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Abstract. We review theoretical models of individual motility as well
as collective dynamics and pattern formation of active particles. We
focus on simple models of active dynamics with a particular emphasis
on nonlinear and stochastic dynamics of such self-propelled entities in
the framework of statistical mechanics. Examples of such active units in
complex physico-chemical and biological systems are chemically pow-
ered nano-rods, localized patterns in reaction-diffusion system, motile
cells or macroscopic animals. Based on the description of individual
motion of point-like active particles by stochastic differential equations,
we discuss different velocity-dependent friction functions, the impact
of various types of fluctuations and calculate characteristic observ-
ables such as stationary velocity distributions or diffusion coefficients.
Finally, we consider not only the free and confined individual active
dynamics but also different types of interaction between active par-
ticles. The resulting collective dynamical behavior of large assemblies
and aggregates of active units is discussed and an overview over some
recent results on spatiotemporal pattern formation in such systems is
given.

1 Introduction

In recent years there has been a strong growth of research activities regarding the
statistical description of systems far from equilibrium. A whole class of biological and
physical systems which may be referred to as active matter have been studied theo-
retically and experimentally. The term “active” refers here to the ability of individual
units to move actively by gaining kinetic energy from the environment. Examples of
such systems range from the dynamical behavior of individual units such as Brown-
ian motors [285], motile cells [42,128,318], macroscopic animals [187,200] or artificial
self-propelled particles [169,265] to large ensembles of interacting active particles and
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their large scale collective dynamics [23,61,361]. A major driving force of the active
matter research are the continuously improving experimental techniques such as auto-
mated digital tracking [17,318,326] or the realization of active granular and colloidal
systems (see e.g. [12,82,207,265,346]).

This review is devoted to the analysis of simple dynamical models of active sys-
tems. In particular we will focus on stochastic models of individual active particles
or agents as well as on large scale collective phenomena arising in systems of such
interacting active particles. We define active motion as motion of particles or agents
due to an internal driving, which may have different causes such as biological activity
or non-equilibrium dynamics in artificial driven systems. It is fundamentally different
from standard purely passive dynamical behavior of particles in gases, liquids or solid
states at thermal equilibrium. In contrast, active particles or agents are assumed
to have an internal propulsion mechanism (“motor”), which may use energy from
an external source and transform it under non-equilibrium conditions into directed
motion.

The great number of publications on active particle systems makes a complete
review, describing all the different approaches across the different scientific disciplines,
impossible. Thus, we will focus here on the review and analysis of generic models of
individual active particles as well as their large scale collective dynamics, which may
be considered as an extension of concepts well known in physics, such as ordinary
Brownian motion, ferromagnetic or nematic media. In particular, we will focus on the
mathematical description and analysis of such systems from a (statistical) physicist’s
point of view.

There are many fascinating research areas, which we will not discuss in this review,
such as the dynamics of microswimmers at low Reynolds numbers (see e.g. [7,87,
90,277,281], or a recent review in [211]), or the biological implications of collective
behavior of organisms and animals, for example, flocks of birds or schools of fish
[71,150,202,336].

An important feature of most active matter systems, are the non-negligible ran-
dom fluctuations in the motion of individual active units. This apparent randomness
may have different origins, for example, environmental factors or internal fluctuations
due to the intrinsic stochasticity of the processes driving individual motion. In ani-
mals, they may be also associated with abstract decision processes which govern the
direction and/or the speed of individual motion and which may appear as random
to an external observer. A simple way to account for such fluctuations without being
able to resolve the underlying mechanisms is to introduce stochastic forces into the
equations of motion of individual units. Thus our general modelling approach will be
based on the concept of stochastic differential equations (Langevin equation, SDE)
and the corresponding Fokker-Planck equations for the evolution of the probability
densities of the involved (stochastic) variables [136,292,357].

A large part of this review evolves around the concept of “Active Brownian Par-
ticles” introduced more than a decade ago. The term was first introduced by [308],
referring to Brownian particles with the ability to generate a field, which in turn
can influence their motion. In the following Ebeling, Schweitzer and others used
this term in the context of self-propelled particles far from equilibrium (see e.g.
[106,116,297,311,312]). In general we will refer to “Active Brownian Particles” in
the latter context as Brownian particles performing active motion, which may be
accounted for by an internal energy depot and/or a (nonlinear) velocity-dependent
friction function.

Throughout this review, we will focus on topics and research questions, which
we have been actively working on over the past years. Hereby, an emphasis is put
on presentation of the mathematical framework together with the discussion of its
application to various problems.
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1.1 Individual dynamics

When the botanist Robert Brown observed the erratic motion of small pollen grain
particles immersed in a liquid in 1827 [48], he considered them first as living entities.
However Brown, being also the discoverer of the cellular nucleus, was a thorough
scientist. He repeated the experiments with granular and glassy material, and dis-
covered its purely physical nature. Although his name is associated with the physical
phenomenon of Brownian motion, he was certainly not the first one to observe it.
The phenomenon of irregular motion of coal dust particles immersed in a fluid had
already been reported by Jan Ingen-Housz in 1784 [177].

Later on, in 1863, the origin of the never-vanishing motion was experimentally
traced back to the motion of the molecules of the surrounding liquid by C. Wiener
[370], who was familiar with Maxwell’s kinetic theory. Afterwards M. Gouy [145]
found that the motion is amplified if viscosity of the liquid is lowered. After the turn
of the century, A. Einstein [108,109], M. Smoluchowski [364], P. Langevin [209], and
others showed theoretically that the behavior of Brownian particles are due to the
permanent molecular agitation of the solution on the immersed particle. Eventually,
J. Perrin [269] was awarded the Nobel Prize in 1926 for the experimental observation
of Brownian motion, which confirmed the theoretical findings and permitted the first
realistic determination of Avogadro’s number as indicator of the molecular structure
of matter.

Without doubt, the theory of Brownian motion not only assumed a central role in
the foundation of thermodynamics and statistical physics, but is still a major inter-
disciplinary research topic. Although Brownian motion is purely physical in origin,
many models of bacterial and small animal motion have employed the framework of
Brownian motion or its discrete counterparts, which are random walks. In parallel to
Einsteins work, K. Pearson [266-268] in 1905 invented the term “random walks” and
used the concept for a statistical description of insects migration.

Probably the first experiments on random motion of (living) microorganisms —
which consitute clearly a system far from equilibrium — influenced by the theory of
Brownian motion were performed by Przimbram in the second decade of the 20th
century [278,279]. Przibram has shown that the mean squared displacement of the
protozoa in water increases linearly in time in analogy to Brownian motion but with a
larger diffusion coefficient then predicted by the equilibrium kinetic theory of Brown-
ian motion. Przimbrams work is the first experimental evidence of active Brownian
motion. In fact, in his second paper Przimbram reported increasing diffusion coeffi-
cients of rotifiers with their increasing concentration, which appears to be the first
report on hydrodynamically interacting active Brownian particles [279].

Przimbram’s work was followed up by Fiirth [131], who based on his own exper-
imental findings, introduced the notion of persistent random walk in the description
of the motion of biological agents. Fiirth arrived independently at the same result as
Ornstein [256] who considered inertial Brownian motion in thermal equilibrium.

The mathematical description of the apparently random motion of biological
agents and the corresponding diffusion processes are fundamental to understand-
ing the ability of individuals to explore their environment and to describe the large
scale dispersal of populations [252]. Since the first pioneering works of Przimbram
and Fiirth there have been a great number of publications on the theory of random
walks and their application to biology and ecology. A prominent example is the work
of Howard C. Berg [32], who made random walk theory an intrinsic part of mod-
eling; new concepts along these lines are developed even nowadays [107,234]. From
the huge literature, we would like to highlight here few examples, such as the work
by H. Gruler and M. Schienbein [305], by H. Othmer and coworkers [165,257]
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or the recent integrated theoretical and experimental approach by H. Flyvberg and
collaborators [318,319].

Because of the strong connections between the theory of Brownian motion and
random walk theory to models of self-propelled or active Brownian particles, we will
start this review with a summary of general findings of the classical theory and some
important mathematical concepts.

In the following sections, we will focus on the concept of self-propulsion in the
framework of active Brownian particles. We will discuss various models of active mo-
tion not only differing in their deterministic equations of motion but also subject to
different types of fluctuations: e.g. internal and external Gaussian fluctuations, (en-
ergetic) shot noise or dichotomous Markov noise. We will analyze the characteristics
observables of individual active motion such as speed and velocity probability distri-
butions or the mean squared displacement. In addition, we will discuss the behavior
of active particles under external constraints, such as e.g. external potentials.

Despite the intense interdisciplinary research on active Brownian motion, there is
still a lack of theoretical foundations. For example, one issue that has been neglected is
the distinction between passive fluctuations (e.g. thermal fluctuations) and stochastic
forces which have their origin in the active nature of the system and their different
impact on the experimentally accessible observables such as stationary velocity and
speed distributions. Only recently it was shown how internal (or active) fluctuations
may lead to a complex behavior of the mean squared displacement of active particles
with multiple crossovers or to characteristic deviations of stationary velocity and
speed distributions in comparison to ordinary Brownian motion [273,298].

1.2 Collective dynamics

In the last two sections of this review, we will extend our scope to self-organization
phenomena in systems of interacting active particles and the resulting modes of col-
lective motion. In this context we introduce the term “swarms” of active particles.
We use it here to refer to a confined systems of particles (animals in two dimensions
and more general objects) performing collective motions under far from equilibrium
conditions. The dynamics of swarms of animals is a traditional object of biological
and ecological investigations [252] but still a rather young field of physical studies
(see e.g. Refs. [159,235,311,360]). Here we will develop rather simple models which
are based on the idea that swarm motion possesses some kind of universality [252].
The existence of universal features makes it possible to study swarm motion using
simple models which are in the same universality class. Assuming that this hypothesis
is true, we have the choice between different models of swarm motion which are in
the universality class preferring the simplest ones. The idea which we will follow here
is: Swarms may be modelled as active particles using the concepts of active Brownian
motion [9,107].

Over the past decades, collective dynamics of swarms of driven particles has cap-
tured the growing interest of various theoretical groups. Many interesting effects of
the self-organization of swarms have been revealed and in part already explained.
We mention here the comprehensive survey of Okubo and Levin [252] on swarm dy-
namics in biophysical and ecological context. Studies of Helbing [159] relate to traffic
phenomena and related self-driven many-particle systems. Broad context of swarm-
ing dynamics in natural science is also brought up in the comprehensive books and
reviews by T. Vicsek [360,362], A.S. Mikhailov and V. Calenbuhr [235], F. Schweitzer
[311], I.D. Couzin [69], D.J.T. Sumpter [335] and Toner et al. [350].

A major shortcoming of the research in collective motion was the lack of em-
pirical data on the structure and dynamics of real swarms. However, the situation
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is improving, due to technological advances in digital tracking and data processing,
the empirical study of large scale collective motion in the field has become possible
[17,55,225]. Furthermore, an increasing number of controlled laboratory experiments
is being performed on collective motion of such different organisms as fish [1], insects
[27,51], bacteria [326,327] or keratocytes (active tissue cells) [340]. The resulting data
provide the foundation to address the question on actual properties of social interac-
tions in real world swarms and flocks.

Beyond the dynamics of cohesive swarms, we will discuss systems of active particles
with a alignment interaction, which may lead to large scale collective motion.

The most prominent (minimal) model of collective motion of this type was intro-
duced by Vicsek and collaborators in 1995 [361]. Vicsek et al. have shown how an
initially disordered state without collective motion at large noise intensities becomes
unstable if the noise is decreased below a critical value and how large scale collective
motion emerges via a spontaneous symmetry breaking.

We establish a link to publications on mesoscopic equation of motion for density
and velocity fields of self-propelled particles [239,322,323,348,349], where the meso-
scopic equations of motion for the density and velocity fields were constructed using
symmetry and conservation laws. Recently, a corresponding kinetic description was
derived by a Boltzmann approach [36]. Here, we derive the field equations in a system-
atic way from the microscopic Langevin equations of active Brownian motion without
a restriction to constant speeds. In addition to the density and velocity fields, we con-
sider explicitly the effective temperature field of the active Brownian particle gas. We
consider also the important special case of self-propelled particles with constant speed
and discuss in this context local alignment with different interaction symmetries.

In the end of Sect. 6, we mention briefly other swarming mechanisms, such as
chemotactic coupling or selective attraction/repulsion interactions (escape & pursuit).

We will then turn our attention to pattern formation of self-propelled particles
with alignment and discuss clustering, phase separation, and emergence of large-scale
coherent structures in such systems.

Finally, we will conclude this review with a summary of the contents together with
a more detailed discussion of related expermental results as well as other modelling
approaches and their relation to the theoretial framework presented in the paper.

2 Brownian motion and beyond
2.1 Brownian motion revisited

The behavior of ordinary Brownian particles is determined by the (passive) stochas-
tic collisions, the particles suffer from the surrounding medium. There is no active
transfer of energy to the particles. The energetic equilibrium between particles and
surrounding medium, which balances dissipation and fluctuations, is expressed by the
fluctuation—dissipation theorem.

In the most common way (at first glance, also the simplest way), Brownian motion
is described by Newtonian dynamics including friction and stochastic forces [209]. The
motion of a Brownian particle subject to Stokes friction with coefficient v in a space-
dependent potential U(r) can be described by the Langevin equation

dr dv

—_— = N _— = — — 1

T =V My v —VU(r) + F(t) (1)
with VU = 0 in the original publication by Langevin. He assumed temporally short
correlated random forces F(t), independence between coordinate r(t) and velocity
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v(t), and the equipartition theorem (v?) = 3kgT/m where kp is Boltzmann’s con-
stant. Ornstein and Uhlenbeck [355] pointed out that the stochastic force should be
Gaussian distributed with independent components and §-correlated time dependence

(F(1)) =0, (Fi®)F;(¥)) = 2Dy0:;0(t =), i,j = z,y, 2. (2)

The components F;(t) are referred to as Gaussian white noise with intensity D,.
Integrated over small time intervals dt, a stationary Wiener process is obtained. In
the Newtonian equation, these forces yield an increment of momentum in dt¢ with
Gaussian distribution

t+dt
det,i = / ds -7:1'(8)7 1= z,Y, %, (3)
t

the average of which vanishes and second moment of which grows linear in d¢ with
slope 2D,,. Increments at different times are independent [136,292].

The noise strength D,, for the momentum is connected with the noise strength for
the velocities D by the simple relation D, = m?D. In thermal equilibrium, according
to Langevin’s assumption, the loss of energy due to friction compensates on average
the gain of energy resulting from the stochastic force. In this case, the fluctuation-
dissipation theorem states:

D, =Dm?=kpTH, (4)

where T is the absolute temperature.
We may rewrite the Langevin equation for the velocities as follows

de” .~ dv vy VU(r))
B e +V2DE(t), (5)

where the stochastic source term obeys

€) =0, (&)&(t) =dt—1t), ij=uxy,z (6)

For VU (r) = 0, the integration of Eq. (5) to obtain the mean squared displacement
(r?(t)) starting at ¢t = 0 at the origin gives in equilibrium using (4):

w(t)?) = 6 oL [t - % (1- exp(—%t))} . (7)

This expression yields a ballistic growth for times smaller than ¢ < 1/ and a linear
growth for larger times

(r(t)?) = 2dDeg t, (8)

with d is the dimension of the Brownian motion. The diffusion coefficient obeys the
Einstein-Sutherland relation [108,338]

kT

Deg = (9)

The linear regime in ¢ is valid at length scales exceeding the brake path I oc v/ kgT'm/~.
In the following we will always use dimensionless units and set the mass to m = 1,
resulting in D, = D. Further on, we use D for noise intensity of purely additive
Gaussian white noise in the velocity coordinate.
We are interested in the general statistical descriptions of self-moving objects. In
the Markovian description, full information is provided by the transition probability
P(r,v,t|ro, Vo, to) to find the particle at location r with velocity v at time ¢ if started
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at ro with vo at initial time ¢o. As well known [28,292], the distribution function
density which corresponds to the Langevin equation (5), is the solution of a Fokker-
Planck equation of the form:

OP(r,v,t|re,vo,to) OP oP 0 OP

For harmonic potentials U(r), the solutions is a multi-modal Gaussian distribu-
tion [58] with time-dependent moments. In the long-time limit, the stationary solu-
tion of Eq. (10) becomes independent of the initial distribution Py(r,v) and with
Eq. (4) the ensemble of Brownian particles obeys in equilibrium the Maxwell-
Boltzmann distribution:

Po(r,v) = N exp{—kBlT B vy U(r)]}. (11)

An important limiting case of Eq. (5) is the so-called overdamped Brownian motion.
As pointed out by Purcell [280] and Berg [32], this limit should be considered in the
motion of bacteria and other small micro-swimmers due to the low Reynolds number
governing their dynamics. Overdamped Brownian motion can be obtained from the
Langevin equation under the assumption of large friction where inertial effects can
be neglected, resulting in

dr o VU(I‘)

with intensity D, = D/~2.
The corresponding Fokker-Planck equation for the overdamped dynamics reads

8P(r,t|r0,t0) - 0 VU(I') 82P
ot T or ~ Pl + D, Or2 (13)
with the stationary solution
Py(r) =N exp {_g(Drr)] . (14)

In thermal equilibrium, this becomes equal to the Boltzmann distribution by virtue
of D, = kgT/~, which holds true according to the relation Eq. (4).

We note that the Langevin Eq. (5) has been generalized in many ways. First of
all, the description applies not only to mechanical degrees of freedom but also to
voltage fluctuations in electric circuits (‘Johnson noise’) and to fluctuations in the
number of molecules undergoing chemical reactions (‘Chemical Langevin equation’),
to name only two prominent examples. Finite correlations in equilibrium fluctuations
and dissipation (‘memory damping’) have been taken into account in the generalized
Langevin equation [157,205,244,383]. The consequences of nonlinear dissipation in
equilibrium systems were studied as well [197]. More recently, also formulations of
Langevin and Fokker-Planck equations that are consistent with special relativity have
drawn much attention (for a comprehensive review on relativistic Brownian motion,
see [93]). As for the many other generalizations and applications in nonequilibrium
systems, we just can refer the interested reader to recent collections of articles on
these topics [146,154,156,222] and the references given therein.
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2.2 Polar representation of Brownian dynamics

Let us now consider the dynamics in two spatial dimensions and without external
forces. A very useful representation is obtained in polar coordinates of the velocities
[306]. The Cartesian components of the velocity v, v, may be written in terms of
polar coordinates as

vy = s(t) cosp(t), vy = s(t) sinp(t) (15)

with s(t) = |v(¢)| > 0 being the speed of the particle and ¢(t) the polar angle defining
the direction of motion, i.e. the angle between the velocity vector and the z-axis.
The two spatial components for the position follow the dynamics

d
T = v(t) = s(t)eu(1), (16)

were e, (t) = {cos p(t),sin ()} is the unit vector in the velocity direction at time t.
The corresponding stochastic equations for s(¢) and ¢(¢) contain multiplicative noise

d d
Ss=—ns + VADE(D), L= %\/@@,(7&) (17)

and have to be interpreted in the sense of Stratonovich. The noise terms &,(t), &, (t)
read

&(t) = (&(t)cos o+ &(t)sing),  &o(t) = (= &(t)sing +&y(t)cosp)  (18)

and are statistically independent. However, in contrast to the angle noise £, (t) the
mean of the speed noise ({(t)) does not vanish. The corresponding Fokker-Planck
equation for the transition probability in the new variables 13(3, ©,t]80-%0, to) reads

8P(Sa 907t|50'§007t0) a D ~ 62P D 62]5
=5+ = )Pt + D+ S 1
8t as ’YS + S + (982 + 82 8@2 9 ( 9)

which in the long time limit becomes independent of the angle and approaches the
Rayleigh speed distribution

Py(s,p) =N s ex (——) 20

o(5,¢) (-1 (20)
We note here that the probability to have zero speed vanishes in agreement with the
Maxwellian velocity distribution. The stochastic force agitating the particle perma-
nently hinders it to come to full rest. This is one particular reason why the concepts
of the simple Brownian motion framework have to be critically reviewed when applied
to self-propelled objects.

2.3 Internal coordinates frame for polar particles

Many active particles, such as for example biological agents, may have a distinct body
axis defining their preferred direction of motion (head-tail axis). Whereas this asym-
metry is obvious in higher organisms, it should be noted that the crawling motion of
cells is also driven by a polar actin cytoskeleton [180,204,241,289]. Also, for artificial
active particles, such as chemically-driven colloids, it might be natural to assume a
preferred direction of motion based on their propulsion mechanism® [169,265,300].

1 See also Sect. 3.4 for models where the velocity and propulsion are not in parallel.
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Fig. 1. Schematic visualization of the motion of a polar particle with unit vectors of the
internal coordinates e (t),es(t) at a given point in time ¢ = tog. The dashed lines indicates
the trajectory of the particle I(t).

Without resolving the details of the origin of the asymmetry we simply assume
that the polarity of particles introduces a distinct orientation, which we will refer to
as heading. In general, we define the heading by a time dependent unit vector ey,
which in two dimensions is entirely determined by a single angular variable ¢:

en(t) = (cos ¢(t), sin ¢(t)). (21)

Thus the velocity of a point-like polar particle can be expressed by its velocity with
respect to the heading and the corresponding heading vector v = vej,. The velocity v
can be positive or negative, which can be identified with “forward” and “backwards”
motion with respect to the heading. In order to be able to span the two dimensional
space we need a second unit vector, which can be associated with the angular direction
perpendicular to the heading direction

ey (t) = (—sin@(t), cos ¢(t)). (22)

Here, we should emphasize that, despite the apparent similarities, the (v,¢)-
coordinates have to be distinguished from polar coordinates (s, ). In polar coordi-
nates the speed is always positive s(t) = |v| and the velocity unit vector e, is defined
by the direction of the velocity vector at time ¢. In (v, ¢)-coordinates the velocity v
of a polar particle can be also negative, corresponding to backwards motion of the
particle with respect to its heading. Furthermore, the heading vector does not depend
on the momentary velocity but is defined by the intrinsic polarity of the particle. In
Fig. 1 a schematic visualization of a moving polar particle and the corresponding unit
vectors is given.
In general the following relations hold between the two coordinate systems:

_J4+1 forv>0 e forv>0
eh'e“_{—l forv <0 (b_{go—i-?r forv <0 (23)

In cases, where the velocity v is restricted to positive values, or where the particle is
apolar, in the sense that its velocity dynamics are indistinguishable for forward and
backwards motion, the internal coordinate frame cannot be distinguished from the
polar coordinates. In this cases we will use throughout the review the corresponding
polar coordinate unit vectors (ep, — €., €, — €,).
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2.4 Markovian dichotomous process and white shot noise

In this review, we will often make use of the dichotomous Markovian process (DMP),
also called, the random telegraph noise. For this reason, we give here more details on
this process and its white-noise limit case, called white shot noise or Schottky-noise
[46,136].

Because we are concerned with random motion, we illustrate the DMP by the
example of dispersing particles immersed in a flow through a cylindrical tube with
layers of different velocities. We follow here the work by van den Broeck [80] who
revisited Taylor dispersion in 1990. The problem was first considered experimentally
and theoretically by G.I. Taylor in 1921 [345] and in a series of papers in 1953/54
[342-344]. Similar theoretical problems have been formulated also by S. Goldstein
and others [142,185,257]; comprehensive reviews about DMP in dynamical systems
can be found in [16,30,167].

Taylor found that particles subject to layers of different flow velocities undergo
additionally to the main stream flow a diffusion-like motion. To obtain this behavior,
he considered scattering of the particles in the stream causing random jumps of the
particle to other velocity layers. He even linked this behavior and his analysis to
Pearson’s problem of random insect migration.

Let us consider a flow in one dimension with two layers and with z(¢) denoting
the position of the suspended particle in the frame co-moving with the mean flow. It
is assumed that the particle changes randomly with a given constant rate A between
the two layers in which it moves with a constant relative velocity, either +vg or —vy.
The velocity is then a DMP ¢pap(t), and the Langevin equation for the particle
reads

d
El’(t) =&pmp(t) (24)

For a temporally symmetric DMP, the life time of one of the velocities (before
switching to the respective other one) is governed by an exponential distribution

w(r)dr = Aexp(—A7)dr. (25)

The transition probability densities Py (z, t|xo, &0, to,) for the particle to be at r
and the DMP to be at £(t) = +wvg at time ¢ given the particle was at 7o and the DMP
was at & at time tg is governed by equations like

or, P,

W = — 7o 8:1; —)\PJF"_)\Pf, (26)
OP_ OP_

W = +UOW+)\P+—)\P,. (27)

The conditions for ¢y enter by the initial conditions for Py at ¢t = ¢y. The probability
averaged over the two velocity states and their initial states P(z,t) = Py(x,t) +
P_(z,t) is given by the known second-order telegraph equation [16,30,46,167,320]

0*pP oP 0*pP
IA— — 02— =0. 28
e TR (28)
This equation can be solved in terms of modified Bessel functions but has been
supplemented by initial conditions for Pi¢, or, respectively, P and the flux J =
vo(Py — P_) at tg. Multiplication by 22 and integrating over z yields the same equa-
tion which Langevin earlier obtained for Brownian motion [209] with the respective
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re-assignments. By starting exactly at ¢ = 0 at time ¢ty = 0, one finds that the mean
squared displacement evolves according to

’1)2
@) =2 [t - o5 (- exp(-220)| (29)

which should be compared to Eq. 7: 2 corresponds to the relaxation rate (v in Eq. 7)
and v2/(2)) is the spatial diffusion coefficient (kg7 /7 in Eq. 7); an additional factor
of three in Eq. 7 is due to the difference in spatial dimensions.

A generalization to an asymmetric two state process with different rates A4 and
different values of the velocity Eparp(t) = vy can be easily formulated. The transition
probability is expressed by the equation

2p P P 2P 2P
0 9 0 > +vypv_ 0 0 0. (30)

ﬁ“r()ur-F)\f) (at+<’l)>ax W+(U++U,>atax=

Here the mean velocity (v) = (A_vy + Ajv_)/(A; + A_) was used. The diffusion

coefficient in the asymmetric case can be calculated as

Deg = AA— (v —v-)?
A +A2)3

(31)

We now outline the DMP’s limit case of white shot noise [46]. The asymmetric
DMP, as discussed so far, acts like a colored noise. Its inverse correlation time is given
by the sum of the switching rates 7.1 = A_ + ;. The noise strength is determined by
Dpup = (vy —v_)?7./4. The limit to white noise can be taken if shifting one of the
possible velocity values to infinity combined with a simultaneous vanishing of its live
time. Specifically, we let the upper level vy — oo and its live time 7 = 1/A; — 0
while keeping the mean area vy 7, = h constant. In this way, the DMP &pasp(t)
collapses to shot noise sy (t). It consists of a sequence of § peaks with weights h;:

n(t)
Eon(t) = hid(t —t;). (32)

The number of events n(t) in the interval (0,¢) follows from a Poisson distribution
[53,73,111,195,229, 259, 384].

P(n(t)) = Probln(t) = n] — “7?” exp(—t). (33)

Here ) is the rate of generating spikes, which equals the inverse living time of the
lower state v_ of the DMP, i.e. A=A_=1/7_.

The weights h; are exponentially distributed, which is a property inherited from
the statistics of the stochastic duration of the DMP’s upper state [46] - the latter
remains exponentially distributed even in the limit case of a vanishing mean live
time. Its mean value approaches the fixed area in the limit (h;) = h = lim,, o vy7,.

How similar is shot noise to the more commonly used Gaussian white noise? Like
the latter, shot noise is a white noise, i.e. these fluctuations are § correlated. This can
be also seen by means of the correlation time 7. = (Ay + A_)~!, which vanishes if
one of the live times ()\jrl or A~') goes to zero. Remarkably, 7, is dominated by the
smaller of the two mean live times (i.e. by the higher rate).

While temporal correlations of shot noise and Gaussian white noise are similar,
the distribution of shot noise is obviously not that of a mean-zero Gaussian distri-
bution. First of all, shot noise has a mean value <§5N(t)> = v_ + h/7_ which is
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in general different from zero. Secondly, there is a strong asymmetry between the
positive spikes and the negative base line v_, which stands in marked contrast to the
reflexion symmetry of any Gaussian distribution. This asymmetry affects also severely
the statistics of dynamical systems driven by shot noise (see, for instance, studies by
Richardson and Gerstner [287,288]).

The difference from a Gaussian process can be quantified by the parameter [46]

G=|vy —v_|T. (34)

This value will vanish if simultaneously both lower and upper levels diverge according
to v+ — +oo and the respective mean live times vanish A7' — 0 while the two mean
areas v, 7y and v_7_ are kept constant and equal to each other. Obviously, this
limit restores the symmetry of the process. Furthermore, it can be shown that third-
and higher-order cumulants of the increments of this symmetric shot noise become
negligible and that its effect on any dynamical system is completely equal to that of
Gaussian white noise. In this sense, the DMP approaches Gaussian white noise in the
above limit, although it still attains only two discrete values in this limit.

3 Basic concepts of self-propulsion
3.1 Dynamics of active Brownian particles
3.1.1 Nonequilibrium, nonlinear friction and external forcing

So far energy was supplied to the particle by molecular agitation which has led to
stochastic forces. In this Section, we want to generalize the idea of Brownian particles
by including an additional energy input. In this way we will be able to derive a
simplified model of biological motion which we call Active Brownian motion.

The major question we will address now is how this known picture changes if we
add an internal “activity” of particles. Our main assumption is the additional inflow
of energy leading to active motion can be described effectively by negative dissipation
in the direction of motion. Hence, it will be modeled by negative friction instead of
a constant friction coefficient . We introduce a nonlinear friction v(r,v) which is
a function of the position and velocity and, what is most important, has regions in
the phase space (r,v), where it assumes negative values. In addition, fluctuation-
dissipation relation becomes invalid for the non-equilibrium case of self-propulsion
[181].

Simple models of such active Brownian particles were studied already in several
earlier works (see e.g. [196,235,291,305,308,311,330]). Here we will review and an-
alyze in a more systematic way models of active Brownian particles with negative
friction as well as the depot model of particles which are able to store the inflow of
energy in an internal depot and to convert internal energy to perform different activ-
ities [106,312]. Other versions of active Brownian particle models [291,308] consider
more specific activities, such as environmental changes and signal-response behavior.
In these models, the active Brownian particles (or active walkers, within a discrete
approximation) are able to generate a self-consistent field, which in turn influences
their further movement and physical or chemical behavior. This non-linear feedback
between the particles and the field generated by themselves results in an interactive
structure formation process on the macroscopic level. Hence, these models have been
used to simulate a broad variety of pattern formations in complex systems, ranging
from physical to biological and social systems [161,235,308,311,314,315].

Most of the time we will consider problems homogeneous in space with v(r,v) =
~(v). The situation of spatially localized energy sources (food centers) generates more
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complicated dynamics and was discussed in [106]. For such energetic pumps, the basic
ideas about nonlinear friction have been formulated by Helmholtz and Rayleigh, whose
aim was to model the complex energy input in musical instruments. These models
applied to walkers will be the starting point, followed by a model of particles with an
internal energy depot. It will be assumed that the Brownian particles have the ability
to take up energy from the environment, to store it in an internal depot and to convert
internal energy into kinetic energy. Further on, we will discuss some specific models
of active Brownian particles with a particular focus on the role of active fluctuations.
We will conclude this section with a brief discussion of a generalized model of active
particles, where the direction of propulsion (motor direction) is considered as an
additional degree of freedom.

In other words we use Langevin equations which include acceleration terms result-
ing from the energy inflow. We will show, that in comparison with simple Brownian
particles, the dynamics of active particles becomes much more complex, which result
in new dynamical features as e.g.:

— new diffusive properties with large mean squared displacements,

— unusual velocity distributions with crater like shape,

— formation of limit cycles under confinement corresponding to motion on circles in
space.

Some of these features may resemble active biological motion. Hence, the basic idea
can be formulated as follows: how much physics is needed to achieve a degree of
complexity which gives us the impression of motion phenomena found in biological
systems?

In order to avoid misunderstandings we would like to stress again, that we do not
intend here to model any particular biological or social object but instead to analyze
general physical systems far from equilibrium, which exhibit active motion and new
types of dynamics.

3.1.2 Active Brownian particles with velocity-dependent friction

The motion of Brownian particles with general velocity- and space-dependent friction
in a space-dependent potential U(r) can be described again by the Langevin equation
(see Eq. (1):

dr dv
The new feature is the dissipative force which is now given with a position and velocity
dependent coefficient

Fdiss = —’7(1‘7V)V~ (36)

The force acts in direction of the motion and the friction (r,v) may depend on
space, velocity and time. The term F(t) is a stochastic force with strength D and a
d-correlated time dependence, see Eq. (2). But now, due to nonequilibrium, this noise
strength is independent of the parameters in the dissipative force and the Einstein
relation is considered invalid.

We consider, without loss of generality, m = 1 and D, becomes D, which gives us
the following Langevin equation with unscaled Gaussian white noise £(t) as defined
in Eq. (6).

T v = av) - VUR) + VADE(). (37)
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It gives the basis for the derivation of an energetic balance. From the time derivative
of the full mechanical energy one obtains

d dv dr

which averaged over the noise yields
d 2
CAB) = (v, ) v? 4 D. (39)

One sees that negative values of the friction coefficient lead to an increase of the
mechanical energy.

Since the fluctuating source is Gaussian white noise the transition distribution
density P(r,v,t|rg, vo,to) obeys a Fokker-Planck equation

8P(I‘ v t|I‘0 Vo to) opP oP 0 oP
2 L vu :—[,PD—] 40
ot +v6r+v (x) ov  Ov Vrv)v P+ ov (40)
In the important case that the friction coefficient is only velocity dependent and
external forces are absent (VU(r) = 0) the velocity distribution becomes stationary
and it holds

Py(v)=N exp{— % /V dv”y(v’)v'} =N exp{— %}, (41)

where ®(v) is the effective velocity potential. Let us consider now several models of
the self—propelling mechanism. Velocity-dependent friction plays an important role
e.g. in certain models of the theory of sound developed by Rayleigh and Helmholtz.
Following them we assume a parabolic behavior of the friction coefficient

2
7(r,v)=—a+ﬂv2=a<zg - 1) =B (* — ). (42)
0
This Rayleigh-Helmholtz- model is a standard model studied in earlier papers on
Brownian dynamics [121,196]. We note that v = /3 defines a special value of the
velocities where the friction is zero. At low velocities (v? < vZ) the friction is negative.
Hence, the particle gains kinetic energy from the pump. Alternatively motion with
greater velocities will be damped.
Without noise the direction of motion is defined by the initial condition. With
noise the particle moves in the long time limit in all directions. This is seen from the
shape of the stationary velocity distribution

1 v? v
Py(v) —Nexp{D (a 5 B 1 )} (43)
Dependent on the sign of a, the particle is passive (a < 0) or active (a > 0) extracting
or pumping energy, out of or into the kinetic energy of the particle, respectively. The
corresponding single peaked and crater-like distributions are presented in Fig. 2.
The second standard model for active friction with a stationary velocity vy was
derived from experiments with moving cells and analyzed by Schienbein and Gruler
in 1993 [121,305].
It was originally formulated for the speed as a variable and may be seen as a linear
simplification of the Rayleigh-Helmholtz friction. The dissipative friction force can be
written in terms of speed s = |v| and the corresponding unit vector e, = v/s as

—y(V)v == (s — v) ey. (44)
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Fig. 2. Stationary Cartesian velocity distribution in case of Rayleigh-Helmholtz friction.
Left panel: passives regime with @ = —0.1; right panel: active regime with a = 1.0; other
parameter values: § = 1.0, D = 0.5.

It was shown by the mentioned authors that this model allows to describe the active
motion of several cell types as e.g. granulocytes. A disadvantage of this model is
the discontinuity of the friction term at v = 0. An advantage is the convergence
of the friction for large speeds s to linear (Stokes) friction. The stationary velocity
distribution for the friction function in Eq. (44) in Cartesian coordinates reads [121]

Po(v) = N exp{ =2 (Iv] = v0)*} (45)

An alternative formulation of the Schienbein-Gruler friction takes into account the
polarity of an active particle (see Sect. 2.3), which may be motivated by the distinct
body axis of many organisms, defining their preferred direction of motion (head-tail
axis). Also, for artificial active particles it is often natural to assume a preferred
direction of motion based on their propulsion mechanism. The preferred direction of
motion (heading) is given by the unit vector e, (Jep| = 1) and the Schienbein-Gruler
friction can be written as (see Sect. 2.3):

=v(v)v == (v —vo) €. (46)

Please note that the two different Schienbein-Gruler variants are only equivalent
if we define the heading vector as the velocity unit vector e, = e, = v/|v|. In the
general case, the second (polar) variant of the Schienbein-Gruler friction (46) is not
symmetric with respect to v = 0. It accounts also for the possibility of backwards
motion with respect the heading direction, which Schienbein and Gruler neglected in
their original work [305]. As a consequence the first variant of the friction function
is symmetric with respect to v = 0 (apolar): there is no front or back for an active
particle - the particle moves always to the “front”. Related equations of motion with
constant propulsion and linear friction have been used for example in the description
of bacterial motion [67,74].

In the following we will use, if not otherwise stated, the polar variant of the
Schienbein-Gruler friction [298].

With velocities in polar representation (see Sect. 3.2) the stationary distribution
can be derived. It will be reached at times large compared with 1/4y and is indepen-
dent on the direction of motion and reads for the polar Schienbein-Gruler friction:

Po(v) = N exp{- %% (] — )’} {1 4 exp{—;v0|v|}] . (47)

Again a crater-like distribution is established if vy > 0 [298].
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3.1.3 Depot model

Now we will consider a friction function which is well behaved in the full velocity
range. This friction function is based on the idea of particles with an energy depot
[106,311,312], and has been recently used in the context of bacterial motion [68,134].
We assume that the Brownian particle itself should be capable of taking up external
energy storing some of this additional energy into an internal energy depot, e(t). This
energy depot as an internal property of the considered objects may be altered by
three different processes:

1. take-up of energy from the environment; where ¢(r) is a space-dependent pump
rate of energy

2. internal dissipation, which is assumed to be proportional to the internal energy.
Here, the rate of energy loss, ¢, is assumed to be constant.

3. conversion of internal energy into motion, where h(v) is the rate of conversion of
internal to kinetic degrees of freedom. This means that the depot energy may be
used to accelerate motion on the plane.

The extension of the model is motivated by investigations of active biological motion,
which relies on the supply of energy, which is dissipated by metabolic processes, but
can be also converted into kinetic energy. The resulting balance equation for the
internal energy depot, e, of a pumped Brownian particle is then given by:

%e(t> — g(r) — ce(t) — h(v) e(t). (48)

A simple ansatz for ¢(r) and d(v) reads:
q(r) = qo h(v) = dv? (49)

where d > 0 is the conversion rate of internal into kinetic energy. Under the condition
of stationary depots we get

q0
c+dv?’

€y = (50)
The energy conversion may result in an additional acceleration of the Brownian par-
ticle in the direction of movement. This way we get for the dissipative force including
the usual passive friction and the acceleration on the cost of the depot

Faiss = —vov + de(t)v. (51)
Correspondingly, we find a Langevin equation which contains an additional driving
force, de(t)v:
d
FTAd +yov + VU(r) = de(t)v + F(t). (52)

Hence, the Langevin Eq. (52) is now coupled with the equation for the energy depot,
Eq. (48).

The energy loss of the depot is fully converted into kinetic energy of motion of
the Brownian particle. This is confirmed by the balance of the kinetic energy:

Ehrin = vy, +vy0, = (de —y0)v2 + V2D v - € (53)

where the first term on the r.h.s., the input of kinetic energy, is equal to the negative
of the last term in Eq. (48).
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Fdiss<v)

v/

Fig. 3. Friction force driving active particles corresponding to the depot model (SET-
model): (i) passive friction force ¢ = 0, = —1(dash-dotted straight line crossing the center).
(ii) Depot model for positive values of the strength of driving: ¢ = 0.5 (dashed line); { = 2
full line; ¢ = co (dash-dotted line with a step at zero).

In most cases we will assume in the following that the energy depot is stationary
é(t) = 0. This allows the adiabatic elimination of the energy and leads to an effective
dissipative force (see Fig. 3):

dq
Fdiss(v) = - [’Yo - c—|—dvz} V. (54)

The corresponding friction function is

dq

_— 55
c+dv? (55)

(V) =10 -
The behavior of the force and the friction changes qualitatively in dependence on the

bifurcation parameter [121]
d
I (56)
Y0
For positive (—values we observe that the force disappears for three values of the
velocity, corresponding to an unstable velocity fixed point for vanishing velocity v = 0
and two stable fixed points at a finite speed v? = v > 0.
Let us now consider several special cases in more detail: In the case that the
velocities are small (v? < ¢/d) we get for the friction law

v(v) = (70 - Ciq) - qc—de2 +0 (v, (57)

which corresponds with

dq qd
= — —Y; == 58
« Y o3 6 2 ( )
to the Rayleigh-Helmholtz model discussed above (42).
The dissipative force for different values of ¢ is shown in Fig. 3. For positive (, due
to the pumping with free energy, slow particles are accelerated and fast particles are
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PU(V)

Fig. 4. Stationary Cartesian velocity distribution function of active Brownian particles for
the depot model with under-critical values of the parameters (left panel; passive regime,
go = 0.5) and with over-critical parameter values (right panel; active regime, go = 2.0).
Other parameter values: d = c =y = 1.0, D = 0.5.

damped. At certain conditions our active friction functions have a zero corresponding
to stationary velocities vy, where the friction function and the friction force disappear.
The deterministic trajectory of our system moving on a plane is in both cases attracted
by a cylinder in the 4d-space given by

vf + vg = vg (59)

where vy is the value of the stationary velocity. For the Rayleigh-Helmholtz model
(RH) and the depot model (DM) the stationary velocities read:

3 (RH); vy = o d (DM). (60)

We insert the effective force of the depot-model (54) into the Fokker-Planck equation.
The stationary solution of the latter reads approximately

v =

(0]

o) =N (14 942) 7 exp[- 20 v2] (61)
0 c 2D ’
The Fig. 4 shows a cross section of the probability distribution for Rayleigh-Helmholtz
and Schienbein-Gruler-Helbing friction function. In case of strong noise and low
pumping the particles approach high velocities and broad distributions. Except in
the close vicinity of vanishing velocities the pre-factor in equation (61) can be
neglected.

3.1.4 The limiting case of constant speed

The velocity distributions, Eqgs. (43), (45), (47) and (61), collapse to a d-peaked
distribution at vg in the limit of vanishing noise with respect to the pumping term.
The limit has to be taken such that 3/D or ~y/D — oo, respectively, and with
vg = const. # 0 one gets

Bo(|vl]) oc d(|v[ = o). (62)

It yields the case of constant speed in which the dynamics of the particles can be
described by the angular direction ¢(¢) and spatial coordinates. The dynamics is
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given by Eq. (16) and the corresponding Langevin equation for the angle, i.e. the
velocity dynamics Eq. (17) reduces to

s(t) = vg = const., igo _ 1 V2D E(t). (63)
dt Vo

A more detailed discussion of specific aspects of these models will be given throughout
the next two sections. Here we point out that the important class of models with
constant speed emerge from the Active Brownian particles framework in the discussed
limit. Thus, we emphasize, that the concept of Active Brownian particles goes beyond
this restriction and accounts naturally for fluctuations of the speed.

