1) into the steady state FPE, Eq. (22) and

apply Eq. (A2) and Eq. (A3), we obtain

∑ ∑
cm
p

{
−imeimx α√

2
(
√

p + 1φp+1 + √
pφp−1)

− γ eimx(
√

(p + 1)(p + 2)φp+2 + pφp)

+ γ kT eimx 2
√

(p + 1)(p + 2)

α2
φ0φp+2

+ F

α

√
2(p + 1)eimxφ0φp+1

+ id

2

√
2(p + 1)

α
φ0φp+1(ei(m+1)x − e+i(m−1)x)

}
= 0,

(A5)

where we have used that U ′
0(x) = d sin x = d(eix −

e−ix)/(2i). If we choose the free parameter α in Eq. (A2)
and Eq. (A3) as

α =
√

2kT , (A6)

the third line in Eq. (A5) cancels with the first term of the
second line (i.e., all terms vanish that involve φp+2).

Applying the operator 1
2π

∫ 2π

0 dxe−inx
∫ +∞
−∞ dvφq/φ0 to the

left-hand side yields:

∑
p

∑
m

cm
p

{
− inδm,n

√
kT (

√
p + 1δq,p+1 + √

pδq,p−1)

− γ δm,npδq,p + F√
kT

√
p + 1δm,nδq,p+1

+ id

2

√
p + 1

kT
δq,p+1(δn,m+1 − δn,m−1)

}
= 0. (A7)

Because for a given q only three different values of p

contribute, this can be expressed by the following single sum
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over m:∑
m

cm
q−1

√
q

kT

[
(F − inkT )δm,n + id

2
(δn,m+1 − δn,m−1)

]

−
∑
m

cm
q qγ δm,n −

∑
m

cm
q+1

√
kT (q + 1)inδmn = 0, (A8)

which in turn can be regarded as one row of a matrix
multiplication with a vector

√
qD̂ · �cq−1 + γ q · I · �cq +

√
q + 1D̄�cq+1 = 0, (A9)

a vector recurrence relation between �cq−1,�cq, and �cq+1, where
�cq is defined as

�cq =

⎛
⎜⎜⎜⎜⎜⎝

. . .

cm−1
q

cm
q

cm+1
q

. . .

⎞
⎟⎟⎟⎟⎟⎠. (A10)

The entries of the matrices D̂ and D̄ are given by

(D̂)m,n = δm,n(inkT − F ) − id(δn,m+1 − δn,m−1)/2√
kT

(A11)

(D̄)m,n = in
√

kT δm,n. (A12)

The tridiagonal vector recurrence relation is solved as follows:
we first introduce a (still unknown) matrix Sq defined by

�cq+1 = Sq �cq. (A13)

Because the normalization condition and the structure of the
Fokker-Planck equation determine some of the vector entries in
�c0 and �c1 (see below), the knowledge of the matrices S0, . . . Sq

will give us knowledge about all the expansion coefficients up
to order q. Inserting Eq. (A13) into the recurrence relation,
yields:
√

qD̂�cq−1 + γ q · ISq−1�cq−1 +
√

q + 1D̄SqSq−1�cq−1 = 0,

(A14)
where I is the identity matrix. We can also write

[
√

qD̂ + (γ q · I +
√

q + 1D̄Sq)Sq−1]�cq−1 = 0. (A15)

This relation is certainly satisfied, if the square bracket
vanishes, which leads to

Sq−1 = −√
q(γ q · I +

√
q + 1D̄Sq)−1 · D̂. (A16)

Note that (. . . )−1 indicates a matrix inversion, i.e., a fraction
of matrices.

