
Thomas and Lindner Reply: In the preceding Comment
[1], Pikovsky raises three points. (1) A 2D linear system
(x;y) with a stable focus, driven by noise, would not
constitute a “limit-cycle-like” oscillator; it would not admit
a “good foliation.” Therefore, a phase could not mean-
ingfully be assigned to this system. But our method would,
nevertheless, assign the phase ϕ ¼ tan−1ðy=xÞ. (2) For a
multirhythmic system, consisting of a noisy limit cycle (the
“true” oscillator in Pikovsky’s view) and a 2D quasicycle
[2], as under (1), our method may pick the “wrong” phase if
the 2D perturbation is not as noisy as the limit cycle, with
respect to its phase. (3) The method based on the mean first
passage time (MFPT) [3] would avoid this problem and
always pick out the correct phase. We rebut each of these
criticisms in turn.
(1) Our definition of the asymptotic phase [4] applies to a

broad class of stochastic oscillations, including, but not
limited to, the important example of limit cycles perturbed
by noise. In [4], we considered, for instance, a heteroclinic
2D system that does not possess a limit cycle in the
deterministic limit. Pikovsky’s first example, a spiral focus
with additive noise

_x ¼ −γxþ ωyþ ξx; _y ¼ −ωx − γyþ ξy; ð1Þ

with hξaðtÞξbðt0Þi ¼ 2Dδa;bδðt − t0Þ, is another system
with noise-sustained stochastic oscillations lacking an
underlying deterministic limit cycle. In the noisy under-
damped case (γ=ω ≪ 1) such systems are, nevertheless,
strongly oscillatory, have power spectra with well-
defined peaks, and can be described reasonably well
with a phase variable (see the red line in Fig. 1 and,
e.g., [5] for a study of the phase dynamics of a related
system).
(2) Can a method designed to pick out one phase from a

stochastic system succeed if there are several oscillations
present? Obviously, neither our method nor the MFPT app-
roach will unambiguously identify a unique phase reduction
for arbitrary multirhythmic systems. Nevertheless, it is ins-
tructive to look in detail at Pikovsky’s example of a rotating
Ornstein-Uhlenbeck process, Eq. (1), combined with an
additional rotation

_θ ¼ Ωþ ξθ: ð2Þ

Here, ξθ is white Gaussian noise with hξθðtÞξθðt0Þi ¼
2D0δðt − t0Þ. Our method applies to “robustly oscillatory:”
systems, i.e., those that satisfy three criteria [4]
[Pikovsky’s Comment [1] notes condition (i), but over-
looks conditions (ii) and (iii)]. (i) The nontrivial eigen-
value pair of the adjoint Kolmogorov operator,
λ� ¼ α� iβ, with least negative real part, must have
β ≠ 0. (ii) The oscillation is fast relative to the decay,
jβj ≫ −α. (iii) For all other nontrivial eigenvalues λ0, we
require ℜ½λ0� ≤ 2α. For the system (1,2) there are two
cases satisfying these criteria.
Case 1.—If γ ≥ 2D0 > 0 and Ω ≫ D0, then

λ ¼ −D0 � iΩ. The corresponding eigenfunction (EF)
has phase θ.
Case 2.—If D0 ≥ 2γ > 0 and ω ≫ γ, then λ ¼ −γ � iω.

The corresponding EF has phase ϕ ¼ tan−1ðy=xÞ.
Figure. 1 plots θ (black trace) and ϕ (red trace) for a

trajectory with parameters γ ¼ 0.02, ω ¼ 6, D ¼ 0.02,
Ω ¼ 1, and D0 ¼ 0.4, i.e., falling in case 2. While the
system is multirhythmic, ϕ is clearly the more coherent
phase variable. What our method does in this case is to pick
the least noisy of the two possible phases, which is certainly
a reasonable choice if no other constraints are set.
(3) Pikovsky asserts without proof that the MFPT

method would identify θ as the phase variable for the
system (1), (2). However, for every pair of integers k; k0
(excluding k ¼ k0 ¼ 0), the surfaces fkθ þ k0ϕ ¼ constg
provide a family of sections satisfying the MFPT property
(see our original Reply [6] to Pikovsky’s original Comment
[7] for details). In particular, the surfaces fϕ ¼ constg
define a system satisfying the MFPT property.
Multirhythmicity is common in stochastic physical

and biological systems. In many situations, the context
dictates what notion of phase is relevant. For instance,
in [6] we showed that the persistent sodium-potassium
model driven by channel noise [4,8] can exhibit sustained
subthreshold oscillations alternating with large amplitude
limit cycle oscillations (action potentials). Under these
conditions the eigenvalue spectrum of the adjoint equa-
tion [4] has two complex eigenvalue pairs with similar
real parts. The system violates our criterion (iii), and we
do not expect it to have a single well defined phase.
Instead, our method points to the coexistence of two
phaselike variables, each determined by a different slowly
decaying oscillatory eigenmode. Here, the phase associ-
ated with the action potentials (APs) may be regarded
as the important one because APs are believed to carry
information from one neuron to the other one. This type
of interpretation, however, lies beyond the scope of our
method.
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FIG. 1 (color online). Two stochastic “phase” variables for
Eqs. (1) and (2). Black: θðtÞ. Red: ϕðtÞ ¼ tan−1½yðtÞ=xðtÞ�.
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