Assuming constant speed s(t) = vg = const. (vg > 0) the Fokker-Planck-Eq. (19)
describes transitions in the angle dynamics by P(¢p,t|¢o,t0) and reduces to

OP (i, o, t D 0*P
(0, tlo 0):72 " (64)

ot vg Op

With the initial condition P(p,to|po,t0) = 0(¢ — ¢o), this equation is solved by a

Gaussian with phase diffusion coefficients

D, = D/v3. (65)

Taking into account the periodicity of the heading P(—m,t) = P(m,t), the time
dependent solution of (64) reads

P(o, t|eo, to) = % (; + Z cosn(y — ¢o) exp(— nUDg(t - t0)>> . (66)

n=1

For large times (¢t — tg — o0), the distribution P(¢p,t|@q,to) converges towards the
homogeneous distribution 1/(27), which corresponds to a complete loss of information
of the initial direction. The relaxation rate of the angular function in Eq. (64) is given
by the relaxation rate of the first Fourier mode (n = 1), i.e. 7. = v3/D.

It might be of interest to inspect the full dynamics of Eq. (63) in Cartesian velocity
components. The Fokker-Planck equation for the probability distribution of positions
and velocities assumes the form

2
OP(r,v,tro, vo,to) op op D10 a'vx P, (67)

Vp—— —Uy=— + — |5—Vy — =—
ot Tor Yoy T3 o, Y v,

where we have used the Stratonovich interpretation of the stochastic integral. This
equation is the starting point for the derivation of equations for the moments of the
probability distribution. Later, we will use them to formulate hydrodynamic equations
for the density, velocity, and temperature of an ensemble of active particles. Here, it is
instructive to look at the dynamics of the mean velocity u(¢). To obtain the dynamics
for u, Eq. (67) is multiplied by v and integrated over possible velocity values. This
expression is normalized by the local density. Further, for simplicity we assume a
homogeneous situations and put all spatial derivatives to zero. This yields

d D

—u(t) =——u 68

7= (65)
The mean velocity relaxes to zero and the mean relaxation time 7, = v3 /D is inverse
to the intensity D of the noise which acts on the angle leading to a loss of directed
motion.
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3.1.5 Angular dynamics of Active Brownian particles

Some of recent measurements [255] indicate that during short time intervals the hops
leading to the overall random motion of Daphnia may follow with some preferred
angle to the left or right with respect to their previous direction of motion. In the
following we will consider generic models which describes such kind of motion. We
will present some details within a model of active Brownian motion and formulate
also random walk model for a hopping dynamics.

The aim is to develop powerful techniques for the determination of the diffusion
coefficient. This diffusion coefficient if of central interest [252] in certain problems e.g.
in ecology and has received renewed attention recently [200,219,220,236,273,307]. It
was proposed to be the central interest since an optimally selected diffusion coefficient
might give an advantage in the search for food [77,78,133]. Food consumption in a
fixed time and in bounded geometries depend significantly on the value of the spatial
diffusion and can be maximized by optimal selection of its value [307].

Here we look first at active Brownian particles performing the motion with a
preferred rotation direction, quantified by the angular velocity 2. Motivated by the
example of Daphnia mostly performing an in-plane motion, we confine ourselves to
a two-dimensional situation. In what follows, we first consider the properties of the
angular motion of such active particles. In the next chapter, we will discuss how they
affect their spatial diffusion. Here, we concentrate on the quite realistic case when the
speed (absolute value of the velocity) can be taken as a constant but fluctuations in
the direction of motion cannot be neglected.

The inclusion of turning angles is best represented in a polar coordinates descrip-
tion. Simply requiring that the angle will change per unit time by a fixed amount is

described as V2D
o) = 909(s) + Y22e0), (69)

where Q(t) is the instantaneous angular velocity. The function g(s) shall describe a
principal variation of the angular velocity in dependence on the speed s = |v|. It is
obvious that this function can be also a function of ¢ if the problem is not isotropic,
say in case of applied external forces.

The second term on the r.h.s. of Eq. (69) stands for the fluctuating force with in-
tensity D. An important case is that {2 is constant or switches between two different
constant values, which represent two possible turning behaviors of the particle (di-
chotomous switching). As a transition rule for the switching between the two turning
velocities one might assume that the dynamics follows a dichotomous Markov process,
or as shown in the next section, the problem can be formulated as a renewal process
with arbitrary waiting times densities in both states. Last but not least, {2 can be also
a second Gaussian random process, which we will introduce later on as active internal
noise. It has a component perpendicular to the direction of motion with g(s) = 1/s
(see Eq. 86) and stands for a random variation of the angular velocity.

In case of active Brownian particles we formulate the problem as a Newtonian
dynamics with specific forces. The arising question what forces correspond to the
introduced angular velocity can be easily answered via a transformation back to
Cartesian velocities. In the two dimensional case we find in addition to the active
pump and the noise term a force with

d Q(t)vy
VO Puaring =a(v) (G0 ). (70)

It resembles a Lorentz or Coriolis force with a vector Q = (0,0,9Q) pointing in the
z-direction perpendicular to the plane of motion. For the Lorentz-force, if the vector
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is the magnetic field and g(|v]) = 1, a charged particle performs a Larmor precision
motion on a circle with radius depending on the initial conditions. Choosing g(|v|) =
1/|v| the turning force becomes independent on the speed, which has been verified in
experiments on artificial active particles [265]. We point out that the consideration
of white noise (shot or Gaussian) will lead to a Stratonovich term, which will be
discussed later on.

We proceed with the assumption that the velocity approaches quickly a stationary
speed (s — vg, Eq. 62). From (69) one obtains the Fokker-Planck-equation (for the
case that the angular velocity is not a white noise)

0 oP o%p
ap(%f) = *Q(t)% + D@T(pg (71)

with D, defined in Eq. (65). We note that D, is not necessarily small: For the

Rayleigh-Helmholtz model (42) with a?/3 > D the value of vy is of the order \/a/f3
and D, ~ Df/a can be rather large for moderate values of a.

For a constant value of the angular velocity € this motion can be described by
the following unwrapped transition probability density (¢t > 0):

(O Qt)2>

1
P(p,t|pg,0) = ———— -exp| —
(oo 0) = e (-

(72)

3.1.6 Active Brownian dynamics resulting from coupling of molecular motors

An example for active Brownian motion arising as a collective effect is the intracellular
transport by coupled molecular motors. Motor proteins like myosin or kinesin run
along filaments (actin, microtubules) within the cell, transport vesicles, or provide
active forces [168,181]. Single motors have a preferred direction of motion along a
given filament, a motion that is powered by ATPase. In many situations motors are
coupled, for instance, when pulling collectively at a large vesicle [149]. Collective
effects in motor assemblies can be studied in vitro in motility assays in which the
roles of transporter and track are reversed: on a glass surface covered with motors
fixed in their position, a filament is transported involving typically a large number of
motors (up to a few hundreds). A genuine collective effect which has been found in
such experiments, is the occurrence of bidirectional motion. A filament running for
a while in one direction suffers apparently spontaneously a reversal of the direction
of motion and runs “backwards” [114]. This and other features of coupled molecular
motors have been studied in the model by Jiilicher and Prost, that we briefly discuss
and for which we review the relation to an active Brownian particle’s dynamics in the
following.

The interaction between motor proteins and filament can be captured by different
free energy landscapes between which the system switches by binding and release of
ATP/ADP. Essential features of the motor’s dynamics can be already captured in a
model system switching between only two potentials where one of them is flat while
the other one possesses a periodic structure with broken spatial symmetry (ratchet
potential). Typically, the unbinding of the motor depends on its position along the
backbone while the binding of ATP can be assumed to be independent of the motor
position. The motion of the motor is affected by two kinds of noise: the thermal
motion and the switching between the two states which is likewise stochastic. In a
simple approach to the dynamics of motor assemblies, the coupling of motors can be
regarded as rigid leading to only one spatial degree of freedom: the position of the
backbone (e.g. its center of mass). In this approximation, the force acting on each
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Fig. 5. Model of coupled molecular motors (CMM) (a), a typical trajectory of the backbone
(b), and the corresponding velocity (c) for N = 300 and a = L/2. For large N, the dynamics
of the CMM model can be approximated by the dynamics of an active Brownian particle.
Panel (a) modified from [223].

motor contributes to the total force on the filamentous backbone and, in turn, the
velocity of the single motor is given by that of the backbone. The equations for the
overdamped dynamics of the backbone read

kT A
N

N
. 1 7 .
Am:Fezt_N ElO'j(t)W (,’E+]~q)+ n(t),
j=

=0 = g;=1. 73
J ri(z+j-q) / ( )

Here, x is the central coordinate of the backbone, A is a an effective friction coefficient
per motor, F.,; an external force applied to the backbone, and W (z) is the piecewise
linear ratchet potential shown in Fig. 5a, the asymmetry of which determined by the
parameter a (see Fig. ba; for a = L/2 the potential is symmetric). The state of a
given motor j at time ¢ is determined by the variable ¢;(¢) which takes the values 0
or 1. The switching rate ro for the transition 0 — 1 does not depend on the spatial
position. The rate for the transition 1 — 0 attains the value #; only if the motor
is within the neighborhood of size d centered around the potential minimum and is
zero otherwise. Parameters in the following are L = 1, d = 0.2L, W = 1, A = 0.01,
ro = 40, and 7; = 500. For simplicity, thermal fluctuations are neglected.

Simulations of the model for a large number of motors reveal a bidirectional motion
of the assembly (cf. Fig. 5b) corresponding to a bistable velocity dynamics (Fig. 5¢). It
has been suggested [14,223,351] that the velocity of a large motor assembly (N > 1)
can be well described by

d=v, 0= [f(v)+gv)t), (74)

i.e. by an active Brownian particle (ABP) model, in which we also allow for a speed-
dependent noise intensity. This means essentially that for large N (i) the space de-
pendence of the problem vanishes and (ii) the many dichotomous degrees of freedom
together with the interaction of motors and potential results in one continuous degree
of freedom (the velocity). The original problem does not possess any inertia, the new
time scale introduced in Eq. (74) comes from the switching times of the motor and
the relaxation of the probability density of motors in the spatial ratchet potential.
We can write down a rather lengthy Master equation with one spatial degree and
N dichotomous degrees of freedom for the system Eq. (73) and try to approximate
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Fig. 6. Drift (a) and noise amplitude (b) of the CMM model estimated by the increment
(solid) and distribution (dashed lines) methods for the symmetric system with a = L/2. In
(c) the velocity power spectrum of the CMM model (dashed line) is compared to that of the
approximating ABP model; for the latter, f(v) and g(v) were estimated via the distribution
method. Also shown in (c) is the analytical approximation Eq. (75) (solid line) to the ABP’s
power spectrum consisting of two Lorentzian spectra. Modified from [351].

this equation by a Fokker-Planck equation with one spatial and one velocity degree
of freedom corresponding to Eq. (74). Whether this is possible and if so how this
mapping can be carried out analytically is still an open problem. In the following,
we present some numerical evidence that a mapping from CMM to ABP model is a
meaningful approximation.

Assume, that Eq. (74) is a reasonable approximation of the CMM model and sup-
pose, a long time series of the assembly’s velocity is given, how could we determine
the functions f(v) and g(v)? There are two methods to determine these functions
[351,377]. First, we could measure how the velocity changes on a short time-scale.
Mean and variance of the instantaneous velocity changes should be proportional to
f(v) and g(v), respectively. Put differently, one measures the Kramers-Moyal coeffi-
cients of v(t) [292]. Secondly, we could also measure the stationary distribution P(v)
(long-time statistics), which is uniquely determined by the two functions we are seek-
ing. Together with one additional piece of information involving the time scale of the
system (e.g. the rate of velocity reversals or the spatial diffusion coefficient), one can
determine both functions f(v) and g(v).

The two methods have been applied to the CMM model in Ref. [351], and the
resulting drift and diffusion functions in the symmetric case are shown in Fig. 6.
The agreement between the functions determined by the independent increment and
distribution methods is remarkable and thus shows that the ABP model is a reason-
able approximation of the CMM model. The function f(v) displays the shape of an
inverted N, in particular, it possesses a negative slope for v = 0, i.e. a vanishing ve-
locity is dynamically unstable. The noise in the approximate ABP dynamics is indeed
multiplicative as the noise amplitude g(v) increases for increasing speed. The latter
feature is in marked contrast to the system studied by Yates et al. [377] in which the
noise amplitude decreases with increasing speed.

However, despite the consistent nature of the ABP approximation at short and
long time scales, there exists also a discrepancy between the CMM and ABP mod-
els on an intermediate time scale. The power spectra of both systems, shown in
Fig. 6¢ display a good agreement at low to intermediate frequencies and at very high
frequencies. In either limits the spectrum is well described by Lorentzian spectra,
which correspond to those of a two state process of velocity reversals (range of low
frequencies) and an approximate Ornstein-Uhlenbeck process for small-scale fluctua-
tions around the two metastable velocities. For the ABP model, summing up these
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two contributions [351]

N 2D g 292 (Umin) /N
T4 (mf/r)? " f(vmin)? + (27f)?

gives a reasonable approximation of the total spectrum (solid line in Fig. 6¢). The
CMM model, however, shows one additional feature, which is not captured by the
ABP approximation: there is a pronounced peak around f = 25. This corresponds to
a small-scale damped oscillation in the velocity around its metastable states, which
cannot be captured by a first-order velocity dynamics as in Eq. (74). In summary,
the velocity process of the CMM model in all its details is more complicated than the
simple ABP dynamics even in the limit of a very large number of motors. Nevertheless,
with respect to the statistics of the velocity and its reversals, to the spatial diffusion
coefficient, and to the high-frequency fluctuations, the ABP model is an excellent
approximation.

S(f) (75)

3.1.7 Depot model for internal motors and broken friction symmetry

So far, we have considered active motion induced by negative dissipation either
through an internal energy depot or an effective velocity-dependent friction. In prin-
ciple, such active Brownian particle models can always be considered as an effective,
or “coarse grained”, theoretical description of more complex microscopic dynamics
leading to self-propelled motion as discussed in the previous section (Sect. 3.1.6) in
the context of cooperative motion of many coupled molecular motors.

The physics of active transport on the sub-cellular level by such molecular motors
and of related ratchet systems is a fascinating field of research, which has been under
intensive investigation for decades now. A detailed review of the field is far beyond the
scope of this work and we refer the interested reader to other comprehensive reviews
on the subject [155,182,285]. Nevertheless, it leads us to a fundamental question,
which we would like to address here in the context active particles: How can directed,
self-propelled motion emerge in simple mechanical systems? In the case of directed
transport in a ratchet, the directionality is based on breaking of the spatial symmetry
of the underlying effective potential and in the presence of symmetric periodic forces
or non-equilibrium fluctuations.

However, as seen by examples in living systems and technical systems, directed
motion is possible also without any imposed external spatial asymmetry. The world
around us is full of creatures like insects, birds and fishes, which are capable to move in
a uniform medium by using special mechanisms developed in the process of evolution.
Most of these creatures use some kind of periodic motion in order to propel them-
selves using specialized “devices”, such as wings or fins. The corresponding motion
of individuals consists of interchanging intervals of acceleration and slowing down,
and in a simplified picture we may think of an internal oscillating motor driving
this periodic motion. Typically the various mechanisms are connected to the head-
tail polarity of the animals and to periodic changes of the shape of the individual
and the related changes in the friction with respect to the external medium (see e.g.
Fig. 7). This leads to a symmetry breaking in the velocity space, leading to asymme-
try with respect to forward and backward motion of a polar particle, which allows an
effective directed motion even if the oscillatory dynamics of the motor are symmetric.
Recently, several models for directed motion have been proposed which employ simi-
lar mechanisms of a broken symmetry with respect to an internal degree of freedom
[18,63,81,208,251,295].

We consider now the situation where the energy depot is coupled to such an
internal degree of freedom. Here, we assume that it drives the internal oscillatory
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Fig. 7. Left panel: a possible scenario for the dependence of the friction coefficient along the
direction of motion X on the internal coordinate x coupled to the propulsion force indicated
by the dashed lines. Right panel: nonlinear friction depending on the internal distance of
the dimer in dependence on the amplitude of oscillations according to the KRR model with
F() =2and C =0.8 or Yh = 3.6,’}7 =0.4.

dynamics in the inchworm model introduced by Kumar, Rao and Ramaswamy (KRR~
model) [24,208]. This new ansatz eliminates some shortcomings of the original depot
model, such as, the absence of periodic accelerations observed in animal motion, or
the difficulty to account for the case of large friction (overdamped limit) [295]. Let
us explain the latter in more detail: Within the original depot model described in
Sect. 3.1.3 the dynamics of the energy depot e(t) depend on three constants: g - input
rate, ¢ - decay rate and d - rate of transmission to energy of motion, which determine
the functioning of the motor mechanism. From the natural condition vy > 0, it follows
that the depot model works only if

d
Yo < qOT- (76)

This inequality means that the mechanism of the depot model breaks down at large
friction values and, in particular, in the overdamped limit vy — oo. However, in many
biological examples, such as the motion of microorganism at low Reynolds numbers,
this is the relevant limit. Here, we should mention the famous “Scallop theorem”
formulated Purcell [280], which states that a net-displacement of swimmers at low
Reynolds numbers is only possible if the symmetry of the motion is broken with
respect to time-reversal, which shows the fundamental role of broken symmetries for
directed motion [125].

Instead of considering particular swimming or propulsion mechanisms in the over-
damped case, we discuss here a simple but generic variation of the depot model, which
can be easily considered in the respective limit.

The basic idea of the model is the following:

1. The energy depot drives oscillations of an internal degree of freedom z (internal
motor).

2. The internal oscillations are transformed into translational motion of the active
object via a friction function dependent on the internal degree of freedom.

The varying friction can be realized for example in the following way: We consider a
two-dimensional ellipse-like object with the axes a and b. We assume that the objects
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moves on a line parallel to the larger axis (b > a). Let ¢ be the equilibrium distance
between the two focal points of the ellipse and the internal coordinate z(t) describe
the temporal deviations of the equilibrium distance. If z(¢) > 0 than the ellipse is
more stretched and for z(t) < 0 it assumes a more spherical shape. Thus a periodic
change in z(t) leads to a periodic change in the friction of the object. If further the
force leading to a displacement of the center of mass of the object X (t) is coupled to
the internal variable z (simplest case: elastic coupling), than directed motion of the
object can be observed despite symmetrical internal oscillations.

As a model of such a mechanism we consider an object with a large mass M > 1,
located at position X (¢) which is elastically coupled to an internal degree of freedom
x(t) [295]:

X=V, MV =—MI(z)V +kz+ Noise. (77)

Further we assume the internal degree of freedom (the motor) to have the following
dynamics driven by the energy depot (see Eq. 52)

T =w, v = (dev — yo)v — kx — wix + noise. (78)

The dynamics of the internal degree of freedom correspond to an active Brownian
particle of unit mass in a confining harmonic potential U(z) = (k + wg)z?/2. The
depot energy observes the standard balance equation

é=qo — ce + dv3e. (79)

We assume in our model, that the friction acting on the big mass M in the medium
depends on the internal motor variable z(t) as in the KRR-model [208] with

I'(z) = T'o(1 — C tanh(Bz)). (80)

The friction is I'g for x = 0 and decreases with increasing x up a minimal value
Tmin = To(1 = C) for z — co. It increases with decreasing x with I'pax = To(1 + C)
for £ — —oo. The internal degree of freedom x corresponds in the original KRR-model
to the relative distance of the two masses constituting the dimer.

We see that the motor plays the role of an effective bridge between the energy
depot and the dynamics of the mass M. The above mechanism of self-propulsion,
only seemingly violates the principle of mechanics that internal forces do not affect
the motion of the center of mass. However, internal forces may affect the external
dissipation, and may therefore lead to directed motion [40,63,138,251].

In Fig. 8 we shows an example of the temporal dynamics of different model vari-
ables. A characteristic feature of the dynamics is the periodic structure of acceleration,
velocities and trajectories. Similar structures of the trajectories are quite typical mode
of translational motion of animals. For example, the motion of different organisms
such as Daphnia [133], Chlamydomonas [89,132] consist of periodically repeating in-
tervals. Each interval contains at the beginning a subinterval of strong displacement,
corresponding to a large accelerating force and a second subinterval where the dis-
placement is nearly zero. Correspondingly, the velocity is a periodic function which
alternates between high and low values. In our model this time structure is based
on the action of a periodically working internal motor which generates the periodic
accelerations.

Please note that the above model is only valid if the feedback of the time-
dependent external friction I'(z) on the motor dynamics can be neglected. This ap-
proximation may lead to problems with the energy balance for example at small
k-values and big amplitudes of the friction which are neglected here.
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Fig. 8. Propulsion via an oscillating internal motor: internal coordinate z(t) and energy
depot e(t) (top); external velocity V(t) (center) and position X (¢) for two different friction
coefficients 'y = 2 and I'g = 20. Other parameters: 79 = 0.2, k = 1, wo = 0.1, M = 10,
gq=1,d=c¢c=0.1,b=1,C=0.8.

3.2 Particles driven by active fluctuations

Another important difference between ordinary Brownian motion and active moving
objects consists in the possible directions of the fluctuations and their statistical prop-
erties. This will be the central point of this section and we will distinguish between
passive noise terms from external sources acting as random (undirected) forces, e.g.
the molecular agitation in Brownian motion and active from internal noise sources
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connected with the active dynamics of the particle such as its propulsion mechanism.
The latter is connected to the actual state of the particle including its direction of
motion. In the next Sect. 3.2.4 we introduce a fluctuating energy supply which will
affect the particle’s motion in a similar manner.

We look again at two spatial dimensions and consider polar active particles with
the heading unit vector ey as defined in Sect. 2.3. The time derivative of the velocity
vector yields

v = Ve, + voe, (81)

which gives two Langevin equations for the evolution of the velocity v and the orien-
tation ¢

0= —v(v+ F(t)e, (82)
d= 1 Flt)es. (53)

Let us first concentrate on the random force F(¢) in Egs. (82). Further on, we
will distinguish two different types of fluctuations, which we will refer to as passive
(or external) and active (or internal) fluctuations, respectively. Passive fluctuations
are assumed to have their origin in an fluctuating environment in which the particle
moves. In a homogeneous environment the passive random force F,(t) has to be
independent on the direction of motion. The prominent example of particles subjected
to passive fluctuations is ordinary Brownian motion as presented in Sect. 2, where
the random force is associated with the random collisions of the particle with the
molecules of the surrounding fluid. Thus, we introduce the external fluctuations in
the same way as we did for Brownian motion in two dimensions, i.e. as a random
noise vector with the components of the vector given by two uncorrelated, Gaussian
white noise terms with the same noise intensity D. The noise vector reads:

Fo(t) = V2D(Eu(t)es + &, (D)ey). (84)

Here, &;(t) (i = z,y) are d-correlated, normally distributed random variables with
zero mean (see Eq. 6, white Gaussian noise):

(1) =0 (&()&(t) =0i;0(t —t), i =z,y. (85)

A second possible model of fluctuations is assumed to have its origin in the internal
dynamics of active particles. This active fluctuations are a pure far-from equilibrium
phenomenon and are relevant in the motion of an biological agents or artificial self-
propelled particles. The origin of these fluctuations can be for example variations in
the propulsion of chemically powered colloids [169,265,300], complex intra-cellular
processes in cell motility [42,318] or unresolved internal decision processes in animals
[27,200,250]. For example, the motion of a macroscopic animal moving in a homo-
geneous environment, where the fluctuations due the environment can be assumed
as negligible, may nevertheless appear random to an external observer. The appar-
ent randomness of the motion stems from internal decisions of the biological agent
to change its direction of motion ¢ and/or its velocity v(t) (internal coordinates).
On the other hand, for artificial active particles, fluctuations in a microscopic power
engine might occur due to its smallness. They may be associated, for example, with
fluctuations in the concentration of fuel molecules driving self-propelled colloids (see

2 Note that the angular dynamics diverge for v = 0. This is due to the fact that we are
considering point-like polar particles, which for vanishing velocity may turn infinitely fast.
This divergence can be eliminated by considering finite sized particles.
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Fig. 9. Visualization of the difference of passive (external) and active (internal) fluctuations
(thick red/gray arrows). (a) Passive fluctuations &, (t) and &, (t) uncorrelated to the direction
of motion. (b) Active fluctuations &,(t) and &,(t) (thick red/gray arrows). Parallel and
perpendicular to the direction of motion (heading).

e.g. [265,300]). The important point is that the fluctuating forces are intrinsically
connected with the internal propulsion mechanism of the active particle. Thus, the
corresponding direction of the active fluctuating forces turn with the particles orien-
tation.

We do not intend to resolve the internal processes, and assume for simplicity
fluctuations in the direction of motion and in the velocity of the agent as independent
stochastic processes, with possible different statistical properties (see also [273]).

Here, we make a simple ansatz for the active fluctuations, as independent Gaussian
white noise in the direction of motion e;, and in the angular direction ey:

Fa(t) = /2D, (t)en + +/ 2D¢§¢(t)e¢ (86)

with &;(t) as defined in Eq. 85 (i = v,¢). In the general case we have to assume
different noise intensities of the active angular and velocity noise: Dy # D,,.

We mention that smaller objects will experience always molecular agitation or the
stochastic character of the external forces. Therefore the general situation is the com-
bination of the introduced passive (84) and active (86) fluctuations. A visualization
of the different fluctuation types is shown in Fig. 9.

3.2.1 Quasi-Brownian particles with active fluctuations

Before we investigate (stochastically) pumped particles, we sketch shortly the dif-
ference between the two different fluctuating forces by considerating a simple model
with linear friction discussed in Sect. 2 in the context of ordinary Brownian motion.

Let us start with particles which are subject to Stokes friction and noise. The
case of passive fluctuations (ordinary Brownian motion) was discussed in Sect. 2. The
stationary velocity distribution according to Eq. 11 is a two dimensional Gaussian
distribution centered at the origin with width D /~. Please note that the simple Stokes
friction is apolar by definition (symmetric with respect to v = 0). Thus, the heading
vector is equivalent to the velocity unit vector ey, = e, = v/|v]|.

The dynamics for purely active noise read:

%v () + /2Dy ey (HEu(t) + /2D es(t)Es(t), (87)
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Fig. 10. Stationary distributions of a linearly damped particle with internal noise for two
different noise intensities D,. Left panel: stationary speed distribution po(s); right panel:
cross section of the corresponding Cartesian velocity distribution Py (vs,vy).

where the stochastic sources are defined in Eq. 86. In (v, ¢)-coordinates, we obtain
two decoupled differential equations for the velocity and the angle:

d d
SU= W VDG b= %\/wd) €5(1). (88)

As t — oo the velocity distribution becomes stationary without any preferred direc-
tion. It is a Gaussian in the velocity v

2 1
Po(o) =N exp(~ 35} Ro(o) = 5 (59)
For the speed s = |v| we derive
- 1 2
Bo(s) = 5 (o) + Po(-0) =7 exp (75 (90)

which in contrast to the Rayleigh distribution (20) assigns maximal probability den-
sity to the state with zero speed. The reverse transformation to Cartesian velocities
gives us the corresponding velocity distribution

Po(vay) = N — exp(—w>, (91)

1/ V2 +v5 2D,

which exhibits a singularity at the coordinate origin (x = 0,y = 0). The distribution
is clearly a nonequilibrium one. The peak at the origin is due to the many stochastic
transitions created by &, (t) which pass through the state with vanishing velocities. In
Fig. 10 two examples of the stationary velocity distribution are shown.

The most common situation is the presence of both, active and passive noise
sources, with different intensities. Therefore we consider

d

av =—yv + Fo(t) + Fp(t) (92)
where the different noise terms are defined in Egs. 84 and 86. Changing to internal
coordinates, we obtain the Fokker-Planck equation for P = P(v, ¢, t|vg.do, to) with
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the typical D /v term in analogy to polar representation, see (19),

oP 9 D 9°P D+ Dy 0P
e () R AR s = SR

D, D, and D, are intensities of the different noise sources: passive and active velocity
and angular noise. One can solve for the stationary distribution which factorizes again.
Without a preferred direction we get again the uniform distribution for the angular
dependence which is due to increased noise intensity approached at a faster time scale.
The velocity distribution is symmetrical with respect to v = 0 and reads

Py(v) = N|v|ﬁ exp{— mvz}, (94)

which for the limiting cases D — 0 and D,, — 0 gives the known distributions (89) and
(20). Due to the symmetry the speed distribution corresponds directly to the velocity
distribution, with v — s = |v| and an additional factor 1/2 in the normalization
constant A. Finally we obtain the Cartesian velocity distribution to

_ 2 21— sy gl 2 2
P()('Uz, Uy) = N (Um + 'l)y) 2(D+Dy) eXp{— m (’UI + ’Uy)} (95)

It reduces the Maxwellian velocity distribution for D, = 0 and the case (91).

3.2.2 Active shot noise fluctuations

Active, or internal, noise as discussed is not restricted to Gaussian white noise. We
assume that an active particle is subjected to white shot noise as introduced in [46]
as a limit of a dichotomous Markov process. The random “force shots” occur at
exponentially distributed times ¢; with the mean interval 7 or rate A = 1/7 The
weights h;, which the delta spikes in the shot noise are multiplied, are due to the
distribution with p(h) with average (h).

§SN(t) = Z hi(S(t - ti), <ti+1 - ti> =T, <h1> =h. (96)

As the shot noise is the limiting case of a dichotomous Markov process the weights
are exponentially distributed. Subsequently the white shot noise has the properties:

h h?
(Esn(t)) = g (Esn(t1)&i(t2)) — <§SN>2 = O(t1 — ta). (97)
The internal driving is assumed to act along the heading direction according to
d
Sv= v+ enlsn(t) + V2D, eg (). (98)

The dynamics are not overdamped, i.e. the shots do not affect the coordinate imme-
diately but act as forces pulses on the velocity. The angular noise is assumed to be
Gaussian and white as defined in (6).

Distributions of the velocities obtained from simulations are presented in Fig. 11.
For fast appearance of subsequent shots with short mean interval 7 the velocity dis-
tribution is approximately Gaussian around the mean value of the speed which is h/7
(note that the velocity scale at the abscissa starts at v = 0). It results in a crater-
like distribution in the Cartesian frame. Otherwise, in case of rare shots the particles



32 The European Physical Journal Special Topics

10° . — 3
w0t L NN SN
N 3 o XN £ ¥ E
=) N ]
R 02 [—a/y =01 i
E—\/y=10 E
F— \/y =10.0 ]
1073 ]
0.1 1 10

speed s

Fig. 11. Stationary speed distributions po(s) for Stokes friction with active shot-noise fluctu-
ations for different values of A\/y = 1/(7+). Solid lines show the result obtained in Eq. (101),
whereas symbols show numerical results [298].

spend much time at the origin leading to the peak in the Cartesian distribution. We
do not show here the situation where instantaneously the crater and the peak at zero
exist.

In polar representation with v, = wvcos(¢) and v, = vcos(¢) the equations of
motion become

b=t &) b= v2D6(). (99)

The equation for the velocity distribution is independent of the angle dynamics [73]

[e.e]
%P(v.t\vo,to) = (%'VUP — A P(v,t|vg, to) + A / dh p(h)P(v — h,t|vg,to). (100)
0
The velocity is strictly non-negative and the difference to the speed disappears. In
Fig. 11 we present results of computer simulations for three different sets of parame-
ters. Despite its simplicity the model features typical properties of active motion like
directed motion with non-vanishing mean velocity.
In the stationary limit the ¢-distribution becomes uniform again. The
v-distribution can be calculated taking the shot-noise limit of the balance equation
for the probability density function of a dichotomous Markov process. It reads

2
2

P%(v) :J\/v( ) exp(— %), v >0. (101)

Please note that as v > 0 the above velocity distribution corresponds directly to the
stationary speed distribution Py(v) = Py(s).

In Cartesian coordinates the probability distribution becomes sharply peaked at
the origin for 1/(y7) < 2:

PO (v, v,) :N|v\(%_2) exp<f ‘%') v| = yJv2 + 02, (102)

Examples of the distribution functions obtained from numerical simulations shown
in Fig. 12 confirm our analytical findings. We point out that with constant weights
the probability distribution functions obtained from simulations (not shown) differ
strongly from the result obtained in Eq. (102).
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Fig. 12. Py(vg,vy) with internal shot noise, top: the case of fast occurrences of spikes
A = 10 and damping v = 1, bottom: the case of rare generation of spikes A = 0.1 and
damping v = 1, left: simulations; central: analytics; right: cross-sections Py(vs,0) analytics
(solid) vs. numerics (symbols). Other parameter: a = 1.

3.2.3 Nonlinear friction and asymmetric driving

In absence of external forces, the shape of the velocity distribution does not depend
on the angle dynamics, as P (v, ¢,t) = P(v.t) P(¢,t|v). On the other hand the angle
dynamics depends on the velocity since the derivative of ¢(t) scales with 1/v. There-
fore a full factorization becomes only possible in the case of constant velocities or
as an approximations. Furthermore the distribution function is isotropic in the long
time limit (independent on ¢) only in the absence of external forces.

Therefore the consideration of two- and also three dimensional problems with
internal noise acting on the scalar velocity v(t) simplifies the stationary analysis
and many different models become tractable. Our third example is motivated by
vibrational dynamics and deals with nonlinear friction and an asymmetric driving
with vanishing mean. Surprisingly this dynamics may lead to a directed motion of
particles resulting in a non-vanishing mean velocity v.

As in vibrational dynamics we will assume nonlinear friction [40] and, in contrast
to the shot-noise case, stochastic forces acting on the particle with a vanishing mean

Sy = V) + eueparp(t) + VD, e(t)E(0). (103)
Here, the stochastic term acting on the velocity £parp(t) is assumed to be stochastic
force given by a dichotomous Markov process (see Sect. 2.4), whereas the angular
noise is again white and Gaussian.

Prominent types of friction are Stokes friction (n = 1) or the “quadratic drag
force” (n = 2) occurring for objects moving at large velocities through fluids, e.g.

3
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Fig. 13. Stationary velocity distributions (Cartesian frame) of particle driven by an inter-
nal DMP and Gaussian white noise in the angle-dynamics obtained from simulations. The
“double-crater” arise due to the asymmetry of the forward and backward motion.

in aerodynamic engineering. Another prominent type of friction is the so called “dry
friction” with n = 0.

It was shown by Cebiroglu et al. [57], that for a nonlinear friction the particle starts
to move into the direction of e even if the time average of the stochastic force vanishes
((€pmp(t)) = 0) as long as Eparp(t) is asymmetric. This was considered by Blekhman
[40] in an investigation of trajectories, whereas in [57] stochastic methods have been
used to find the vanishing average. The dichotomous Markov process Eparp(t) can
assume two values Ay and Ai are the rates giving the probability per unit time
to leave the corresponding states. The time average of the applied stochastic force
vanishes if

AL + AN,
t)) = =0. 104
(€pmp(t)) N+ (104)
The asymmetry of £pprp is described by the ratio
p=|A_/Ay|, with 0<p<1, (105)

where we assume, without loss of generality, |[A_| < |A4|.
Here we present only the stationary velocity probability density function

v

Poy(v) :N|i+(v)i(v)exp{—ho+ / () — / i(v')dv'],

where the functions iy (v) are defined by the inverse of the acting forces

L (v) 1

it(v) = -

* —|v["sign(v) + A
which due to the applied angular noise is independent on ¢.

The velocity distribution mapped back to Cartesian velocities is shown in Fig. 13
with a central peak at the origin and a “double-crater” like distribution. The ring-like
maxima of the probability density function correspond to the preferred speed values
in any direction. The peak at the origin stems from the finite probability of vanishing
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Fig. 14. Particles with nonlinear friction subject to DMP fluctuations with vanishing
mean. Bottom: two paths of particles in two dimensions for different asymmetry of strokes.
Top: diffusion coefficient for different exponents in the friction coefficient (103) as function
of the asymmetry [57].

speed, as for particles with Stokes friction with active Gaussian velocity fluctuation
(see Sect. 3.2.1).
We have simulated [57] the two dimensional situation

%r(t) =v(t) while v(t)=uv(t)-en(t) (106)

and two paths of realizations are shown in Fig. 14.

The particles have a nonzero average speed. The diffusive motion is becoming
stronger if the asymmetry vanishes p — 1, which is reflected in the diffusion coefficient
shown in Fig. 11. This growth is caused mostly by the variance of the velocities
which scales the diffusion coefficient and which increases if the strokes becomes more
symmetric [57].

3.2.4 Fluctuating energy depots
Another example where noise depends on the orientation can be discussed within the

depot model. We so far assumed a permanent food supply. Here we study the situation
that the food supply occurs randomly and underlies stochastic influences. Doing so,



36 The European Physical Journal Special Topics

we extend the model with energy depot (see Sect. 3.1.3) to the case that the energy
is provided at discrete times with packets of chemical energy which is subsequently
converted into acceleration of motion [331]. In contrast to mechanical external noise
which has not preferred direction, such energetic noise is directed likewise an inter-
nal noise and acts into the direction of motion. We assume, that alterations of the
direction have a different origin than the energetic noise supply.

We propose here an oversimplified model [331] and assume that the food sup-
ply is a Poissonian shot noise process as it was introduced in Sect. 2.4. More pre-
cisely we assume that the particles are supplied at discrete times with packets of
chemical energy which is subsequently converted into acceleration of motion. This
should model the situation that animals, birds, insects or bacteria pick up nutri-
ents at different, randomly distributed times. For simplicity we assume that the time
intervals between the food-supplies follow the pattern of a Poisson point process
[53,73,111,195,229,259,384]. Possible application to ratchet problems with energy
supply modeled as shot noise imposed on Brownian motion have also been presented
[101,123,124].

We relate a shot-noise driven energy depot with the Brownian dynamics of in-
dividual particles. We adapt the picture in which the energy depot accelerates the
particle along the direction of motion with the strength d [101,106,123,312,331] as
introduced in Section 3.1.3. The new assumption is that the carried energy in the
depot e(t) now obeys the stochastic balance equation

%e =q(t) — (c+ dv2)e. (107)

Therein the function ¢(t) corresponds to a shot noise consisting of energy packets
h; which are exponentially distributed with mean A and arriving at discrete times
t; with rate A = 1/7. The time average of the shot noise process is denoted as
(a(t)) = g0 = h/T.

In the case of vanishing mechanical noise, we obtain two stationary solutions
for the velocities averaged over the stochastic food supply. The first is resting with
(v1) = 0,(e1) = qo/c and the second stands for running with (v3) = qo/70 — ¢/d,
<62> = vo/d. Therefore dependently on the energy supply, the system exhibits two
different regimes. When the energy input is high enough, the particle moves at a non-
zero velocity. If the energy input is too small, the energy fluctuates but the velocity
remains zero.

Further on, we can distinguish two limiting cases [331]: (i) The smooth regime:
Here the shots are so dense that the mechanical system sees practically a continuous
flow of energy. This is the case, when the mean time interval between two shots
(tshoty = 7 is much shorter than the timescale of the decay of the energy depot
te = 1/(c + dv?). Now we insert the stationary solution for the velocity, Eq. (60,
DM). Then we speak of a smooth regime when the rate of the shots 1/7 > dgo /0. In
this situation, the stochastic food supply can be well approximated by Gaussian noise.
(ii) The shot regime: The shots arrive so seldom that every shot is a special event
which accelerates the particle. This is the case when the mean time interval between
two shots is much longer than the timescale of the decay of the energy depot, i.e. the
rate 1/7 < dqo /0.

Typical trajectories and energy distributions of the smooth and the shot regime
are shown in Fig. 15 and Fig. 16. Note that the mean energy input is equal for the two
regimes. In the smooth regime, the energy shows a maximum at e = vy/d. In the shot
regime we observe a maximum at very low energies and additional smaller maxima
at multiples of A. The maximum at low energies occurs because the particle converts
the available energy from the depot to kinetic energy much faster than the average
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Fig. 15. Typical trajectories in the smooth regime (left, 7 = 0.05) and shot regime (right,
7 = 5). The simulation times are equal for both figures, however the length scales are
different. Other parameter values: go = 1, D = 0.01,v = 10,¢ = 0.1,d = 10 [331].
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Fig. 16. Energy distributions for the smooth regime: (left 7 = 0.05) and shot regime (right,
7 = 5q). go = 10, other parameter values as in Fig. 15 [331].

time between two shots. The maxima at multiples of A occur when multiple shots of
energy arrived before the particle converted the energy of the depot to kinetic energy
and accelerated its motion.

Now we will concentrate on the impact of the shot noise and set the external
Gaussian white noise acting on the velocity D to zero. Like in Sect. 2.4 we will
treat the white Poisson shot noise as a limit of the dichotomous Markovian process
(DMP) [46,73,130,384]. This will allow us to derive an expression for the stationary
probability distributions for velocities and energy.

Because of our shot noise source does not change the direction of the velocity it
acts like an internal noise as introduced previously. Therefore we may restrict the
consideration to the motion along the direction of motion. We change to the polar
representation and get

5= (de —)s, é=q(t)—elc+ds?]. (108)

Please note that the polar representation is equivalent to the internal coordinates as
the velocity can assume only positive values s(t) = v(t) > 0. In the following we will
discuss two cases for which we can specify the stationary distributions.
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(i) Adiabatic approximation: For go > 42 /d we use the adiabatic approximation
¢ ~ 0 and insert e(t) = q(t)/c + ds*(t) into Eq. (108),

§=—"0s + () = f(s) + g(s) q(t). (109)

_w
ctds??
Following the approach that ¢(t) is a limit of a DMP we obtain

c 32

Py(s) =N s(%_ﬁ_l) eXp{— ﬁ} (110)

(ii) Static regime: For gy < c¢yo/d the system is in the static regime, so that s = 0.
Therefore the dynamics reduces to

ée=q(t) — ce. (111)
we obtain

Py(e) = Neve1 exp{— %} (112)
The second term of this expression yields a monotonous decreasing for all parameter
values. The first term is monotonously increasing if ¢7 < 1 and decreasing otherwise.
Therefore the probability distribution of the internal energy shows a maximum in the
static regime when 1/7 > c.

In another limit, we consider small mean time interval 7 between the spikes and
low mean amplitudes h. We assume that the energy input contains a constant and a
fluctuating part,

q(t) = qo +n(t). (113)
where g is the mean value of the energy input. We approximate the fluctuating part
as Gaussian white noise 1(t) = /2D, &;(t). According to [46], white shot noise with
exponentially distributed weights h; converges to Gaussian white noise in the limit
7 — 0,h — 0 with constant noise strength D, = h?/7 = ¢37. The parameter G of
(34) than vanishes.

If the energy follows changes in the velocity very fast, we can assume that the
energy takes quickly values such that é ~ 0 in (107). We solve (107) for e(t) and insert
the expression into the equation for the speed. Afterwards, we obtain in Cartesian
coordinates an additive external noise and a multiplicative internal noise caused by
the fluctuating energy supply

In polar coordinates we obtain the following equations of motion:

d d
P ( % _70> s+ VIDE, + Hﬁ V2Dt,, (114)

¢+ ds?
V2D e o), 115)

Therein &(t), &, (t) are due to Eqgs. (18).

The total noise in both equations consists of two terms, (1) the standard white
mechanical noise, which has no preferred direction, and (2) the driver noise which is
directed pointing to the direction of the velocity e, = v/s. As a result, the shot-noise
affects only the speed.

From the two equations we obtain the corresponding Fokker-Planck equation and
look for the stationary solution. It reads

¢:

1
2

D+Dq< ds )2] exp[—®(s)] (116)

Po(s) = B
o(s) = Ns P
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Fig. 17. Speed distribution and theoretical estimate (solid line, Eq. (116)). Parameter values:
Yo =01,¢=001,d=1,D=0.1,q =1, 7 = 0.01, D, = 0.01 [331].

where the potential

2
dqo / ds’
§ (c ds’? 70) § = Dq <c ds’2)
B(s) = — / ds' 2 - . (117)
D + Dq (cﬁ;;/2)

In the limits of this approximation the analytical result fits well the numerical simu-
lations as seen in Fig. 17.