To simplify the numerics it is convenient to use rescaled
matrices [see Ref. [1], Eq. (11.172)]

Aq = −γ
√

q + 1Sq, in particular S0 = − 1

γ
A0 (A17)

in terms of which the above matrix fraction reads

Aq−1 = 1

I − (qγ 2)−1D̄Aq

D̂ (A18)

= (I − (qγ 2)−1D̄Aq)−1D̂, (A19)

where in the notation of the second line the order of
matrix multiplications becomes more transparent. Repeated
application of this relation yields the matrix continued fraction

Aq−1 = 1

I − 1
qγ 2 D̄

1

I − 1
(q+1)γ 2 D̄

1

I − 1
(q+2)γ 2 D̄

1

. . .
D̂

D̂

D̂

D̂

=
[
I − 1

qγ 2
D̄

(
I − 1

(q + 1)γ 2
D̄ . . . D̂

)−1

D̂

]−1

D̂,

(A20)

which can be continued on the right-hand side to AQ where Q

is sufficiently high. If we set AQ+1 to zero, then AQ = D̂ and
we can calculate all Aq from q = 0 to q = Q − 1 by the above
recursive relation. Clearly, Q will be one of the parameters of
the numerical procedure of which our final result should not
depend. In practice, we have to repeat the above procedure for
different values of Q until the final statistics does not change
anymore by increasing Q within a desired accuracy.

The procedure above requires the inversion of complex-
valued matrices. The dimension of these matrices depend
on the number 2M + 1 of eigenfunctions exp[imx] (m =
−M, . . . ,M) that we need with respect to the spatial variable.
Lower noise results usually in a more strongly peaked
distribution and will thus require a larger number M and thus
larger matrices, which in turn are more difficult to invert. This
implies that although modern computers can store and invert
rather large matrices, the procedure has its limitations exactly
in the weak-noise limit.

Once we have computed all the matrices Aq and Sn, we
obtain the coefficients contained in the vectors �cn by using the
following additional information. First, the normalization of
the density implies

1 =
∫ 2π

0
dx

∫ +∞

−∞
dv

m∑
p

cm
p eimxφ0(v)φp(v) = 2πc0

0 (A21)

and thus

c0
0 = 1

2π
. (A22)

Second, we can consider Eq. (A9) for q = 0, keeping in mind
that cm

−1 = 0 ∀m and that the term proportional to q does not
enter, the simple structure of the matrix D̄, which has only
entries on the diagonal, leads to

cm
1 = 0 ∀m �= 0. (A23)

Hence, we know one component of the vector �c0 and 2M

components of the vector �c1 and have to combine this
knowledge to determine all components of �c0, �c1 and then
the remaining vectors �cq with q � 2.

We know that �c1 = S0�c0 or

�c0 = H �c1, where H = S−1
0 . (A24)
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In particular,

c0
0 = 1

2π
=

∑
m

H0,mcm
1 = H0,0c

0
1 ⇒ c0

1 = 1

2πH0,0
.

(A25)
The coefficient c0

1 is important because it determines uniquely
the mean velocity:

〈v〉 =
∫ 2π

0
dx

∫ ∞

−∞
dv v p(x,v)

=
∫ 2π

0
dx

∫ ∞

−∞
dv

∑
p,m

cm
p eimxφ0

√
kT

× (
√

p + 1φp+1+√
pφp−1)

= 2π
√

kT c0
1 =

√
kT

H0,0
. (A26)

The remaining cm
0 are determined by

cm
0 =

∑
n

Hm,nc
n
1 =

∑
n

Hm,nc
0
1δn,0 = Hm,0c

0
1 = 1

2π

Hm,0

H0,0

(A27)

and the marginal density is given by

p(x) =
∫

dv p(x,v) = 1

2π

M∑
m=−M

Hm,0

H0,0
eimx. (A28)

The higher vectors are obtained by up iteration

�c2 = S1 · �c1, cm
2 =

∑
(S1)m,nc

0
1δn,0 = (S1)m,0, (A29)

�cp+1 = Sp · �cp = − 1

γ
√

p + 1
Ap�cp, p � 2. (A30)

2. Solving for the function g(x, y) and the diffusion coefficient

We expand the function g(x,v), which determines the
diffusion coefficient, in terms of Hermite and harmonic
functions

g(x,v) =
∑

p

∑
m

hm
p eimxφ0φp. (A31)

As in the expansion of p(x,v), certain coefficients are already
set by the defining equations of g(x,v). First, inserting the
expansion into Eq. (20) yields

h0
0 = 0. (A32)

Second, according to Eq. (25), the diffusion coefficient is given
by just one of the coefficients

Deff =
∫ 2π

0
dx

∫ ∞

−∞
dv v g(x,v) = 2π

√
kT h0

1. (A33)