3.3 Active Brownian particles: active versus passive fluctuations

Now we consider active Brownian particles with an intrinsic polarity defined by the
heading vector e (see Sect. 2.3). In case of the Schienbein-Gruler friction (46), the
equations of motion with both passive and active noise (Sect. 3.2.1, Egs. 84, 86) in
v, ¢-coordinates read

d .
S0 =0 (00— v) + V2D(&(t) cos6 + & (1) sin ) + V2D,&(1),  (118)
d 1 .
59= 2 (V2D (~&()sing + & (1) cos6) ) + v/2Dg6s(t). (119)
The above Langevin equations equations have multiplicative noise terms and

the corresponding Fokker-Planck equation for P(v,¢,t|vo, do,t0) again gets the
Stratonovich shift and reads:

8P(Ua¢?t|1}07¢07t0) _ 2 B 8j D+D¢827P
ot T\ (vo —v) P+ v P—(D+Dy) ov + v 0¢?’
(120)

Please note that the angular diffusion given by the last term of the above equation
depends directly on v(t). In the case of vanishing external forces (Fext = 0) there is
no distinguished angular direction. The stationary distribution with respect to ¢ is
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Fig. 18. Stationary speed distribution Py(s) of the Schienbein-Gruler model with exter-
nal noise for different noise strengths: analytical solution obtained from (125) (solid line)
and numerical results (symbols). The insets show the corresponding plots for the velocity
distributions Py(v) (123). Other parameters o = 1.0, vo = 1.0 [298].

homogeneous and we may write Py(v, ¢) = Py(v|$)/(27) whereas Py(v|¢) has to fulfill
the following equation:

0= f% { (’y(v)v + 1;) Py~ (D+ Dv)aavPo} . (121)

By inserting the Schienbein-Gruler friction (46) and solving the above equation we
obtain the stationary velocity distribution for any given heading angle as

D 0lV — Vo 2
Po(vlg) = No| 755 exp{—’;(;wj)} | (122)

This is the general solution for the probability density function of the velocity with
respect to the heading in the presence of both noise types. In the following we discuss
the stationary distributions for the two limiting cases of only passive and only active
fluctuations.

The stationary velocity density for only passive fluctuations can be directly
obtained from (122) by setting D, = 0 to

Po(ole) = Nylolexp{ ~ 2000 (12

The inverse normalization constant in this case can be calculated using
oo
S, P(v|¢)dv =1 to:

2D 2 V2rD 2
Nt =""exp (— 7000) 4 YT Vo Erf( 70%) . (124)

v Yo 2D Yo 2D

This result is confirmed by the velocity distribution obtained from numerical simu-
lations of the Schienbein-Gruler model in two dimensions (SG2d-model) with only
external fluctuations as shown in Fig. 18. At vanishing noise intensities D /vy — 0
the distribution converges towards a d-peak at vy. With increasing noise intensity it
is approximately given by a narrow Gaussian around vg. With a further increase in D
clear deviations from the Gaussian distribution become evident by the appearance of
a second maximum of the probability density at negative velocities, caused by back-
wards motion of the particle with respect to its heading. The action of the external
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fluctuation leads to a vanishing probability of v = 0. Finally, at D/~ the distribution
approaches a symmetric distribution which corresponds to the Rayleigh-distribution
mirrored along v = 0.

In polar representation v — |v| = s the corresponding speed distribution along any
given angle ¢ is a symmetric superposition of particles moving forward and backward
with respect to the corresponding heading direction:

Pols,) = 5 (Pole,6) + Fo(—0,9))
= AN, s exp{ - W} {1 + exp{ — 2@70}} . (125)

Please note that Py(s, ) differs from Py(v, ¢) as it is only defined for positive speed
values. The constant factor A = (27)~! is determined by the normalization with
respect to the angular variable.

In analogy to Py(v) for D/v9 — oo (vg — 0) the distribution converges to
the Rayleigh-distribution of ordinary Brownian motion (see Eq. (20)), whereas for
D/~v9 — 0 the limiting distribution is a J-distribution at vg. Finally we obtain the
stationary distribution in Cartesian coordinates Py(v.,v,) from the stationary dis-
tribution in polar coordinates Py(s,$) = Py(s)/(2w) by corresponding coordinate
transformation and we obtain Eq. (47). Examples of Py(vs,v,) are shown Fig. 19.

For only active fluctuations (D = 0) the stationary velocity probability density
(122) becomes a Gaussian centered at vg with width D,:

Po(v]6) = N, xp{—”ﬂ;)} , (126)

with N, = 1/70/27D,. The normalized probability density function in polar coordi-
nates reads

~ 1 Yo Yo (5 — vp)? 27080
P()(S, QD) = W ny eXp{—2Dv 1 =+ exXpq — D,U . (127)

We emphasize the non-vanishing probability density at s and the corresponding
absence of an increase of P for small s as shown in Fig. 20. This atypical behavior in-
dicates that there is no limit where Py(s) converges towards the Rayleigh-distribution.

The probability density in the Cartesian velocity coordinates v, v, can be directly
obtained through the corresponding coordinate transformation to

1 Y 1 20| v]vo Yo(|[v| — v0)?

with |v| = ,/v2 + vg. Please note that the velocity probability density function in

Cartesian coordinates diverges for v, = 0, v, = 0 and as a consequence exhibits a
sharp peak close to the origin as shown in Fig. 21.

3.4 Particles with Internal Motor Control

3.4.1 Propulsion of particles in arbitrary direction

Here we discuss briefly several concepts describing the two-dimensional dynamics of
particles with motor, where the motor is included in the dynamical description. We
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Fig. 19. Stationary velocity distributions Py(vs,vy) of particles with Schienbein-Gruler
friction and external noise for different noise strengths: D = 0.1, top; D = 0.5, center;
D = 1.0. Left column: results obtained from Langevin simulations; central column: analytical
solution given in Eq. (47); right column: one dimensional cross-sections Py(vg,0) comparing
analytical solutions (solid lines) with numerics (symbols). Other parameters v = 1.0,v9 =
1.0 [298].

note at first that polar particles have an internal direction. It was defined in Sect.
3.1.2 by the tail-head structure expressing the spatial structure of the particle. In
a similar way, one could speak about polarity in the presence of a dipole moment,
magnetic moments or other features playing a role in the interaction of particles, or
in the dynamical response to external forces. This may introduce a polar head-tail or
left-hand asymmetry and define a distinguished direction characterizing the particle.

We have connected this polarity axis with the direction of motion e,(t). It corre-
sponds for positive velocities to the heading vector ey (t), whereas for negative veloci-
ties with respect to the heading both vectors are anti-parallel. It is a situation similar
to a moving ship where the positive and negative directions of velocity are parallel to
the bottom of the ship from the bow to the rear, but the velocity points differently
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noise for different noise strengths: analytical solution obtained from (127) (solid line) and
numerical results (symbols). The inset shows the corresponding velocity distribution Py (v)
given by a Gaussian (126). Other parameters vo = 1.0, vo = 1.0 [298].

to the heading for a ship moving “backwards”. Both vectors have associated angular
unit vectors, we recall that e4(t) describe rotations of the heading and e, (t) rotations
of the velocity, respectively.

So far in most cases, we also put the non-random propulsion parallel to the velocity
(Exceptions are torques which act perpendicularly). This parallelism now will be
dropped, in contrast to the previous sections, we will now assume that there exist
no strict and fixed relation between the velocity (or polarity) and the propulsive
direction. We will explicitly allow for a propulsion mechanism that acts in a direction
which is different from the direction of motion (see e.g. [113,340]).

We define a new direction, which we will connect with the action of the propulsive
motor. Let a,(t) the acceleration associated to the propulsive force, which an active
particle experiences from the action of an internal motor. The associated unit vector
is e,(t) with direction cosines {cos x(t),sinx(t)}. Here, x(t) is the angle between
the axis of abscissas and the considered force. We also introduce the magnitude of
acceleration a,(t) by

a(t) = ap(t) ep(t). (129)

An active particle with unit mass (m = 1) obeys the dynamical equations:

% =V, (317: = ap(t) =YV + Fexp + \/ﬁf(t) (130)
Here the propulsion acts in direction of the unit vector e, (t). Furthermore, the particle
is driven by external forces Foy¢, by linear Stokes friction and by noisy agitations,
which might be passive or active. The treatment of the latter was described in the
previous sections.

Because propulsion and velocity vectors are not parallel anymore, the vector ey, (t)
and its associated angle ¢ are not uniquely determined as they were in the previous
sections. We define in this section that the particle starts at time ¢ = 0 always with
positive velocity and that in this case e;(0) = e,(0) independent of the acting force.
By the temporal evolution no further ambiguity occurs.

We expand the propulsive acceleration again along the ey, (¢) and the perpendicular
unit vector e, (t). Consequently, we formulate

ap(t) = an(t) en(t) + ag(t) eq(t). (131)
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Fig. 21. Stationary velocity distributions Py(vz,vy) of the Schienebein-Gruler model with
internal noise for different noise strengths: Top: D = 0.1, bottom: D=0.2. Left column:
results obtained from Langevin simulations; central column: analytical solution given in Eq.
(128); right column: one dimensional cross-sections Py(vg,0) comparing analytical solutions
(solid lines) with numerics (symbols); Other parameters yo = 1.0, v = 1.0 [298].

Then, without noise and if the external force acts along the z-axis Foyxy = Fpe,, it
follows for the dynamics of the particle

% =ap(t) —yov + Fycosd(t), v % = ay(t) — Fosing(t), (132)

where v(t) is again the projection of the velocity-vector v(t) on the heading axis ey, (t),
which is defined by the actual angle ¢(¢). If we insert explicitly the direction of the
propulsion, the corresponding dynamics becomes

0 oyt cos(y —6) ~20v + Fycoslt), vo2 = ay(t)sin(x —¢) ~ Fsing(t).

(133)
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For the simplest case of a constant propulsion a,(t) = ag pointing along a stationary
angle xo and without external force Fy = 0, the angle ¢(¢) turns into the direction of
the acceleration. Asymptotically, we get

(t = 00) = po = X0, v(t = 00) = ag/o- (134)

Therefore, we find that the particle behaves asymptotically like it would follow a
Schienbein-Gruler propulsion, i.e. the propulsion coincides with the direction of mo-
tion and in the simple case in which we obtained a stationary speed.

For a non-vanishing external force Fy # 0, the particle is pulled in direction of
the z-axis. If now the propulsion has constant magnitude ag and direction x( the
stationary solution can be found as well. The asymptotic angle of direction ¢ obeys

ap sin xo

tangpg = ——m———
%o Fy + ap cosxo

(135)

which follows also easily from a geometric construction in response to the action of
two constant forces. In result, the stationary direction of motion is always sensing
between the propulsive force and the z-axis. For the magnitude of the stationary
speed, one obtains

1
Vo = % \/Fo2 + a2 + 2 ay, Fy cos xo (136)

which behaves as the value of a scalar product.
Within our more general framework, we briefly summarize the propulsion func-
tions which we have used so far or will use later:

— Schienbein and Gruler [305] have found empirically the following simple “ansatz”
for the cell dynamics (46)

ap ="Yv G =0. (137)

The polarity axes coincide with directions of motion. In perpendicular direction
normal angular noise is applied.

— In case of the Rayleigh-Helmholtz pump with @ = a — 49 > 0 in (130) we defined
(42)

ap = (@ — Bv®), a4 =0. (138)

Again the pump induces an acceleration parallel to the current motion and there
is no systematic torque applied and in ¢ direction we apply noise with vanishing
mean.
Note that the propulsion in this case has no preferred direction along the polar-
ity axis. It is impossible to distinguish between forward and backward motion
along the polarity axes of the particle. The propulsion acts symmetrically in both
positive and negative directions.

— In the frame of the the energy depot model, the stored energy e(t) was transformed
into kinetic energy with rate d as (see Eq. (52))

ap =de(t)v(t), ap=0. (139)

The internal motor increases kinetic energy in direction of motion.

— The case with constant speed v(t) = vg e (t) and random or systematic turning
angle: The propulsion in directions of motion has to compensate at least the
friction force. The angular dynamics can be systematic, for example, circling with
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constant torque Qg # 0. It can be as well a function of the orientation if additional
forces affect the motion anisotropically. Of course, random torques with Gaussian
nature or shot noise and other time-dependent noise acts on the orientation. This
case can be characterized with large 7y implying fast relaxation by

an = Yoo, ap = Q(UO7 ¢(t)7 g(t)ﬂf)a (140)

where Q(vg, ¢(t),£(t),t) shall describe the mentioned influences. It will be pre-
sented in more details in next sections.

3.4.2 Navigation in space following a given protocol

The human motion control of objects, say the steering of a ship or airplane or the
driving of cars usually involves some moving task or protocol of navigation. There is
a leader, the driver or captain, who has to follow a given optimal route in spite of
stochastic forces and factors as wind, nonuniformities of space, etc. In animal mobility,
the tasks are more modest but anyhow they do already exist in elementary form. An
animal has to find food and shelter in a landscape with given geometry, with some
distribution of food and shelter.

In order to describe such phenomena in a two-dimensional spatial set up, we have
to assume at first a coordinate system in which the protocol can be defined and
applied. We propose that the protocol contains the information about the current
state of the propulsion mechanism or of the motor of the active particle. We will
assume that this state can be characterized by a velocity-like vector w(t). At every
instant of time, it has a direction given by the unit vector e, with components
e, = {cosv(t),sinv(t)} in Cartesian presentation and is defined by the magnitude or
by the length of the vector w(t).

Both values w(t) and v(t) together make up the protocol and will define the
performance of the motor over the considered time. In addition to the position and
velocity, they are new variables describing the momentary state of the running motor.
Changes of this motor in magnitude and direction induce a propulsive force which is
exerted on the particle. The corresponding acceleration has two components

ap(t) = Gy (t) €y (t) + al/(t) €y (t)7 (141)
resulting either from a change of magnitude or of direction
d d
ay(t) = T w(t), ay(t) =w(t) % v(t) = w(t) Qt), (142)

and we have set v(t) = Q. Both components of a, vanish for a constant activity of
the motor. The direction of the common action from the two items differs from the
direction of motion e, (t) and from this of the protocol e, (t), in general.

The function w(t) would define a ideal course of the particle parameterized in
time. In the absence of other forces, the performance of the particle would follow the
protocol:

vid(t) = w(t). (143)
With a respective initial condition, one would get the ideal course
t
ria(t) =ro + / dt'w(t") (144)

which is the wanted path in the considered coordinate system.
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3.4.3 Navigation in space: The general case

In more complicated cases, the time-dependent protocol is unknown and the temporal
evolution of the motor variables w(t) and v(t) has to be defined as the solution of a
given dynamical problem. In general, it is reasonable to assume that the two functions
obey first order differential equations

%tu = fu(r,v,w,t) + V/2D&u(t), % = fo(r, v, w,t) + V2D,6 (1), (145)

The £, and &, stand for motor noise with corresponding intensities. In particular,
the solution of these equations can be also defined as a control problem, in which one
has to find the correct temporal forcing in order to follow a given route under given
loading.

The existence of the “internal vector” w(t) determining the direction of the propul-
sion by Eq. (143) turns the point-like particle into a Brownian particles with time-
dependent propulsion. This new dynamical feature in the description of the Active
Brownian particle leads to an extended state space which includes the new state vari-
ables w(t), respectively w(t) and v(t). The situation is similar to the case of active
polar particles discussed recently by Szabé et al. [340] or Enculescu and Stark [113].
In our new frame work, the active Brownian particle is defined by the position r(¢),
by the velocity v(t), and by the vector w(t) or by the Langevin equations for position
and velocity supplemented by Egs. (145) for the motor.

The Langevin dynamics includes the acceleration exerted by the motor, linear
friction, an external force F, and noise (again we set m = 1, leading to v = 7o):

% v (jT: — it ew(t) + w(t) At)en(t) — v — F + VIDE().  (146)
Here, the motor creates an acceleration with magnitude a(t) acting in the direction
of action x(t).

It is instructive to first consider a simplified system. We assume that the acceler-
ation in the direction of the motor is some constant and take for simplicity ywg. This
choice is equivalent to a Schienbein-Gruler propulsion. Furthermore, we replace in the
angular acceleration the velocity in front of the angular frequency by the asymptotic
constant value wg. Doing so, the propulsion term reads

a,(t) = ywoe, + woL(t)e,. (147)
These assumptions lead to
d
d—;’ =voyeyw — YV +02(t)e, + F + v2DE(2), (148)

which is similar to the problem in Eq. (132). The only difference is the third term,
which describes a rotation of the particle as consequence of a change of direction of
the motor v(t) = Q # 0.

Next, we consider a constant external force, which acts in z-direction F = Fye,.
We project the Langevin equation onto the vectors ey, (t) being parallel to the direction
of motion and the perpendicular angular direction eg. In result, we obtain

do _ ywg cos(v — @) —yv + Fycosod + wo Q(t)sin(¢d — v) + /2D,&,(t)

dt
(149)

v % = yuosin(v — ¢) + Fosing + woS(t) cos(v — ¢) + /2Dyés(t).
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One easily sees, that without external forces and with a constant direction of the
motor vy the direction ¢ of motion of the particle will asymptotically follow 1. Since
items with Q which is zero disappears the resulting equations are identical to the
situation explained following Eq. (132).

In other cases, the angular driving (¢) = ©(t) is not defined as protocol and has
to be defined. The description comprises the dynamical equations for the motor. For
example, a wanted time and space dependent route vy (r,¢) may be given e.g. by the
relaxation dynamics

0(t) = 1) =~ (v(t) — wole.1)) (150)

with some relaxation time 7. For the particular vo(r, t) one may find from this equation
v(t) as a function of time and insert the solution into Eq. (149) in order to solve for
¢(t) and for v(t) and hence to obtain the complete trajectory.

As a further example, we consider a circling body. For this purpose we suppose
constant motor load ywy and constant torque g, i.e.

We simplify to the case without external force Fy = 0. Then the particle follows the
rotating motor with the same angular velocity ¢ = €. The constant difference of the
angles A = ¢ — v and the stationary speed vg is determined by the two equations

Yvg =ywy cosA + woNsin A, Quyg =ywy sin A + wy Qcos A, (152)

for given motor load wy and 2. They are solved by

cosA = 2. (153)
wo

The stable solution should obey A = v — ¢ > 0. For the speed of the circling particle
one obtains
Qo

0 \/mv
which becomes maximal if the dissipation is weak, i.e. v is small. In this case, the
velocity becomes approximately wo and the difference of the angle between motor
and particle vanishes.

Generally, the motor works with maximal efficiency (maximal speed) if the direc-
tion of the motor agrees with the current velocity vector. Therefore, an important
requirement is a minimization of the deviation between v(t) and ¢(t) also in the case
when v(t) changes permanently. One possibility to implement this requirement would
be an adaptation dynamics, in which v(t) approaches ¢(t) with a positive rate g > 0

o(t) = —q[v(t) — o(t)]. (155)

More generally, the dynamics for v may be described in terms of a potential

Vg =W (154)

v U -9¢) (156)
dt ov
With the particular choice U(v — ¢) = —gcos(v — ¢) the motor will also follow the
current velocity, in case ¢ — oo both directions converge and the motor dynamics
reduces to forces which can be interpreted as negative friction. In general, the outlined
search for obtaining a maximal speed defines a problem of optimization. This problem
is then similar to that of the navigation problem of a captain who selects the direction
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of his ship by turning the rudder and the speed by changing the motor power. Finally,
we mention that one can also assume that the direction of motion in the dynamics is
delayed by a fixed period, i.e. ¢(t — 7), with 7 > 0.

Particularly important in our review will be the case that the motor is driven by
random forces. We will discuss this point in more detail in the next Section, where
we consider the diffusion of active particles. Already a first inspection of the Egs.
(149) shows that the action of isotropic random alterations of the motor will not
result in a preferred direction. Nevertheless, the random action of the motor will
induce a diffusional spread over the free space. The respective diffusion coefficients
and distribution functions in confined geometries which quantify this behavior will
be the topic of the next two Chapters (4 and 5).

4 Diffusion of active particles

In this Section, we discuss several aspects of the undirected spatial spreading of
active particles in absence of external forces, i.e. diffusion of free active particles.
Diffusion is not only a fundamental feature of random motion and the mean squared
displacement and the corresponding effective diffusion coefficient are characteristic
observables easily accessible in experiments. The properties of diffusive motion have
important biological implications for animal searching behavior as they have a major
impact on the ability of individual animals to exploit spatially distributed patches
of nutrients (see e.g. [19,20,200,307]). As a starting point, before discussing different
aspects of diffusion of active particles, we will give in this context one example for the
importance of the value of the effective diffusion coefficient [200,307]. Other examples
from ecology have been discussed by Okubo and Levin [252]. We intend to show that
simple organisms might gather different amount of food in dependence on the value
of the spatial diffusion coefficient. It will be of special importance that the food is
localized, say in bounded regions which extend over a finite distance only. If then the
organism has only a finite time for foraging, his strategy to locate a maximal amount
of food is obviously an object of optimization as recently outlined in [77,78,133].

We assume that the density of the independent organisms p(r,t), thus the sin-
gle individual probability distribution, obeys a diffusion equation with a diffusion
coefficient D,

dp
5 = Dridp. (157)

In two dimension the resulting probability density in space is

2

exp [ 4;),“75} . (158)

t) =
p(r? ) 47rDrt

We assume that the particle consumes with constant rate k a food C', which is given
by its density ¢(r, t), during its random motion. The food is stationary in space. Hence
the consumption of food is described by

%c(r,t) = —kc(r,t) p(r,t). (159)

The latter equation can be solved exactly if the solution (158) is inserted. Simple
quadrature gives

o(r, 1) = co(r) exp [— /tt k p(r,t') dt’] . (160)
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gathered food

dimensionless diffusion coefficient, &

Fig. 22. Fraction of food gathered, which can be obtained using Eq. (164), as function of
the dimensionless diffusion coefficient for three values of the clearance rate: £k = 1 (solid
line), k = 1 (dashed line), k = 5 dotted line. The gathered food is expressed as a fractions
of the original total amount [133].

With the definition of the exponential integral [2]

Ei(1,q) = /Oo Wdz (161)

we obtain in compact form

c(r, 1) = co(r) exp {— 4;3» Ei (1, 42;)} : (162)

where we used to = 0.

We consider now bounded distributed food patch. As a prototypical distribution
we take a circular patch with radius R where C' is present. Outside of the patch no
food is located. For simplicity we assume the circle positioned at the origin, i.e.

co(r) = co = const., if |r| <R, (163)

and vanishing food concentration, elsewhere. Then after a fixed time T' we determine
the overall food which is still left. By integration we obtain [307]

R k ) 7"2
c(T) = 27rco/o exp {_477Dr Ei (1, 4DTT>} rdr. (164)

Inspection of this expression shows that there exist a minimum with respect to
the diffusion coefficient D,. Thus the variation of the effective diffusion coefficient
gives rise to a change in the overall food consumption. One might speculate that
in nature the effective diffusion coeflficient has been optimized for maximal foraging
success [77,78,133].

The fraction of consumed food (C(0) — C(T'))/C(0) as a function of the diffusion
coefficient is shown in Fig. 22. We have chosen the spatial diffusion coefficient D,
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Y Coordinate

X Coordinate

Fig. 23. Traces of food gathered by active particles for different widths of an exponentially
distributed turning angle. The particles hop according to the turning angle distribution a
finite step and rest a finite time in every new position gathering food; blue: o = 0.1, green:
o = 1.2 and magenta: o = 10, for ballistic, correlated and uncorrelated motion, respectively
[133].

with respect to the normal diffusion coefficient Dr = R?/4T to cover the given
sphere with radius R in time T" and assigned 6 = D,./Dpg. A simple explanation can
be given as follows. If the diffusion of particles is very large, e.g. they move almost
exclusively straight forward, they will quickly leave the food patch. On the other hand,
staying localized due to low diffusion coefficient, e.g. jumping permanently forwards
and backwards, is also disadvantageous as the particle spends a lot of time in the
region where it already consumed the food. Hence there exists an optimal diffusion
coefficient, for which the particles spend the most time within the food patch and are
able to consume the maximal amount of food. It does not matter whether they start
at the center of the food patch or not.

This situation is illustrated in Fig. 23 where particles hop with exponentially
distributed turning angles

P(Ayp) = o exp(—0a|Ap|) (165)

and a constant hop length [133]. Between two hops they rest a random time (with
mean (At) = 0.25) and consume food. In Fig. 23, the consumed food for three different
width’s o of the turning angle distribution is shown. The large circle depicts the
finite radius of the food patch. It is seen that an optimal width leads to a maximal
consumption of food from the patch.

4.1 Taylor-Kubo relations for the diffusion coefficient

An interesting yet nontrivial question about the dynamics of active particles concerns
their diffusive behavior in the simple situation in which there is neither interaction
with other active particles nor nonlinear external fields. In these situations it is of in-
terest whether the Active Brownian particles exhibits a mean drift with non-vanishing
mean velocity (v), possibly due to an asymmetry in its friction function or due to
some interaction between the friction and the driving noise. Furthermore, it is not
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clear a priori whether the active particle will execute a normal Brownian motion or
whether for certain friction functions anomalous diffusion may be observable. In many
cases, it turns out that active Brownian particles perform just normal Brownian mo-
tion with a linear asymptotic growth of the mean square displacement. In these cases,
however, it may still be surprising how the diffusion coefficient depends on system
parameters as, for instance, the noise intensity.

Generally, if the velocity dynamics obeys a stationary statistics, we may express
the mean square displacement (m.s.d.) Ar?(t) = (r(t) — r(0))?(¢) by the velocity
auto-correlation function via the Green-Kubo relation. For convenience, we set the
initial position to r(0) = 0 and can thus express the position at ¢ by the integral over
the velocity vector fg dt'v(t'). First we assume vanishing stationary mean velocity
(v) = 0. By inserting this into the m.s.d., exchanging integration and averaging,
using stationarity, and simplifying the integrals, one arrives at

(Ar2(8)) = (2(2)) = /0 /0 A dt” (v (v (t")). (166)

If the stochastic process governing the evolution of v is stationary, the expectation
value of (v(t')v(¢")) depends only on the absolute value of the time difference 7 =
|t —t"| and we may rewrite the above relation as an integral over the velocity-velocity
correlation function Cyy = (v(7)v(0)):

(Ar3(t)) == 2t /Ot dr (1 - %) O (7). (167)

Assuming a sufficiently fast decaying Cy(7) so that the integral over 7 converges for
t — oo we may or large times t replace the upper limit of the integration by infinity
which yields:

(Ar%(t)) =2 { /0 h dTCVV(T):| t. (168)

Thus we define the diffusion coefficient according to the Taylor-Kubo formula in
arbitrary spatial dimensions d as:

Dt = % /O  dr(v(r)v(0)). (169)

Note that the pre-factor with d being the spatial dimension was chosen in analogy to
ordinary Brownian diffusion (Eq. (8)), and may differ from other definitions of the
(effective) diffusion coefficient. All of the outlined formulas can be generalized to the
case with a finite mean speed. The diffusion coefficient then describes the diffusive
spread around the mean motion:

r2 — (r ()2 s
Dur = 3 Jim S ZEOE 2 [ ariwonny - w2 am

There exists a simple yet rather useful reformulation of this formula. Using the vari-
ance (Av?) and one particular definition of a velocity correlation time, namely the
integral over the normalized auto correlation function, we can write

2
Do = %. (171)
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So, the diffusion coefficient depends not only on the variance of the velocity fluctua-
tions but also on their typical duration which is characterized by the correlation time.
We stress that this interpretation holds only for non-oscillatory correlation functions.

For the cases studied in the following, the velocity correlation function is generally
not known because of the nonlinearities introduced by the friction function. In one
spatial dimension, however, one can solve for the integral of the correlation function
over the entire time interval (0,00) and in this way obtain an analytical expression
for the diffusion coefficient. This can be achieved not only for the dynamics of ac-
tive Brownian particles with white noise but also for a nonlinear velocity dynamics
driven by a specific correlated (colored) fluctuations, namely, the dichotomous noise.
In higher spatial dimensions, approximations for the calculation of the diffusion coef-
ficient may be employed which exploit the specific symmetries of the speed-dependent
friction (phase dynamics in 2d and 3d, scaling behavior for friction functions obeying
a power law).

In the following, we review the diffusive behavior of active particles with different
friction functions, under the influence of asymmetries, and driven by white or colored
noise. A particularly simple kind of nonlinear friction functions, namely those given
by a power law, is treated separately because it makes certain limit cases for the
diffusion of active particles more comprehensible. We then proceed with new features
occurring in the diffusion in higher spatial dimensions.

4.2 Diffusion in one dimension
4.2.1 Diffusion for a symmetric friction function and white noise

Let us first consider v(—v) = (v) and a driving by a white Gaussian noise. In this
spatially symmetric case we obtain a vanishing stationary mean velocity

(v) =0 (172)

and the diffusion coefficient is the remaining statistics of interest. We mention that
different approximations for the diffusion coefficient have been suggested for the one-
dimensional case [66,98,218,236]; the derivation of the exact solution will be shown
in the following.

Useful for the calculation of the diffusion coeflicient is the introduction of a velocity
potential given by

d(v) = /OU dv’y(v")v'. (173)

For a typical friction function of an active particle, this potential is bistable and thus
has two metastable states with finite speed whereas the zero velocity is dynamically
unstable. Specifically, for the Rayleigh-Helmholtz friction function introduced in Eq.
(42), the potential reads

1}2

5;
in this section, we set @ = 8 = 1. For the friction function of the depot model in
Eq. (55), one obtains the potential

D(v) = 6%4 —« (174)

o(v) = 3 |v? - % In(1 +v%d/c)| . (175)

In the following, we use the numerical values vy = 20,d/c = 40,q = 5.
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The Fokker-Planck equation for the velocity process reads
0 P(v,t) = 0,[®'(v) + DO, P(v,t). (176)

We recall [292] that (i) this equation can be easily solved in the stationary state, yield-
ing a Boltzmann-like distribution Py ~ exp[—®(v)/D]; (ii) the transition probability
P(v,t|vg,0) is governed by the FPE with the initial condition P(v,0) = §(v — v);
(iii) there is no general solution for P(v,t|vg,0) for a general nonlinear force —®’(v).
If we would know P(v, t|vg,0) we could calculate the velocity correlation function by

(v(t)v(0)) = /dv/dvovaP(v,t|vo,0)P0(v0) (177)

where the last two factors express the joint probability density P (v, ;vg,0) by means
of Bayes’ theorem. Inserting the correlation function into the Green-Kubo formula,
we may write

Deg = /dvv /000 dt/dvovoP(v,ﬂvo,O)Po(vo) = /dva(v). (178)

An ordinary differential equation for G(v) can be obtained from the Fokker-Planck
Eq. (176) by integrating over time, multiplying with the known stationary probability
density in vy, and integrating over the latter variable. The resulting equation reads:

—vPy(v) = (®'(v)G(v)) + DG" (v) (179)

which can be solved in terms of quadratures. After a few simplifications (using also
the symmetry of the potential), the result for the diffusion coefficient reads [219]

2
. 12 dvg e(v2)/D Uyo; dvy e~ 2@/ Dy,

Deff - D2 fooo d’l)3 e—@(’lm)/D

(180)

We note that the same techniques has been used by Jung and Risken [184] and in
particular by Risken in the second edition of his well-known textbook [292] to obtain
an analytical expression for the correlation time of a stochastic process governed by
a nonlinear Langevin equation (the connection to 7.orr is evident in Eq. (171)).

Before coming to the case of active Brownian motion, let us first consider a sim-
pler nonlinear speed-dependence of the friction which is given by a power law. In
particular, we assume that

v(v) = Yov2®,  a >0, (181)

(note that o has nothing to do with the parameter of the RH friction function, which
we set to zero). This problem has been studied in detail in Ref. [220] where it has
been shown that the diffusion coefficient in this case scales like a power law with the
system’s parameters:

Degt ~ y~ Tta Di7a (182)

This result can be obtained from the exact expression by changing the integration
variables appropriately (the factor of proportionality is then given by an integral that
still depends on « but not on D or 7y anymore). It can be, however, also obtained by
renormalization of the original Langevin equation (see [219]) a techniques by means
of which one can show that Eq. (182) holds also true in arbitrary dimensions although
of course with different pre-factor than in the one-dimensional case.

On closer inspection, Eq. (182) is a little surprising. It tells us, for instance, that
for a pure cubic friction (o = 1), the diffusion coefficient does not depend on the
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Fig. 24. Diffusion coefficient vs. noise intensity D for the one-dimensional case (v = 1) and
various values of the exponent. Theory (numerical evaluation of Eq. (180)) is compared to
simulation results. Modified from [220].

noise intensity D at all. Furthermore, for stronger than cubic friction (o > 1), the
diffusion coefficient decreases monotonically with increasing D and diverges in the
limit of vanishing noise intensity. In the case of normal Brownian motion (o = 0),
the diffusion coefficient is proportional to the noise intensity as expected. All of
these conclusions are illustrated and confirmed by results of numerical simulations in
Fig. 24.

In order to explain this behavior we have to recall that according to Eq. (171) the
diffusion coeflicient is given by the product of the variance and the correlation time
of the velocity fluctuations. Increasing the noise intensity will in all considered cases
increase the variance. The effect on the correlation time, however, is more complicated.
For strong noise and a strong nonlinear friction (a > 1), the velocity attains typically
large values at which the dissipation term v2®*! is stronger than in the linear case,
hence the correlation time is shorter and becomes even shorter for further increasing
noise. In the opposite limit of vanishing noise, the velocity is typically at values close
to zero where the dissipation term is now much weaker than in the case of normal
Brownian motion. For a cubic friction the tendency of increasing velocity variance
and decreasing correlation time balance exactly and their product remains constant
upon variations of D. For a stronger friction, the sensitivity of the correlation time
with respect to changes in the noise is even stronger and dominates the dependence
of the diffusion coefficient on D.

Let us now turn to the case of an active Brownian particle. First we consider the
dependence of the diffusion coefficient for the depot model introduced in Sect. 3.1.3.
In this case the quadrature formula has been evaluated numerically and the result is
shown in Fig. 25.

We observe a nonmonotonic relation between the diffusion coefficient and the noise
level: the diffusion is minimized at an intermediate noise level. We can understand
the growth with D seen at large noise intensity because at large values of the velocity
(typically attained at strong noise) the depot model approaches the Stokes limit of
a speed-independent friction coefficient. At the level of the velocity potential this
implies a parabolic potential at large speed (cf. Fig. 25(b)). In the opposite limit of
weak noise the bistability of the velocity potential becomes essential. Here the velocity
undergoes noise-induced transitions between the two metastable states corresponding
to the minima of the potential. For such a process, the diffusion coefficient is inversely
proportional to the Kramers hopping rate [98,236]

2 2
Deg ~ YT exp [M)] = (183)
Qv/®"(v0)|2"(0)] D 2ri
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Fig. 25. Diffusion coefficient vs. noise intensity D (a) and velocity potential (b) for the
friction function of the depot model. In (a), theory (numerical evaluation of Eq. (180) with
the potential Eq. (175) is compared to simulation results. The inset in (b) illustrates that the
velocity potential behaves asymptotically as a parabola ®(v) ~ v? (dashed line). Modified
from [219].

The latter relation agrees with Eq. (31) for Ay = 7, |vg| = vo; it has been derived for
a velocity following a telegraph process with rate r in [301]. Assuming weak noise D,
Eq. (183) can be also derived via a saddle-point approximation from the exact result
Eq. (180).

The divergence of the diffusion coefficient can be understood by considering the
spread of an ensemble of active Brownian particles. At equilibrium half of the particles
are in the left well with a corresponding finite speed going to the left while the other
half is situated in the right well and thus go with finite speed to the right. Without
any transitions between the wells (a limit that is approached for vanishing noise), the
growth of the m.s.d. would occur ballistically. Incidentally, this has to be taken into
account when choosing a simulation time for an estimation of the diffusion coefficient.
One has to wait at least a multiple of the correlation time of the process, in order to see
a diffusive growth of the m.s.d. Very similar to the case of normal Brownian motion,
there is a ballistic phase in the m.s.d. time course. The time of this t?> growth can
be estimated from the relation between diffusion coefficient, variance, and correlation
time Eq. (171): Teorr = Degr/{Av?). because in our numerical example (Av?) ~ 1
but Deg is exponentially large, the correlation time is rather large. In order to get
reasonable estimates for the diffusion coefficient, an ensemble of trajectories has to
be simulated at least for a multiple of this large correlation time.

Turning back to the minimum, which we observed for the diffusion coefficient
vs noise intensity: is such a minimum observed for all possible friction functions
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Fig. 26. Diffusion coefficient vs. noise intensity D (a) and velocity potential (b) for the
RH model. In (a), theory (numerical evaluation of Eq. (180) with the potential Eq. (174))
is compared to simulation results. The inset in (b) shows the asymptotic behavior of the
potential which is dominated for the RH model by the quartic term ®(v) ~ v* (dashed line).
Modified from [224].

of active Brownian particles? The results on the power-law friction function tell us
otherwise. If a friction function has a nonlinear asymptotic limit such that the friction
increases like a power equal or stronger than cubic friction, the diffusion coefficient will
either saturate (for cubic friction y(v)v ~ v®) or even decrease (for friction stronger
increasing than v ~ v?) in the asymptotic limit of large noise D. So in these cases
we cannot expect to observe a minimum. Indeed for the RH model which is at large
speed dominated by the cubic term, the diffusion coefficient decreases monotonically
with the noise intensity D. We note that the divergence of the diffusion coefficient in
the limit D — 0 is untouched by the asymptotics of the velocity potential because
this divergence hinges solely upon the presence of a potential barrier.

4.2.2 Diffusion in the spatially symmetric case with colored noise

The assumptions we make on the phenomenological model of an active particle are
often based on simplicity. One such assumption is the lack of correlations in the
driving noise process £(t). After we have reached some understanding of the active
Brownian motion dynamics in one dimension with white noise, we may relax this
condition and consider the case where the fluctuations have a finite correlation time,
i.e. we consider

d d

T v T —y(v)v +n(t) (184)
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where 7)(t) is a colored noise that we choose here to have an exponential correlation

function
(n(t)n(0)) = a2 (185)

There are two simple stochastic processes with such a correlation function but differ-
ent probability density. The first one is the symmetric dichotomous Markov process
(DMP, also called telegraph noise) which jumps between two values —o and ¢ with
transition rates A\. The other one is a Gaussian noise, the Ornstein-Uhlenbeck process
(OUP) 7, which can be obtained by integrating the stochastic differential equation

%n = —2Xn(t) + 20V AE(L) (186)
(&(¢) is as usual white Gaussian noise with (£(¢)£(¢')) = 6(¢—1¢')). The unusual scaling
in the OUP ensures that variance and correlation time are the same for OUP and
DMP in terms of the parameters (o, \).

If the driving noise introduces a finite correlation time, one question of interest
is how this time scale affects the diffusion coefficient. The DMP offers a simple case
in which this question can be explored analytically. By a very similar approach as
discussed above for the white-noise case, one can derive an exact quadrature formula
for the diffusion coeflicient [221].

For the velocity process driven by a dichotomous noise, we may write down evolu-
tion equations for the probability densities P} (v) and P_(v) that the velocity attains

the value v and that the noise is at 7 = ¢ and n = —o, respectively:
OtPy = Oy[y(v)v — 0] Py — APy + AP_ (187)
OP_ = 0y[y(v)v + o] P_ + APy — AP_. (188)

These two equations solved for different initial conditions with respect to the noise
would yield four transition probabilities p+ 1 (v,t) (p4+,—(v,t|vg), for instance, is the
probability to find the velocity at v and the noise at n = ¢ if initially at ¢ = 0 the
velocity was at vy and the noise was n(0) = —o) by means of which the velocity
correlation function can expressed:

(W)t + 7)) = /vm dvw [/m dvg vo {(Piy + P_o )P + (P + P__)PE}} .

(189)
We can use again the fact that for the diffusion coefficient we have to know only
the integral over the correlation function. By integrating Egs. (187) we obtain a
system of ordinary differential equations for two auxiliary functions (comparable to
the function G(v) in the previous subsection), the integral of which then yields the
diffusion coefficient. Further details on the lengthy but straightforward calculation
can be found in [221]; the final result reads

Um Um

v (x) v —b)  \2
Jo de Sy (0 dwstmpgy) v
- , @)= —2)\/ dz
Jo" dzem®@o? — f2(2)] ) 0

_J@)
o? — f2(z)
(190)

The value of v, is set by the maximal speed by which the particle can go under
dichotomous driving and is found from the equation ~y(v,,)vm, = o.

In the white-noise limit of the dichotomous fluctuations A — oco,0 — oo with
D = 0?/(2)\) = const, the expression approaches the result Eq. (180). Further limit
cases as well as the numerical evaluation of the integrals is discussed in [221]. Here
we review the dependence of the diffusion coefficient on the new time scale in the
problem given by the switching rate of the DMP.

Deﬁ‘ = 2)\0’2
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Fig. 27. Diffusion coefficient vs. switching rate of the telegraph noise for a cubic (a) and
a quintic friction function (b) for different amplitudes of the driving as indicated. Theory
(solid lines, Eq. (190)) is compared to simulation results. Modified from [221].

Let us first consider the simple case of a power law friction. The diffusion co-
efficient for a cubic friction decreases monotonically with increasing switching rate.
We can understand the limits of small and large rate based on the results from the
previous subsection. At small switching rate the velocity process relaxes towards the
asymptotic value +wv,, — the dichotomous character of the input process carries over
to the velocity with an amplitude which is determined by the nonlinear equation for
VUm- We mentioned already that for a velocity following a telegraph noise, the diffusion
coefficient is proportional to the inverse of the switching rate and this is exactly the
behavior observed in Fig. 27 in the limit A — 0. In the opposite limit of a large rate,
the DMP approaches white noise with a vanishing intensity because D = 02 /(2)) (o
is constant). For a cubic friction, however, the diffusion coefficient does not depend
on the noise intensity and thus D.g approaches the constant value that we already
obtained in the white noise case for y(v)v = yov? (cf. in Fig. 24 the data for a = 1).

For a friction function with stronger nonlinearity, for instance, for a quintic de-
pendence on v, the divergence at small rate remains the same (also here we observe a
dichotomous velocity process dictated by the slow driving), at strong rates, however,
the diffusion coefficient also diverges in marked contrast to the cubic case (Fig. 27b).
The reason for the increase at large rate is also quite plausible. With increasing rate
the white-noise limit is approached with a noise intensity that decreases with rate.
We saw before that for a friction function with o > 1 the diffusion coefficient diverges
for vanishing noise and it is exactly this divergence that we now observe for increas-
ing rate. As a consequence of asymptotic behavior, the diffusion coefficient attains
a minimal value at intermediate rate. The rate for the minimal diffusion coefficient
depends on the amplitude and is approximately given by [221]

Amin & 2(A%y)1/5, (191)
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Fig. 28. Diffusion coefficient vs. DMP switching rate a Rayleigh-Helmholtz friction function;
amplitude of the driving is o = 1.875. Theory (solid line, Eq. (190)) is compared to simulation
results. Modified from [221].

1

For an active Brownian particle we also find a minimum in the diffusion coefficient
vs rate (Fig. 28) because in this case we recover in the limit of large rate the weak-
noise limit of the white-noise case associated with a bidirectional motion with rare
reversals. Hence, here in both limits of small and large switching rate of the telegraph
noise we observe a bidirectional motion although for two different physical reasons. We
note that for the Rayleigh-Helmholtz friction function used in (Fig. 28), our theory is
constraint to the condition of a sufficiently large amplitude ensuring that transitions
between the metastable states are possible at all.

One may wonder how much the above results hinge upon the discrete support
of the telegraph noise. Surprisingly, for all the cases discussed above it does not
make much of a difference if we replace the colored dichotomous noise by a colored
Gaussian noise, i.e. by the Ornstein-Uhlenbeck process. In this case, simulations reveal
a minimum in the diffusion coefficient for a quintic friction function (Fig. 29a) and
also for a for a Rayleigh-Helmoltz friction of an active particle (Fig. 29b). Even a naive
comparison of the OUP simulations to the theory for dichotomous driving shows a
rather good agreement (cf. solid lines in Fig. 29). At least for a sufficient amplitude of
the driving, the variance and the correlation function of the driving noise (statistical
features shared by DMP and OUP) seem to be essential in determining the diffusion
coefficient and the exact distribution of their values (a feature that distinguishes DMP
and OUP) is immaterial.

4.2.3 Particles with asymmetric friction function under white-noise driving: critical
asymmetry

So far we have considered symmetric friction functions and symmetric noise sources
for which the mean velocity vanishes. A perfectly symmetric friction function is not
expected in the dynamics of active particles. Assemblies of molecular motors interact
with filaments of a certain polarity; if the assemblies are described by an active
Brownian particle dynamics then this dynamics will not be symmetric (y(—v) # y(v)).

A simple way to introduce an asymmetry is an external bias. Thus we may consider
the Langevin dynamics

d d

pre i —y(v)v + F 4+ V2DE(t). (192)
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Fig. 29. Diffusion coefficient vs. switching rate of the Ornstein-Uhlenbeck noise for a quintic
(a) and a Rayleigh-Helmholtz friction function (b). The theory for the dichotomous process
with the same variance and rate (solid lines, Eq. (190)) is shown for comparison. Modified
from [221].

We can lump both nonlinear friction (“pumping”) force and the external bias into
the derivative of one effective velocity potential. This potential is not symmetric any-
more but tilted and for a sufficiently strong force even its bistability will be lost (see
Fig. 30). In terms of this potential it is very clear that the asymmetry will have a
profound effect on the diffusive properties of the particle. The strong diffusion we
observed in the symmetric case and at weak noise relies on the bimodality of the
velocity which will, however, vanish if the velocity potential is not bistable anymore.
Thus we can expect that the diffusion coefficient becomes very small in the limit of
strong force whereas it diverges for finite but small forces. It is, however, not clear
what the exact value of the force is where the divergence of the diffusion coefficient
vanishes. One first guess would be the force at which the potential loses its bistability.
A closer inspection, however, disproves this conjecture.

First, we can repeat the previous calculation for the calculation of the diffusion
coefficient based on the Fokker-Planck equation (see the related calculation for the
correlation time in supplement S.9 in [292]). The more general result for the diffusion
coefficient reads [223].

oo x 2
[ da e@(w)/D[ I dyly - <v>]ef<1><y>/D}

Deir = D dv e 20)/D

(193)

Here ®(z) is the new effective potential which includes the bias. For weak noise and
a bistable potential we can perform a saddle-point approximation of this result and
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Fig. 31. Symmetric (dotted line) and asymmetric (solid line) potentials with potential
barriers indicated.

obtain a much simpler formula. The latter can be alternatively derived by a two-state
theory that yields a better physical insight.

In the asymmetric case, the motion of the velocity in the bistable potential is
governed by two Kramers rates r4 for the escape over the larger (smaller) barrier
and the velocity obeys the statistics of a dichotomous noise. Correlation time and
variance the product of which forms the diffusion coefficient are given by [135]

vy —v_)2rer_

Teorr = [F— + 73], (A0%) = (+(7‘++7)’)—;’ (194)
in accordance with Eq. (31). We are specifically interested in the limit of vanishing
noise intensity for which both rates go to zero. In the general asymmetric case, the
rates differ by an exponential pre-factor given by the difference between the two po-
tential barriers, ry /r_ ~ exp[—(A®; — A®_)/D] and, hence, the correlation time
diverges but the variance vanishes. The latter finding implies that in the limit of van-
ishing noise the particles dwells with probability one within the deeper well. Because
the diffusion coefficient is the product of variance and correlation time, it is not clear
at all when the divergence of the correlation time and when the vanishing of the
variance dominates the diffusion coefficient. Inserting the Kramers formula into the
product one obtains the specific formula

27 (vy — v_ )wiw- /|wo|
[o_e- CAT_—A8,)/(D) ¢~ (2AT;~AG_)/GD)]3’

Degg ~ (195)
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Fig. 32. Mean velocity (top) and effective diffusion coefficient (bottom) vs. external bias for
three different noise intensities as indicated. Color lines give the theory from Eq. (193) while
black dotted lines is the weak-noise approximation from Eq. (195). Modified from [223].

which is also obtained by a saddle-point approximation of the exact result Eq. (193).
Here, wy are the curvatures in the extrema of the potential. This approximation is
valid in the limit of weak noise and yields the most interesting result in the thermody-
namic limit of vanishing noise (D — 0) that we explore now. Let us assume without
loss of generality that A®, is the larger barrier. Then the second exponential in
the denominator of Eq. (195) will vanish rapidly for D — 0. The first exponential,
however, can either go to infinity (resulting in a vanishing diffusion coefficient) or to
zero (yielding a divergence in the diffusion coefficient) depending on the sign of the
exponent 2AP_ — Ad, . In the case of a mild asymmetry, the larger barrier Ad
will be still smaller than twice the smaller barrier A®_ — in this case the diffusion
coefficient diverges as in the symmetric case. A stronger asymmetry, which does not
destroy the potential’s bistability but makes the larger barrier greater than twice the
smaller barrier, leads to a positive exponent and thus makes the diffusion coefficient
vanish in the limit of zero noise. The critical force by which these two distinct diffusive
behaviors are separated is clearly determined by the condition

A(I)+ (Fcrit) = 2A@7(Fcrit)‘ (196)

The critical force (and its symmetric counter part — Fy,;;) form the boundary of
a region of giant diffusion (shaded region in Fig. 32b). Generally, no transition is seen
in the mean velocity (shown in Fig. 32a). Hence if for strong asymmetry the mean
velocity is finite, we are entitled to talk about a parameter region of regular transport
(outside the shaded region in Fig. 32). In Fig. 32 the comparison between the full
numerical evaluation of the exact solution Eq. (193) and the weak-noise expansion
Eq. (195) reveals good agreement in the region of foremost interest where both po-
tential barriers still exist but can also significantly differ.

Note that we have not used in our arguments above that F' is an additive bias.
Thus all conclusions regarding the critical asymmetry apply also to the case where
the asymmetry controls the barrier heights in a more complicated way; also we may
generalize the line of reasoning to the case of an active Brownian particles with
multiplicative noise. In all cases we will have a behavior of the diffusion coefficient
similar to this shown in Fig. 32: There is a finite region of weak asymmetry, for which
the diffusion coefficient diverges in the limit D — 0 whereas outside this region the
same limit yields a small or vanishing diffusion coefficient.

In Sect. 3.1.6 we gave some evidence that the active Brownian dynamics can
reproduce the bidirectional motion of coupled molecular motors. Does this imply that
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Fig. 33. Mean velocity (a,c) and diffusion coefficient (b,d) of assemblies of molecular motors
as a function of the external force. (a) and (c) are for a symmetric motor-filament interaction
(see the spatial potential sketched above panels) with a = 0.5; (b) and (d) are for the
asymmetric case with a = 0.4. Results for various numbers of motors as indicated. Modified
from [223].

for coupled molecular motors a similar critical asymmetry as found above exists? This
question was studied in [223] and the result of extensive simulations is shown in Fig. 33
for a symmetric (a,b) or an asymmetric (c,d) motor-filament interaction.

For the motor system noise intensity is set by the inverse number of motors.
Indeed, just as in the case of active Brownian particles, diffusion curves for different
motor numbers (different noise levels) intersect at critical values of the external force.
These values are the boundaries for the forcing region of giant diffusion. If the unbiased
system is spatially symmetric as in Fig. 33a,b, the dependence of mean velocity and
diffusion coefficient on F' resemble strongly the results for the Brownian motion with
Rayleigh-Helmholtz friction. Please note that the latter is also spatially symmetric
and that any asymmetry in the system is due to the bias force F. If the system,
however, shows a spatial asymmetry (a = 0.4 for the piecewise-linear ratchet potential
as shown in Fig. 33), both statistics are shifted. At zero force, there is already a finite
mean velocity and the motion is rather regular because the diffusion coefficient is
small. Biasing the motor assembly against its preferred (ratchet-induced) direction,
however, results for a finite range of forces again in a giant diffusion. Roughly speaking,
the two kinds of asymmetries add up and maximal diffusion is achieved if the system
is rather symmetric, i.e. both directions of motion are roughly equal. Further support
for the similarity of the underlying mechanism for the critical asymmetry observed
for active Brownian particles and for coupled molecular motors comes from a measure
based on the velocity’s probability density which can be derived from Eq. (196); for
details, see [223].

4.3 Diffusion in two dimensions
4.3.1 Two dimensional random walk with correlated turning angle
In this section we consider diffusion of active particles in two dimensions. The cen-

tral aim remains the calculation of the diffusion coeflicient including correlations in
motion, respectively, if the trajectories of the particles exhibit some persistence.
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We will start with a discrete random walker in two dimensions which jumps with a
fixed step length ly. It could be modeled by a shot noise where the sequence of §-peaks
is supplied with constant weight ly. As in Eq. (12), we restrict in the consideration
to an overdamped situation. The equation of motion reads.

d

()
r=6s(t) = z; loey, 6(t — t;). (197)

This d-kicks change the position vector by [y pointing in the direction of the unit
vector e,,. The ¢; are generated due to the waiting time density between two strokes
w(7). The mean of this shot noise is obviously 1/(r) where (7) is the mean time
between two spikes. For simplicity, the jumps shall occur with a fixed time interval
7o [187,252], i.e. w(T) = §(T — 79).

The mean speed is obviously s = vy = lp/(7) > 0. The unit vector of the direction
ey is determined by its angle respective to the z-axis which we again label by ¢(t).
We assume that the two angles between two subsequent steps ¢ and ¢ + 1 are not
independent. The angle of the velocity vector is shifted at each jump by a turning
angle 7;, for which we assume a given turning angle distribution P(7). The existence
of a structured distribution P(n) different from a uniform one creates some persistence
in the motion. We will assume that the correlations are weak and that they extend
over one step, only. It implies that the sequence of turning angels n1,m2,...,7:,. ..
shall be independent.

This situation was considered by Kareiva and Shigesada and is discussed in detail
in the monograph by Okubo and Levin [187,252]. The i-th displacement is given by:

Ar; =g (ez cosp; + eysin goi), Pi = Pi-1+ i, (198)

where @; is the angle between the z-axis and the direction of motion. After n = [t/7]
steps the walker has a squared distance from the point of start of:

r2 = il Ar; - ilArj. (199)
i= ji=

Averaging over an ensemble of walkers and expanding the sum yields:

n n—1 n
(12) =S (Ar?) + 23 3 (Ar - Ary)
i=1 i=1 j>1
n—1 n
=nlf + 205 > > (cos(pi — ¢5))- (200)
i=1 j>i

The second term on the r.h.s requires a distribution of the turning angles P(n) which
we assume to be symmetric in 7. Then the mean squared displacement is expressed
by the angular correlation defined as the average I' of the cosine of the turning angle

us

I' = (cosn) = / dn cosn P(n). (201)

—Tr

This expression has the physical meaning of how much on average the length of the
unit vector e, is reduced if projected on the direction of the previous jump. Since
correlations have been considered only between successive steps we get for two jumps

(osti— ) = [ anpl) [ a Plf) costu+) =12 (202)

—T —T
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It can be shown as well with £ > 2 that

(cos(pi — pirr)) =T (203)

So we can solve the sum in (200) and get a formula for the mean squared displacement
after n steps of a 2D correlated random walk like in [252] and [173], which was derived
previously by Kareiva and Shigesada [187]:

1+T 1-1" 1+T 2r
2\ _ 72 _ 2 _
(rz) =1 (nl—F 2F(1F)2> x g (nl—F (1I‘)2>' (204)

In the limit n — oo the second term on the right hand side of (204) becomes time
independent for large n since |I'| < 1.

Therefore the diffusion is anomalous at short times and converges to normal dif-
fusion at long times with the coefficient.

1+F£

Deg = —— 0
=TT 4n,

(205)

The second term in the sum can be interpreted as the square of a characteristic length
scale. If this length scale is much smaller than the length scale of the process itself,
normal diffusion approximation holds.

As can be seen from Eq. (201) T" vanishes if 7 is equally distributed. This corre-
sponds to the motion of a freely diffusing particle without any directional correlations
between the jumps. We see also that a persistence of the trajectory with I' larger than
zero enhances diffusion. An negative sign of the correlation parameter decreases the
diffusion coefficient.

We will also have a look at the diffusion coefficient without correlations I' = 0.
One can replace the jump length by velocity divided by the duration of the jump,
ie. lg = vory. Afterwards we set 79 equal to the relaxation time for the angular
fluctuations from Eq. (67), i.e. 79 = 7, = D/v2. With this the effective diffusion
coefficients behaves as ~ v3/D. We will encounter this result several times later on
from the continuous theory of Active Brownian particles [236]. It means, surprisingly,
that increasing noise decreases the value of the diffusion coefficient.

An application to particular situation of a hopping Daphnia motion was given in
[133,200]. Therein specific angle distribution, like exponential and bimodal ones have
been assumed in order to control the diffusion coefficient.

One has to add that the same way of calculation of the diffusion coefficient was
used by R. Fiirth [131] who considered persistent random walk in one dimension. He
assumed the probabilities p and 1 — p that the particles jumps after ¢y the length [y
preferentially in the same direction or in the opposite one, respectively. This way he
formulated correlations between successive hops. In consequence, one can also find
the probabilities for all longer sequences of possible jumps and also the respective
correlations. By summing up all the jumps in (200) one determines the mean squared
displacement in one dimension.

One limit is the case with p = 1/2, i.e. no preference in the angle is assumed and
the diffusional motion is free and the diffusion coefficient equals I3 /(279). In contrast
in the limit p — 1 and 79 — 0 with (1 — p)/70 = 7/2 = const the diffusion coeflicient
of a Brownian particles with inertia and m = 1 as in (7) is obtained. The correlation
time Teopr = 1/7 quantifies the persistence length lpe,s = voT with assumed fixed
velocity vy = lo/70.
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4.3.2 Diffusion for independent velocity and heading dynamics

In higher dimensions, the diffusion of active Brownian particles becomes more com-
plicated and is only in a few cases analytically tractable. A popular and reasonable
approximation in this case is the assumption that velocity and direction of motion
are independent variables; this will be presented here, following the work by Peruani
and Morelli [273].

In general the motion of an active Brownian particle in arbitrary dimensions d
can be described by its a unit vector describing the direction of motion (heading)
en(t) at time ¢ and the velocity with respect to the heading direction (see Sect. 2.3).

In two spatial dimensions, where e, (t) = (sin ¢(t), cos ¢(t)), assuming completely
independent dynamics in v and ¢ (heading angle) the evolution of the velocity vector
v = v(t)ep(t) is determined by the following stochastic differential equations:

v = —(v)v+n,(t) (206)

¢ = ny(2). (207)

The first term in the velocity equation is again an arbitrary velocity dependent friction
function which describes the deterministic evolution of the velocity. The second term
is the stochastic part with 7, being the component of random force acting on the
velocity. The evolution of the heading angle is assumed to consist only of a stochastic
torque acting on ¢. In (207), it is assumed that the angular velocity (or turning rate)
does not dependent on the velocity v, and we should note that it is in general not the
case, in particular, if we consider turning behavior with inertia.

In general the fluctuations 7, 4(t) can obey arbitrary distributions and temporal
statistics. Here, we consider independent and uncorrelated Gaussian (white) noise
terms, based on our ansatz for active fluctuations (Sect. 3.2)

T =V 2D,&,, 7]¢(t) =V 2D¢>€¢7 (208)

which is, based on the center limit theorem, a reasonable approximation of many
random processes occurring in nature.

For independent v and ¢-dynamics the joint probability distribution my be decom-
posed as P(v, ¢,t) = P,(v,t)P,(¢,t). Thus the expectation value for the displacement
(r(t)) reads

mmzéwwwmw»aéwwmmmw. (209)

In the absence of a preferred direction of motion (uniform distribution of ¢), the
time average and ensemble average with respect to e, vanishes and so does the mean
displacement (r(t)) = 0.

The mean square displacement (r?)(¢) in the absence of directional bias can be
obtained according to Eq. (166) from the velocity-velocity correlation function. Here
Cyv(7) decomposes into independent vv and epep-correlation functions:

rzitlt,TVVT:t/tlT’U’UTe e (7).
<@>Amldumu>4ﬁldummumawam

Assuming an exponential decay of the velocity correlations we may rewrite the velocity
correlations in the stationary case as

(O)v(r)) = (W*)e ™7 + (v)*(1 —e™"™7) (211)
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with (v) and (v?) being the first and second moment of the stationary velocity dis-
tribution p,(v) and k, being the relaxation rate (inverse relaxation time).

The angular dynamics in Eq. (207) results in a free diffusive motion of e;, on a
unit circle, with an exponential decay of autocorrelations:

(en(0)en(r)) = e™™7, (212)

with kj being the correlation decay rate of the direction of motion. In the case of free
diffusion of ¢ it is equal to the angular diffusion coefficient: k, = Dy.
Inserting Egs. (211) and (212) in Eq. (210) yields finally [273]:

(r(t)) = 2@ [t + L (e7rnt — 1)]

KRp Kp
2\ _ 2 1
+2 </U > <U> |:t + (6_(N1;+Kh)t _ 1>:| . (213)
Ky + K Ky + Kp

The first term describes the contribution of the mean square displacement due to
self-propelled motion with (constant) mean velocity (v) and a stochastic direction of
motion, whereas the second term takes into account the impact of velocity fluctuations
on the mean square displacement.

For particles moving with constant speed ((v) = vy = const.) there exist two
different scaling regimes of (r?(¢)) with ¢ similar to ordinary Brownian motion: The
so-called ballistic regime at short times with (r?(t)) o ¢t and the diffusive regime
with (r?(t)) o< t for t — oco. Between the two regimes there is a crossover at time
t~ kL

Tﬁe introduction of an additional time-scale due to velocity fluctuations may lead
to a mean square displacement with four distinct regimes and three crossovers in
between. For large time scale separation: (kp, + k,) ! < /43,:1 the angular correlation
decays much slower than the velocity correlations (kp/k, < 1). Thus starting from
its initial position at ¢ = 0 the particles perform first a quasi one-dimensional motion
along their initial direction of motion. The stochastic decorrelation of the velocity
in this effective one-dimensional motion leads to a first crossover from ballistic to
diffusive motion. After the velocity dynamics reach a stationary state, what matters
is only the average motion with the mean velocity (v). This regime corresponds to self-
propelled particles with constant speed performing (still) effectively a one-dimensional
motion with (r?) oc t2. As a consequence a second crossover can be observed from the
transient diffusive regime to a second ballistic regime. Finally, in the limit of large
times ¢ — oo, the slow decorrelation of the direction of motion leads to the third and
last crossover towards the final diffusive regime.

The diffusion coefficient of the limiting diffusive regime reads (Eq. 169):

Degt = 1 (<v>2 + (1}2><v>2> ) (214)

d \ kp Ky + Kp,

This results, as well as Eq. (213), holds for arbitrary dimensions d = 1,2, 3 as long as
the heading correlations decay exponentially and are governed by a single time scale
given by n;l.

An additional bias (e.g. external force), may even introduce yet another time-scale
and in this case even five crossovers are possible [273]. This complicated behavior of
the mean squared displacement can be an explanation for experimental observations of
superdiffusive motion of active particles [83,372]: several crossovers and averaging over
nonidentical active particles may lead to observations of mean squared displacements,
which appear to be in between ballistic and diffusive motion.
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4.3.3 Diffusion of active particles with passive fluctuations

In contrast to the previous section, we consider now active particles with correlated
fluctuations in the velocity and direction of motion, due to only passive (or exter-
nal) fluctuations acting simultaneously on both degrees of freedom as introduced in
Sect. 3.3 with D,,Dys = 0. At low external noise intensities D the velocity dis-
tribution for an arbitrary friction function is given by a narrow peak around the
stationary velocity vy and as a first approximation the velocity can be assumed as
constant: v = vg = const. The external (passive) fluctuation act only on the direction
of motion. In this limit the velocity correlation function reads

(0(0)0(r) cos((r) = (0) = 8 (coslilr) — 9(0))) = Bexp( =137 . (215)

0

Inserting Eq. (215) in Eq. (213) gives us the mean square displacement:

(Ar?(t)) = 2%)1 [t + %5) (exp {—gt} - 1)] : (216)

This is a well known result obtained previously by Meinkéhn and Mikhailov [236].
The corresponding long time effective spatial diffusion coefficient is inversely pro-
portional to D and reads

arm) o
DMM = tliglo 4t = 2D (217)
Please note the different power-law dependence of Dyp on vg = (v) in comparison
to (214) for vanishing velocity fluctuations ((v?) — (v)? = 0). This is due to the fact
that we consider here active motion with inertia.

In general, the diffusion coefficient of self-propelled particles (v ~ vy = const.),
decreases with increasing noise strength D in contrast to ordinary Brownian motion.
In the limit D = 0 the fluctuations in the direction of motion vanish and the self-
propelled particles moves with constant velocity along its initial direction of motion.
The mean squared displacement increases as ~ t? and we observe only ballistic motion
- no diffusion. Thus, for D — 0 the effective diffusion coefficient diverges. On the other
hand, with increasing D the fluctuations in the direction of motion increase — the
particle changes its direction of motion with increasing frequency. As the velocity
does not increase with D this leads effectively to a localization of the particle and
decreasing diffusion. Thus, for active particles moving with a constant speed the
diffusion coefficient vanishes Dy — 0 as D — oo.

For the linear Schienbein-Gruler model (see Sect. 3.1.2) the above low-noise limit
corresponds to D /vy < vZ. Thus in the limit D — 0 the effective diffusion coefficient
will converge to Eq. (217). However, in the limit of large noise intensities D /o >> v3
we may neglect the active motion term in the Schienbein-Gruler friction and put
vg = 0. The dynamics reduces to ordinary Brownian motion with the effective diffu-
sion coefficient Dy = D/7p which increases linearly with D.

Based on the two asymptotic limits it becomes evident that there must exist a
minimum of the effective diffusion coefficient. A crude approximation for Deg can be
obtained by a sum of the two asymptotic diffusion coefficients:

vé‘ D
D1 = Dy + Dy = 2D+’}/2. (218)
This approximation has the right asymptotic behavior and reproduces qualitatively
the behavior of Deg at intermediate noise strengths D. But a comparison with the
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numerical results reveals that this approximation underestimates the diffusion coeffi-
cient close to the minimum.

We attempt to improve the approximation of Deg by considering the velocity drift
term in the Fokker-Planck Equation (19) with vy > 0. The most probable velocities
0, corresponding to the maxima of the velocity probability distribution, are given as
roots of the drift term according to the Stratonovich interpretation:

D
— 'y()(i' — ’U()) + g =0. (219)

By multiplying with © we obtain a quadratic equation for © with the roots:

2
~ Vo (5 D
_=—=x4/—4+—. 22
Uy 2 =\ 1 o, (220)

The positive root corresponds to the maximum at positive velocities close to wvg
whereas the negative root corresponds to the maximum at negative velocities (back-
wards motion). At low D the backwards motion may be neglected and the most
probable velocity is given by the positive root ¥y. Inserting v = 9, in Dy (217)
gives us qualitatively the right behavior of the diffusion coeflicient with a minimum at
intermediate D but does not reproduce the correct asymptotic for D — oco. In order
to eliminate this deviation we add a correction term D/(273) and obtain a second
approximation as:

Dy = —. 221
I D gbw: (221)

A comparison of Dyj with numerical results shows that it offers a better approximation
then the Dj but overestimates the diffusion coefficient close to the minimum.

The two approximations appear to provide a lower and an upper bound of the
effective diffusion coefficient close to the minimum. We obtain a third approximation
by taking the average of Dy and Dyr. This heuristic ansatz does not yield any addi-
tional qualitative insights but results in an analytical expression for Deg with a good
agreement to numerical simulation:

1
Deg ~ Dii1 = = (D1 + Dn)

2
.\ 4
3D v 1 4, 4D
_ el B 222
478+4D+64D<v0+ v0+’70> (222)

In Fig. 34 we show a comparison of the three analytical approximations for Deg. Please
note that at low noise intensities all approximations seem to yield systematically
larger values of Deg then the numerical simulations. This can be associated with the
coupling of the effective angular diffusion to the velocity dynamics, which have not
been taken into account correctly.

4.3.4 Turning angles as Gaussian Ornstein-Uhlenbeck process
Another model to include correlations of the trajectories starts with equation of mo-

tion for the angle dynamics (See Eq. 69). So far in case of constant speed vy and
a continuous angle changes we widely have used that the turning angle is a Wiener
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Fig. 34. Effective diffusion coefficient of Schienbein-Gruler model with external noise versus
noise intensity D for two different parameter sets: (a) y0 = 1.0 and vo = 1.0, (b) 7o = 10.0
and vo = 2.0. Comparison of numerical results with the analytical approximations Dy (218),
DH (221) and DH] (222).

process and, respectively, its angular velocity Gaussian white noise. The correspond-
ing solution of the FPE is simply formulated from Eq. (72) putting Q = 0 or from
Eq. (66) if periodically wrapped.

The situation without preferred turning angle (see Eq. (63)) can be generalized to
a correlated Ornstein-Uhlenbeck process [58,153,167,355] as a model of possible cor-
relations. Some exemplary models of correlated dynamics are found in [214,302,310].
Here, applied to angular dynamics, the corresponding angular velocities have van-
ishing mean but possess Gaussian deviations correlated over a characteristic time
7c. The corresponding dynamics for the angular velocity is defined by the system of
stochastic differential equation

= 1 Qt), Q =—kKQ + /2Dg&(t).

Vo

The coefficients x plays the role of the inverse of the correlation time 7 of the angular
velocity.

Considering unwrapped angles with ¢ € [—o0, 0], the angular dynamics resemble
the equations of motion of a Brownian particle with Stokes friction o< k¥ and noise
intensity Dg, (compare Eq. (5)). The solution of this Langevin equation is known since
the seminal paper by Uhlenbeck and Ornstein [355] which was later generalized by
Chandrasekhar to motion in a higher dimensional space [58]. From the time-dependent
solution of the FPE, which is a Gaussian in the angle ¢ and in the angle velocity €2,
we obtain, for a given initial angular velocity )y, the transition probability of the
angle as [355]

342 3,2
K3v§ k2vg

Qo 2
Pl rlion0,0) = |28 (I T e
(2, 7l1, D0, 0) =y [ 5 525 e~ 505 (p2 =1 = —(1 — exp(—r7)))

(223)
Therein the time dependent mean square increment of the angle reads

D(1) = Dq(251 — 3 + 4exp(—~KT) — exp(—2kT))
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Fig. 35. Trajectories of particles with constant speed and correlated turning angles for
different values of correlation. Other parameters: vo = 1 [366].

which exactly agrees in the unwrapped approximation with the spatial diffusion co-
efficient calculated by Langevin for the mean squared displacement (7).

And thus the increment in the angle is a Gaussian distributed random variable.
It simplifies the calculation of the mean projection along the former path according
to (215) which yields

(cos Ap(r)) = exp( v?:g(m' ~ 1+ exp(—r7))) (224)

and results in the mean squared displacement of the particle

(Ar2(8)) = 202 /O (t — 7){cos Ap(r)) dr. (225)

The expression with double exponentials (224) can be evaluated either numerically in
the general case or analytically in limiting cases [366]. We observe that it starts with
a ballistic growth oc t2 and crosses over to a diffusional regime o ¢. One can easily
verify that in the two temporal limits

. d 200\ _ 5,2
71_% a( (Ar=(t)) = 2v5 . (226)
and
. d 2 6,2 > Dq _
Tll)rglo E(Ar (t)) = 2v§ /0 exp |:_’U(2)I€3 (K)T - 1)] dr = const. (227)

The crossover times between both regimes depend on the coupling. Let 7
vo\/k/Dgq. For large correlation times 7 = 1/k > 7 the crossover time equals
teross = T1- In contrast, for 7 = 1/k < 71 the mean squared displacement becomes
diffusional beyond teoss = 77 K.

An analytically tractable limit is K — oo with Dq = const. It corresponds to
a frozen angle with the variance being ballistic (Ar?(¢)) = v372. One might return
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Fig. 36. Mean squared displacement of a particle with constant speed and correlated angular
velocity for different inverse correlation times k [366].

also to the case that the angular velocity is white noise in the same limit x — oco.
However, this time the noise intensity shall scale with s as Dq = x2D. This case was
studied previously in Section 4.3.3, where the mean squared displacement is given by
Eq. (217) [236].

As shown before in Sect. 4.3.2 under the assumption of independent speed and
angular fluctuations both contribute additively to the mean squared displacement.
Assuming an energy pump of the Schienbein-Gruler type

b= —y(v—10) + v/2D, &(t)

the speed fluctuations lead to an replacement of the constant squared velocities in
(225) by the time dependent autocorrelation function

D,
vg — Vg + - exp(—y7). (228)

Parameters have been selected such, that the growth of the mean squared displace-
ment versus time undergoes three crossovers [273] (see also Sect. 4.3.2). The corre-
sponding times are given by the relations [366]

1 Dq vEK?
th=—, ta= ts = . 229
1 77 2 72’0(2) B 3 DQ ( )

The first time t; gives the crossing of the speed fluctuations, whereas the last one ¢3
has its origin in the change of the angular fluctuations. At the time ¢ both the value
of ballistic displacement caused by the angular noise starts to overcome the diffusional
displacement created by speed fluctuations. Therefore the displacement returns to a
ballistic growth.
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Fig. 37. Mean squared displacement of a particle with fluctuating speed and correlated
angular velocities [366].

4.3.5 Stochastic, dichotomous angular dynamics

Markovian switch between two operating orientations

In the following, we consider again particles moving with constant speed s = vy and
under the influence of a time-dependent torque [128,129,358]. However, this time
we assume that the rotational motion switches dichotomously between leftward and
rightward turning [152,200,307]. In detail, we consider as switching protocol for Q(¢)
the symmetric dichotomous Markov process (see Sect. 2.4), which is another colored
noise taken as the driving torque. 2(t) may possess the two values +w and switches
between them with a constant rate A. Additionally, angular white Gaussian noise
with intensity D, = D/v§ is present and perturbs the angle.
The Langevin equation for this situation is easily formulated and reads

@ =Q(t) + /2D, &(1). (230)

In Fig. 38 we show simulations of typical trajectories where the random torque Q(t)
is given by a symmetric dichotomous Markov process [366,367], as introduced in
Eq. (230). We assume that the angular velocity vanishes in average, i.e. <g0> =0.
We define the probability density functions for both rotational modes in analogy
to Sect. 2.4 and the description reduces to angular dynamics ¢(t). The particle has the
joint probability density function Py (p,t|¢o) to have the angle ¢ and angular velocity
Q(t) = +w at time ¢ conditioned by the initial value g at ¢ = 0. Equivalently, one
defines P_ (¢, t|pg) for the state with = —w. Both densities obey the equations [9]

9 o aP:I:(‘Pv t) azpﬂ:(@a t)

+D<P 7)‘P:|:(<Pvt) +/\P¥(90at)v (231)

where we have omitted the initial values. The common probability density to have an
angle ¢ at time ¢ then follows from

P(Soat) = P+(<p7t) + P—(Sovt)7 (232)

which will be used for the determination of the effective spatial diffusion coefficient.
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Fig. 38. Trajectories of particles with constant speed and random torque. The angular
velocities switches as a symmetric DMP between 2 = +£1.5. Different rates of transitions
create different magnitude of spreading as presented in the left figure. The right figure zooms
into the left one to show the different trajectories. Other parameters: vo = 0.5 [366].

We proceed to discuss the physical situation in two limiting cases. First we ne-
glect the Gaussian fluctuations. We put D = 0 and subsequently D, = 0. Then the
evolution of P(¢p,t) is given by the telegraph equation (28)

1 0° ) W OPP(p,t)

2 0t? ot (233)

For large times ¢ > 1/X and ¢ — ¢y < wt the term with the second derivative can
be neglected. One gets again a diffusion equation for the angle dynamics. As a result,
again a Gaussian density is established as in Eq. (72). The effective angle diffusion
coefficient follows as

D, = (234)

ﬁ.
In the second case we look at the governing equation for the common probability
density function including the Gaussian noise. It looks complicated

) 1 & D, 9*P(g,t)
2 p(pt) = —— 2 P(p, 1) + 2L\ Y
ol Pt = ol Pt X a0,
w? 0*P(p,t) D3 0*P(p,1)
+(5+D¢) 002 2X 0t (235)

however this equation simplifies significantly in the limit of fast switching A — oo.
Additionally we assume in this limit a fixed w?/\ = const. Then, the evolution
operator again reduces to a simple diffusion equation

0 WP 0?P(p,t)
S Plp,t) = (ﬁ +D,) o (236)

The angle dynamics becomes diffusional with the effective diffusion coefficient

w?

Deﬁ _
® 2A

+D,,. (237)

In addition to the intensity of the Gaussian angle noise a second contribution arises
from the switching. Again the time dependent solution has a Gaussian form (72) and
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the wrapped 2m-periodic solution corresponds to Eq. (66) with (237). We mention
that both limits correspond to the Gaussian white noise limits of the stochastic force
Q(t) in the Langevin equation for the angle dynamics, with fixed velocity v = vg and
g(v) = 1/vo. In this approximation () was interpreted as a second Gaussian white
noise in (69), which is uncorrelated with the stochastic term &(t).

Equation (236) and its Gaussian solution are valid in the limit of large angle and
long times. It turns to be out that the corresponding approximation is insufficient to
obtain the correct value of the effective spatial diffusion coefficient D.g describing the
motion of the particle in a plane. The latter is strongly determined by the small angle
behavior (long stretches without considerable turning). The largest contribution to
the spatial diffusion stems from trajectories corresponding to long stretches along the
same direction, i.e. is determined by the small-angle behavior.

Therefore, before turning to the calculation of the spatial diffusion coefficient, we
discuss a renewal approach which allows a generalization to a non-Markovian case as
well as leads us to the effective angular diffusion (237) more directly.

Renewal model for two operating orientations

The previous section dealt with a Markovian dichotomous switchings. Hence, the
times spent within two states with fixed direction of rotation are distributed expo-
nentially. Here, we generalize to arbitrary distributions of the switching times [152].
A different techniques will be applied, which is based on a continuous time gener-
alization of a persistent random walk. In particular, our analysis applies methods
developed in Ref. [152,230].

We consider the switching between the two states as an alternating renewal
process. The probability density function of the sojourn time 7 in each state is given
by a function w(7). In each of these states the motion rotates with the constant an-
gular velocity +w. The overall process is expressed as a sequence of steps in ;, each
of which corresponds to the sojourn in one of the rotational states.

As in Eq. (199) for the position, the angular displacement o(t) of the system is
given by the n complete steps followed by the last (n + 1)st incomplete step:

o) =) @i+ Pnt1. (238)
=1

The corresponding joint probability density function (pdf) h(y, 7) of the displacement
¢ and the duration 7 of a completed step in a corresponding state can be written as

hi(p,7) = Ri(p,7) w(T), (239)

where R (y,t) is the conditional pdf of rotation for given step duration 7. It is given
by Eq. (72) with = +w:
F wr)?
Rei(p,7) = lpFwr)” } . (240)

1
——€X —
A/ 27TDQOT P |: 4D4p7_

As auxiliary functions in the approach of Ref. [230] we need the probability not to
perform a step up to time ¢

W(r)=1 f/ w(r")dr, (241)
0
which defines the two distributions
Hi(% T) = Ri ((pv T)W<T) (242)

corresponding to (239).
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The probabilities Q1 to rotate over the overall angle ¢ just having completed a
step corresponding to + or — state at time t read

o) t
Qi(p,t) = %Jr/i dsﬁ/o dt'he(p — ¢, t —t)Qx(¢,t').  (243)

It follows from the consideration that the temporal stay in one of the states (+/—),
ending at time ¢ is either the first stay, with the probability 1/2 of being in one of
the states, or the walker has already made several steps, and entered at time t’, to
its last + (—)-state. The latter ends at time ¢ and since the process is a renewal one,
transition depend on the last jump only.

The probabilities Py still to be at ¢ at time ¢ are

H 7t (e’e] t
Pi(p,t) = # +/ d@’/o dt'He (o — ', t —1)Q=(¢', ). (244)

By adding the probabilities for ¢ at time ¢ in both states one finally gets the common
probability P(p,t) for the angle distribution.

The integrals in Eq. (244) have the form of a convolution in spatial and temporal
variables. Such equations transform into algebraic ones in the Fourier-Laplace domain
where solutions can be easier found. In [152] the solution was given as

H+(ka 5) [1 + iL— (klg)] + f{—(k, §) [1 + }Nl-i-(ka 5)]
2[1 — h_(k, 5)h (k, 5)]

p(k,8) = ; (245)

where p(k,3), pi(k,S) assign the Fourier-Laplace transforms of the corresponding
probability density function.

The Fourier-Laplace transforms of the densities h4+ and H4 follow from the trans-
formation of a Gaussian and from the shift theorem for the Laplace transform. They
can be expressed as

ha(k,8) = (3 + Dyk* +iwk), Hy(k,5) = W(5+ Dyk? +iwk),  (246)

with W (u) = [1 — @(u)]/u.

As example we consider again that the two states of the random torque Q(t)
are due to a symmetric and Markovian protocol. In consequence, we take exponen-
tial waiting time distribution with rate A (see Eq. (231)) w(¢) = Aexp (—At). After
corresponding Fourier Laplace transforms we obtain

5+ 2\ + D k?
82 4 [w? + 2AD,]k? + D2k* 4 2)5 + 25D k2

p(k,3) = (247)

It is interesting to underline that this solution from the renewal model solves Eq. (235)
in the Fourier-Laplace domain. It will be used in the next paragraph to obtain the
effective spatial diffusion coefficient which describes the asymptotic behavior of the
particle.

Let us shortly return to the diffusional approximation of the angular dynamics.
We let § — 0. The first term of the denominator (quadratic in §) can be neglected.
Additionally we look at the limit of large overall turning angles taking leading terms
in the limit & — 0, only. In this limit one re-obtains angular diffusion with the
effective diffusion coefficient defined in Eq. (237). We note that one gets the same
result for any waiting time density w(t) if the first moment reads: 7 = [~ dt’t'w(t’) =
1/ [152].
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Spatial diffusion coefficient under two random rotation

Eventually, we aim to calculate the spatial diffusion coefficient Deg on a plane for
the situation with two random rotations and Gaussian angular noise. We apply again
the Taylor-Kubo relation [102,307] taking d = 2 in Eq. (169). For a motion with
constant speed vy the correlation function Cy. is governed by the behavior of the
angular coordinate only, so that

Cuv () = v {cos[p(1)]) - (248)

Here we assumed ¢(0) = 0. The diffusion coefficient reads

2 [e'e]

Dest =2 | {coslio(t)]) dt. (249)
0
Let o

P(k,t) = (e*¢) = / dpe™? P(p, ) (250)

be the characteristic function of the angular distribution at time ¢ (its temporal
Laplace transform gives us p(k,3)). The mean value in the expression Eq. (249) is
then (cos[p(t)]) = Re P(1,t). Therefore the Laplace transform of the latter expression
in its temporal variable yields

/000 dte™* (cos[p(t)]) = Rep(1, 8). (251)

Since in our case the function p(1,3) is real, the Re-symbol can be omitted. From
comparison of Eq. (251) and Eq. (249), we obtain the diffusion coeflicient for the
considered particle dynamics. It reads following Eq. (247)

1, 2x+D,

1
Deg = —v2p(1,0) = = . 252
m = 500P(L0) = 5% 5 oND, + D2 (252)
Using Eq. (65) we can rewrite the last expression as [152]
vy 1
off = ﬁ e (253)

1+ D(D+20)\v§)

The first factor is the already often cited diffusion coefficient of active Brownian
particles [236] which appears, for example, also in Eq. (216). It defines the upper limit
in the situation with two random rotations. We see that a directed turning motion
decreases the diffusion process since the second multiplicand is always smaller than
1if w # 0. It is the effect of the bounded motion along the circles and the precision
along these curved trajectories which obviously decreases the effective diffusion. The
dependence of the diffusion coefficient as function of the noise intensity D is presented
in Fig. 39 for several rates of transitions A between the two angular velocities.

Starting from Eq. (253) this behavior is also found for w = 0 or in the case of
high noise D — oco. In this situation the second factor becomes unity. As A — 0 the
particle will rotate always clockwise or counterclockwise without switching between
the two turning directions. Then one obtains

4
v 1
Degp = -

= — 254

D
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Fig. 39. Diffusion coefficient for active particle with negative and positive angular velocity
w = 10 and vo = 1 vs. noise intensity D. The upper curve A = 5 converges in good agreement
with the dependence of Deg for A — co. The lower curve corresponds to A = 0 but averaged
over both values of +w.

This result was previously derived in [307]. The effect of the switchings between the
two values of w decreases the value standing in the denominator of the second factor.
Hence the diffusion coefficient decreases if switches between both turning directions
are allowed.
Another interesting case is the Gaussian limit of the dichotomous phase velocities.
As in the Sect. 4 we suppose the common limit A — oo and w? — oo holding thereby
fixed their ratio. Then it follows
4
D = — 20 (255)

w2v?
2(D + =5x°)

It yields the result of Meinkéhn and Mikhailov but with the increased noise intensity
D — D + w?v3 /2 coming from the fast switches of the velocity-phase ¢.

5 Stochastic dynamics of active particles in confining potentials

In this section, we address the question of active motion in external confinements and
analyze the typical trajectories and distribution functions. Throughout this section,
we use passive fluctuation independent on the direction of motion.

Rotational motion of biological agents has been observed as a result of an external
confinement [137,254,255]. Furthermore, collective rotation is a very common mode
of the motion of swarms [252]. Motivated by these observations, in order to imitate
the rotational mode, we will therefore consider first a single particle in an external
harmonic potential

Un(r) = %wer. (256)
It is well known that this system possesses a stable solution corresponding to a circular
motion with radius ro = vg/w [306]. In the absence of noise, the angular momentum
L =r x v is fixed, and the direction of motion depends on the initial conditions.
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Fig. 40. The coordinate z(t) and the velocity v(t) for limit-cycle oscillations of a 1d driven
oscillatory systems. The active particle is driven by a Rayleigh friction force. Parameters:
q=1,d=038,c=0.1,7 = 0.1.

A constant force will break the isotropy of the problem. In a large system, or infi-
nite space, the presence of dissipation will create a situation with a constant velocity
and we can cross to a co-moving frame.

A more interesting situation is obtained for potentials which create a confinement.
New dynamical solutions are then limit cycles in the phase space. In the following,
we will restrict mainly to the discussion of the Rayleigh-Helmholtz friction. Then the
problem of active Brownian motion in external attracting potentials transforms into
the study of (higher dimensional) van-der-Pol oscillators with noise.