Another set of coefficients arises from the recurrence relation
in a special case (see below). Next, we insert the expansions
for p(x,v) and g(x,v) into Eq. (23) and apply the operator

1
2π

∫ 2π

0 dxe−inx
∫ +∞
−∞ dvφq/φ0. On the left-hand side, we

obtain the same terms as in the equation for p(x,v), only
that the coefficients cn

q are replaced by hn
q . On the right-hand

side, the expansion of p(x,v) yields

1

2π

∫ 2π

0
dxe−inx

∫ ∞

−∞
dv

φq

φ0
(〈v〉 − v)

∑ ∑
cm
p eimxφ0φp

=
∑
m

〈v〉δnmcm
q − δn,m

√
kT (

√
q + 1cm

q+1 + √
qcm

q−1)

= an
q , (A34)

defining the entries of an inhomogeneity vector �aq . The
inhomogeneous recurrence relation can be written as

−√
qD̂�hq−1 − γ qI �hq −

√
q + 1D̄�hq+1 = �aq. (A35)

Specifically for q = 0, this relation reads

−D̄�h1 = 〈v〉�c0 −
√

kT �c1 (A36)

and because of the diagonal structure of the matrix D̄ [cf.
Eq. (A12)] it follows that

hm
1 = i

〈v〉
m

√
kT

cm
0 ∀m �= 0. (A37)

Together with h0
0 = 0 from Eq. (A32) and similarly to the

situation in the previous subsection, we thus know 2M + 1
coefficients.

To solve the inhomogeneous relation Eq. (A35), we follow
Risken [see p. 213, Eq. (9.82)] and make the ansatz

�hq+1 = Sq
�hq + �bq+1, (A38)

where �bq+1 is yet to be determined. Inserting this into
Eq. (A35) (all nonzero terms brought to one side)

0 = √
qD̂�hq−1 + γ qI �hq +

√
q + 1D̄�hq+1 + �aq

= √
qD̂�hq−1 + (γ qI +

√
q + 1D̄Sq)(Sq−1 �hq−1 + bq)

+
√

q + 1D̄bq+1 + �aq

= [−√
qD̂ − (γ qI +

√
q + 1D̄Sq)Sq−1]�hq−1

−(γ qI +
√

q + 1D̄Sq)bq −
√

q + 1D̄bq+1 − �aq.

(A39)

The last equation is satisfied if both the square bracket as well
as the underlined terms vanish separately. The square bracket
set to zero is exactly Eq. (A15), i.e., the same equation we
had found previously for the matrices Sq and hence also the
solution in terms of the matrix-continued fraction will satisfy
this equation. Vanishing of the underlined terms implies

�bq = −(γ qI +
√

q + 1D̄Sq)−1(�aq +
√

q + 1D̄�bq+1).
(A40)

Suppose we know all the matrices Sq [which we previously
had to determine in order to find the stationary density p(x,v)]
and we start at a sufficiently large value q = Q, we set �bQ+1

to zero and obtain

bQ = −(γQ · I +
√

Q + 1D̄SQ)−1�aQ. (A41)
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We can then iterate Eq. (A40) down to �b1. Then

�h1 = S0 �h0 + �b1 ⇒ �h0 = S−1
0 (�h1 − �b1) = H (�h1 − �b1),

(A42)

where we used the matrix H defined in the previous subsection.
Using our knowledge about h0

0 leads to

0 = h0
0 =

∑
m

H0,m

(
hm

1 − bm
1

)
,

= H0,0
(
h0

1 − b0
1

) +
∑
m�=0

H0,m

(
hm

1 − bm
1

)
. (A43)

From this relation we obtain

h0
1 = b0

1 −
∑
m�=0

H0,m

H0,0

(
hm

1 − bm
1

)
(A44)

= −i
∑
m�=0

H0,m

H0,0

〈v〉
m

√
kT

cm
0 +

∑
m

H0,mbm
1

H0,0
, (A45)

where we have used Eq. (A37). This then determines the
diffusion coefficient according to Eq. (A33)

Deff = 2π

H0,0

⎛
⎝√

kT
∑
m

H0,mbm
1 − i

〈v〉
m

∑
m�=0

H0,mcm
0

⎞
⎠. (A46)
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