5.1 Basic solutions for the active motion in harmonic potentials

Let us first study the active motion of a 1d driven oscillator without noise, which for
the Rayleigh model is described by [9]

d d

d—:: =, d_:j +wir = v(a — fv?), (257)
where v2 = a/3 defines the stationary velocity. Figure 40 shows the results obtained
from integration of (257). The systems exhibits self-excited oscillations, so-called limit
cycles - as discussed already by Rayleigh in 1894 [284]. An approximative solution for
small driving (small values of «) [9] reads

x(t) = ro sin(wet + D), v(t) = vo cos(wot + ), (258)

where the amplitude of the oscillations is 7o = vg/wp. This approximate solution is
valid for all active friction functions which have one zero at vy. Any initial condition
in the z, v space converges to the circle

1 1
H(z,v) = 5712 + §w8x2 = 3. (259)
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This circle is an attracting limit cycle of our system [9]. In a next step we will study
two-dimensional oscillators. We specify the potential U(r) as a symmetric harmonic
potential in two dimensions:

1
U(zy,22) = §w8 (z7 + 23). (260)
First, we restrict the discussion to the deterministic case, which then is described by
four coupled first-order differential equations:

. . 2

r1 =0 V] = —Y(V1,V2) V1 — wWHT
.1 1, .1 ’Y( 1, 2) 1 g 1 (261)
T2 = V2, V2 = =Y (U17v2)v2 — Wol2-

In the 2d case the energy pump of the r.h.s. of the velocity equation (257) is gener-
alized to
v (v1,v2) = —a+ B (v + v3). (262)

We can show by simulation and theoretical considerations that two limit cycles in the
four-dimensional phase space are created [121]. The projections of both these periodic
motions to the {vy,v2} plane is the circle

v? 4+ v3 =vi = — = const. (263)

e

The projection to the {x1, 25} plane also corresponds to a circle
x? + 23 = r = const. (264)

Due to the condition of equilibrium between centripetal and centrifugal forces on the
limit cycle we have
2
v
B (265)
To

Therefore the radius of the limit cycle is given by

Vo

=—. 266
o= (266)
From equation (265) follows
1 wd
Lp-edy (267)

This means we have equal distribution of potential and kinetic energy on the limit
cycle [106]. As for the harmonic oscillator in 1-d, both parts of energy contribute the
same amount to the total energy. Therefore the energy of motions on the limit cycle,
which is asymptotically reached, is twice the kinetic energy

H — Hy =2 (268)

The energy is a slow (adiabatic) variable which allows a phase average with respect
to the phases of the rotation [121].

Two exact stationary solutions can be easily found. The first cycle in the four-
dimensional phase space reads with arbitrary initial phase ®:

1 =rocos(wot + ) vy = —rowsin(wet + P)

xo = rosin(wet + ®)  ve = row cos(wot + P).
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Fig. 41. Stroboscopic plot of the 2 limit cycles for driven Brownian motion. We show
projections of solutions for vg = 1 to the subspace {z1,z2,v1}.

This means, the particle rotates even for strong pumping with the frequency given by
the linear oscillator frequency wy. One can check that this is indeed an exact solution
of the dynamic equations. The trajectory defined by the four equations looks like a
hoop in the four-dimensional phase space. Most projections to the two-dimensional
subspaces are circles or ellipses however there are to subspaces namely {x1,v2} and
{z2,v1} where the projection is like a rod.

The second limit cycle is obtained by inversion of the motion, i.e. t — —¢,v1(0) —
—v1(0),v2(0) = —v2(0), wg — —wp which yields

x1 = rocos(wot — ) v = —rowsin(wet — D)

ry = —rosin(wot — @)  wvo = —row cos(wot — P).

This second cycle forms also a ring in the four-dimensional phase space which is dif-
ferent from the first one. However, both limit cycles have the same projections to
the {z1,z2} and to the {vy, v} plane. The projection to the z; — xo— plane has the
opposite direction of rotation in comparison with the first limit cycle. The projections
of the two rings on the {z1, 22} plane or on the {vy,v2} plane are circles (Fig. 41).
The ring-like distribution intersect perpendicular the {z1,v2} plane and the {z2,v1}
plane (see Fig. 41). The projections to these planes are rod-like and the intersection
manifold with these planes consists of two ellipses located in the diagonals of the
planes (see Fig. 41).

The main effect of noise is the spreading of the deterministic attractors. Thus,
in the presence of noise, the two ring-like embracing limit cycles are converted into
two crossing toroids with cross-sections increasing with increasing noise intensity (see
Fig. 44).

We already examined that in the case of dimension d = 2 a very useful represen-
tation is obtained in polar coordinates [306]. Following Eq. (15) and with

z =r(t)cos(4(t), y=r(t)sin(Y(t)), (269)

we introduce polar coordinates r(t),¢(t), s(t), p(t) in the four-dimensional phase
space (r,v) for the case of active motion. In polar coordinates the equations of
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motion read

7 =wvcosh, §=—vy(s)s—wrcosbh,

(270)
. 2 .
6= (“”0’"—8) sinf), wzg sin 6,

S r

with 0(t) = ¢ — 1.

The stationary solutions (Egs. 269, 269) can be easily found. The difference of
the two angles 6 approaches two values, § = /2. These two solution resemble the
two limit cycles with vg = /3, ro = vowp and two stationary rotations (clockwise
and counter clockwise) with stationary angular velocity w = ¢ = £wq. The particle
rotates even at strong pumping with the frequency given by the linear oscillator
frequency wy.

In order to construct solutions for stochastic motions, we need beside H = v3
other appropriate invariants of motion. Looking at the first solution (269) we see,
that the following relation is valid

V1 4+ woxe = 0; vy — wox1 = 0. (271)

In order to characterize the first limit cycle, we introduce the invariant
1 2, 1 2
J+ =H— wOL = 5(1)1 + WQJL‘Q) + 5(1}2 — wol’l) . (272)

where we have introduced the angular momentum L = (z1v3 — 22v1). We see immedi-
ately that Jy = 0 holds on the first limit cycle which corresponds to positive angular
momentum. In order to characterize the second limit cycle from equation (269) we
use the invariant

1 1
J_=H+ wyL = 5(1}1 — UJ()Z'Q)Q + 5(’02 + WQ$1)2. (273)

We see that on the second limit cycle, which corresponds to negative angular momen-
tum, holds J_ = 0.

5.2 Rotational motors and efficiency

A two dimensional system in a rotational mode may be considered as a simple model
of a rotating motor. We consider again the 2d oscillatory system (261) this time for
the general case of a friction function having one zero v(vg) = 0. As shown above we
are able to find even an exact solution for the limit cycle oscillations (269) for the
Rayleigh-Helmholtz case. The solution (269) represents a (mathematically) positive
rotation. The motion of the particle on the orbit in distance ry from the center
proceeds with velocity vy and runs in time ¢ over a path of length

1(t) = vt + 1(0) (274)

on the orbit. On this path the motor is doing work against the friction ~yq.
Generating rotations is connected with angular momentum L = r x v which
satisfies the equation of motion

dL

Fri —v(v)L. (275)
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Fig. 42. Left: dependence of the power of the “motor” on the external friction I' generated
by the load force for three different values of the internal motor friction o and fixed the
other parameters ¢ = 0.5,d = 0.5,¢ = 1. Right: dependence of the power of the “motor” on
the external friction I" generated by the load force for four values of the conversion parameter
d of the internal motor parameters (other parameters: vo = 0.2, ¢ = 0.5, go = 1.0). We note
that the efficiency decreases with increasing parameters d.

In the 2d-case the self-generated angular momentum of the stationary solution is
L= Tovo-

Let us assume some torque M., acting in opposite direction. In this case, the
“motor” has to perform some additional work. For simplicity, we assume that there
is some opposite force acting along the circumference of the circle with M., = roFe;.
We assume this force, as some additional friction F,., = —I'v;. acting in the direction
opposite to the direction of (rotational) motion. We define v;. < vg as the velocity of
the motion along the limit cycle, with v;. = vy for the unperturbed limit cycle.

Let us consider the depot model (see Sect. 3.2.4). The velocity along the limit
cycle without the additional torque reads

vg =2 — =, (276)

If we take the additional load into account the velocity along the limit cycle changes
to

2 Q) do
=40 ___ 2 277
Vie (’VO I F) c ( )

The power associated with the additional work is P = F.,v;. and we define the
efficiency as the relation of the generated power P to the flow of energy into the
system qo:

(278)

P F, I'v? 1 d
n=— = exVle _ Ulc:F|: :l

qo 4o qo Y +T  cqo

for Fepvie > 0. The corresponding dependence on the external additional friction I"
is represented in left Fig. 42. For a clear understanding we should emphasize that
~o is an always present internal friction, while I' is connected with the external load
and therefore connected with the work performed against the external force. The
dependence of the power of the motor on the external friction for different motor
parameters is represented in the right panel of Fig. 42. Depending on the inter-
nal motor parameters, we observe typically a curve with a maximum at a finite
load corresponding to maximal efficiency, which in our examples is around — or less
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than — 50 percent and is achieved for

Frae = (CQO/d) — 70- (279)

After the maximum the efficiency decreases with increasing I'. Above a maximal value
of external friction, corresponding to vanishing velocity along the limit cycle v;. = 0,
the motor stops to work and the efficiency becomes formally negative. The curves
for the efficiency of rotational motors shown above may give us some idea about the
efficiency of biological motors responsible for the mobility of animals, whereby the
simple model model discussed here reproduces the generic behavior expected to hold
for all biological motor systems. We mention in particular the measurements and
discussions of the efficiency of the kinesin motor [158,378,379].

5.3 Stochastic motion in a harmonic external potential

Since the main effect of noise is the spreading of the deterministic attractors, we may
expect that the two hoop-like limit cycles are converted into a distribution looking
like two embracing hoops with finite size, which for strong noise converts into two
embracing tires in the four-dimensional phase space. In order to get the explicit form
of the distribution, we may introduce different variables, like the amplitude and phase
description as used in the previous sections. Here, we introduce the energy and angular
momentum as variables and derive reduced densities. We remember that throughout
the Stratonovich calculus is used [9].

On the basis of the amplitude and phase representation (polar coordinates) (15)
and (269), we get for the Hamiltonian

1 1
H(t) = 5s(t)2 + 5wgr(zf)?. (280)
The angular momentum is given as
L(t) = (x1v2 — zav1) = s(t)r(t) cos(0). (281)

Values corresponding to the two limit cycles are
L =+Lo; L= —Lo; Lo = v /wo, (282)

with v = a/B. Both limit cycles are located on the sphere with H(t) = v3.

Considering harmonic oscillators and using equipartition of potential and kinetic
energy (see equation (268)) we find for motions on the limit cycle s?(t) = H(t).
Assuming that s> ~ H holds also near to the limit cycle, the dynamic system with
the pump (262) is converted to a canonical dissipative system with

v(s?) ~ ~v(H) = vy (H). (283)
This way we come for the Rayleigh-model to the energy balance
d
aH = —'}/H(H) H + v 2DHH H(t) (284)

where £x(t) = &1(t) cos(¢p) + &2(¢) sin(¢) is again Gaussian white noise and Dy = D.
This corresponds to the Fokker-Planck equation in energy representation

0 0 0
§P(H,t)f8—H (’YH(H)H*DH)PJrDHafHHP ; (285)
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with the stationary solution

Po(H) = N exp {_DlH / 'yH(H)dH] . (286)

The most probable value of the energy is the energy on the limit cycle. In case of the

Rayleigh model it is
- 2

H=Hy=— = (287)
B
The stationary distribution can be given in compact form (H > 0)
Po(H) = N'exp| - (0 — Ho)?]. (285)

which is a Gaussian at positive energies.

This probability is in fact distributed on the surface of the four-dimensional sphere.
By using equation (280) we get for the Rayleigh-model of pumping in our approxi-
mation the following distribution of the coordinate with r? = x2 4 x2

2 2
Py(x1,22) ~ exp {aDwoﬁ (1 4 )] (289)

)
2rg

We see in figure 43 that the probability crater is located above the trajectory
obtained from simulations of an Active Brownian particle. This way the maximal
probability corresponds indeed to the deterministic limit cycle.

So far we represented only a projection on the {x;,z5} plane. The full prob-
ability distribution in the four-dimensional phase space is not constant on the
four-dimensional sphere H = v3 as suggested by equation (286) but should be con-
centrated around the limit cycles which are closed curves on the four-dimensional
sphere H = v3. This means, only a subspace of this sphere is filled with probabil-
ity. The correct stationary probability has the form of two noisy distributions in the
four-dimensional phase space, which look like hula hoops. This characteristic form
of the distributions was confirmed also by simulations (see Figs. 44, 45 and [121]).
The projections of the distribution to the {z1,z2} plane and to the {v;,v2} plane
are noisy tori in the four-dimensional phase space. The hula hoop distribution in-
tersects perpendicular the {x1,v2} plane and the {z2,v;} plane. The projections to
these planes are rod-like and the intersection manifold with these planes consists of
two ellipses located in the diagonals of the planes.

In order to refine the description, we derive the distribution of the angular mo-
menta. We start from the Langevin equation

%L = () L+ V2Dr e (t), (290)
with &1, (t) = &, (t) cos(p) —&,(t) sin(4) being Gaussian white noise. On the limit cycles
it holds

L(t) = £r(B)s(t), s(t) =wor(t) (201)

with different signs for the two possible rotation directions. To find a closed descrip-
tion, we assume that the Eq. (291) holds and replace

r(t) =4/ == $(t)=Lt)wo, (s*) =7 (Lwo) = (L), (292)
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Fig. 43. Probability density for the Rayleigh-model represented over the {z1,z2} plane.
(a) The probability density (289). (b) Contour plot of Py(r) superimposed with data points
out of simulations of the Active Brownian dynamics. Parameters: o« = 2, D = 0.1 and wo = 1.

where we have used the positive sign and hence L > 0. It follows

d
L= —vL(L)L + /2D L&L(t) (293)
with D
Dy = —. (294)
wo
The corresponding Fokker-Planck equation is similar to the energy representation
2P(Li&) 0 (yvo(L)L — D,)P+ D iLP (295)
ot oL |\ L Lar |-
Obviously its stationary solution reads
1
Py(L) = N exp [—D / VL(L)dL] , (296)
L

and eventually after introducing the most probable angular momentum Ly = rqvg =
Hy/wo at the limit cycle the stationary solution becomes (L > 0)

Py(L) = N exp {%(L - Lo)z} . (297)

A corresponding solution can be found for the second cycle by replacing Ly — —Lg
for momenta with L < 0. Due to symmetry both values are provided with same
probability one may expect a linear superposition of the two solutions

Po(L) N(exp[/BO(L Lo) } Jrexp{ﬁO(LJrL ) ]) (298)

The given method does not provide a complete solution in the four-dimensional
phase space, but gives us a good idea about the projections on different planes. In
order to find a distribution in the four-dimensional phase space, we combine the
previously found distributions and introduce the invariants J, J_ which leads to the
following ansatz:

Po(x1,22,v1,v2) = Nexp[—zﬁD(H Ho)]

X (exp [Q%Ji] + exp [ﬁ)ﬁ]) : (299)
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We may convince ourselves that this formula agrees with all projections derived above.
Furthermore, it is in agreement with the general ansatz derived in earlier work from
information theory [102,107]. Since our new expression for the stationary distribu-
tion does not contain any parameter characterizing the concrete potential it may be
applied to arbitrary radially symmetric potentials, in particular we may use it for
describing the stationary distributions for a Coulomb confinement.

5.4 Dynamics in symmetric anharmonic potentials

Here, we will discuss briefly several extensions of the theory developed in the previous
section following [306]. At first, we will discuss the case of anharmonic potentials. For
the general case of radially symmetric but anharmonic potentials U(r), the equal
distribution between potential and kinetic energy v3 = ar2, which leads to wy =
vo/To = w, is no more valid. It has to be replaced by the more general condition that
on the limit cycle the attracting radial forces are in equilibrium with the centrifugal

2
forces. This condition leads to :—8 = |U’(rg)|- Then, if v is given, the equilibrium
radius may be found from the relation

vg =10 |U'(ro)]. (300)
The frequency of the limit cycle oscillations follows as

2 ’
W= = [Tl (301)
To To

For example, for the case of quartic oscillators with potential U(r) = kr*/4 we get
the limit cycle frequency

k1/4
wo = 73 (302)
Yo
Alternatively for attracting Coulomb forces U(r) = — Ze?/r the stable radius reads
and the limit cycle frequency, respectively,
Ze? vg
- =0 303
To Ug y  Wo 762 ( )
Integrals of motions follow
1 Ze?
Hy= -3  Ly==+2%. (304)
2 Vo

We note that this expression diverges for vg — 0 (similarly as in quantum theory the
Bohr radius diverges for h — 0).

If the equation (300) has several solutions, the dynamics might be much more
complicated, e.g. we could find Kepler-like orbits oscillating between the solutions for
ro. In other words, we may find then beside driven rotations also driven oscillations
between the multiple solutions of equation (300).

An interesting application of the theoretical results given above, is the following;:
Let us imagine a system of Brownian particles which are pairwise bound by a Lennard-
Jones-like potential U(r; — r2) to dumb-bell-like configurations. Then the motion
consists of two independent parts: The free motion of the center of mass, and the
relative motion under the influence of the potential. The motion of the center of mass
is described by the equations given in the previous section and relative motion is
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described by the equations given in this section. As a consequence, the center of mass
of the dumb-bell will make a driven Brownian motion but in addition the dumb-bells
are driven to rotate around there center of mass. What we observe then is a system
of pumped Brownian molecules which show driven translations with respect to their
center of mass. On the other side the internal degrees of freedom are also excited and
we observe driven rotations and in general (if Eq. (300) has several solutions) also
driven oscillations. In this way we have shown that the mechanisms described here
may be used also to excite the internal degrees of freedom of Brownian molecules.

5.5 Dynamics in asymmetric potentials

We will study now potential landscapes without radial symmetry and follow [117].
Problems which might be studied with these models are, for example, the synchro-
nization between the oscillations along both axis, the existence of Arnold tongues etc.
[118]. In the simplest case, we may assume that the potential is harmonic along the
two axes but stretched in an asymmetric way with different elasticity constants

Ula,y) = guia® + swiv?, (305)
denoted by w1 # wy. In order to give some idea about the influence of asymmetry
between the modes, let us first present the result of simulations for 1000 independent
active particles with the depot pump (see Sect. 3.1.3). The distribution of these
particles in the phase space shows us where the probability distributions are expected
to have their maxima (see Fig. 44).

We also study here a specific case of a simple relation of the frequencies we = 2wy .
The solution of the Hamiltonian problem (e.g. no dissipation) is given by

x1 =rcos(wit —®) vy = —ryw sin(wit — D), (306)
o = rosin(2wit — @) v = 2rowq cos(2wit — P),

where the amplitudes 71 » are determined by the initial conditions. In the case of active
particles, § = (+1 > 0 (see Eq. 56), the dissipative forces drive the trajectories to an
attractor which corresponds to v# 4+ v3 — v3. In a good approximation, the attractor
is determined by the amplitudes

Vo . Vo

T = —3 To = (307)

w1 w2
We see that the smaller amplitude has approximately half the value of the bigger am-
plitude. This way, we have obtained a limit cycle shaping like a Lissajous oscillation
in the form of an “8”; a second limit cycle can be found by inversion of the trajectory.
The result of a stochastic simulation is shown in Fig. 44(d). We see here the projec-
tions of two stochastic trajectories (limit cycles); the projections having the form of
an “8”. In the case of irrational relations wy /w1, as well as for the case of nonlinear
couplings between the modes, we find more complicated attractors [118]. In order to
get analytical expressions for the distributions, we may introduce amplitude—phase
representations [121].

5.6 Transitions bistable potentials

Let us now have a look at bistable situation in a two-dimensional landscape following
[104]. In order to investigate the Kramers problem of transitions between two wells,
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Fig. 44. Distributions according to simulations of 1000 active Brownian particles with
depot pump (Sect. 3.1.3) on limit cycles in symmetric (a-c) and asymmetric (d) parabolic
potentials. (a) We show projections of simulations on the x — y—plane. Parameters: { =
1.5,70 = 1,D = 0.01: (a) 2D projections on the subspace {z1,z2}, (b) 3D projections on
the subspace {z1,z2,v2}, (c) 2D projections on the subspace {z1,v2}, (d) 2D projections on
the subspace {z1,z2} for we = 2wy [118].

we introduce a simple model potential with two potential minima placed on the line
x = y. The potential is defined by

1 1 1
Ulz,y) =a <4z4 - 522 - cz) + ng(x — )2 (308)

Here, we introduced z = (x + y)/2 being the reaction path, i.e. the co-ordinate along
the line connecting the minima with the lowest barrier value between both. The
parameter ¢ determines the asymmetry of the wells and a determines the height of the
well which is for (¢ = 0) given by AU = a/4. The shape of the potential is presented
in Fig. 45. In the case of small excitation energy v3/2 < AU, and weak noise, the
dynamics in each well is similar to the parabolic case. In other words, we may observe
two limit cycles in each of the two wells. With increasing noise, transitions between
the two wells become possible. For standard Brownian motion this is a well-studied
problem [157].

Here we present numerical simulation of 10000 active particles with depot pump
of energy (see Fig. 3) and provide estimates of the transition rates (Fig. 45). Initially,
particles were put at z = Z; in the left potential well. In Fig. 45(b,c) the temporal
evolutions of the position of the center of mass Z(t) and the fraction of particle in
the left well, p(t) = n;(t)/N are shown, n; is the number of particles in the left well
and NV = 10000 is the total number of particles. As can be seen from the figure, the
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Fig. 45. Active Brownian particles in a bistable potential in 2 dimensions. (a) The shape of
the potential for AU =1: a =4,c¢ =0, the minima are located along the diagonal. (b) The
position of the center of mass of 10000 particles initially located in the left well under the
influence of noise D = 0.1 as a function of time, for indicated values of driving parameter J.
The transitions are enhanced for larger driving. (c) The fraction of particles staying in the
left well for D = 0.1. (d) The decay rates of the probability to stay in the left well for the
noise strength for D = 0.1 and for D = 0.2. On (b) and (c) symbols shows numerical values,
while the solid lines are exponential least-square fits due to Egs. (309). Other parameters
(see Fig. 3): 70 = 1;v4 = 1 [104].

time courses can be fitted with exponential laws:

2(t) = 7y exp(—f_) o p) = % [1 +exp<—i>} , (309)

where 7 is the characteristic transition time. The transition rate 1/7 is shown in
Fig. 45(d) as a function of § = v3™'. A rough estimate of the transition time is

AU — (1/2)1}3] | (310)

Tocexp[ D

where v = (§ — 1) for our model. Thus, with the increase of § the potential barrier is
effectively lowered, providing higher transition rates which agree with the result for
the one-dimensional case [276].
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In other words, the effect of active driving (in comparison to the passive case)
may be estimated by

Tact U(2)
e~ x exp{ QD} . (311)
Due to the nearly exponential dependence on (6 — 1) the increase of the rate with the
driving strength may be rather large. We have to note, however, that the exponential
“ansatz” yield just a rough estimate for moderate pumping 1 < § < 2. For § > 2 we
observe in Fig. 45(d) already a tendency to saturation (the particles freely penetrate
the barrier) and for 6 < 1 (transition to the passive case) we observe a more sensitive
dependence on the parameter 9.

6 Collective motion and swarming

We apply in this section the model of active Brownian dynamics to describe the
collective motion in active matter systems, such as e.g. swarms of animals.

At first, we will characterize the fundamental modes of collective motion of swarms
with cohesion using a quite simple model based on the idea of global coupling of the
individuals in the swarm. Global coupling is not based on realistic physical interac-
tions however it demonstrates already the most important features of “swarms”. We
use here the general notation of “swarms” for confined systems or clusters of particles
which can perform collective motion far from equilibrium.

After the discussion on modes of collective motion induced by global coupling, we
will turn to the important class of models of collective motion due to local, short-
range velocity alignment between active particles. We will start with a description of
active Brownian particles with nonlinear friction and velocity alignment. Further on,
we proceed with the discussion of a widely used class of self-propelled particles, which
correspond to limit of vanishing speed fluctuation. In this context we will focus on
different interaction symmetries. Starting from the classical Vicsek model of active
polar particles with polar interactions, we discuss a general classification of models
that includes not only so-called active nematics, but also a second important class of
models of active polar with apolar interactions. Throughout this second subsection,
we will focus on the onset of collective order for increasing density or decreasing noise
in various models.

Finally, in the end of this section, we will introduce alternative mechanisms for
swarming and collective motion based on escape and pursuit response or chemotactic
behavior of individuals.

6.1 Dynamics of swarms
6.1.1 Modes of collective motion with cohesion: translation and rotation

The model of global coupling is the most simple dynamical model of collectively mov-
ing swarms of animals. Global coupling is not based on realistic physical interactions
however it demonstrates already the most important features of “swarms”.
Probably the first mathematical model of swarms based on individual particles
(or agents) was introduced by Suzuki and Sakai in 1973 ([339]; see also [252]). Since
then, different models of swarming of animals, many of them motivated by fish schools,
have been the subject of biological and ecological investigations (see e.g. [10,41,71,72,
172,252]). Here we would like to highlight the pioneering paper on swarm dynamics
by Hiro-Sato Niwa published in 1994 [250]. Niwa, not only introduced a nonlinear
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friction function in his model, but he is probably the first one who analyzed the
stability of the different modes of swarming motion from the point of view of statistical
physics. Despite the numerous biologically motivated studies, swarming dynamics is
still a rather young field of physical studies. Some recent developments have been
covered, for example, by Helbing [159], who discusses traffic and related self-driven
many-particle systems and the comprehensive books by Vicsek [360], Mikhailov and
Calenbuhr [235], and Schweitzer [311].

Based on the simulation studies of the first swarming models [339], a classification
of different modes of swarming motion was performed, which can be also observed in
nature (see Okubo and Levin [252]). According to these authors, three general modes
of motion can be identified:

1. translational motions,
2. rotational excitations and
3. amoeba-like motions.

It is beyond the focus of this review to discuss all the swarming models, which were
developed in order to account for the rich variety of observations. Instead, we will
study in the following the collective modes and the distribution functions of simple
models. We start here with consideration of finite systems of particles confined by
global coupling which are self-propelled by active friction and parallelized by small
velocity-dependent interactions. This kind of description may be considered as a sim-
ple and to large extent analytically tractable approximation of the collective dynamics
of biological agents [99,105,107,116,119,237,313]. More complex models, which in-
corporate for example local interactions, are discussed in the forthcoming sections as
well as in other publications (see e.g. Refs. [74,360-362]).

We will show here that the collective motion of swarms (large clusters) of driven
Brownian particles resemble very much the typical modes of motion in swarms of
living entities. The self-propulsion of the particles is modeled by active friction as
introduced in Sect. 3.1.2. The analysis is restricted to two dimensional models (d = 2).
The internal driving of the system by negative friction yields a dynamical behavior far-
from equilibrium. Earlier studies have shown that such active interacting systems may
have many attractors and that noise may lead to transitions between the deterministic
attractors [237,313].

6.1.2 General model of swarms

We proceed with an analysis of the structure of the equations of motion of a swarm.
We will characterize the motion by its attractors in the phase space and again by the
stationary distribution if noise is included. First we start with the two dimensional
problem and harmonic interactions. In the next section, we extend our focus to three
spatial dimensions and to interaction with Morse potentials.

We consider a system on N active particles at positions (ry(t),...,rx(¢)) which
are moving with velocities vi(t),...,vn(t)). Let the particles be point-like with
the mass m = 1. Since motion is created by forces we postulate the equations

of motion for the individuals within the swarm to be given by the N (stochastic)
Newtonian equations

%I‘i =V, (312)
d
FTAC —y(vi)vi + Fi(ry,...,tN,V1,...,vN) + V2DE(t), (313)

where ¢; are Gaussian white noise sources acting on every particle, independent from
other particles.
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The first term on the right hand side is the dissipative force, which accounts for
the individual velocity dynamics (friction/energy pump). In case of the Rayleigh-
Helmholtz model (Eq. (42)) these forces are read

—y(vi)vi = (a = Bvi)vi. (314)

Also the active linear dissipative force with friction coefficient (44) can be easily gen-
eralized to N particles. Eventually one can define for every particle ¢ = 1,..., N
an individual energy depot e;(¢t) which will yield a velocity-dependent friction
force (54).

The second force term F; accounts for the interactions between the particles, as
well as possible external forces acting on individual particles. In general, it can be a
function of all positions and velocities of particles forming a swarm. Here, we assume
that F; consists of two components: a velocity dependent (dissipative) force and a
force due to potential gradients:

Fi:F;/a(vl,...,VN)—VUN(I'1,...,I‘N). (315)

The potential Uy is assumed to consist of an external potential W (r;) and a super-
position of pair-wise interaction potential U(r;;), with r;; being the distance between
particle ¢ and j. Hence, the total potential reads:

Un = Y W)+ %Z Ulry). (316)

We will start with a parabolic approximations of the interaction forces generated
by the pair-wise potentials [105,237,313].

w2

Ulrij) = ?ngﬁ
which might hold if the size of the objects is small compared to the spatial scale of
their motion. Harmonic interaction potentials constitute a global coupling between
individual particles, which was considered in this context in various publications
[237,250,313]. It allows to reduce the problem effectively to the motion in a well
formed by harmonic forces which we considered in Sect. 5.1. With global coupling the

particles are attracted by an effective spring force to the center of mass given by

rc.o.m.(t) = % Z r; (t) (318)

(317)

The effective mean field force acting on the i-th particle is defined by
Ki = 7viUN(I‘1, e ,I‘N) = 7(&)(2) [I‘l‘ — rc.o.m.(t)y (319)

Several approaches to include more realistic interactions will be discussed later on.
Here, we should mention that the case of constant external forces was already treated
by Schienbein et al. [304,305]. Symmetric parabolic external forces were studied in
Refs. [106,121] and the non-symmetric case is being investigated in Ref. [118]. More
complicated external fields including short range repulsion were studied in detail in
several publications [104,226,227,306] and will also be addressed in Sect. 6.1.6.

The dissipative interaction between particles, is assumed to be a velocity-
dependent interactions with the tendency to synchronize the velocities of different
particles. We assume a simple alignment law [252]

F/*(vy,...,vn) = —,ngN(mj)(vi—vj). (320)
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Here ¢(r) is a function which accounts for possible distance dependence of the interac-
tion, such as decay of the interaction strength with distance. This models a dissipative
force which tends to parallelize the individual velocities.

In this and the next section, we will consider for simplicity a velocity coupling
with an infinite range: gy (r) = 1/N. Thus, in this model all particles synchronize
with the total swarm velocity u(t) which is the velocity of the center of mass (c.0.m.)
of the swarm.

u(t) = % Z vj. (321)

In addition we will assume that the alignment strength u is vanishingly small. Hence,
in the next section our focus lies on the conservative interactions.

Other couplings with finite range g(r) have been studied in numerous previous
publications (see e.g. [60,272,360,361]). We will discuss the (local) alignment inter-
action in detail in Sect. 6.2.2. There are other types of dissipative interactions, which
lead to synchronization of individual velocities as, for example, hydrodynamic in-
teractions [23,116] or symmetry-breaking contact interactions, such as e.g. inelastic
collisions [148,258,271,340]. We will present and discuss different alignment interac-
tion in detail in the forthcoming sections.

6.1.3 The model of harmonic swarms with global coupling

The concept of global coupling has proven to be very useful for the investigation of
stochastic systems [9]. For the case of Rayleigh-driving, the dynamical equations for
center of mass and its velocity have the form [103]

d
&rc.oﬂ’n.(t) = u(t)7 (322)

d 2 ﬂ 2
P [a = pu®|u— N1 zl: ((0vi)’u+ (u-6v;)6v;) + V2DE,(t).

Therein 0r;(t) = r;(t) — re.o.m.(t) and dv;(t) = v;(t) — u(t) are the deviations of the
individual objects from the center of mass, which obey

d
dt
d
dt

ory = 0vj (323)
Vi + widrs = [ — p — Bov — pu’] dvi — 2B(u - dvi)u + V2DE;(t),
where the Gaussian white noise acting on the center of mass is defined as

6= 5 Y60, (Q(0) =0, (Gbu) = oudlt—¢), Lk=vy. (329
The noise agitating the individual objects reads (i, =1,...,N)

08 =& — &u, (0&:) = 0, (0¢n0&51) = 6ij0ri(1 — %)5(75 —t'), (325)

with k,l = z,y. We note that these noise terms are again independent of the motion
of particles.
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Fig. 46. The two basic configurations of a noisy system obtained by simulations of N = 100
globally coupled active particles. We show snapshots in the space of the two coordinates
(wg = 0.2, = 0). Left panel: D = 0.001, translational mode with a particles moving
along a dumb-bell configuration perpendicularly to the translational motion of the center of
mass indicated by diagonal crosses. Right panel: D = 0.2, rotational mode with undirected
rotations around the center of mass [103].

Lets first look at dynamics of the center of mass. We start by decoupling is from
the dynamics of the deviations by averaging with respect to dv;. Approximately, we

get in this way
d
i (1 — Bu?)u+ V2DE,(t). (326)
Importantly, here a; < « is determined by the positive mean quadratic dispersions

of the dv;. The corresponding velocity distribution of the center of mass is
PO (u) = Cexp {N (Oélu2 - u4>} . (327)

This way we find the most probable velocity as u; = uje, with equally distributed
and diffusing directions. It yields for the average speed:

up =/ ai/B, (328)

which is smaller than the speed of an freely moving individual object which value was
vg = y/a/B. The shift with respect to the free mode depends on the noise strength
D. The solution breaks down if the dispersion of the relative velocities v becomes
so large that the a; becomes negative. With increasing noise we find a bifurcation to
another mode which most probable value has speed uy = 0.

This corresponds to the findings of Erdmann et al. [119] which will be discussed
more detailed later on. Fig. 46 illustrates the two typical behaviors which can be
observed for small noise, and for noise intensities above a critical values D", respec-
tively. Further on, we refer to u; # 0 as the translational mode, and to the second
mode with vanishing center of mass speed uy = 0 as the rotational mode. We will
also see that both modes can be clearly defined in three spatial dimensions.

6.1.4 Investigation of the dynamics of the relative motion of active particles

Here, we discuss the dynamics of the movement of individual particles relative to the
center of mass [103]. We begin with the analysis of the deterministic case without
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Fig. 47. Dynamics corresponding to the attractor region of the rotational motion of the
pair: the left panel shows the decay of the kinetic energy of the center of mass to zero
(rest state), as a function of time z(t) = w*(t). The right panel shows projections of the
velocities vi(t),v2(t) as a function of time and demonstrates the formation of sustained
oscillations [103].

noise. The equations of motion are completely symmetric with respect to the particle
index i. In other words, there are no cross terms including two different particles
as i, j. This is an unique property of global coupling, the relative dynamics reduces
completely to the binary problem, i.e., to the analysis of the (stochastic) dynamics
of pairs of active Brownian particles. Therefore, we concentrate our investigation on
the study of two active particles with a linear attracting force [118].

In this case, the center of mass r ,.,,,. moves with the velocity u. The relative mo-
tion of an individual particle under the influence of the interaction force is described
by the relative radius vector dr = r; — reo.m. = (r1 —r2)/2 and the relative velocity
0v. The second particle has the same distance and velocity relatively to the center
of mass but with opposite sign. We may write in Eq. (323) simply dr, v instead of
dr;,0v; and omit the sum and the denominator 1/(N — 1) in the equation for the
center of mass.

i) Let us first assume a stable rotational mode. Hence, we put u = 0 which
solves the equation of motion for the center of mass. Subsequently it follows that
Teom. = Teom.(0). In the two dimensional space the equations of motion for the dr
and 6v become symmetric and independent of a direction. Both assume the form of
a van der Pol oscillator for system with a limit cycle

d d
a&‘ = v, a(Sv + widr = (a — p — B6v?) dv. (329)

As in the case of an external field (Sect. 5) this system has two stable limit cycles,
see Fig. 41. Which of them will be approached depend on the initial conditions.

The limit cycles are left in favour of the translational mode by a perturbation
with an overcritical speed value. In order to understand this, we introduce a small
but finite translation u = vy > v > 0. If w is sufficiently large, it leads immediately
to the destruction of the rotational symmetry of the limit cycles, and to an elliptic
deformation with the longer axis in the direction perpendicular to the translation. As
shown by Erdmann et al. [117,118] the loss of rotational symmetry leads to leaving
an Arnold tongue of stability and consequently to a destruction of the limit cycles.
These authors found that the rotations are indeed stable only in and near to the plane
u = 0 i.e. for swarms at rest or near to the resting state. This situation is presented
in Fig. 47 for a subcritical initial kinetic energy of the center of mass.
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ii) In case of translational mode the vector u ~ e, plays a special role. We orientate
the coordinate system parallel to u. Hence, we span dr = (z,21), 0v = (v),vL)
where z|,v) are the components in the direction of u and z,,v, perpendicular to
it. Further on, we introduce the new variable z(t) = u?(t), corresponding to twice
the kinetic energy of the center of mass. Then we get the following five differential
equations

d d

o= g + w%x” =v)(a—p—308z — Bvﬁ — Bv?),

d d

8L =L &UJ_—&-w(Z)xJ_:vL(a—u—ﬂz—Bvﬁ—ﬂvi), (330)
d

T 2z(a— Bz — 3Bvﬁ — Bv?),

supplemented by the definition . ,.,,. = u. The qualitative analysis of this system
of nonlinear ordinary differential equations shows at first that the system possesses a
stable point attractor at z = a/f3, v =vy =z = = 0. With parabolic attraction
without hard core both particle has the same position and move with the center of
mass velocity. Note that this is also solution for the N-particles.

The linear stability analysis provides the eigenvalues —2a in z-direction, in the
parallel direction A\; + io; where Ay = (2a + p)/2 and 01 = \/A? — w3 and in the
perpendicular direction Ay + ioy with Ay = p/2 and 03 = /A3 — wi. The point
attractor is linearly stable provided g > 0. The linear stability in the direction v
corresponding to the motion perpendicular to the translation is given only for p > 0.
However, even at y = 0 we still observe quadratic stability in this particular direction
due to the terms since the —(v? stabilizes the motion as can be seen from the
nonlinear equation of motion for v, around the fixed point

%UH =—wiz) —v, (,u + ﬁ(vﬁ + ﬁvi)) . (331)
Now we suppose that a deviation from the fixed point exist, which is realized by
some small v? and Uﬁ. Both values are not stationary, but we assume that a linear
combinations of them can supplement each other to a stationary value at a longer
time scale. In consequence, we require that the expression inside the brackets in the
last equation of (330) vanishes, i.e. it holds

Bz=a-— 3ﬁ1}ﬁ — Bl (332)

Since Z = 0, the above expression (332) represents a translational mode. The stability
analysis shows that perturbations perpendicular to the motion perform harmonic
oscillations around the center of mass if v? is vanishing. Otherwise, they start to
grow if there is a deviation parallel to the motion and the translational mode gets
oscillating in all variables.

Indeed insertion of (332) into the dynamics of v, yields

d
Fra! +wiz) :vL(—u+2ﬂvﬁ). (333)

So if u — 0 this state is marginally stable if the deviation of the particle points
perpendicular to the center of mass, i.e. v = 0. Oppositely the deviations parallel to
the direction of the center of mass will be amplified in the perpendicular direction if

26vf > p > 0. (334)
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Fig. 48. Solutions of the Egs. (330) as a function of time for ;1 = 0 and initial conditions
2(0) = u*(0) = 0.8, corresponding to the region of the attractor of translational motion.
Left panel: the translational (squared) velocity z(t) = u?(t) approaches slowly the maximal
value z = 1. An oscillating contribution remains which is due to the neutral stability of the
v (t)-dynamics. Right panel: the longitudinal component of the velocity v (t) goes quickly
to zero and the transversal velocity v (t) decays very slowly or remains constant (because
of neutral stability) [103].

We see that the alignment increases the stability of parallel motion. These results
illuminate the role of the velocity couplings. Without the existence of a (positive)
velocity coupling, the swarms tends to show a weak instability in the transversal
direction, i.e. it tends to get broader and broader, remaining concentrated around the
center of mass in the longitudinal direction.

Since this mode is oscillatory with frequency wg, we find small oscillations of the
particles perpendicularly to the direction of motion. It can be also inspected from left
Fig. 46 where the particle move with a broadened distribution perpendicular to the
center of mass motion.

Details about the dynamics we may obtain from explicit solutions, for the special
set of parameters « = § = 1. In Fig. 48 we show several solutions corresponding
to initial conditions in the attractor region. We see that typically (for different ini-
tial conditions within the attractor region) the relative velocity perpendicular to the
swarm translation v, (t) decays very slowly, and the relative velocity in the direction
of the swam motion v (t) goes to zero in a very fast way. The velocity of the center
of mass approaches u; < voar/( rather fast, however, the state becomes unstable and
a slow oscillatory contribution appears. Including a small amount of velocity syn-
chronization p > 0, all oscillatory components in the translational mode are damped
out in the time 1/u. In the limiting case p = 0, i.e. without velocity alignment, no
synchronization of the velocities exist.

Note that the relative velocities v and v, are defined respectively to the velocity
of the c.o.m.. Therefore, even if the parallel velocities vanish the oscillations of par-
ticle movement are also present in the velocities taken respectively to the origin of
coordinate.

6.1.5 Influence of noise on swarms

Including noise we expect instead of the point attractor at u = vy and the two
line attractors - the 2 limit cycles in the plane u = 0 - that the dynamic systems
forms some distributions around the attractors. This will obviously lead to some
permanent deviations around the center of mass (c.0.m.) and of its velocity. Here, we
will find estimates of the corresponding distributions. We will use the approximation
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of independent dynamics of the velocity components v, v, and of u. Above we also
found in Eq. (327) the velocity distribution of the center of mass with the most
probable velocity given in Eq. (328) by

o = o= 3p() — B3 ). (335)

This expression as well as Eq. (327) contains still the unknown constant oy which is
determined by the distributions of the longitudinal and translational velocities.

For the longitudinal fluctuations around the center of mass of the swarm near to
the stable attractor, we get

d
aUH + ngu = 207y + \/Bfu(t), (336)
where the noise strength of the relative motion is reduced by factor of two. This fol-
lows from the correlators formulated above for N = 2. The corresponding stationary
Fokker-Planck equation is solved by

1
Py(z,v)) = Coexp [—D (Qalvﬁ + wémﬁ)] : (337)

where (Y is given by the normalization. The dispersion is given by
(vf) >~ —. (338)

The longitudinal dispersion depends on the constant oy which is still to be determined.
The situation is more complicated for the fluctuations transversal with respect to
the c.o.m. of the swarm due to the problems with linear stability in the v -direction.
Neglecting the correlations with the longitudinal fluctuations (vv_ ), which are small,
we find d
pre! +w?r) = v [(a— a1 —p) — B(6v, )%+ VDEL (t). (339)
We remember that a3 < « for finite noise. Therefore the first term on the right
hand side may be positive or negative, depending on the situation. We have to differ
between two cases:
(i) For the stable solution p > (a— 1), the term with 3 can be neglected for small
velocity deviations. We obtain the standard problem of a noisy damped oscillator with
the distribution

Po(zi,v1) =Cexp [—[1) (‘(N —a—a)vt + w?ﬂ’ﬁ)} (340)

and the dispersion

D D

_ o~ 341
20p—a+a1)  2u (341)

(v1) ~

In the present case the fluctuations of v and v are rather small and the translational
mode is the most favorable one.

(ii) A different situation is observed in the second case of small (or zero) contri-
bution from parallelizing interactions. We consider now the situation p < (o — o)
in correspondence with the inequality (334). Then in Eq. (339) the term with § has
to be taken into account and the system switches to the rotational mode even for
such small noise values as D = 0.001 (see Fig. 49). However, this limit cycle is not a
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standard one, since (o — 1) > p requires finite noise, i.e. the amplitude of the limit
cycle is driven by noise.

We emphasize that the behavior corresponds to active motion of the center of mass
supplemented by a small active oscillatory motion of individual particles relative to
the center of mass (see Fig. 48).

In order to determine oy, we need to estimate (v?). First we remember, that v,
is a component of the relative velovity vector v = (vi —vs)/2. The squared velocity-
space diameter of the limit cycle in first approximation is given by 2(a — aq — ) /8.
This gives us

a—ap — [
20 '

The longitudinal (338) and perpendicular dispersions (342) inserted into Eq. (335)
yield: and are connected by the relations

(v1) =~ (342)

36D

=a— 343
o =0 g (343)
It is a quadratic equation in «; and has the solution
1 668D
a; = —(a+ 1—4/1l——. 344

We see that the dispersion of u?, corresponding to the small oscillating motion in
Fig. 48, is maximal for the critical noise strength

(a+p)?
63

This is in good agreement with simulation results in [119].

However, we note that numeric simulations have shown that the translational
mode occurs to be unstable with respect to fluctuations. We observed that the trans-
lational mode for particles with harmonic interactions in two dimensions is always a
transient state. For sufficiently long simulation times, we found for u = 0 that the
system switches to the rotational mode even for such small noise as D = 0.001 (see
Figs. 49). We point out that we never observed transitions from the rotational mode
back to the translational state of a moving center of mass even within extremely long
simulation times.

This underlines the importance of having at least a small contribution of velocity
synchronization p > 0, which stabilizes the translational mode. In the next Section
we will discuss bistability between both modes which is due to a hard core potential
in three dimensions. Here we show frequencies of the center of mass speed, recorded
during finite simulation with translational mode as initial condition in Fig. 50, which
indicate the transient bistable behavior. The amount of probability around the trans-
lation and rotational mode clearly depends on the noise intensity.

In case of simple harmonic forces the probability is distributed around two limit
cycles corresponding to left or right rotations. These distributions for the rotational
mode are similar to what we have found for the case of external fields. In the mean
field case and with linear forces the particles do interact effectively with the resting
center of mass, only. In result there is no tendency to states where all particles move
synchronously along one circle. Such way the circles does not behave like attractors
for the whole swarm and any decomposition of particles with right and left rotations
is possible.

D, = (345)
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Fig. 49. Upper row: snapshots of the swarm configurations in space of coordinates in the
translational mode u = vo at times ¢ = 100, 100, 1500 for small noise (parameters Wi =
0.01; D = 0.00001; N = 100). The straight dotted curve represents the trajectory of the
center of mass. Lower row: a time sequence (t = 20, 80, 110) of swarm configurations in space
at larger noise which end in the rotational mode (parameters w2 =0.2;D =0.001; N = 100).
The center of mass becomes eventually resting [103].
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Fig. 50. Relative frequencies f(|u|) of the swarm speed |u| estimated from simulations along
finite times which have started in the translational mode. Left panel: the translational mode
produces for small noise D = 0.00001 a narrow maximum near to the maximal velocity
of the swarm |u| = vo (here vo = 1). Right panel: at larger values of noise D = 0.01 the
translational mode broadens and the rotational mode dominates. The latter forms forms a
big maximum corresponding to more frequent rotational configurations [103].

Summarizing our findings we may state: For two interacting active particles there
exist a translational and a rotational mode. In the rotational mode the center of
the “dumb-bell” is at rest and the system rotates around the center of mass. Only
the internal degrees of freedom are excited and we observe driven rotations. In the
translational dumb-bell mode, the center of mass of the dumb-bell performs an active
Brownian motion similar to a free motion of the center of mass. In this case, we may
expect a distribution similar as given [306]. Larger noise leads to larger deviations
from the center of mass, which finally favors transitions to the rotational state.
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6.1.6 Cohesion, repulsion and bistability in 3D swarms

In this section, we present simulations of swarms and their dynamics in three spatial
dimensions. We consider a set of N identical active particles interacting globally via
a pair potential as outlined in the last section (Sect. 6.1). The coordinates r; and
velocities v; have now three independent components.

We use a potential which captures fundamental properties of swarming of animals.
At short range the potential has to be repulsive to avoid collisions and to prevent
the agents from interpenetrating each other. An attractive force mimics the aim of
the individual to stay with the group. The attraction should be of long range, but
eventually approach zero to account for the limited sensing range of animals. An
exponentially decaying function meets both demands.

Therefore, we consider here a generalized Morse potential, which consists of an
attractive and a repulsive part. Both are exponential functions with amplitudes C,
and C, and ranges [, and [, respectively.

N
Uig(ry,...,ry) = ZC’“ exp(_|rzl_rk|) —C, exp<_|rll_rk> . (346)

ki

The equilibrium distance of two particles is

L, I C,
ro = L L In (la Cr) . (347)

For I,./l, < 1 the potential possesses a minimum corresponding to short range repul-
sion and long range attraction. One can see that for [,./l, < 1 and I,./l, > C,./C, the
minimum would shift to negative values. Since the absolute value of the interparticle
distance in Eq. (346) is positive, the potential is attractive everywhere. Therefore we
will concentrate on the parameter space where 1,./l, < 1 and I,./l, < C./C,.

The collective behavior of active Brownian particles with Morse interaction in one
spatial dimension was studied in [62,91,92,100], where it was shown, for example,
that the combination of noise and active driving essentially “chooses” the eigenmodes
of the Hamiltonian system. In two spatial dimensions, the self-organized rotational
dynamics of a Hamiltonian system of active particles with such a pairwise Morse
potential have been studied by Levine et al. [215] and d’Orsogna et al. [86]. Here, we
will show that in three dimensions swarms of active Brownian particles interacting
via Morse potentials with repulsion and attraction exhibit noise-induced transitions
not only from translation to rotation, as in the purely attractive (harmonic) case, but
also the reverse transition. These transitions occur at different noise intensities, thus
leading to a hysteresis curve. This effect was not observed in two dimensions, here
the rotation was stable even without noise. For comparison we also investigate the
harmonic forces as introduced above in three dimensions.

To study the transition from translation to rotation, we prepare the system in the
translational mode (Fig. 51, right). In this mode the particles move parallel with their

stationary velocity vy = \/% . The spatial configuration in the center of mass system

corresponds to the equilibrium configuration. Without noise, there are no fluctuations,
the center of mass moves with vy. Increasing the noise gives rise to fluctuations and
leads to a decreasing velocity of the center of mass [119,237]. Above a critical noise
value D25 the translational motion breaks down and the particles start to rotate
around the center of mass.

Whereas for a harmonic potential the particles rotate in any direction on the
equipotential sphere, the Morse interaction leads to coherent motion in a torus shape

structure, with the orientation depending on the initial conditions (Fig. 51). The
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Fig. 51. Rotational (left) and translational (right) mode: particles move either coherently
in a torus shape structure or parallel with the moving center of mass (c.0.m.) on a straight
line. Parameter values: N = 1000, v1 = 1.6, 72 = 0.5, C, = Cs =1, = 0.5, 1, =2.0, D =0
[332].
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Fig. 52. Left panel: hysteresis of the center of mass speed u versus noise intensity D. Solid
lines for increasing noise and dashed lines for decreasing D. The most probable values for
Morse potential (red) and its harmonic approximation (not shown) are comparable and show
instability of the rotational state below a critical noise intensity. For harmonic potential, or
Morse potential without a minimum at finite distance, only transitions from translation to
rotation can be observed. The latter is stable even without noise. Right panel: example of a
trajectory of the center of mass in the bistable regime. The inlay shows the corresponding
velocity. The rotational modes, where the velocity is almost zero, are highlighted red. These
lead to a diffusive motion of the center of mass within the red circles. In between the system

displays a stochastic trajectory in the translational mode with mean velocity u = vy = \/%
[332].

center of mass moves diffusively, therefore the absolute value of its velocity is not
zero and increases with the noise intensity.

Starting from the rotational state and decreasing the noise intensity, the sys-
tem exhibits a transition to the translational mode at a different critical noise value
Dret . Surprisingly, this second transition back to translation was not observed in the
two-dimensional case with harmonic attraction. In general, both transitions occur at
different noise values which leads to a hysteresis curve (Fig. 52, left).
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The decrease of the center of mass velocity with rising noise intensity can be
shown by considering the equation of motion of the center of mass velocity. The
analysis in three dimensions develops quite similar to the last Section following
Eq. (322) [332]. One solution corresponds to the rotational state, the second solu-
tion to the translational state. The center of mass moves (in absence of noise) with

the stationary velocity of the particles uy = % Increasing the noise leads to higher
deviations v which decreases the center of mass velocity.

For the transition from rotation to translation the critical noise value decreases
with increasing C,./C,. However, for l./l, < C,./C, < 1 the critical noise value
decreases with decreasing g—:, below C,./C, = I./l,, no transition to translation
takes place. In this parameter range the potential does not possess a minimum, i.e.
it does not have a repulsive core and is continuously attractive for all distances.
Even without noise there is no transition from rotation to translation. Otherwise the
transition backwards stays unaffected. From this fact we conclude that the existence
of repulsive forces induces transitions from rotation to translation.

To check this hypothesis, we approximate the Morse potential by a harmonic
potential with equilibrium distance of the shape

Uapp(r) = a(r — 7'0)27 (348)

with

lg
1,Cy\ ' lta—ir C, 1 1
o= (zacr) oTR (u - za> (349)

and 7 given in Eq. (347). We compare it to the overall attractive harmonic potential
Un(r) = ar? (see Fig. 52, left panel). The critical noise value for the transition from
translation to rotation is equal for the Morse potential and the harmonic approxi-
mation (not shown). The translational mode of the harmonic potential Uy is stable
for larger noise values. The main difference occurs in the transition from rotation
to translation. The harmonic approximation U,p, shows this transition, though at
a different noise value than the Morse potential. In case of the harmonic potential
without repulsion, the rotational mode is stable even without noise. This supports the
assumption, that a short-range repulsive part of the potential is vital for the existence
of the transition from rotation to translation.

We found that the critical values of the noise for both transitions decrease with
growing amplitude C,. of the repulsive part in Eq. (346). Yet, the decrease is much
larger for the transition from translation to rotation which leads to a parameter region
where transitions in both directions occur at the same noise value.

In this region, the system alternates between the two states. The inlay of the
right panel in Fig. 52 shows the center of mass velocity v which alternates between
translation and rotation (red). The trajectory of the center of mass shows diffusive
motion, where the system is rotating, separated by parts with stochastic translational
motion (Fig. 52, right panel).

The probability distribution of v depends very sensitively on the noise intensity
(Fig. 53). The region where this oscillatory behavior can be observed is very small.
Changing the noise value by a few percent leads to a shift of the transition probabilities
which is sufficient to destroy the oscillations. It is sketched in Fig. 53 where for both
graphs the noise intensity has changed little. Nevertheless, the weights of the two
states in the two distribution changes drastically.
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Fig. 53. Probability distribution of the speed of center of mass for different noise values of
a swarm in 3D with Morse interaction [332].

6.2 Collective motion from local velocity alighment without cohesion
6.2.1 Interactions of active particles mechanisms and symmetries

Active matter may be more generally divided into in externally driven particles,
e.g. shaken granular matter, and in particles which are intrinsically powered, self-
propelled particles, like gliding and swarming cells, or chemically active particles,
e.g. oscillating yeast cells. Self-propelled particles are almost always polar, as their
propulsion mechanism determines typically their direction of motion, or, more specif-
ically the leading and trailing edge of the particle are clearly distinguishable (see also
Sect. 2.3 and 3.1). This requires an initial symmetric breaking in the internal structure
of the self-propelled particle, e.g. polarization of motile biological cells or asymmetric
design of manufactured granular particles under driving. Examples are driven granu-
lar particles with non-symmetric shape or mass distribution [82,206,207] or different
chemical composition at the two ends of a particle, like chemically driven running
droplets or nano-dimers (Janus particles) [265,300,334,341,352,356]. To understand
the collective dynamics of ensembles of active particles, one needs also to figure out
the nature of their interactions. Swimming bacteria, flocking birds and schools of fish
are often assumed to have hydrodynamic interactions that favor a joint direction of
motion. Such interactions are analogous to ferromagnetic interactions of spins and try
to align the vectors describing the motion of the particles; consequently, one speaks
of polar interactions. In contrast, gliding bacteria or shaken rods tend to align their
long axes, but still can either move in a parallel or anti-parallel fashion. Hence, such
interactions are classified as apolar. Apolar interactions are analogous to nematic
interactions that favor alignment, e.g. excluded volume interactions of rod-shaped
particles.

The famous Vicsek model represents an example for polar particles exhibiting
polar interactions [361]. Self-propelled rods with volume-exclusion interactions can
be identified as polar particles with apolar interactions. The so-called active nematics
constitute a third case, namely apolar particles with apolar interactions, that shall
not be discussed here. For recent results on active nematics [350], such as the analysis
of a simple Vicsek-type model [61] and experiments with externally driven elongated
particles such as rice corns, see instead e.g. [13,248,249] and references therein.

A central question in the study of such active particles with local interactions is
if and when long-range order arises. The nature of the transition between ordered
and disordered types of motion has been investigated thoroughly. Below, we will dis-
cuss several mean-field theories that neglect spatial variation in the order parameter.
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For the Vicsek model, the mean-field theory predict a continuous second order phase
transition to long-range order. which was reported initially also in numerical sim-
ulation [75,361]. Grégoire and Chaté later found in extensive simulations that the
transition to collective motion in the Vicsek model appeared in fact in a discontin-
uous way provided the system size in the simulations is large enough [147]. Their
result was contested by later results of Vicsek s group [247], but recent even more
extensive studies by Chaté, Ginelli et al. reaffirm the discontinuous nature of the
transition at the onset of collective motion [60]. This work revealed a crossover from
a second to a first order transition at sufficiently large system size, which can depend
strongly on the velocity parameter used in the simulations. More importantly, their
work showed that the appearance of a discontinuous transition is strongly correlated
with the appearance of segregation bands, that were first reported in 2004 [147] of
high particle density in a low density background that travel in the direction motion
of the self-propelled particles in these bands. Such correlations between the transi-
tion behavior and spatial patterns of the particle density shall be left aside for the
moment and will be treated in Section 7 that deals with pattern formation aspects
of self-propelled particle systems. An important general lesson is that spatial aspects
maybe crucial and need consideration. For the moment, we will however exclude them
and leave their general discussion to Section 7. In the following, we proceed with the
discussion of local polar (or ferromagnetic) alignment of active Brownian particles,
before considering both polar and apolar alignment interactions in the framework of
self-propelled particles with Vicsek-type dynamics.

6.2.2 Active Brownian particles with velocity alignment force

We consider now a system of N active Brownian particle interacting only via a local
velocity alignment force FY? (see Eq. (320) [74,252,296,299]), which may be written
as

F*=p(u.—vy), (350)

with u; . being the mean velocity of the particle gas within a finite distance |r;—r;| < ¢
around the focal particle i (¢ = 1,..., N). The force aligns the velocity of the focal
particle to the average local velocity with p being the alignment strength, which
corresponds in the deterministic case to the inverse relaxation time of v; towards
u; .. For solitary particles with no neighbors, or in a system in a perfectly ordered
state where all particles move with equal velocity the alignment force vanishes as
u.; = v;. On the other hand, for a large number of neighbors moving with random
velocities (disordered state), the mean velocity vanishes |u.;| = u.; ~ 0 and the
velocity alignment force results in additional “social” friction —uv;. The alignment
force may be considered as a continuous version of the Vicsek model. For self-propelled
particles with constant velocity v; = const it reduces essentially to the polar alignment
interaction discussed in the next section [272]. Another motivation for introduction
of such an velocity alignment term comes from hydrodynamic interaction which may
result in an alignment term with similar symmetry properties [23,116].

Recently, there has been a number of publication on kinetic description of self-
propelled particles with velocity alignment (see e.g. [36,176,213,322,323,348,349], see
also Sect. 7.1). In these previous publications, the authors constructed mesoscopic
equations of motion for the density and velocity fields using symmetry and conserva-
tion laws. Recently, [36] derived corresponding equations with a Boltzmann approach.
Further contributions were made by C.-F. Lee [213], who studied collective dynamics
due to velocity alignment by analyzing an approximated Fokker-Planck equation and
by T. Ihle [176] who derived an Enskog-type kinetic theory for the Vicsek model.
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Here, in contrast to the previous publications, we derive the mean field equations
directly from the microscopic Langevin equations. We do not assume a constant speed
and analyze the impact of the velocity-dependent friction function on the onset of
collective motion. In addition to the density and velocity fields, we consider explicitly
the effective temperature field of the active Brownian particle gas.

Our approach is based on the formulation of moment equations of the corre-
sponding probability distribution. In general, far from equilibrium the probability
distributions are not Gaussian and a correct description requires infinitely many mo-
ments (see for example [263,264]). Therefore approximations are necessary in order
to obtain a closure of the system of moment equations.

As first example we consider a one-dimensional system with periodic boundary
conditions (d = 1, one-dimensional ring). The n-th moments of the velocity (v™) is
defined as

(™) = %/v"w(:p,v,t)dv, n >0, (351)
where 1(z,v,t) is the one-particle distribution describing the probability to find a
particle at time ¢, at position x moving with velocity v. For N identical particles
it is given simply by the multiple of single particle probability density ¢ (z,v,t) =
NP(x,v,t). The density of particles is given as

plx,t) = /dvz/)(x,v,t)dv = N/dvp(azw,t). (352)

Multiplying the n-th moment with the density and taking the derivative with respect
to time, we obtain the dynamics of the velocity moments

%(p@")) - / vnaaifdu. (353)

The equations of motion for active Brownian particles with Rayleigh-Helmholtz
friction and velocity alignment read:

)

Ui = (@ — B0 )vg,i + pluei — vai) + V2DE;. (355)
The Fokker-Planck equation for a single particle in the mean velocity field u. reads

9 {(a — Bv2)vg + p(ue —v )}¢+Da—2¢ (356)
vy w/Vs T Hllle = Ya oz’

o9 _
ot

0
*Ux%ﬂf —

Here we omit the index ¢ for simplicity. The velocity u. = u.(z,t) is the mean field
velocity sensed by the particle. In the continuous description we may express it as an
integral over the distribution function:

1
e = fsp(a?’,t)da?’/s dxl/dvlvllb(m’,y”t)_ (357)

Here S. represents the spatial neighborhood of the focal particle, which is defined via a
metric distance: z € S; if |2’ —z| < e. For finite ¢ it may be seen as an approximation
of the first velocity moment (v) under the assumption of a homogeneous density
distributin on the corresponding length scale.
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Inserting Eq. (356) in to Eq. (353) and using lim, 4+ P(z,v,t) = 0, the terms
with partial derivatives with respect to v can be partially integrated, yielding

0 0

(™) = —5mp @) np fa (07) = B (072 + (e (0" = (0"))]

+n(n—1) D p (" 3. (358)

We rewrite the velocity of the focal particle as a sum of the local velocity field u(x,t)
plus some deviation év: v = u 4 dv. Furthermore, we assume (6v!) = 0 for odd
exponents [ (I =1,3,5,...). Thus we obtain for the moments (up to ! = 4):

(v) = u, (359a)
(v*) =u® +T, (359D)
W) =u*+3uT, (359¢)
WY =u* +6u> T+T*+0 (359d)

Here, T is the mean squared velocity deviation T' = (§v?), which we will refer to as
the “temperature” of the active particle gas, whereas 6 is the average of the mean
squared temperature fluctuations defined as

6= <<(v )’ o T>2> — (5v%) — T2, (360)

Now we can insert Eqs. (359) into Eq. (358). Considering the dynamics up to n = 2,
after some calculus we arrive at a set of three coupled partial differential equations for
the evolution of the density p(z,t), the mean velocity field u(z, t), and the temperature
field T'(z,t):

0 0
ap— oz (p u) (361a)
ou o - 9 . 9T T 0p
E—i—u%u— au—Bu (u+3T) + plue —u) o o (361b)
1 /0T orT\ 9 ou

Let us consider for simplicity an isotropic system with vanishing gradients in mean
velocity u and temperature T', which is fully analytically tractable and represents a
reasonable approximation of the system dynamics at high particle densities and large
€. In this case, the local velocity in the velocity alignment force equals the constant
mean velocity field across the system u. = u, and we end up with the following two
ordinary differential equations for the temporal evolution of v and T"

% =au—Bu(u?+37), (362a)
1dT ,
s =(a—u) T=BT (3u*+T)— 40+ D. (362b)

In order to obtain a closed system of equations, we neglect the temperature fluctua-
tions by setting # = 0 in Eq. (360), which is a reasonable assumption at small noise
intensities. Thus, the above differential equations constitute a two-dimensional dy-
namical system, with 6 fixed points (stationary solutions) in the (u,T") phase space,
which can be analyzed by means of linear stability analysis.



110 The European Physical Journal Special Topics

The stationary solutions (du/dt = dT'/dt = 0) for v and T read:

oa—pt/(a—p)?2+48D
Up =0, Tip=2"F (w’” D (363a)
10a — 3 (u — A) 2004+ pu— A
=+ Toy=—=——: 363b
Uu3,4 4\/3 3 3,4 165 ) ( )
100 — 3 (pu + A) 200+ p+ A
=+ Teg = ———— 363
Us,6 4\/3 > 5,6 16 > ( C)

with A = \/(2a + p)2 — 328D.

The kinetic temperature T has to be positive, therefore, T} (positive square root)
is the only physically reasonable solution for u = 0.

The first solution with vanishing mean velocity u = 0 describes a disordered phase.
For D = 0, the temperature T' = % = v3 equals the square of the stationary velocity
of individual particles. The kinetic energy of all particles consists only of fluctuations,
no systematic translational motion occurs. The second pair of solutions corresponds to
translational modes which are stable below a critical noise intensity. The two solutions
correspond to translational motion with positive or negative velocity u, thus, to a
collective motion of the particles to the left or right. Without noise, 73 4 = 0, and

the stationary mean velocity reduces to us 4 = £4/c/. Increasing the noise rises the
kinetic temperature, and results in a decrease of the mean speed |u].

The last solution pair describes unstable modes, for which the temperature de-
creases and the mean speed increases with increasing noise intensity D.

For low alignment strength p < 2a/3, the disordered phase is always a stable
solution; for p > 2«/3, the linear stability analysis of the mean-field equations predicts
the existence of a critical noise intensity
a(3p —2a)

953 ’
which determines the stability boundary of the disordered solution. Starting from
large noise intensities where the disordered solution is stable and decreasing the noise
below Dg i, we observe a pitchfork-bifurcation, and the disordered phase becomes
unstable. Depending on the value of p, the pitchfork-bifurcation is either sub- or
super-critical. For p < 10/3, the disordered solution becomes unstable through a
collision with the two unstable translational solutions, whereas for pu > 10a/3 no
unstable translational solutions exist and the disordered solution becomes unstable
directly through the appearance of the two stable translational solutions (see Fig. 54).
Thus, for 1 > 2a/3 and D < Dg crig, only the translational solutions ug 4 are stable.

For 41 < 10ct/3 there exists a second critical noise intensity which determines the
stability of the ordered phase (translational solutions, u # 0). Above the critical noise
intensity

Dd,crit = (364)

(20 + p)®
Do,crlt - 32ﬁ (365)
all translational solutions become unstable through a saddle-node bifurcation
(Fig. 54a,b).
Due to the symmetry of the translational solutions uz = —u4, we may distin-

guish the disordered phase and the ordered (translational) phase in simulations by
measuring the global mean speed in our simulations:

N
(july = < T > (366)

Here, (-) denotes temporal average after the system has reached a stationary state.
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Fig. 54. Bifurcation diagram of the mean velocity u vs. noise intensity D as predicted from
the mean field theory for different velocity alignment strengths (a = 8 =1): (a) u < 2a/3
(b =0.1), (b) 2a/3 < pp < 10e¢/3 (1 = 0.7) and (¢) u > 10a/3 (u = 5.0). (d) Phase diagram
with respect to velocity alignment p and noise intensity D [296].

The stationary speed of the ordered phase versus noise intensity obtained from
numerical simulations with ordered state as initial condition are in a good agreement
with the theoretical predictions from the mean field theory. But simulations with
disordered initial condition reveal an unexpected instability of the disordered solution.
At finite p the numerical simulations show that at intermediate D the disordered
solution u = 0 becomes unstable via a spontaneous symmetry breaking, which is not
predicted by the mean field theory.

We reproduced the instability of the disordered solution in numerical simulations
for intermediate noise strengths for different particle numbers and for global coupling
(e = L). This suggests that it cannot be simply dismissed as a pure finite size effect
or an effect of density fluctuations and should be associated with the neglected higher
order fluctuations. The latter conclusion is supported by the agreement of the theo-
retical result and numerics at low D, where temperature fluctuations 6 are negligible,
as well as with deviations of the mean field temperature from the exact solution for
T in the limit 4 = 0 [121,296]. Due to the nonlinearity of the friction function, the
temperature does not increase monotonically with D as predicted by the mean field
theory but exhibits a minimum at intermediate noise intensities [296]. This in turn
has a destabilizing effect on the disordered state. Therefore we expect that the ex-
tension of the mean field theory to higher orders would account for this effect at the
expense of the analytical tractability of the mean field solutions [115].

The same approach can be also extended to two dimensional systems where the
mean field velocity is a vector: u = (g, uy) = A((v$>, (vy)) and the temperature is
given by a tensor T. For simplicity we assume T to be a diagonal matrix with the
diagonal components (T, T,) = ((6v3), (dv7)).

0
5P = —V (pu) (367a)
oT, T, 0p
_ _ =z 367b
ox p Oz ( )
1 (0T, 2 2
5\ 5 TUVeTs ) = (0= WTe = BT, (0 + 203 + To +T,) — B
wp_1, %% (367c)

ox
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Fig. 55. (Color online) Comparison of the stationary solution obtained from simulation with
theoretical prediction from the mean field theory for different velocity alignment strengths:
u=0.4(a), p = 0.67 (b) and p = 5.0 (c). Other parameters used: particle number N = 8192,
simulation domain L = 500, velocity alignment range ¢ = 50 and «,( = 1.0. The initial
conditions were either the disordered state (black filled squares) or the ordered state (red
circles). Solid (dashed) lines show the stable (unstable) stationary solutions of the mean-field
equations [296].

The corresponding equations for u, and T, can be obtained by interchanging the
indices. We can further simplify the above set of equations by choosing a reference
frame, where u, = uj = u corresponds to the mean field velocity and the orthogonal
component vanishes uy = u; = 0.

Assuming again the simplest case of a spatially homogeneous system, we obtain
the following set of coupled (ordinary) differential equations:

d

CT? = au—ﬂu (u2+3T” +TJ_) s (368&)
1dT
5 g = (@ W) = BTy (3«* + Ty + T1) + D, (368D)
1dT
57: =(a—p)TL —BTL (W’ + T +TL)+ D, (368c)

where T and 7', are the temperature components parallel and perpendicular to the
mean field direction of motion. For u = 0 (disordered state) the components on T
can be easily calculated from (368) and the corresponding solution reads:

up =0, (369a)
a—p++/(a—p)?+838D
Tja=Ti1=T=""F o~ )" + 88D (369b)
46
In the case of vanishing noise D = 0, the ordered solution can be immediately obtained
as u = y/a/B and T) = T = 0. For D > 0 the temperature component parallel to

the direction of motion is smaller than the perpendicular one: T} < T'.

For the general ordered state with ©w > 0 and D > 0 we were not able to obtain
explicit stationary solution for u, T and T, of the above ODE system (368) but the
stable and unstable solutions can be determined by a numerical continuation methods
as for example provided by the numerical software XPPAUT/AUTO [84,122].

A possible approach to find an explicit solution is to reduce the dimensionality of
the problem. We may use the fact that at a fixed time ¢ we always find a coordinate
frame where u, = u, = 4. In this coordinate frame due to the symmetry of the
involved equations we obtain also T, = T}, = T. Based on this observation we reduce
the full problem (367) from a four dimensional system to a two dimensional system
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Fig. 56. Comparison of the mean field speed |u| obtained from Langevin simulations (sym-
bols) of the RH-model in two spatial dimensions at high density with the results of the mean
field theory for the homogeneous case. The black lines represent the solutions obtained from
the full system of mean field ODE’s. The red lines represent the mean field solutions from the
reduced system. The stable solutions are shown as solid lines, whereas dashed lines indicate
the unstable solution. The simulations were performed with periodic boundary condition
and with the disordered state as initial condition. Other parameters: « =1, 8 = 1, L = 200,
e =20, N = 4096 [299].

in v and T, which in the homogeneous case simplifies to

d'l’l ~ ~ ~2 7

ik B (Zu + 4T> , (370a)
1dT . S oo
5o = la—wT - BT (43 +2T) + D. (370D)

This gives us a system of equations similar to the problem for d = 1, with the same
structure of stationary solutions but different coefficients.

The comparison of the stationary solutions of the reduced systems with the cor-
responding solutions of the full systems obtained with XPPAUT/AUTO reveals a
differences at low velocity alignment strengths u (Fig. 56). The velocity of the stable
ordered solution of the full system decreases stronger and exhibits an earlier break-
down with increasing D. Furthermore from the position of the disordered branch it
can be deduced that the basin of attraction of the ordered state at low D for the
full system is larger than for the reduced two dimensional system. But at large p
the differences between the two types of mean field solution vanish and the reduced
system (370) gives a good approximation as shown in Fig. 56.

The reason for the discrepancy between the two mean field solutions at low u is
that the performed dimensional reduction throws away all informations about the
asymmetry of temperature components parallel and perpendicular to the mean ve-
locity. At large p the evolution of the temperature coefficients is dominated by the
—pT} term and may in a crude approximation simply be assumed as linear for both
components, so that the asymmetry in the temperature components can be neglected.

In general without knowing the temperatures 7 and 7', the mean speed, can be

written as
|’UJ‘ = \/vg - 3TH - TL (371)

where v3 = a/3. In the limit of large u close to the critical noise, where o, 8 < p, D
we may approximate the temperature as T = T, = T' = D/u and obtain a simple
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expression for the ordered state

In this limit the critical noise may be approximated as Dg crit ~ vg,u/él = D¢t and
the above equation may be rewritten as:

u| = 247 % (Dexit — D)3, (373)

which is the standard form of the order parameter for a continuous (second order)
phase transition. A similar result can be also obtained for self-propelled particles with
constant velocity [272], corresponding to the limit a, 3 — oo with a/3 = v3 = const.
with Tj =0 and T, = D/p.

The mean-field theory, suggest the possibility of a discontinuous transition from
ordered to disordered state (saddle-node bifurcation) as a consequence of a nonlinear
friction function at intermediate alignment strenghts. However, for limiting cases,
where the nonlinear nature of the friction function is negligible, e.g. for vanishing
velocity fluctuations (see next section) or strong velocity alignment, the transition
in a homogeneous system is a continuous one. We should note that for very small
alignment strengths p the critical noise intensity becomes also very small. In this
limit, for arbitrary friction functions, the small passive fluctuation act essentially
only on the direction of motion and the speed of individual particles may be assumed
as constant. Thus, in this case, the collective mean-field dynamics reduce effectively
to a Kuramoto-model of coupled oscillators, which also shows a continuous transition
from order (synchronized state) to disorder.

Recently, it was shown that the spatially homogeneous state is unstable in systems
of interacting self-propelled particles [36,322,323]. Thus, the assumption of a spatially
homogeneity should be considered only as an approximation, for sufficiently large €.
For L > ¢ strong density inhomogeneities appear, such as traveling bands, which
affect the global behavior of the system [38,60,239]. A detailed discussion of the
spatial inhomogeneities in self-propelled particle systems will follow in Sect. 7.

In contrast to d = 1 no stable disordered solutions at low pu and low noise inten-
sities D were observed in simulations (Fig. 56). A possible explanation can be the
reduced basin of attraction of the disordered solution for d = 2 together with the al-
ready discussed instability of the disordered solution due to the neglected temperature
fluctuations 6y observed already for d = 1.

A more heuristic explanation for the instability of the disordered solution in two
spatial dimensions for low p and low D, in contrast to the one-dimensional case, is the
absence of a velocity potential barrier between different direction of motion: In two
dimensions the particles can change their direction of motion by continuous angular
drift or diffusion. Thus, any small fluctuation in u in a finite system at vanishing noise
(D < 1) will be amplified and eventually will lead to perfect velocity alignment.

6.2.3 Mean-field theory for onset of polar and nematic order

The Vicsek-model [361] is considered the simplest model for collective motion of self-
propelled particles (SPPs). It has become quite popular because it is computationally
much more efficient than many other models for collective motion of active particles.
In the Vicsek model, point-like particles moving with a velocity vector of constant
magnitude interact by aligning their velocity direction to the local average velocity.
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Fig. 57. Illustration of nematic LC-alignment of polar self-propelled particles illustrated
by inelastic collisions of rods. Particles incoming at a small angle (left) align “polarly”, but
those colliding almost head-on slide past each other, maintaining their nematic alignment
(right).

The Vicsek model can be considered as a model of moving spins, in which the ve-
locity of the particles is given by the spin-vector. Extending this analogy with spin
systems we denote this polar alignment mechanism as ferromagnetic (F-alignment).
Initial simulations of the Vicsek model in 2D seemed to indicate a second-order phase
transition which leads to long-range orientational order in collectively moving SPPs
[247,361]. Later work pointed towards a first order phase transition to orientational
order in sufficiently large systems [60]. Theoretical interest was stirred by the that
fact that in analogous equilibrium systems of non-moving spins no long-range order
is possible [201,233].

F-alignment is one possible alignment mechanism, but clearly not the only one.
If a system of e.g. self-propelled rods interacts simply by volume exclusion, particles
may end up moving in the same direction as well as in opposite directions. Such
an apolar interaction mechanism corresponds to interactions in liquid crystals where
apolar particles get locally aligned [85]. In analogy to these systems we name this
mechanism hence liquid crystal alignment (LC-alignment). An graphical illustration
for LC-alignment is given in Fig. 57. In a system of SPPs with LC-alignment particles
align their velocity to the local average director. Orientational order observed in
simulations with SPPs with LC-alignment refers to the emergence of a global director
in the system, while for F-alignment orientational order refers to the appearance of
a global direction of motion. In the following, two alternative continuum models for
SPPs with polar, ferromagnetic resp. apolar, liquid-crystal like interaction will be
introduced and compared to the Vicsek model and a recent variation [141,272] with
LC-alignment interactions, the Peruani model. For the continuum version of the SPP
models with local ferromagnetic resp. liquid crystal alignment a mean-field theory
describing the onset of collective motion is derived and compared to simulation results
obtained with the Vicsek model.

We consider point-like particles moving at constant speed in two dimensions and
assume an over-damped situation such that the state of particle 7 at time ¢ is given
by its position r; and its direction of motion ;. The evolution of these quantities
follow:

I“i = voev(cpi) (374)
. ou _
Yi = _787901'(1‘“ QOZ) + nz(t) (375)

where 7 is a relaxation constant, and U the interaction potential between particles,
and hence g—gi(ri, ;) defines the velocity alignment mechanism. Moreover, vy repre-
sents the active constant speed of the particles, the unit vector ey (p;) is again de-
fined as ey (p;) = (cos(p;),sin(p;)), and 7;(¢) is an additive white noise. In the sense
of Sect. 3.2, it is an active noise acting perpendicular to the direction of motion.

Egs. (374) and (375) are expressed in terms of first derivatives. In this way, vy in
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Eq. (374) can be considered as an active force divided by a translational friction coef-
ficient. In analogy to spin systems, the ferromagnetic velocity alignment mechanism
is given by a potential defined as:

Up(ri i) =— > cos(p; — @;) (376)

|ri—r;|<e

where ¢ is the radius of interaction of the particles. For the liquid-crystal alignment
mechanism, we choose the potential originally introduced by Lebwohl and Lasher on
a lattice [212] which reads:

Uso(ripi) == > cos’(pi — ). (377)

|r;—rj;|<e

One can add a coupling strength coefficient to the expressions (376) and (377). We
assume that the coupling strength is absorbed in v in Eq. (375). Notice that the
potential given by Eq. (376) exhibits one minimum, while Eq. (377) has two minima,
which correspond to particles pointing in the same direction and particles pointing
in opposite directions.

In the limiting case of very fast angular relaxation we obtain from Eqs. (374) and
(375) the updating rules:

ritA = vl 4ugey (9f) At (378)
eIt =arg | Y flev(eh),ev(®)) | +mit) (379)
[rf—rt|<e

where arg (b) indicates the angle of the vector b in polar coordinates, ! is the ran-
dom increment of the angle in the interval At comparable to a Wiener Process and
giving rise to angular diffusion (see Sect. 3.1.4). The noise sources are statistically
independent for different particles. In simulations we have used equally distributed
random numbers from 7;(t)e [—2, 2]3. The term f(a,b) describes the interactions
and is defined as follows. For F-alignment, f(a,b) = a and Egs. (378) and (379)
correspond to the Vicsek model [361]. For LC-alignment, f takes the form:

a if a-b>0

—aifa-b<0. (380)

f(a,b) = {
This interaction was introduced by Peruani et al.. Hence we will refer to the cor-
responding model (Egs. (378), (379), (380)) as the Peruani model. To decide if the
described local alignment mechanism give rise to global order, suitable order para-
meters have to be defined. One such order parameter that quantifies the direction of
alignment and collective motion is the modulus of the normalized total momentum
(analogous to the magnetization in the XY-model [201,233]), that we express as:

1 N
LS e ()
1=0

where N stands for the total number of particles in the system. The quantity S
has the value 1 when all particle move in the same direction (perfect F-alignment).

S = , (381)

3 Variation of the temporal interval At implies a scaling of n with the interval. For the
case of white noise in Eq. (374) the variance of n;(¢) increases linearly At.
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Fig. 58. Temporal evolution of the velocity direction distribution (angular distribution)
in simulations of self-propelled particles with very fast angular relaxation, where (a) corre-
sponds to the case F-alignment (Vicsek-model), while (b) shows the case of LC-alignment
(Peruani model). Number of particles N = 100, radius of interaction ¢ = 2, linear system
size L = 42.4, and noise amplitude n = 0.25.

In contrast, ST is equal to 0 in the disordered case in which particles point in any
direction with equal probability. An alternative measure for collective motion is the
velocity direction distribution in two dimensions C(p). For high values of the noise,
C(¢) is flat. When the noise is decreased below a critical noise 7., a single peak arises
in C(¢p) indicating the onset of orientational order, see Fig. 58(a).

On the other hand, for perfect nematic order or LC-alignment, i.e. half of all
particles move in one direction, and the other half in the opposite direction, S¥ is
identical zero. Clearly, S cannot distinguish between a state of LC-alignment and a
disordered state. To study such LC orientational ordering, one can employ the order
matrix @ of liquid crystals [85]. For two dimensions one takes the largest eigenvalue

SLC of Q as appropriate order parameter:
N
1 3|1 1
LC
S = Z + 5 Z - ﬁ ngivij — vxivyivmjvyj (382)
2]

where v,,; and vy; are defined as v,; = cos(yp;) and v,; = sin(yp;). The order parameter
SLC takes the value 1 when all particles are aligned along the same director, and the
value % in a disordered phase without any preferred orientation. Alternatively, the
velocity direction distribution C(¢) can be considered. This function displays two
peaks separated by 7 for simulations of the Peruani model low noise amplitudes, see
Fig. 58(b).

A system of SPPs may be conveniently described through the one particle density
in the phase space &(r,v,t) = 1 (r,p,t) which equals the one particle probability
density function P(r,v,t) multiplied by the particles number N. Then the usual
particle density at a point r is obtained as

2m

p(rt) = | ¥ (r,p,t) dp. (383)

For simplicity, we consider the angular velocity direction distribution:

C(p,t) = /sz (r,p,t)dr (384)

and neglect spatial inhomogeneities in the orientation of the particles. We recall that
in the individual-based model the kinetic energy is conserved, while the momentum is
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not. For F-alignment, the system tends to increase the total momentum, while for LC-

alignment the tendency is to decrease it. The continuum approach has to reflect that

particles always move at constant speed and that number of particles is conserved.
Consequently, the following evolution equation for ¥ (r, ¢, t) is obtained:

Oy = DLP(?LP<P¢ - ap [%1/1] - Vr [ued], (385)

where u,% and u,1) are deterministic fluxes, which reflect the local alignment mech-
anism and active motion. The quantity D, refers to the angular diffusion whereby
we have assumed Gaussian noise in Eq. (375). It depends on the square of the noise
amplitude. The term u,(r, ) describes mean angle velocity of the alignment inter-
actions of particles with all neighboring particles which are at a distance less than ¢
from their location r. It reads

2 AN
ou
we=—y [ [Tap PR e o (386)
R(r) 0 14

where U(r,¢,1’, ') represents the pair potential between a particle located at r
and pointing in direction ¢ with another one at r’ and pointing in direction ¢'.
R(r) denotes the interaction neighborhood. The above models have the property
Ur,p,v',¢") = Ulp,¢'), i.e. within the interaction radius the potential between
particles has equal strength and is homogeneous in space. Finally, u,, represents the
“torque” felt by a particle located at r and pointing in direction ¢. The expression
for u, simply reads

u, = vpey(p). (387)

Integrating both sides of Eq. (385) over the space 2 and assuming a homogeneous
spatial distribution of particles ¥ (r, p,t) = C(p,t)po/N, where pg is defined as py =
N/L? and L is the linear size of the system, we obtain an evolution equation for
Clp,t):

C(p,t) . Clp,t) | me? o oU(e, )
5t = D“’iagoz + 2 Oy dy 7390 C¢',t) p Cep,t)| . (388)

The homogeneous angular distribution is a steady state of Eq. (388). The parameters
for the onset of the orientational order and collective motion can be found by deter-
mining the linear instability of the disordered state. We start by analyzing the case
of F-alignment. By dividing both sides of Eq. (388) by yme?/L?, and redefining time
as 7 = (yme?/L?)t, and D, = D, /[yme®/L?] one obtains:

% = D,0,,C (p,t) + 0y [{/dw’ sin (¢ — ¢') C(<p’,t)} C((p,t)] . (389)

Next, a small perturbation of the homogeneous steady state is considered:
C (p,t) = C* + Coe'™¥e . (390)

Note, that e™¥ are eigenfunctions of the operators emerging from the linearization
of Eq. (389) near the homogeneous steady state. By substituting into Eq. (389) and
keeping only terms linear in Cy, we obtain the following eigenvalues:

Re(\) = —Din” + 7C*6,, 1. (391)

The only mode which can become unstable is n = 1 and the condition for the corre-
sponding instability of the homogeneous, disordered state is

2D,
yme2’




Active Brownian Particles 119

628 0 6.28 0

P P

Fig. 59. Temporal evolution of C(p,t). (top) F-alignment, numerical integration of
Eq. (389) with D, = 0.28. (bottom) LC-alignment, numerical integration of Eq. (393) with
D, = 0.014. For both, C* = 0.3183, At = 0.001 and Ay = 0.16. The initial condition is a
random perturbation around C*. Notice that for F-alignment a single peak emerges, while
for LC-alignment the distribution develops two peaks [272].

with pg = N/L2. For a given noise amplitude D, there is a critical particle density
above which the homogeneous solution is unstable. Fig. 59(a) shows that as a result
a single peak emerges in C(p) from numerical integration of Eq. (389) in line with
results found in simulations of the Vicsek model.
An analogous procedure for LC-alignment yields:
9C (p,1)

2 = De0eeC (9)1) (393)

+0, H/dw cos (¢ — ¢')sin(p — ¢') C (w’,t)} C (¢, t)] -

As above a small perturbation to the homogeneous distribution C(p,t) = C* is
assumed, see Eq. (390). Again, ¢ are eigenfunctions of the linearized operator.
Substituting Eq. (390) into Eq. (393) and keeping terms linear in Cj the following
expression for the eigenvalues is obtained:

Re(X) = —D,;n” +2xC* 6y, 5. (394)

As for F-alignment, there is only one mode which can become unstable, but this time
it is n = 2. The n = 2-mode exhibits two peaks separated by 7, that correspond to two
populations of particles moving in exactly the opposite direction. The homogeneous
state is unstable for:

4D,

yme2’

o0 > (395)

Again, this inequality defines a critical density above which the homogeneous solution
is no longer stable. Fig. 58(c)—(d) shows the emergence of these two peaks for LC-
alignment in individual-based simulations. Numerical integration of Eq. (393) above
this critical density shows again two peaks in C(¢p,t), see Fig. 59(b). For a given
density, there is a critical D, .. Close to D, . we expect to observe that only one
mode dominates C(p,t). As already mentioned, n = 1 is dominant for F-alignment
and n = 2 governs LC-alignment. The steady state distribution Cy;(p) near the
instability has the form:

Cst(p) ~ C* + B1\/Dy,c — Dy cos(p — ¢o) (396)
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for F-alignment, while for LC-alignment it is:

Csi(9) ~ C* 4+ Bay/Dy . — Dy, cos(2(¢ — ¢o)) (397)
where B, Bs are constants and ¢ is an arbitrary phase. In both cases the maximum
amplitude of Cs(¢) close to the D, . grows as /D, . — D,. Inserting Eq. (396) into
Eq. (381), we obtain the scaling form of the order parameter S":

SF ~ Bivne —n (398)
where B is a constant. To obtain the scaling of the order parameter S*C Eq. (397)
is inserted into Eq. (382):

SEC ~ i + Bav/ne — 1 (399)
where again B, is a constant. The above results confirm our findings for active Brown-
ian particles from Sect. 6.2.2 in the limit of vanishing velocity fluctuations.

It is instructive to compare the results of the mean-field theory qualitatively to the
results of individual-based simulations with respect to the scaling properties of the
order parameters near the onset of orientational order. In addition, the prediction of
the mean-field theory regarding the different critical noise amplitudes (resp. critical
densities) for F- and LC-alignment can be compared with simulations of the Vicsek-
and Peruani-model.

Figure 60 shows a comparison between the scaling predicted by the mean-field
approach for S¥¢ (dashed curve) and the one obtained from individual-based simula-
tions in the limit of very fast angular relaxation (symbols). One finds good agreement
between the mean-field prediction and the simulations for the scaling of S near 7,
that suggests that individual-based simulations with LC-alignment at high densities
exhibit a mean-field type transition. Evidence seems to point towards a mean-field
transition if we look at the scaling of the maximum amplitude of the angle distribution
as function of the angular noise intensity n (see Fig. 60).

Finally, Fig. 60 shows that in individual-based simulations with the same para-
meters and different (namely LC- and F-) alignment mechanism, the limit of fast
angular relaxation yields nZ¢ < nf” as predicted by the mean-field theory. Note, how-
ever, that the simulations yield 2n*¢ ~ nI’, while the mean-field description predicts
Vani© =nl.

In summary, we have derived a mean-field theory for self-propelled particles which
accounts for F- and LC-alignment. This approach predicts a continuous phase tran-
sition with the order parameter scaling with an exponent one half in both cases.
In addition, the critical noise amplitude below which orientational order emerges is
smaller for LC-alignment than for F-alignment, i.e., n(LJC < nk. These findings were
confirmed by individual-based simulations with F- and LC-alignment.

Furthermore, we have assumed spatial homogeneous density to study the emer-
gence of orientational order. Thus, the presented approach does not apply to situations
where self-propelled particles show clustering at the onset of orientational order as
will be discussed in the next section (Sect. 7). A better understanding of the problem
should imply the study of the interplay between local orientational order and density
fluctuations.

6.3 Alternative swarming mechanisms
6.3.1 Escape and pursuit — collective motion and group propulsion

Motivated by recent observations on cannibalistic behavior in locusts and crickets
[25,324], we introduced a model of individuals (active particles) responding to others
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Fig. 60. Comparing simulations of particles with F-alignment (crosses) and LC-alignment
(circles) in the limiting case of very fast angular relaxation. In both cases N = 2 and
p = 2.0. Notice that the order parameter for F-alignment is S¥ while for LC-alignment is
SEC (See text). The dashed horizontal line indicates the minimum value that S¥¢ could

take. The dashed curves correspond to the best fit assuming an exponent 0.5, i.e., n. was
the fitting parameter [272].

with escape and pursuit behavior [27,294]. This biologically motivated interactions
cannot be expressed simply in terms of an interaction potential as discussed in Section
6.1 and do not include a velocity alignment term as discussed in Sections 6.1 &
6.2, but constitute selective, velocity dependent attraction and repulsion interactions.
Nevertheless they may lead to the onset of large scale collective motion in particular
at high densities of individuals.

The behavioral response of the insects, which are particularly vulnerable to attacks
from behind, was assumed in the following way:

— If approached from behind by another individual j a focal individual ¢ increases
its velocity away from it in order to prevent being attacked from behind. We refer
to this behavior as escape (e).

— If the focal individual “sees” another individual up-front moving away, it increases
its velocity in the direction of the escaping individual. We refer to this behavior
as pursuit (p).

— No response in all other cases.

The motion of individual particles in two spatial dimension obeys the following
Langevin dynamics:

r, =v;, V;= —’)/V;-171Vi + FZS + V2Dg,. (400)

The first term on the left hand side of the velocity equation (400) is a friction term
with coefficient v and an arbitrary power-law dependence on velocity represented by
a=1,2,3,.... The social interaction of particles is described by F?. The last term is
a non-correlated Gaussian random force with intensity D. A non-interacting particle
(F{ = 0) explores its environment by a continuous random walk, where the individual
velocity statistics are determined by ~y, a and D.

Furthermore we assume finite-size particles and introduce fully elastic hard-core
collisions with a particle radius Rp. = I,./2 (I-particle diameter) (see e.g. [45]).
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The social force acting on the focal particle i is given as a sum of escape and
pursuit force: F$ = £f + f with

1 R
£ =~ 25 ~Tike(|veal)0(ls —15)0(rji = 1)0(=vi - 15)0(~vret),  (401a)

1 R
£ = - 25 Tk (foa)0(s = 750)0(rji = 1)0(+vi - 1ji)0(+vrer),  (401D)
P

where I'j; = (rj —r;)/|r; —r;| is the unit vector in the direction of the other individual
J, and vyel = Vj; - Tj; = (vj — v;)E,; is the relative velocity of individuals j and ¢. The
functions K., > 0 determine the strength of the interactions. In the following we
assume the response functions proportional to the relative speed: K., = Xe,p|Urel|,
where x, . > 0 are the corresponding interaction strengths. This choice of the re-
sponse function leads to stronger response to fast approaching/escaping individuals
in comparison to slowly moving ones.

The product of the #-functions (step functions), which define the condition for
the escape/pursuit interaction to take place can assume only two values: either 1 or
0. The product of the first two step functions is identical for both interaction types.
It is 1 only if the individual j is within the social interaction zone defined by the
hard-core distance [, and the sensory range ls: I, < 7j; < ls. The product of the
last two step functions distinguishes the escape and pursuit interaction. The escape
interaction takes place only if individual j is behind the focal individual i (v;-rj; < 0)
and is coming closer (v, < 0), whereas the pursuit interaction takes place only if
the individual j is in front of the focal individual ¢ (v; - rj; > 0) and is escaping it
(Urel > 0).

The most important property of this asymmetric interactions is their anti-
dissipative nature with respect to kinetic energy. Note that F; leads only to ac-
celeration of individuals and is analogous to the auto-catalytic mechanism proposed
in [25].

Large scale numerical simulation of a N-particle system in a rectangular domain of
size L x L with periodic boundary conditions show that at high density the escape and
pursuit interaction leads to collective motion irrespective of the detailed parameter
choice as long as the interaction is strong enough to counterbalance the individual
fluctuations. Here we use for convenience a dimensionless density ps = NI12/L? scaled
by the interaction range.

At low p; the behavior of the system depends strongly on the relative strength of
escape and pursuit. This can be best understood if we consider the extreme cases of
pure escape (xp, = 0) and pure pursuit (x. = 0).

In the escape only case the particles try to keep their distance with respect to
individuals approaching from behind. To the front only interactions via the short
range repulsion take place. At low ps an escaping particle will eventually move away
from the approaching one. The probability of interaction within the characteristic
time of velocity relaxation vanishes and the particles perform effectively a disordered
Brownian motion. As ps increases the frequency of escape interactions increases and
an escaping particle will trigger escape responses from neighboring particles. We ob-
serve velocity correlation over several interaction length scales. Finally at high ps a
highly ordered state emerges where all particles are able to correlate their motion. At
all ps the density remains almost spatially homogeneous.

In the pursuit-only case the dynamics change dramatically: At low p; we observe a
highly inhomogeneous state initiated by formation of small particle clusters perform-
ing coherent collective motion. Without escape interaction the density of the clusters
is only limited by the hard-core radius. At moderate noise intensities the clusters are
sufficiently stable and a process of cluster fusion can be observed where larger clusters
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Fig. 61. Typical spatial configurations and particle velocities (small arrows) for pure pursuit
(p), pursuit+escape (p+e) and pure escape (e) cases at different particle densities ps = 0.30,
1.25, 2.25. Mean migration direction and speed U is indicated by large arrows (U ~ 0 for
escape only and p, < 1) [294].
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Fig. 62. (a) Mean velocity (U) for escape-only (circles) x. = 10, xp = 0, pursuit-only
(crosses) xe = 0, xp = 10 and symmetric escape+pursuit (squares) xe = xp = 10 vs. ps
obtained from numerical simulations with periodic boundary conditions (y = 1, D = 0.05,
a =3, l, =2, ls = 4; only translational solutions were considered; error bars represent one
standard deviation). Vortex formation for pursuit only: initially a rotating cluster nucleates
from collision of two translational clusters at x ~ 50, y ~ 180 (b), which then grows through
absorption of other translational clusters until a single rotating structure emerges (c). Figure
adopted from [294].

absorb smaller clusters and solitary particles. The typical stationary configuration in
a finite system with periodic boundary condition, and moderate noise, is a single clus-
ter performing translational motion (Fig. 61). The migration speed (U) in Fig. 62(a)
is given by the mean speed of a single cluster (u) = |, juster Vil/Neluster- For large
clusters (u) becomes independent of the cluster size and therefore independent of p;. It
should be emphasized that this holds only for finite systems with sufficiently strong
pursuit interactions. In general there is a finite probability of a large pursuit-only
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clusters to break up into smaller clusters which increases with cluster size and noise
strength. The resulting different clusters will in general move in different direction
which results in (U) — 0 for L, N — oo and constant overall density ps = const. < 1.

An intriguing feature of the pursuit-only interaction is the possibility of the forma-
tion of large scale vortices out of random initial conditions (Fig. 62b,c), for example
via a collision of clusters moving in opposite direction. The vortices may decay either
via a collision with a translational cluster or through random fluctuations. For certain
parameters the vortices are very stable and may dominate the stationary configura-
tions for the pursuit-only case. The emergence of vortex-structures is in particular
remarkable because so far they have only been reported for systems of self-propelled
particles with confinement, or attracting potential, respectively [74,86,363]. Here,
the pursuit behavior has two functions: a propulsion mechanism and an asymmetric
attraction.

Both interactions — escape and pursuit — lead to collective motion of groups but
have an opposite impact on the density distribution. Whereas the escape interaction
leads to a homogenization of density within the system, the pursuit interaction facil-
itates the formation of density inhomogeneities. Thus the combined escape-+pursuit
case with xp,xe > 0, is a competition of this two opposite effects. The stability of
clusters is determined by the relative ratio of the interaction strengths. In general for
the escape+pursuit case at low ps we observe fast formation of actively moving par-
ticle clusters with complex behavior: fusion and break up of clusters due to collisions
as well as spontaneous break up of clusters due to fluctuations [294].

The anti-dissipative nature of the escape and pursuit interactions leads to persis-
tent translational motion of interacting Brownian particles. Individual clusters may
be considered as self-propelled structures where the propulsion is purely due to social
interactions, and constitutes an example of group-propulsion.

The scaling of the speed of individual clusters can be derived by considering the
smallest possible cluster: a particle pair. We assume particle 1 is in front of particle
2 and |r12| < I, at all times. The transformation of Eq. (400) into polar coordinates
with v; = (v; cos d;, v; sin dp; ), where dgp; is defined as the angle between v; and ria,
yields:

d
@vl = —70] + Xe|v12]|0(—v12) cosdp1 + V2DE, 1 (402a)
d
avg = —yv5 + Xp|v12]|0(+v12) cos o + V2DE, o (402Db)
d 1 .
d—&pl = — (—Xe|v12\6’(fv12) sindpg + \/2D§%1) (402c¢)
t (%}
d 1 .
%= (fxp|v12|a(+v12) sindps + \/205%2) . (402d)

Here v12 = v1 — v2 is the relative velocity of the two particles and & ;, £, ; represents
the transformed noise variables. For —m/2 < ¢1,92 < m/2 the escape and pursuit
interaction leads to an increase of either v; or vs in order to harmonize the speed
of the slower particle with the faster one. In addition the interaction stabilizes the
translational motion along f19, i.e. (0p;) — 0 (Egs. 402c,d). After the system relaxes
to a stationary state (f'1o varies slowly in time) we end up with quasi one-dimensional
translational motion of the particle pair with slowly diffusing direction of motion
defined by t12. Please note that for elastic hard-core interaction the total energy and
momentum of the particle pair does not change during collisions.

In order to obtain equations of motion for the particle pair in the stationary trans-
lational state, we assume that the particle velocities are given by the time averaged
mean velocity u of the particle pair plus a small deviation: v; = u + dv;. Furthermore
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the particles are assumed to have approximately the same heading so that dy; < 1.
Assuming vanishing mean of speed deviations (dv;) = 0, we obtain for the time evo-
lution of the mean pair velocity:

d
2= —yu - 25 (012]0(—via)) + 3 (012l0(+vrz)). (403)
In the symmetric case where x. = X, = X the social force terms on the right hand
side can be summed up and we obtain:

d
Zu=—yut + 2 (|osal). (404)
There is permanently a social force acting on one of the particles. In order to evaluate
the expectation value of the social force we assume that at all times one of the particles
moves with the mean velocity u (dv1,2 = 0) whereas the velocity of the second particle
deviates by dv as a result of the stochastic force. We approximate the expectation
value (|0v|) = (|viz|), by considering the speed deviations as discrete increments
taken from a Gaussian distribution with zero mean and variance 0% = 2D7 (Wiener
process) with 7 = x~! being the relaxation time of the escape-pursuit interaction:

— D
(lviz)1a = 24/ -

In the limit of quasi one-dimensional motion we obtain

d
U= —yu® + %, (405)

which results in a stationary pair velocity ug,

s _[1 /xD :
uep_<7,/7r> ) (406)

For symmetric escape and pursuit the particle distance increases slowly due to fluc-
tuations which are not fully compensated by the social force, and the pairs break-up
at finite times. Stable pairs, with stable particle distance are only possible for pursuit
dominated dynamics and in particular for the pursuit only case x. = 0.

In contrast to the escape and pursuit interaction for pursuit only the social force
act not all the time but only if the leading (first) particle is faster then the pursuer.
Thus individual velocity deviation from the mean, as well as (|0v|)14 are larger for
pursuit only, in comparison to the escape+pursuit case. We consider now both ve-
locity deviations dv; and dvs as stochastic variables. In analogy to symmetric escape
and pursuit we approximate (|vi2|) by considering discrete Gaussian increments with
zero mean and variance o3 = 207 = 4Dt (difference of two independent stochastic
processes with variance o?). The resulting evolution equation for the velocity in the
pursuit only case reads:

d . 5
%u = —Yu + X2pﬂ_ s (407)

1
1 [xp,D\"

u, = | — . 408

The obtained analytical expressions for the averaged pair velocity (u) are con-

firmed by numerical simulations for a wide parameter ranges as shown in

with the stationary speed
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Fig. 63. (a) Mean pair velocity (u) for symmetric escape and pursuit (a,b) and pursuit only
(c,d) versus interaction strength (a,c) and friction coefficient (b,d). The symbols represent the
results obtained from numerical simulations of interacting particle pairs for linear friction a =
1 (circles) and nonlinear friction a = 3 (squares). The solid lines represent the corresponding
analytical result Eq. (406) (a,b) and Eq. (408) (b,d).

Fig. 63 (see also [294]). Deviations become apparent where the pair dynamics de-
viate strongly from the effective one-dimensional situation as for example for weak
coupling strengths x.

Thus we have shown that although isolated particles perform (nonlinear) Brown-
ian motion, the escape and pursuit interactions leads to rectifications of individual
fluctuations of interacting particles leading to a collective propulsion with a non-
vanishing stationary velocity. Based on Eqs. (406) and (408) we can consider a pair
(or even a cluster) as a single active Brownian particle with a velocity-dependent
friction function along the common heading of the form:

—y(uwu =a—yu® (409)

with a constant pumping term « accelerating the pair and a friction term —~vyu®.
For a = 1 this corresponds directly to the Schienbein-Gruler friction introduced in
Sect. 3.1.

6.3.2 Chemotactic coupling

Another kind of coupling leading to collective dynamics is known from microbiology.
Many microorganisms, as for example different bacteria strains, are able to sense
various chemical agents in their environment and bias their motion along their con-
centration gradients. This ability is referred to as chemotaxis (see [110] for a review).
Our modern understanding of bacterial chemotaxis was strongly influenced by the
systematic investigations performed by J. Adler, H.C. Berg and their collaborators
in the 60’s and 70’s of the past century [3-5,31,34,35,47]. Since then a large num-
ber of publications has appeared on various experimental and theoretical aspects of
chemotaxis (see e.g. [15,29,44,76,365]).

Chemotaxis plays an important role for the survival of microorganisms in general,
as it enables them to move towards beneficial environments and away from hostile
environments. In the case, where individual cells bias their movement towards higher
(lower) concentration of potentially beneficial (dangerous) chemical substances, the
corresponding chemical agent is referred to as chemoattractant (chemorepellent). Ef-
fective coupling of individual cells comes from the ability of different microorganisms
to produce the respective chemoattractant (chemorepellent) by themselves. By these
means bacteria are able to exchange information about favorable or disadvantageous
environmental conditions.
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The auto-chemotactic interaction was identified as the mechanism responsible for
complex spatio-temporal patterns of cell clusters that were observed in colonies of
chemotactic bacteria such as Escherichia coli or Salmonella typhimurium [49,50,371].

Most models employed for the description of bacterial colonies with chemical cell-
to-cell signaling (chemotaxis) are based on the classical Keller-Segel model (KSM)
[192,193]. It is a continuous model of partial differential equations (PDEs) for the
dynamics of the bacterial density p(r,t) and the concentration(s) of the involved
chemical agent(s) c(r,t) (see e.g. [166,231,245,353]).

Here we discuss briefly models of (active) Brownian particles interacting via a self-
generated chemoattractant, as an alternative to a pure PDEs approach [74,297,315].

We consider an ensemble of N (active) Brownian particles in two spatial dimen-
sions, each described by individual equations of motion coupled to a self-generated
chemoattractant concentration field c¢(x,t):

Vi = =y(vi)Vi + 6(c) Ve o(r;) + V2DE;. (410Db)

The chemotactic force (second term in velocity equation) consists of a chemotactic
sensitivity function k(c) which may depend on the concentration ¢ and the gradient
Ve at the position of the individual particle (cell). Thus depending on the sign of x(c)
the force acts either in the direction of the gradient (chemoattractant, x(c) > 0) or in
the opposite direction (chemorepellent, k(c) < 0). Here we will restrict for simplicity
to the discussion of chemotactic coupling via a single chemoattractant.

The dynamics of the chemoattractant concentration ¢ are assumed to obey a
diffusion equation:

é(r,t) = go I, 6(r — 1;) — de + D Ac. (411)

The first term describes the production of the chemoattractant by the individual
particles with rate gg at their respective positions r;. Furthermore, the chemical agent
¢ is assumed to decay with the rate d. and to diffuse with the diffusion coefficient D..

A simple model of chemotactically interacting Brownian particles with constant
friction coefficient y(v) = 79 = const. (Stokes friction) and constant chemotactic
response k(c) = Ko, was studied by Schweitzer and Schimansky-Geier [315] (SSG-
Model).

Depending on the model parameters they observed formation of spike patterns of
the chemoattractant field c. The spikes correspond to particle clusters aggregating
at high concentration of c. The positive feedback between the spike “height” and
attraction on other particles leads to a competition between spikes following an Eigen-
Fisher like dynamics. After a certain relaxation time only few spikes “survive”, but
even if the dynamics of the system slows down, in the limiting case of ¢ — oo the
only stationary solution is a single spike of the chemical field or cluster of particles,
respectively. This process can be seen as an Ostwald-ripening process known from
chemical reactions [316,376].

In the case of Stokes friction the particles within a stationary chemotactic cluster
perform purely diffusive motion in an effective confining potential caused by the
concentration profile of ¢. The introduction of active (self-propelled) motion via a
velocity dependent friction function leads in general to complex rotational motion of
individual particles within the cluster. In the absence of any additional interactions
which may induce a symmetry breaking, no collective rotational modes are possible
and the total angular momentum averages to zero.

Although bacteria are able to sense chemoattractant concentrations over several
orders of magnitude via membrane receptors, it is known that at high ¢ they lose the
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ability to follow the gradient. This can be taken into account in simple form by the
so-called “receptor law” [29,245]. The resulting chemotactic force may be written as:
Ko
K(c) = e (412)
with k¢ being the sensitivity coefficient and S being the saturation coefficient which
takes into account the saturation of chemotactic receptors at high ¢ leading to a
decreasing sensitivity with increasing c.

The macroscopic behavior of the model for low S is similar to that observed in
the SSG-model but with increasing S (or increasing concentrations c¢) the observed
macroscopic patterns and microscopic dynamics within the cluster change.

The decrease of the chemotactic force at high concentrations ¢ for S > 0, makes
particles insensitive towards the gradient of ¢ — the particles are able to leave the
maxima of the field distribution. This behavior has significant impact on the macro-
scopic pattern formation. At large S any formation of clusters may be inhibited and
at moderate values of S a “smoothing” of spikes in the concentration profile towards
flat spots can be observed [297].

For the study of pattern formation we neglect the microscopic feature of active
motion and consider the particles to behave as normal Brownian particles with a
constant friction y(v;) = 9 = const. This approach can be justified by the small
stationary velocity of bacteria. With this assumption and in the overdamped limit
(Smoluchowski limit) we can derive a simple PDE for the evolution of the particle
density p. The two PDEs for p and c give us a reactions-diffusion system with chemo-
taxis which represent a variant of the Keller-Segel model. A similar system has been
studied by Tyson et al. [353,354]:

. Rop
= _— D 41
p(r,t) =V ( Yol + Sc)QVC + Vp) , (413a)
¢ = qop — dec+ D Ac. (413b)

Here, D = D/~2 is the spatial diffusion coefficient of the overdamped particles.

The simplest stationary solution of (413) is the homogeneous solution, given by
the averaged particle and chemoattractant concentrations: p = N/L? and ¢ = qop/d..
Analyzing the linear stability of the homogenous solution with respect long wave
spatial perturbations we arrive at the condition which has to be fulfilled for stable
spatially homogenous solution:

Ko <

D Y0 dc (
P90

2
1+ Sgop) = ke (414)

c

For d. > 0 and k( smaller than the critical sensitivity x. all fluctuations around the
homogeneous state decay exponentially. Only if kg > k. pattern formation on the
macroscopic scale can be observed.

Although this result was derived for overdamped dynamics it can be also applied
for actively moving particles with a Rayleigh-Helmholtz friction function, by taking
the friction coefficient from the Stokes friction as a single fit parameter [297].

Not only the macroscopic dynamics but also the microscopic behavior of ac-
tively moving particles within a cluster depend strongly on the involved chemoat-
tractant and chemotactic parameters. In the case of strong confinement (e.g.
low S), the particles perform complex rotational motion, as discussed in Section 5.
However, for large S and low diffusion of the chemoattractant we observe ex-
tended clusters where the chemoattractant concentration within a cluster is rather
high but approximately constant and drops sharply at the cluster boundary leading
to a steep gradient. Inside such clusters the particles perform effectively free motion
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Fig. 64. Active particles with chemotactic coupling and velocity alignment. The chemoat-
tractant concentration c is indicated by the background color with dark (bright) regions in-
dicating low (high) c. Left: collective rotation at intermediate velocity alignment strengths.
Each particle is shown by its velocity vector. Right: a moving cluster for strong velocity
alignment. Only the position (symbols) and the mean velocity is shown (vector).

and are able to sense chemoattractant gradient only at the cluster boundaries which
prevents them from leaving the cluster [297].

If the coupling via the self-generated chemoattractant is the only interaction be-
tween particles, no collective dynamics within a cluster take place and the center of
mass of a stationary cluster performs at most slow diffusive motion. This changes
dramatically if in addition to the chemotactic coupling we include the velocity align-
ment as introduced in Sect. 6.2.2. Increasing the alignment strengths leads first to
a transition from disordered motion within a cluster to collective rotation within a
stationary cluster. This situation corresponds to the dynamics in an external central
field 6.2.2. A further increase in alignment strength enables the particles to escape
collectively out of the stationary maximum of c. As the particles keep on produc-
ing the chemoattractant, they drag a cloud of chemoattractant around them and we
observe a compact chemically bounded moving cluster of particles (see Fig. 64).

7 Pattern formation of active particles

In this section, various aspects of pattern formation in active matter systems are
considered. Often pattern formation in active systems like self-propelled or driven
particles refers to the formation of substantial spatial inhomogeneities in the den-
sity of the particles. Phenomena like giant number fluctuations, phase separation and
clustering phenomena fall into this class and have all been observed in experiments
[249,275,303], predicted or reproduced by theoretical analysis and numerical simula-
tions of appropriate models [240,271,274,283,350]. Another frequent phenomenon in
the collective dynamics of active particles is the formation of high-density bands in a
low-density environment (segregation bands), that may travel at a constant speed (as
for the classical Vicsek model) [60,147,247] or can be stationary (as for self-propelled
rods) [141]. The high density inside such segregation bands often is associated with
polar or nematic alignment order, while their low density environment typically is dis-
ordered. The precise nature of these bands (stationary or moving, polar or nematic
order) is often determined by symmetries of the system, like the nature of the active
particles (polar or apolar) and the specific of their interactions (ferromagnetic or ne-
matic) [60,141]. Finally, active particles may also exhibit classical pattern formation
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Fig. 65. The rotational motion (L) and parallel motion (Cyy) order parameters for an
individual cluster of particles over the velocity-alignment strength x. Depending on x three
different states can be identified: (A) no collective mode of motion; (B) collective rotation;
(C) collective translation. (simulation parameters: ko = 1x 107> mm*s™, § = 6x 107> mm?,

d. =0.15s7", D=1x 10"*mm?s, N = 3000 and l,, = 2 x 10~% mm) [297].

phenomena such as Turing-type patterns respectively periodic standing and traveling
waves of the density, compare e.g. [43]. In comparison to standard pattern formation
systems like Rayleigh-Benard convection or chemical reaction-diffusion systems where
the molecular and the pattern scale differ by many orders of magnitude, typically the
length scales of pattern formation and the particle size in active matter are compa-
rable [43]. This allows for agent-based approaches as introduced in Section 6, where
the motion and dynamics of each particle is simulated. This section is structured
as follows: First, we will briefly describe the results of continuum theories and their
relation to findings in agent-based models. Then, work on clustering of self-propelled
particles is reviewed. As an example, a simple physical model of self-propelled hard
rods and simulation results therein are described. A theoretical analysis of clustering
via a Smoluchowski-type kinetic approach is introduced and applied to simulations
with hard rods and experiments with myxobacteria. Related phenomena in Vicsek-
type models, models of colloids and granular experiments are also surveyed. Second,
we describe formation of large-scale coherent structures like traveling and stationary
high-density bands in simple models for self-propelled particles, namely the Vicsek
model and a variation describing polar particles with apolar alignment interactions,
which is illustrated with Peruani model described above, and their instabilities. Due
to the rapid development of the studies in collective motion of active (Brownian) par-
ticles, we concentrate on detailed descriptions of recent developments. The review in
this section is by no means exhaustive and relevant original and review papers will be
cited and may be consulted. Nevertheless, the examples selected and the discussion
will address the most important issues. The main message of this section is that dif-
ferent forms of spatial organisation like clusters and large-scale patterns, are crucial
for a complete understanding of the collective dynamics of active particles. Hence,
the approaches introduces in this section are necessary to complement the picture
sketched in the previous section on swarming.

7.1 Continuum theories versus agent-based models

In agent-based models, one encounters often strong finite size effects. The same
model may yield clustering and giant fluctuations for small and intermediate particle
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numbers as well as coherent structures and large-scale patterns for big particle num-
bers. In addition, bands and other large-scale patterns can have instabilities against
modes of a definite wavelength, that may be absent in smaller system, but highly rel-
evant in sufficiently large systems. Such stability properties of patterns are also quite
relevant for the presence of long-range order or non-zero global order parameters.

Alternatively, coarse-grained, hydrodynamic continuum models have been fre-
quently employed to advance the understanding of collective dynamics in active
matter. It would be highly desirable to establish links between the two levels of
descriptions. Such efforts are, however, limited by the fact that continuum models
address typically length scales that involve very large number of particles. As a re-
sult, the study of the corresponding agent-based models is often computationally
extremely expensive or even prohibitive. Simulations of “microcospic” agent-based
model are nevertheless very important, since they are necessary to understand the
role of the noise and the fluctuations as well as the limitations of the validity of hydro-
dynamic descriptions. Agent-based models also allow for a simultaneous computation
of coarse-grained properties like densities or alignment and of characteristic of indi-
vidual particle motion. In other words, they can be used to establish a link between an
Eulerian and Lagrange view of active matter systems [260]. Often, both Eulerian and
Lagrangian properties of active systems are accessible to experiments. For example,
fluorescence labeling allows for tracking of individual cell motion in bacterial films,
while density patterns are conveniently determined by microscopy [175,368]. This
enlarges the amount of information necessary for quantitative validation of models
substantially.

In contrast, continuum theories are useful to describe the large-scale behavior of
active Brownian particles. Shortly after the first publication on the Vicsek model,
Toner and Tu carried out pioneering work deriving a continuum theory for active
systems like the Vicsek model. Their work analyzes a coarse-grained hydrodynamic
description based on the velocity field v and the particle density p. These equations
are of the general form:

%Jr/\v-VVJr...:(Oc*ﬁV'V)V*FVVV*VP(P)JFg (415)
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Egs. (415)—(416) capture the phase transition from the disordered state v = 0 to
the ordered state v = y/a/f3. The analysis of Toner and Tu gave an explanation
of the long-range order in two-dimensional systems, that is absent in equilibrium
systems and had been previously observed in the simulations by Vicsek and colleagues.
Moreover, it allowed the derivation of sound modes and lead to the prediction of giant
number fluctuations, that shall be discussed below. A detailed discussion of the Toner-
Tu field theory can be found in [282,350]. The number fluctuations in the collective
dynamics of a many particle system are often expressed as

AN x N?, (417)

where AN is the standard deviation of the particle number in a given finite volume.
The quantity N gives the mean number of particles in this volume. Equilibrium sys-
tems exhibit normal fluctuations with ¢ = 1/2, whereas active systems often show
¢ > 1/2. Such behavior out of equilibrium is consequently referred to as giant number
fluctuations. The Toner-Tu field theory predicts ¢ = 7/10 + 1/5d for d < 4, where d
is the spatial dimension of the system. The predicted value ¢ = 0.8 in two dimensions
has been recently confirmed in extensive numerical studies of two agent-based models,
namely the original Vicsek model [60] and the Peruani model [141], in the ordered
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state without segregation bands. Giant number fluctuations have also been studied
for active nematics (=driven apolar particles), for which an exponent ¢ =1/2+1/d
was derived from field theory, see [282,283], where d again refers to the spatial di-
mension of the system. In two dimensions, the predicted value of ¢ = 1 was recovered
from extensive numerical simulations of a Vicsek-type simple agent-based model [61].
Coincidently, researchers have found in recent experiments with bacteria [275,381]
similar exponents (¢ ~ 0.8) in two dimensions. In the latter case, the interpretation
of the giant number fluctuations remains controversial because of the simultaneous
observation of large coherent clusters of the investigated bacteria. Such clustering
provides an alternative reason for giant number fluctuations and violates the assump-
tions of the Toner-Tu field theory. A similar controversy appeared in connection with
experiments of shaken elongated rice corns that were devised as a realization of an
active nematic and show giant number fluctuations [249]. The initial interpretation of
these measurements as confirmation of the predictions of continuum theory were later
contested [11] by pointing out the strong tendency of this system to form clusters.
In general, the formation of clusters or large-scale patterns like segregation bands is
expected to have a strong influence on the number fluctuations and goes beyond the
range of validity of continuum theories.

Alternative continuum theories have recently also been investigated by Marchetti
and coworkers based on symmetry consideration and expansions [23,239] as well as for
a specific approach describing self-propelled hard rods [21,22]. Bertin and coworkers
have pursued a continuum theory based on a kinetic approach [37] and have been
able to recover qualitatively the traveling segregation bands seen in simulations of
the Vicsek model [38].

Altogether, continuum theories have contributed a lot to the understanding of the
collective dynamics of active Brownian particles. In recent years, large-scale agent
based simulations and experiments with, e. g., driven granular particles or moving
bacteria, have revealed many interesting phenomena that pose new challenges to
continuum theorist. Many open questions revolve around the issue of prediction of
spatial inhomogeneities, large-scale patterns and cluster formation which all have
been found to play a dominant role in agent-based simulations and experiments. In
the following subsections we will discuss recent developments in agent-based models
and related experiments.

7.2 Clustering, segregation and band patterns — phenomena and experiments

Examples of large-scale self-organized patterns in systems of self-propelled parti-
cles with short-range interactions are found at all scales, from groups of animals
[39,55,261] and human crowds [160] down to insects [51,294], bacteria [381], or actin
filaments [52,303]. Such patterns are also found in non-living system like in driven
granular media [82,206,207,249]. Despite the fact that the interaction mechanisms
between individual elements are of a different nature, it is possible to determine some
common requirement to achieve large-scale (spatial) self-organization. Particularly
important for the emerging macroscopic patterns are the self-propulsion of the agents,
and their velocity alignment mechanism. As described above, simple individual-based
models like the Vicsek model [361] have helped to reveal the relevance of these two
elements by reducing the problem to the competition between a local alignment inter-
action and noise [59]. Recall, that in two dimensions, self-propelled particles moving
at constant speed with a ferromagnetic-like velocity alignment exhibit at low noise a
phase characterized by true long-range polar order which translates into a net flux of
particles [60,361]. In the previous section, we have assumed that the ordered states
are spatially homogeneous. Systematic simulations and theoretical analysis based on
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coarse-grained continuum models show that these ordered phases often exhibit several
remarkable features of spatial organisation. For ferromagnetic alignment mechanisms,
the spontaneous formation of elongated high density bands that move at roughly con-
stant speed in the direction perpendicular to the long axis of the band, and anomalous
density fluctuations for low noise levels were reported [60,239]. When the alignment
is replaced by a nematic velocity alignment, self-propelled particles again display a
phase characterized by true long-range nematic order at low noise intensity [141]. In-
terestingly, spontaneous density segregation evolves into regular bands are observed
for these particles as well as anomalous density fluctuations [141]. It is noteworthy,
that self-propelled particles with display large-scale high-density patterns and segre-
gation in absence of any attracting force [60,141].

At moderate system sizes or particle numbers, self-propelled particles with ferro-
magnetic or nematic alignment mechanisms often do not show large-scale patterns
like segregation bands. Nevertheless, collective motion in this regime is still character-
ized by strong density fluctuations. A phenomenon that has attracted a lot of interest
recently is the formation of large polar clusters in many experiments and models, that
again do not require attractive forces between the particles. It seems that the com-
mon presence of active motion and effective alignment forces of either ferromagnetic
or nematic symmetry are sufficient to facilitate “condensation” of self-propelled par-
ticles into clusters. This effect has been studied extensively for alignment that results
from volume exclusion interactions among self-propelled rods [270,271,375]. Related
findings appeared in models for colloidal rods [369], experiments and models of driven
granular particles [207] and models describing collective motion of sperms [374,375].
In many instances the appearance of polar clusters was linked to a power-law cluster
size distribution [271,374,375]. Clustering effects and the emergence of steady state
cluster size distributions in self-propelled particle systems were also observed in the
Vicsek model [170,171] and the Peruani model [274].

In the following subsections, we will first discuss first the formation of polar clus-
ters in a model of self-propelled rods and describe a simple kinetic theory from which
the steady state cluster size distribution of self-propelled particles is obtained. This
approach is a modification of the Smoluchowki kinetic equations that were devel-
oped to describe the aggregation of colloids [58,325]. Then, we will show that similar
phenomena appear and a related kinetic description for the cluster size distribution
applies also to models of self-propelled particles with velocity alignment as outlined
before in [270,274]. In the second part of the second of the section, we review results
on the formation of large-scale structures in models with velocity alignment. Finally,
we give an account of results obtained in coarse-grained continuum descriptions of
collective motion in active matter specifically designed to account for the phenomena
observed in the simulation studies discussed before.

7.3 Clustering, phase separation and giant number fluctuations
7.3.1 Clustering of self-propelled hard rods

A recurrent question is how microorganisms such as bacteria and amobae coordinate
their behavior to form groups which move collectively. Specific models for bacteria
like E. coli as well as for amoebae like D. discoideum [29], have been based on chemo-
taxis, a long-range cell interaction mechanism according to which individual cells
move in response to chemical signals produced by all other cells. However, in some
bacteria there is no evidence for chemotactic cues and cells coordinate their move-
ment by cell-to-cell signalling mechanisms in which physical contact between bacteria
is needed [95,179,186]. Consequently, one may ask how such bacteria aggregate in
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order to communicate. Another relevant aspect is the influence of the shape of the
bacteria. The shape has been shown to be essential for individual motion of swim-
ming bacteria [94]. In contrast, the role of the cell shape for collective motion has
remained mostly unexplored. It has been demonstrated experimentally [194] that mi-
grating elongated amoeboid cells exhibit alignment effects similar to those reported
in liquid crystals [253]. A prominent example for collective behavior with no appar-
ent long range interactions are the striking patterns observed during the life-cycle
of gliding myxobacteria, see e.g. [95,179,186,246]. Earlier modeling work has repro-
duced many of these patterns in three dimensions assuming either perfect alignment
[43] or a phenomenological alignment force [6,175]. These models have all considered
patterns resulting from exchange of chemical signals, that are absent in an early stage
of the myxobacterial life cycle. Nevertheless, a trend from initial independent motion
towards formation of larger clusters of aligned bacteria is often observed.

Here, a model of self-propelled rods that have only repulsive excluded volume
interactions in two dimensions is considered It was found that the interplay of rod
geometry, self-propulsion and repulsive short-range interaction is sufficient to facili-
tate aggregation into clusters [271]. Consider N rod-like particles moving on a plane,
for a more detailed description see [270,271]. Each particle is equipped with a self-
propelling force acting along the long axis of the particle. Velocity and angular velocity
are proportional to the force and torque, correspondingly. The rod-shape of the par-
ticles requires three different friction coefficients which correspond to the resistance
exerted by the medium when particles either rotate or move along their long and short
axes. Inertial terms are neglected, i.e. the case of overdamped motion is considered.
As a result the movement of the #th rod is governed by the following equations for
the velocity of its center of mass and angular velocity:
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where vﬁi), v(f) refer to the velocities along the long and short axis of the rods, respec-

tively, ¢; indicates the corresponding friction coefficients ({, is related to the friction
torque), U refers to the energy of the interaction of the i-th rod with all other rods,
and F' is the magnitude of the self-propelling force. The motion of the center of mass

i) = (vg(f),vg(f)) of the #th rod is given by

vg(f) = vﬁi) cos go(i) + v(j) sin ga(i)
vz(f) = v‘(li) sin cp(i) — ’UY) cos w(i). (419)

Particles interact by “soft” volume exclusion, i.e. by a potential that penalizes particle
overlaps in the following way:

U, 60 2@ @) =y 3N ((7 — aliy=b 'y_b) (420)
where ag,ij) = ao(r(i), @ r), <p(j)) is the area overlap of the rod ¢ with rod j and p is

the interaction strength. The simulations were performed placing N identical particles
initially at random inside a box of area A with periodic boundary conditions.

There are two key parameters which control the dynamics of the self-propelled
rods: i) the packing fraction 7, i.e., the area occupied by rods divided by the total
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Fig. 66. Simulation snapshots of the steady states for different particle anisotropy « and
the same packing fraction n (a-c), and the same x and different n (d-f). Fixing n = 0.24:
(a) before the transition, k = 1; (b) almost at the transition, x = 5; (c) after the transition,
k = 8. Fixing k = 6: (d) before the transition, n = 0.18; (e) just crossing the transition,
n = 0.24; (f) after the transition, n = 0.34. In all cases, particles N = 100 and particle area
a = 0.2. The arrows indicate the direction of motion of some of the clusters.

area (n = Na/A, where N is the number of particles in the system, a is the area of a
single particle, and A is the total area of the box), and ii) the length-to-width aspect
ratio k (k = L/W, where L is the length and W is the width of the rods). Simulations
yield an increase of cluster formation with increasing  or 7, see Fig. 66. Clusters are
defined by connected particles that have non-zero overlap area. Simulations can be
characterized by the weighted cluster size distribution, p(m), which indicates the
probability of finding a given particle inside a cluster of mass m. Fig. 67 shows that
for a given 7, a critical k. can be defined as the value of x for which the shape of p(m)
changes from unimodal to bimodal. The figure shows also typical shape of p(m) before
clustering, corresponding to low values of k, and after clustering, corresponding to
large values of k. The onset of clustering is defined by the emergence of a second peak
in p(m). The robustness of the model against fluctuations was tested by inserting
additive noise terms R;/(; in Eqgs. (418), which correspond to a switch from purely
active to active Brownian particles [119,121]. Clustering is still present in active
Brownian rods, albeit the transition is moved to larger values of x and 7. Clustering
was absent in all simulations with purely Brownian rods (F' = 0).

Smoluchowski-type mean field approximation (MFA)

The clustering effects in simulations described so far can be analyzed by deriving
kinetic equations for the number n; of clusters of a given size j. The equations for
n; contain terms for cluster fusion and fission. For the fusion terms adopted kinetic
equations originally derived by Smoluchowski for the case of coagulation of colloids
[68,325] were employed, while the fission terms are empirically defined from the typical
behavior seen in related simulations [271]. The numbers n; change in time according
to {n; (t)};’;l, where n,;(t) is the number of clusters of mass j at time ¢.

This description allows to consider a single rate constant for all possible collision
processes between clusters of mass ¢ and j, as well as a unique disintegration constant
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Fig. 67. p(m) as function of the cluster size m for n = 0.34. Symbols show the average
over eight IBM simulations for active particles with N = 50 and x = 1 (circles) and k = 8
(crosses). The lines correspond to the mean field theory for x = 1 (solid) and x = 8 (dashed).

for any cluster of mass i. Four additional crucial assumptions are now made: i) The
total number of particles in the system, N = Zjvzl jn;(t), is conserved. ii) Only
binary cluster collisions are considered. Collisions between any two clusters are allowed
whenever the sum of the cluster masses is less or equal to N. iii) Clusters suffer
spontaneous fission only by losing individual particles at the boundary one by one,
i.e. a cluster can only decay by a process by which a j-cluster split into a single particle
plus a (j — 1)-cluster. This is motivated by observations in the above simulations. iv)
All clusters move at constant speed, v ~ F'/(), implying that rods in a cluster have
high orientational order and interact only very weakly with their neighbors. Under
all these assumptions the evolution of the n;’s is given by the following N equations:

N N-1
Ny = 2Byny + ZBknk - Z A 1ngpn
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k=1
142
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k=1
L Nl
ny = —Byny + 3 Z Ak,kanan,k (421)
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where the dot denotes time derivative, B; represents the fission rate of a cluster of
mass j, defined by B; = (v/R)\/j, and A; is the collision rate between clusters of
mass j and k, defined by A; = (V09/A)(v/7 + Vk). ¢ is the scattering cross section
of a single rod. R is the only free parameter and is defined the characteristic length a
rod at the boundary moves with the cluster before leaving it in a typical fission event.
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One sets R = aL taken into account that longer rods will stay attached to cluster for
a longer time.

Since oo can be approximated by o9 & L+ W = y/a (\/E—F ﬁ), the MFA

depends only on the parameters k, a, A, U and «. If one integrates Eqs. (421) with
parameters used in IBM simulations and an initial condition n; (¢ = 0) = N¢y ;, their
solution yields steady state values n(]? for t — o0o. From these values, we obtain a

MFA for the weighted cluster size distribution p(m) = n2m/N for given values of
the free parameters R resp. a. The best agreement between the MFA and the IBM
simulations is found for a choice of & = 1.0 + 0.05 (see Fig. 67). To understand the
relation between the parameters of the model and clustering effects better, one can
rescale Egs. (421) by introducing a new time variable: 7 = tv/y/ak. The resulting
equations depend only on a dimensionless parameter P = (k + 1)a/A. Note that
v # 0 is scaled and does not affect the qualitative dynamics of the system. In the
dimensionless model the parameter P stands for ratio between fusion and fission
processes and therefore triggers the transition from a unimodal to a bimodal cluster
size distribution. By numerical solving for the steady state solution of the kinetic
equations, one can accurately determine a critical transition parameter P.. Given the
system area A, the rod area a and the number of rods N, this method provides a
straightforward way to calculate k.:

ke = Po(N)= — 1. (422)

A
a
It was found that in the MFA the critical parameter value k. for the clustering
transition does practically not depend on the number of particles as soon as N >
50 [271]. One proceeds by assuming that P, is inversely proportional with N and
expresses k. as a function of the packing fraction:

ke=C/n—1 (423)

where the constant was found to be C' &~ 1.46 by comparison with simulation results
[271]. So, for the range of parameters used in the IBM, the unimodal shape of the
weighted cluster size distribution for small values of k¥ and 7, and the bimodal shape
for large values of the two parameters seen in the IBM was qualitatively reproduced
in the MFA, see Fig. 67. A second interesting feature obtained both in the IBM and
MFA is that the cluster-size distribution changes notably in shape from an function
exponentially decaying with size to a function with a power-law behaviour p(m) o
m~¢ at small cluster size and a second peak confined by a cutoff at large cluster sizes.
The exponent of the power law is, however, substantially larger for the MFA (¢ ~ 1.35)
than for the simulation of self-propelled rods (¢ ~ 0.95). The power-law behaviour
of the cluster-size distribution characterizing self-propelled rods was also discussed
extensively in recent more detailed simulations of self-propelled rods [375], where
exponents of the weighted cluster-size distributions are in the range between 0.95
and 1.4. Interestingly, also recent experiments with bacteria, namely Bacillus subtilis
[381] and a mutant of Myzococcus zanthus [275] report exponents ¢ of the weighted
cluster size distribution in the range of 0.85-0.9. We expect further theoretical and
experimental activities, that may finally uncover universal properties in the clustering
of self-propelled rods and related systems.

In summary, one finds non-equilibrium clustering for interacting self-propelled rod
shaped-particles with sufficient packing density n and aspect ratio x in simulations.
The onset of clustering can be defined by a transition from a unimodal to bimodal
cluster size distribution. This transition is reproduced by a mean-field description of
the cluster size distribution, which yielded a simple criterion, k = C'/n—1, for the onset
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of clustering. It is instructive to compare these results rewritten in the form xn+n ~
1.46 with the formula for the isotropic-nematic transition k1 ~ 4.7 found in the two-
dimensional version [189] of Onsager’s mean-field theory for Brownian rods [253]. This
shows that actively moving rods can achieve alignment at much lower densities than
Brownian rods resp. particles in equilibrium systems. The clustering phenomenon is
absent in simulations with isotropic self-propelled particles as well as with Brownian
rods. The model of self-propelled rods provides also an alternative explanation for
collective behavior of rod-shaped objects - previous swarming models have achieved
aggregation and clustering by assuming attractive long-range interactions [119,121,
147,361]. With respect to biology, the observations made for self-propelled rods offer a
physical explanation for the formation of clusters in many gliding rod-shaped bacteria,
that often precedes the formation of biofilms and the appearance of more complex
patterns.

7.3.2 Clustering of self-propelled particles with velocity alignment

In the following, the interplay between orientation ordering by velocity alignment and
clustering in self-propelled particles with ferromagnetic F- or nematic LC-alignment
is analyzed and briefly discussed. Through simulations evidence was provided that at
high density orientation ordering sets in before clustering [270]. In contrast, for low
particle densities, the onset of orientation ordering and clustering are closely related
and seem to occur at the same value of the noise [270,274] for LC-alignment. These
findings indicate that the phase transition occurs rather due to mixing of particles
than exclusively to the directed active motion.

In Fig. 68(a) the behavior of the orientational order parameters and
vs. the noise amplitude n for high density is shown for a model with LC-alignment.
A transition from a disordered (isotropic) to an orientational ordered (nematic) state
is strongly suggested by the simulation data. Close to the critical noise amplitude 7,
the scaling of the curve follows the scaling predicted by the mean field outlined in
section 4 [272]. The departure from the mean-field prediction occurs exactly when the
spatial distribution of particles can not longer be considered homogeneous, compare
snapshots Fig. 68(b-d). Note, also that the ferromagnetic order parameter is zero as
long as the density appears spatially homogeneous. At low density the scenario how
orientational order emerges is significantly different. Fig. 69(a) shows that for p = 0.25
the dependency of the orientational order parameter S on the noise amplitude 7 is
qualitatively different from the one observed at high density. The second remarkable
difference is that the apparent onset of orientational ordering coincides with the onset
of clustering. This is also confirmed by the cluster size distribution which exhibits
a power-law distribution near the onset of orientational ordering [274]. Fig. 69(b)
shows that for zero orientational order the spatial distribution of particle is roughly
homogeneous. As soon as clustering is observed in the snapshots, see Fig. 69(c), the
order parameter starts to deviate from zero. As the noise is decreased clustering
effects are more pronounced, Fig. 69(d). The displayed patterns correspond to typical
particle configurations in a quasi-steady steady state. In particular, the pattern of
cluster does not coarsen as in a phase separation process. Here, clusters form and
disintegrate in a dynamical way. The rate of growth and disintegration of the clusters
is highly dependent on the value of 7. Given a value of 7 the cluster size distribution
reaches a steady distribution after an initial transient similar to the behaviour of
self-propelled rods described above.

In the following, a simple theory to understand the emergence of steady state clus-
ter size distributions in self-propelled particle systems with velocity alignment. The
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Fig. 68. Orientational dynamics and clustering at high density. Number of particles N = 24
and density p = 4. (a) Orientation order parameter S vs. noise amplitude 7. Symbols are
average over 10 realizations. The dashed curve corresponds to the scaling predicted by the
mean-field while the vertical dot-dashed line indicates the onset of clustering effects. (b)-(c)

Snapshots of the simulations for the values of 7 indicated in (a) at the steady state, time
step 2.5 x 10 [270].

o ] 256

Fig. 69. Orientational dynamics and clustering at low density. Number of particles N = 22
and density p = 0.25. (a) Orientational order parameter S vs. directional noise amplitude
1. Symbols are average over 10 realizations. The dashed curve corresponds to the best fit
of the simulation data close to n.. (b)-(c) Snapshots of the simulations for the values of n
indicated in (a) at the steady state, time step 2.5 x 10° [270].
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treatment is analogous to the one described above for the cluster-size distribution of
self-propelled rods. The dynamics of the cluster-size distribution may alternatively be
described by deriving a master equation for the evolution of the probability p(n(t)),
where n(t) = ny(t), na(t), ..., ny(t), with ny (t) being the number of isolated particles,
ny(t) the number of two-particle clusters, ns(t) the number of three-particle clusters,
etc. This kind of approach has previously been used to understand equilibrium nucle-
ation in gases, where the transition probabilities between states are function of the
associated free energy change [309,316,317]. Here, equations for the time evolution

of the values of ny(t),na2(t),...,ny(t) are derived to describe the cluster dynamics.
To simplify the notation, one refer to (ni(t)), (na(t)), ..., (nn(t)) simply as nq(t),
no(t), etc. The time evolution equations for the n;(t) obey the following form:
N N-1
Ny = 2Byny + ZBknk - Z A 1ngpna

k=3 k=1
N-j

fj = Bjrangen — Bjng — Y Ay jman;
k=1

Jj—1

1 .
+52Ak7j_knknj_k for J = 2,.....,N7 1
k=1
1 N-1
ny = —Byny + 3 Z Ap N—kMENN—_k (424)
k=1

where the dot denotes the time derivative, B; represents the rate for a cluster of mass
j to loose a particle, and is defined as

B; = D%Q(")ﬁ, (425)

and A; j is the collision rate between clusters of mass j and k, defined by
2
Ajp = == (Vi+VE), (426)

where a = L? is the area of the two-dimensional space where particles move. In Eq.
(425), d denotes, the maximum distance that two particles can be separated apart to
be considered as connected and part of the same cluster. The expression d?/D.g(n)
is an estimate for the characteristic time a particle spends at the boundary before it
moves away from the cluster. The splitting rate B; is proportional to the inverse of
this characteristic time multiplied by the number of particles on the boundary, which
is estimated as /j. On the other hand, the collision rate A, j is derived in analogy to
the collision rate in kinetic gas theory between two disk-like particles A and B [274].

Numerical integration of these equations shows that Eq. (424) produces qualita-
tively similar distributions as the one observed in individual-based simulations, see
[274]. The different curves correspond to various values of the dimensionless parame-

ter P, defined as P = a%di?f]). For small values of P, which correspond to large values

of n, the distribution p(m) monotonically decreases with m, while for large values of
P, resp. small values of 7, a peak at large cluster sizes emerges. A quantitative com-
parison between Eq. (424) and individual-based simulations is still in a very early
stage [274].

Altogether, polars clusters play a fundamental role in the macroscopic dynamics
of self-propelled particle systems. Orientational order and cluster dynamics are often
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Fig. 70. Steady state cluster size distributions obtained from numerical integration of
Eqgs. (424) with N = 128 for various values of the dimensionless parameter P, where
P = fgi?g). Notice the transition from a monotonically decreasing distribution for small

values of P to a non-monotonic distribution with a peak at large cluster sizes for large values
of P.

closely linked. The cluster size distribution can be obtained from a set of equations of
the Smoluchowski type to describe the cluster dynamics in the system. Its usefulness
awaits further test by comparison to simulations and experiments in systems of self-
propelled units.

7.4 Large-scale segregation bands

Segregation bands are coherent structures typically seen in large-scale simulation of
self-propelled particle systems with velocity alignment [60,141,361]. These bands of-
ten represent high-density zones with a high degree of orientational order embedded
in a low-density background with orientational disorder. This coupling of orienta-
tional order and density goes beyond the mean-field theories describing the onset
of orientational order in systems with homogeneous density that were introduced in
the previous section. Extensive simulation studies have revealed a clear correlation
between the appearance of travelling segregation bands and the observation of a first-
order transition to orientational order in Vicsek model [60], that was first reported
in [147].

Some examples for the segregation bands in the Vicsek model are displayed in
Fig. 71. The segregation bands in the Vicsek-models consist of many particles that
are roughly aligned and travel mostly orthogonal to the edge of the band. Recently,
improved mean-field theories were able to reproduce the simultaneous occurrence of
segregation band and orientational order as well as the correct relation between the
traveling [36,38,239]. An exhaustive discussion of these phenomena in the Vicsek
model can be found, e.g. in [60,362].

A recent study of the Peruani model addresses the collective properties of self-
propelled particles with nematic interaction (LC-alignment). Extensive simulations
have revealed long-range nematic order, phase separation, and space-time chaos me-
diated by large-scale segregated structures, which we will describe low in greater
detail [141].

The simplicity of this model allowed to deal with large numbers of particles, re-
vealing a phenomenology previously unseen in more complicated models sharing the
same symmetries [207,271,369], where mostly clustering phenomena were reported.
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Fig. 71. Typical snapshots in the ordered phase obtained from simulations of the Vicsek-
model. Points represent the position of individual particles and the red arrow points along
the global direction of motion. (a,b) Vicsek model with angular noise and increasing system
size. (¢) Bands in simulation of Vicsek-model with angular noise, repulsive force, and peri-
odic boundary conditions. (d) High-density sheet traveling in a three-dimensional box with
periodic boundary conditions and angular noise. All figures from [60].

The two-dimensional simulation study showed large-scale segregation bands distinc-
tively different from both those of the polar-ferromagnetic (F-alignment) case of the
Vicsek model and of active nematics. Segregation appeared as a phase separation into
high and low density areas: in the ordered side, a dense band occupying a fraction
of space along which particles move in both directions arises when noise is strong
enough. Remarkably, the instability marks the order/disorder transition. It vanishes
at strong noise, splitting the disordered phase in two. The class of polar particles align-
ing nematically exhibits thus a total of four phases. Polar and nematic order in the
model with LC-alignment can be characterized by means of the two time-dependent
global scalar order parameters P(t) = |(exp(i}));| (polar) and S(t) = |(exp(i265)),]
(nematic), as well as their asymptotic time averages P = (P(t)); and S = (S(t)):.
A brief survey of the stationary states observed in a square domain is provided in
Figs. 72. Despite the polar nature of the particles, only nematic orientational order



Active Brownian Particles 143

Fig. 72. (Color online) (a-c) Typical steady-state snapshots at different noise values (linear
size L = 2048). (a) n = 0.08, (b) n = 0.10, (c¢) n = 0.13, (d) n = 0.168, (e) n = 0.20. Arrows
indicate the polar orientation of particles (except in (d)); only a fraction of the particles are
shown for clarity reasons. For a movie corresponding to (d) see suppl. material of [141].

| 0 | | |
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Fig. 73. (Color online) Phase II (stable bands). (a) Rescaled transverse profiles in square
domains of linear size. Data averaged over the longitudinal direction and time, translated
to be centered at the same location. Bottom: density profiles. Top: nematic order parameter
profiles. (b) Surface fraction Q as a function of 7 (defined here as the mid-height width of
the rescaled S profile) [141].

arises at low noise, while P always remains near zero. Both the ordered and the disor-
dered regimes are subdivided in two phases, one that is spatially homogeneous (Figs.
72(a,e)), and one where density segregation occurs, leading to high-density ordered
bands along which the particles move back and forth (Figs. 72(b-d)). A total of four
phases was observed, labeled I to IV by increasing noise strength hereafter. Phases I
and IT are nematically ordered, phases III and IV are disordered.

Phase I, present at the lowest 7 values, is ordered and spatially homogeneous
(Fig. 72a). Phase II differs from phase I by the presence, in the steady-state, of a low-
density disordered region. In large-enough systems, a narrow, low density channel
emerges rather suddenly, like in a nucleation process (Fig. 72b). It becomes wider at
larger 1 values, so that one can then speak of a high-density ordered band, typically
oriented along one of the main axes of the box, amidst a low-density disordered
background (Fig. 72c). Particles travel along the high-density band, turning around
or leaving the band from time to time. Within the band, nematic order with properties
similar to those of phase I is found (slow decay of S with system size, giant number
fluctuations). The (rescaled) band possesses a well-defined profile with sharper and
sharper edges as L increases (Fig. 73a). The fraction area {2 occupied by the band
is asymptotically independent of system size and decreases continuously as the noise
strength 7 increases (Fig. 73b).
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Fig. 74. Phase III (unstable bands, 7 = 0168). Snapshot of coarse-grained density field dur-
ing the growth of the instability of an initially straight band in a 4:1 aspect ratio rectangular
domain.

In phase III, spontaneous segregation into bands still occurs (for large-enough
domains), however these thinner bands are unstable and constantly bend, break,
reform, and merge, in an unending spectacular display of space-time chaos (Fig. 72d).
Thus, the transition between phase IT and III, located near nr—r ~ 0.163(1), is the
order-disorder transition of the model. It resembles a long wavelength transversal
instability of the band (see for instance Fig. 74).

Increasing further the noise strength, the segregated bands vanish, leaving phase
IV, an ordinary disordered phase, spatially-homogeneous, and with very short corre-
lations in space and time (Fig. 72e). Near the transition point, at ni—rv ~ 0.169(1),
the nematic order parameter S(t) exhibits bistability between a low amplitude, fast
fluctuating state (typical of phase IV) and a larger amplitude, slowly fluctuating one
typical of phase IIT [141]. This suggests a discontinuous disorder-disorder transition
between phase III and IV for the Peruani model similar to the above cited results for
the Vicsek-model.

Note also that the above results, and in particular the space-time chaotic motion
of the spontaneously segregated bands (phase III) (see supp. material in [141]), are
reminiscent of the streaming and swirling regime which characterizes the aggrega-
tion of myxobacteria [179,186,382]. The model results suggests that no adhesion or
chemical signaling is needed for such behavior to emerge, LC alignment mediated by
volume-exclusion interaction is sufficient to obtain complex patterns. These results
may therefore be relevant for the collective dynamics of gliding bacteria, biofilms and
other cells with friction and moderate adhesion.

At a more general level, the findings reveal unexpected emergent behavior among
the simplest situations giving rise to collective motion. The described model of self-
propelled polar objects aligning nematically stands out as a member of a universality
class distinct from both that of the Vicsek model [60,349,361] and that of active
nematics [61]. Thus, in the out-of-equilibrium context of self-propelled particles, the
symmetries of the moving particles and of their alignment interactions must be con-
sidered separately and are both relevant ingredients. A major lesson of the discovery
of large-scale separation bands of different symmetries for the models with F- and
LC-alignment is that mean-field and other continuum theories have to be extended
to allow for density instabilities. Improved continuum models should eventually re-
produce the behaviour found in large-scale simulation, first promising steps in this
direction have been provided by Bertin et al. [38] and Mishra et al. [239].

8 Discussion, outlook and conclusions

The first systematic studies of systems far from equilibrium and their surprising self-
organizing capabilities date back more than half a century back and are connected
to such distinguished scientists as Alan Turing, Ilya Prigogine or Hermann Haken.
The ideas and concepts formulated and introduced by this scientific pioneers inspired



Active Brownian Particles 145

generations of statistical physicists and applied mathematicians to pursue their re-
search on corresponding problems with applications to physics, chemistry and biology.

Recently, a subclass of such far from equilibrium systems, characterized by active
motion of individuals units, received growing attention. The continuously increasing
number of publications on such systems, are probably the best proof for an intense
and ongoing research activity. The individual active units may be of very different
type and the relevant spatial length scales may span over many orders of magnitude
starting from the nanometer scale governing the motion of individual molecular mo-
tors to kilometers in the case of large collectively moving swarms of insects, such as
desert locusts. Despite this apparent heterogeneity of active systems, the common
fundamental properties and universal dynamical features, suggest the formulation of
generic models of active motion within the framework of dynamical and stochastic
systems. The mathematical description based on the concept of individual active par-
ticles, allows on the one hand the detailed understanding of the dynamics of individual
units constituting an active system and on the other hand enables us in a simplified
setting to derive coarse-grained equations and to study the large-scale behavior of
“active matter” systems. Here, the focus lies on the rather simple models, which in
the ideal case provide qualitative insights to the universal dynamics and allow often
for analytical treatment at the costs of quantitative predicitive power of specific active
matter realizations.

In Sections 2 and 3 we have introduced the mathematical framework for the de-
scription of self-propelled motion of individual Brownian particles and analyzed the
behavior of a number of different models. We discussed the concept of active Brown-
ian motion and its description via velocity-dependent friction functions based on the
assumption of an internal degree of freedom of individual particles (energy depot) or
as an effective description of ensembles of coupled active particles (molecular motors).
Here, we did not restrict ourselves to the case of Gaussian fluctuations, but discussed
different types of stochastic forces, such as dichotomous Markov noise or shot-noise,
and their impact on the system dynamics. Based on the non-equilibrium nature of
the studied dynamics, we addressed the question of the different impact of active and
passive fluctuations and have shown that active fluctuations, which are correlated
with the direction of motion of individual particles lead to characteristic deviations
of the corresponding speed and velocity distributions, independent on model details,
such as a particular choice of the friction function.

Furthermore, we analyzed the diffusive motion of free active particles (Sect. 4)
and their dynamics in external confinements (Sect. 5). The detailed analysis of the
individual dynamics reveals surprising features of active Brownian motion such as
a giant diffusion regimes or optimal noise values, which maximize or minimize the
spatial diffusion.

In the last two sections we have extended our analysis to “swarms” and “gases”
of interacting active particles. In Sect. 6, we identified for example the fundamental
stationary modes of collective motion of active Brownian particles with attracting
interactions (swarms) and discussed novel results on the complex behavior of swarms
with attraction and repulsion in three spatial dimensions.

An important class of interactions studied in the literature is the so-called velocity-
alignment, which we put a particular emphasis on in Sect. 6. We have shown how,
starting from microscopic Langevin equations of active Brownian particles with polar
velocity alignment, we can derive systematically the corresponding mean field equa-
tions. We then focus on the onset of order in the special class of minimal models of
self-propelled particles, with polar and apolar alignment interaction, motivated by
the well known Vicsek-model.

Finally, we have discussed pattern formation in such minimal models, which show
features such as clustering and formations of large scale density inhomogeneities in
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Sect. 7. This patterns are intrinsically connected to the active motion of the inter-
acting units and the onset of large-scale collective motion, and are up to date under
intense investigation.

Despite our focus on qualitative understanding, the comparison with experimental
results of active matter systems and corresponding modelling approaches, which were
motivated by those, must not be neglected.

8.1 Individual dynamics — experiments and models

The most obvious example of autonomous self-propelled motion, which does not re-
quire external driving, is the motile behavior of biological agents. Here, the single-
celled motile organism, such as certain bacteria or eukaryotic cells (e.g. Dictyostelium
discoideum) are probably what comes closest to the concept of an “active Brownian
particle” as discussed in this review. However, being “simple” in comparison to higher
organisms, does not mean that the corresponding mechanisms of active motion is not
complex. In fact, in recent decades we witnessed a burst in scientific advances which
pushed forward our understanding of cell motility. The active translocation of cells is
driven by complex dynamics of the intracellular actin cytoskeleton (see e.g. [241]). It
is a fascinating field of interdisciplinary research already for decades, which continues
to thrive and continuously motivates theoretical investigations (see e.g [112,139,203]
and recent reviews [126,183]).

Bacteria, for example, can exhibit different motility types to propel themselves
under different environmental conditions [110,191]. Probably the best understood
bacterial motility type is swimming in a liquid medium due to the action of rotating
flagella [33,328]. The typical bacterial swimming motion consists of straight runs
interrupted by short reorientation events. This so-called “run & tumble” motion has
been successfully modelled by a random walk approach [32,64], where usually constant
speed and Poissonian distribution of reorientation events is assumed. However, a closer
look at some real trajectories reveals that in between the tumbles a bacterium does not
move in a perfect straight line with constant speed [242]. Brownian fluctuations as well
as possible fluctuation in the driving force lead to more complicated dynamics. Thus,
a more realistic model can be obtained by a combination of a Langevin description,
as discussed in this review, together with tumbling dynamics, as suggested by Condat
et al. [67]. Yet the authors considered in their model only passive fluctuations and a
consideration of active fluctuations (Sect. 3.3) will yield different results.

Swimming of bacteria, as well as other microorganisms (e.g. microalgae [89]),
takes place at extremely low Reynolds numbers (~ 107°) and a large number of
theoretical studies investigated the active motility of swimmers using an overdamped
hydrodynamical description (Stokes equation) which takes into account interactions
between the active swimmer and the fluid. This approach yields some interesting
preditions on long-ranged hydrodynamical coupling between different swimmers as
well as between cells and surfaces (see e.g. [7,163,164,210,277,281], or a recent review
in [211]). However, recent experiments with E. Coli conducted by Drescher et al.
[88], show that in most cases the effects of long-ranged hydrodynamic interactions
are negligible in comparison to the intrinsic stochasticity in the motion of bacteria
(i.e. rotational diffusion). Thus, the authors conclude that the collective dynamics of
bacteria might be quite similar to the dynamics exhibited for example by granular
systems. Based on this surprising results, Langevin equations may be an interesting
modeling alternative, as they allow for simple implementation of various interactions
(see Section 6 and [29,74,297]).

A common objection against bacterial equations of motion of the Langevin type
are negligible inertial effects due to the extremely low Reynolds numbers at which the
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dynamics takes place. However, second-order equations of motion may offer a suit-
able effective description in the presence of additional time scale(s) in the propulsion
mechanism and the resulting bacterial response to external signals, as for exam-
ple to gradients of chemical agents in their environment (chemotaxis). Furthermore,
Langevin equations can provide a reasonable framework for modelling other motility
types observed in bacteria, such as twitching or gliding. In particular in cases where
the shortest time-scales — where the details of the specific propulsion mechanism play
an important role — are not of interest.

We have only briefly discussed chemotactic behavior in the context of collective
dynamics in Section 6.3.2. For a more detailed discussion on chemotaxis, we refer the
interested reader to the rich literature on this fascinating topic [35,110,174,228,365].

In recent years, there has been a number of empirical studies analyzing the motion
of various eukaryotic cells crawling on substrates [42,83,216,217,318,319]. All these
studies have shown that the Ornstein-Uhlenbeck model of persistent Brownian motion
is not sufficient to explain the empirical observation, but differ in their conclusions.
Dieterich et al. [83] suggest the description of the cell migration by a fractional Klein-
Kramers equation, in order to explain the observed anomalous dynamics. However,
this conclusion have been questioned as the apparent super-diffusive behavior may be
a consequence of too short observation times with respect to possible long relaxation
times of the direction of motion of individual cells [54,216,273].

The analysis of the deterministic and stochastic accelerations derived from the
tracking data in [42,216,318,319], show similar behavior for different cells types: 1) a
negative linear drift which corresponds to constant Stokes friction, and 2) fluctuations
strengths increasing with the speed of the cell, which indicates multiplicative noise in
the corresponding Langevin equation.

Researchers around Henrik Flyvbjerg and Edward C. Cox, have carefully ana-
lyzed the experimental trajectories of different cell types and proposed different mod-
els of persistent motion using Langevin equations based on their empirical findings.
For human epidermal cells, they formulated stochastic integro-differential equation
of motion with a kernel representing a short-ranged memory of the cell [318,319].
Hereby, they motivated their choice with the double-exponential decay of the cell
velocity autocorrelation. This however can be also explained by a simper model with
independent fluctuations in the velocity and direction of motion as proposed by Peru-
ani and Morelli [273] and discussed in Sect. 4.3.2. The same group also analyzed the
motion of Dictyostelium discoideum amoeba, and have shown that its motion consists
of two components: a persistent stochastic motion and a fast oscillatory contribution.
This oscillatory dynamics at short time-scales can be linked to the specific propulsion
mechanism. The cells move forward by growing protrusions at their leading edge,
so-called pseudopods, attaching them to the substrate and “pulling” themselves for-
ward by contracting their trailing edge. A repeated right-left-right-left formation of
such pseudopods leads to a zig-zag motion responsible for the oscillatory contribu-
tion [217,318]. Similar observations have been reported previously by Shenderov and
Sheetz [321], and just recently by Yang et al. [373]. In fact, oscillatory dynamics are
not restricted to Dictyostelium amoeba, but have been reported also by Barnhart
et al. [18] in motile fish keratocytes. The authors use a modelling approach to show,
that such oscillation may be explained by the effective elastic coupling of the different
parts of the cells, in particular the leading and trailing edges.

Only recently, Zaburdaev et al. [380] investigated the swimming motion of the
parasite African tryponosome. Based on similar analysis of empirical data as dis-
cussed above for eukaryotes, the authors propose a Langevin model of its motion. In
their model, the authors distinguish a slow velocity component, characterized by a
constant speed and subject only to rotational diffusion and an additive fluctuating
component with linear relaxation. Essentially, this corresponds to an active Brownian
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particle, with a Schienbein-Gruler friction function as discussed in Sect. 3.3 with ac-
tive and passive fluctuation terms, corresponding to the angular diffusion of the slow
component and the vectorial noise in the fast component, respectively.

The Langevin models based on velocity-dependent friction function as discussed
in this review, can not account for the specific details of active motion of crawling
cells such as the observed oscillating dynamics on short time-scales. However, they
yield a simple description at longer temporal and spatial scales, where such fast and
typically small oscillatory motion can be neglected or considered as an additional
quasi-stochastic contribution to the dynamical behavior.

We have introduced and discussed in Sect. 2.3 and 3.4 “internal coordinates”, a co-
moving coordinate system determined by the propulsion and symmetries of the active
particle. Based on empirical investigation of cell trajectories, Li et al. emphasize in
[216] the importance of using such a coordinate system attached to the cell instead
of the laboratory reference frame.

Zooplankton species, such as Daphnia, represent another example of actively mov-
ing biological agents, which are currently investigated due their ecological importance
(see e.g. [65,78,120,133,232,255,333]). Daphnia motion consists of straight hops in-
terrupted by turning events with exponentially distributed turning angles [120,133]
and can be modelled as a persistent random walk (see Sect. 4 and [133,200]). Frank
Moss and coworkers advocated the theory that the specific motion pattern of Daphnia
is the results of evolutionary adaptation to foraging in finite food patches. Although
this hypothesis is difficult to prove, it is at least consistent with various empirical
observations [79,133].

An example of non-living active Brownian particles are the autonomously mov-
ing micro- and nanoscale particles which convert chemical energy into kinetic energy
of motion (see e.g. [169,178,190,199,238,265] or a recent reviews in [96,140]). One
general mechanism of self-propelled motion of these objects is so-called self-phoresis.
In general, phoresis refers to the effective transport of colloids due to boundary layer
forces induced by external fields [8]. For example, diffusiophoresis refers to a drift ex-
perienced by a colloidal particle subject to concentration gradient across its interface.
Self-phoresis is thus the phenomenon, where the change in the environment, which
leads to phoretic drift (e.g. formation of a concentration gradient), is induced by the
particle itself. Self-propulsion can be achieved by breaking the symmetry in the ability
to catalyze some “fuel” substance on its surface. For example platinum is a catalyst
for the decomposition of hydrogen peroxide (H2O2) into oxygen and water. A parti-
cle half-coated with platinum in a fluid containing HyO5 will perform self-propelled
motion with a speed depending on the concentration of HyO9 [169,190,356]. This was
theoretically investigated using simplified models by Golestanian et al. [143,144], as
well as detailed molecular dynamics simulations by Kapral and co-workers [300,341].

The first experimental realization of such systems, triggered a surge of research
on catalytic self-propelled particles. For example, it was shown that these objects
can transport cargo [337], or can be effectively controlled by external (e.g. magnetic)
fields [346].

The propulsion direction set via the self-phoresis asymmetry, defines the preferred
direction of motion (heading) [97,190] as introduced in Sect. 2.3 & 3.3. Due to their
small size, the particles are subject to Brownian fluctuations, but in addition we ex-
pect that non-thermal fluctuations associated with the non-equilibrium propulsion
will contribute to the stochasticity in their motion. Thus, these object, as well as
related autonomous swimmers appear as very good candidates for polar active par-
ticles with passive and active fluctuations as introduced in Sect. 3.3. In addition, it
is possible that for non-sperical but axis-symmetric particles, a mis-alignment of the
self-phoresis symetry axis with the “body axis” will introduce systematic torques into
the dynamics of active particles as discussed in Sect. 4.3.5 and in [367].
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Another interesting application of such chemically driven particles is the fabri-
cation of nano-rotors by attaching the particles to a substrate [127,238], which can
be described by a simple models of confined active Brownian particles discussed in
Sect. 5.

Interestingly, the Cartesian velocity histograms of both, freely moving cells and
artificial self-propelled particles are non-Gaussian and show increasing counts at low
velocities (low speeds) [42,190,217]. In Sect. 3.2.1 and 3.3, we have shown that this
behavior is generic in the presence of active fluctuations. Hereby, the deviation from a
Gaussian probability distribution function at low velocities increases with increasing
strength of active fluctuations. In fact, similar effect can be observed for oscillatory
self-propulsion as discussed in Sect. 3.1.7 [295].

It appears that the concept of Active Brownian particles, is even better suited as
a general model of such autonomously moving artificial objects than for the motion
of biological agents due to the simpler propulsion mechanism. We believe it may
contribute significantly to the understanding of the active diffusion of these self-
propelled particles, as well as their behavior in external fields.

8.2 Collective dynamics — experiments and models

Experimental examples for collective dynamics and pattern formation of active par-
ticles are often found during the life cycles of bacteria or other microorganism like
Dictyostelium discoideum (Dd) [29]. While aggregation and patterns in Dd cells are
mostly driven by chemotaxis, i.e. motility responses to a chemoattractant generated
by the cells itself, other organisms like myxobacteria [186] provide intriguing ex-
amples of self-organization of active, self-propelled objects. In contrast to processes
controlled and influenced strongly by biochemical communication between the ac-
tive agents (= cells), more recently experiments with swimming and gliding bacteria
have been performed that focus on the interaction between active motion and simple
physical interactions.

Swarming behavior in colonies of up to a thousand swimming bacteria Bacillus
subtilis have been investigated by Zhang and coworkers [381]. Their setup allowed
to locate the individual cells and determine their directions of motion. As a result,
Zhang et al. could determine the number fluctuations as well as the cluster size
statistics of the bacterial swarms. They found cluster size distributions similar to
the ones reported for the self-propelled rod models for densities below the nonequi-
librium clustering transition in Section 7, i.e. the identified distributions of a form
P(n) oc n~%e~"/"¢ where n denotes the cluster size and nc a density-dependent fit
parameter. The exponent b was density independent and took on a value of b = 1.85.
In parallel, Zhang et al. report giant number fluctuations for the standard deviation
of the particle numbers Ay o« N® with an exponent o near 0.75 for small mean cell
numbers N. These giant number fluctuations are presumably linked to the forma-
tion of larger clusters of cells moving in the same direction. In more recent work,
Peruani et al. analyzed the collective motion of up to two thousand gliding bacteria
in a two-dimensional monolayer. The organism under study was a mutant species of
Myzxococcus Xanthus that does no possess flagella and does not exchange biochemical
signals relevant for the control of their motility [275]. Experiments were conducted
over a large range of densities. As a result a transition to nonequilibrium clustering
was found at a critical coverages of around 16 percent. The cluster size distribution at
the transition became a power law with exponent b = 1.88 and a pronounced second
maximum was found at large cluster sizes for densities above the critical value. In ad-
dition giant number fluctuations with exponent a =~ 0.8 were found. It is striking that
quite different bacterial systems (gliding myxobacteria and swimming Bacillus sub-
tilis) exhibit similar clustering dynamics and related giant number fluctuations. If we
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recall that the cluster size distribution P(n) discussed here is related to the weighted
cluster size distribution p(n) = nP(n), we immediately get a relation b = 14 ¢, where
c is the exponent of the cluster size distribution discussed in Subsection 7.3 above.
The exponents ¢ = 0.9 [271] and a ¢ in the range of 0.9-1.3 [375]. This suggests
that collective dynamics of some bacterial species may be indeed well described by
self-propelled rod-shaped particles with volume exclusion interactions.

Another experimental system, wherein spectacular experimental phenomena were
observed, is a motility assay with actin filament, ATP and immobilized molecular
motors [303]. Below a critical density of ca. 5 filaments per square micrometre, a dis-
ordered phase with no preferred orientation is observed in these experiments. Above,
the critical density different ordered patterns are observed. First moving clusters of
filaments are observed similar to the observation presented for self-propelled rods.
Above a second threshold of 20 filaments per square micrometre traveling density
bands are observed similar to the ones found in the Vicsek model, i.e. high density
traveling waves (or bands) composed of aligned filaments that travel individually in
the some direction of motion as the whole wave. These bands are reminiscent of the
observation in simulation presented in Fig. 71. Schaller et al. were able to reproduce
their experimental findings in a cellular model that was based on similar assump-
tions as the simple models for collective motion discussed in Section 6 and 7 [303].
In parallel, swirling vortex-like motion states were also observed in the whole above
the first critical density of ca. 5 filaments per square micrometre. In a related study
with a motility assay that contained filaments, ATP, motors and crosslinking pro-
teins, Kohler et al. report pattern formation characterized by a broad distribution
of cluster sizes [198]. With time a coarsening of these clusters and a related higher
percentage of large clusters was observed. A detailed quantitative analysis of the
cluster sizes was not carried out. Hence, only future experiments will show if the
cluster size distributions will follow similar laws as the ones reported above for sim-
ilar of collective motion of active particles. A class of physical systems that realize
self-propelled particles are ensembles of driven granular particles with asymmetric
shape and weight distribution. Kudrolli et al. studied cylindrical rod-shaped particles
with strongly asymmetric weight distribution and reported local ordering as well as
a strong tendency to aggregation and persistent swirling motion in which velocities
are strongly correlated with particle orientation [207]. The findings agree quite well
with simulations of self-propelled system, where Wensink et al. have also reported
aggregation of rods near the boundary [369].

Another experimental realization of collective motion in granular particles was
designed by Deseigne at al. [82], who studied vibrated polar discs (= discs with
asymmetric material density) in a system with a petal-shaped boundary. This par-
ticular shape avoids the aggregation of particles at the boundary and leads to more
homogeneous distributions of the moving particles. The experiments then yields ori-
entational order and giant number fluctuations with exponent o = 0.725. This is
again in the ballpark of the observation for the simple models discussed in Sect. 7 as
well as similar to the values measured for bacterial swarms above.

Altogether, simulations of models describing the motion of active Brownian parti-
cles and their interactions are in good agreement with many recent findings for living
systems such as bacteria, in-vitro biological systems like motility assays and driven
granular matter. One is tempted to look for universal properties of such systems.
There is however a large plethora of patterns that cannot be reproduced from the
simple assumption discussed in extenso in this review. For such systems, the mod-
els analyzed and described may nevertheless provide good starting points in model
developments.

Bacterial colonies and social amoeba as discussed above, are by far not the only
biological systems exhibiting collective motion on large scales. In fact, colloquially
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a “swarm” is typically associated with collective motion of higher organisms such
as, flocks of birds, schools of fish, or the devastating mass migration of insects (e.g.
desert locusts). Up to recently, experimental data on the individual behavior and col-
lective motion patterns was rather limited [202,252]. As a consequence most models
of collective motion motivated by the different swarming phenomena relied on more
or less empirically based assumptions and qualitative matching of the model behav-
ior with empirical observations (see e.g. [10,41,72,262,286] and further references in
Sect. 6). Most of these models share the following three interactions mechanisms: 1)
short-ranged repulsion responsible for collision avoidance, 2) long-ranged attraction
ensuring group cohesion and 3) directional alignment (typically at intermediate dis-
tances) facilitating collective motion of the group. These type of models is usually
referred to as zone-models. Many of these models assume for simplicity constant speed
of individuals.

However, new experimental methods, such as automated digital video recordings,
allow the collection of large data sets. This enables not only the statistical analysis of
collective motion in nature [51] but allows also to infer the interaction rules between
individuals [17,56,162,188,225].

Based on careful analysis of experimental recordings of starling flocks and the
resulting correlation functions, Ballerini et al. [17] have shown that each individual
responds on average to the behavior of a fixed number of its nearest neighbors. Thus,
they conclude that the interaction between individual birds is governed primarily by
the topological distance and not the metric distance as assumed in most theoretical
models also those discussed in Sect. 6. This feature of the interactions offers a simple
explanation for large density differences observed between different flocks and may
also contribute to the robustness of cohesive bird flocks with respect to external
pertubations (e.g. predators). In a follow-up work, Cavagna et al. [55] report scale-
free fluctuations in starling flocks, which may indicate the operation of the flock close
to criticality. Being close to a critical point may be advantageous for a swarm or flock
acting as a collective information processing system [243,336,359].

Lukeman et al. [225] have collected and analyzed data on collective behavior of
surf scoters swimming on the water surface. The authors fit their data to a zone
model, identify the best parameter values and argue that the standard zone model
has to be complemented by an additional interaction to the front.

Very recently two studies have appeared, which infer the social interaction rules
between fish [162,188]. Both studies report that speed modulation is the primary
response to close by individuals in front or in the back. This speeding up/slowing
down as well as turning behavior of the fish are consistent with an attraction-repulsion
behavior but show no clear evidence for directional alignment. In addition, Katz et
al. [188] report that the three fish interaction is neither given by a superposition nor
an averaging of pairwise-interactions, whereas Herbert-Read et al. [162] stress the
importance of the interactions with the nearest neighbor.

In the light of these recent results, the active Brownian particle concept appears
as a promising starting point for the development of more realistic models of col-
lective motion as it 1) naturally accounts for a variable velocity of individuals and
acceleration/deceleration due to effective forces, and 2) exhibits collective motion
for simple attraction/repulsion interactions without need of alignment terms as dis-
cussed in Sect. 6.1 and 6.1.6. In this context, we should note that the escape &
pursuit interaction introduced in Sect. 6.3.1, represents a special case of general posi-
tion and velocity-dependent attraction/repulsion interaction [293]. Furthermore, we
should mention here the fascinating experiments of Showalter and coworkers on col-
lective motion of reaction-diffusion wave segments interacting only via attraction and
repulsion [329,347]. The non-linear motion dynamics of individual segments together
with attraction and repulsion lead to an effective alignment. This is the same general
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principle, reponsible also for the translational motion of active Brownian particle
discussed in section 6.

As stated in Sect. 6.3.1, the escape & pursuit interactions were directly motivated
by the empirical evidence for cannibalism being the driving mechanism of collective
motion in certain insect species (Mormon crickets, desert locusts) [25,26,324]. The
simple Brownian agent model [294] can be easily modified to account in more detail
for movement patterns of individual insects. A parametrization of such an extended
escape & pursuit model with experimental results is not only in good agreement with
experimental observations, but enables us also to make specific predictions on the
impact of the nutritional state of individuals on the onset of collective motion [27].
A generalized version of the model [293] can account for different types of individual
interactions ranging from pure avoidance behavior, via escape & pursuit to pure
attraction and allows the evolution of escape and pursuit behavior and collective
motion [151].

Finally, there are important biological question in the context of collective mo-
tion of higher organisms, which go far beyond the scope of this review (see e.g.
[202,252,335]). For example, some recent publications investigate the impact of dif-
ferent information available to individuals [70,71], or the evolution of heterogeneous
behavioral strategies within a group [150].

Outlook & final remarks

A major challenge for the future is the comparison of novel experimental results to pre-
dictions of the different theoretical models discussed here as well as their underlying
assumptions. For example, the statistical properties of fluctuations in the dynamics
of active particles can be measured and analyzed in order to refine our description of
active noise terms. Furthermore, the issue of variable speed and corresponding fluc-
tuations needs certainly to be addressed in the future. Even if the general framework
of Active Brownian particles accounts for variable speed, there remain many open
questions on important details. The corresponding theoretical results rely often on
approximations and rather simple assumptions, which may not be justified. For ex-
ample, possible non-trivial correlations between velocity fluctuations and changes in
the direction may strongly influence the theoretical results.

In collective dynamics it is import to distinguish between universal and system
specific properties. One would expect that minimal model systems should provide the
answer. However, the unresolved connection between the giant number fluctuations
and clustering in those systems reveals the conceptual difficulties which have to be
addressed in the future. From the more biological perspective, in the light of the
new measurement discussed above, the question arises about new models which are
able to account for the observed interactions between individuals. Here, it appears
that simple physically motivated pairwise “forces” might be not sufficient, and that
a more biological centered ansatz, based on the sensory and cognitive capabilities of
individuals, can be very promising.

In general, statistical physicists possess a large inventory of methods for describ-
ing and analysing complex systems, which is being continuously developed, on the
background of a long experience in applying these methods to natural phenomena. In
this spirit, the development of the mathematical description of natural active matter
systems and their analysis, is essential for our understanding of the dynamical be-
havior of these systems, and gives us important insights into their role and function
in the biological and ecological context.

In conclusion, this review gives an overview over the theoretical foundations and
concepts of active (Brownian) particles systems and discusses recent developments in
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the field of statistical physics applied to active particle systems far from equilibrium.
We are aware that an all-encompassing review of the field is not feasible here, given
the large number of publications from different disciplines and the intense ongoing
research activity. Nevertheless, the focus on theoretical concepts and recent develop-
ments can be seen as complementary to other reviews on the topic [159,311,362] and
we hope it will be of interest to researchers in statistical physics who would like to
broaden their knowledge in this rapidly developing research field.
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