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Abstract Information about time-dependent sensory
stimuli is encoded by the spike trains of neurons.
Here we consider a population of uncoupled but noisy
neurons (each subject to some intrinsic noise) that
are driven by a common broadband signal. We ask
specifically how much information is encoded in the
synchronous activity of the population and how this
information transfer is distributed with respect to fre-
quency bands. In order to obtain some insight into
the mechanism of information filtering effects found
previously in the literature, we develop a mathematical
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framework to calculate the coherence of the synchro-
nous output with the common stimulus for populations
of simple neuron models. Within this frame, the syn-
chronous activity is treated as the product of filtered
versions of the spike trains of a subset of neurons.
We compare our results for the simple cases of (1) a
Poisson neuron with a rate modulation and (2) an LIF
neuron with intrinsic white current noise and a current
stimulus. For the Poisson neuron, formulas are partic-
ularly simple but show only a low-pass behavior of the
coherence of synchronous activity. For the LIF model,
in contrast, the coherence function of the synchronous
activity shows a clear peak at high frequencies, com-
parable to recent experimental findings. We uncover
the mechanism for this shift in the maximum of the
coherence and discuss some biological implications of
our findings.

Keywords Synchrony · Neural coding · Stochastic
integrate-and-fire neuron · Noise

1 Introduction

In many sensory modalities, time-varying stimuli are
encoded by a population of many neurons (Gollisch
and Meister 2008; Clemens et al. 2011; Vonderschen
and Chacron 2011). Examples of such populations are
found in common visual (Knight 1972b; Wandell 1995)
and auditory systems (Hudspeth 2000) of many organ-
isms, but also in the more exotic electrosensory system
of electric fish (Heiligenberg 1991; Krahe et al. 2008).
The simplest case with relevance e.g. for auditory and
electrosensory signal processing is certainly that of a
neural population without lateral connections among
the cells but with an overlap in their receptive fields.
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Theoreticians have explored this simple setup mainly
in population models of uncoupled neurons which are
subject to intrinsic fluctuations (e.g. channel noise or
synaptic background noise) and to common input stim-
ulus (arising from the overlap in the receptive fields)
(Knight 1972a; Stocks and Mannella 2001; Gerstner and
Kistler 2002).

Even if one focusses only on the mean activity of
the whole population (the population rate), the simple
case of uncoupled neurons with common noise holds
surprises. Intrinsic fluctuations of the neurons, for in-
stance, can play a constructive role for the signal trans-
mission. Individual noise for each neuron is needed
in such populations to escape entrainment by certain
stimulus frequencies and thus to achieve a reasonable
representation of the stimulus in the population firing
rate (Knight 1972a). For a given stimulus amplitude a
specific non-zero level of the intrinsic noise optimizes
the mutual information between the common stimu-
lus and the summed spiking activity of the population
(Stocks and Mannella 2001).

However, there are additional ways in which in-
formation can be encoded in the activity patterns of
populations of neurons, for instance, synfire chains
(Abeles 1991) resulting in precise spike pattern, so-
called unitary events (Grün 2009), network oscillations
that permit phase precession in place cells (OKeefe and
Recce 1993), or the synchronisation-desynchronization
code proposed by Benda et al. (2006). Synchronous
activity can be easily read out by coincidence detectors
(Softky and Koch 1993). In the above mentioned case
of uncoupled neurons, the cells have no lateral inter-
action and, consequently, synchrony in their activity is
solely stimulus-driven. Put differently, these neurons
fire together if they belong to the same receptive field
and the sensory stimulus is strong enough to overcome
the desynchronizing effect of intrinsic noise, which is
independently at work in each of the neurons.

Recently, Middleton et al. (2009) investigated the
information carried by synchronous spikes about a
stimulus in P-unit afferents of weakly-electric fish. They
found that the synchronous spikes preferentially en-
code information about high-frequency stimuli in con-
trast to the information of all spikes that is more broad-
band. Information transmission was measured in terms
of the spectral coherence function that directly shows
in which frequency band the information flux is max-
imized. Although the experimentally observed maxi-
mum of the coherence function at high stimulus fre-
quencies was also confirmed in simulations of models of
rather different levels of complexity, the mechanism for
this shaping of information transmission is still poorly
understood.

In this paper, we study analytically the problem of
signal transfer by synchronous activity in a neural popu-
lation. We develop a mathematical framework for char-
acterizing synchrony by the product of Gaussian convo-
lutions of spike trains in Section 2.1. We then calculate
the linear response for this ’product spike train’ and
derive in Section 2.2 formulas for the mean value and
the power spectrum of the synchronous spikes as well as
their cross-spectrum with the time-dependent stimulus.
We apply our general results to two neuron models:
the inhomogeneous Poisson process (Section 3.1) and
the leaky integrate-and-fire model with current noise
and a time-dependent stimulus (Section 3.2) and show
under which circumstances the coherence of the syn-
chronous spikes can be indeed high-pass filtered. We
discuss how the coherence depends on the number of
spike trains involved in the product and how its peak
frequency changes under strong stimulation (nonlinear
response, determined here not analytically but purely
by simulations). Finally, we summarize our results and
discuss implications for neural coding in Section 4.

2 Materials and methods

2.1 Model, measures of synchrony, and measures
of signal transmission

We consider a population of n uncoupled spiking neu-
rons, each of which is subject to some independent
fluctuations (intrinsic noise, e.g. ion channel noise)
leading to stochastic spiking. In addition, the popula-
tion is stimulated by a common broadband Gaussian
signal (also called stimulus in what follows); cf. Fig. 1.
Specifically, we use a Gaussian-white-noise stimulus
with cut-off frequency fc and a power spectrum

Ss,s( f ) =
{

2Ds , − fc ≤ f ≤ fc

0 , otherwise.
(1)

The intensity of the stimulus signal, Ds, is given by half
of the height of the spectrum at f = 0. Because the
general theory does not hinge on the exact shape of the
input spectrum, we will use the more general expression
Ss,s( f ) in our derivations and formulas and only for
numerical evaluations and simulations employ Eq. (1).

We are interested in the synchronous output, i.e. in
the unitary events when all n neurons fire (within a
certain temporal resolution) “at the same time”. In the
experiment by Middleton et al. (2009), the synchronous
output was defined by means of an algorithm that
works as follows (cf. Fig. 1) : one of the spike trains
is singled out as the reference spike train (RST). Each
spike in the RST is surrounded by a time window of
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Fig. 1 Model of n noisy neurons, which are driven by a common
broadband noise. Given the spikes generated by the single neu-
rons (upper time traces), the synchronous output of the popula-
tion (lower time trace) shows spikes only if all of the neurons fire
a spike in close temporal neighborhood. The main question in this
paper is, how much information the synchronous output carries
about the common stimulus in different frequency bands

size τ . Only if within this time window we find a spike
in all the n − 1 other spike trains of the population,
only in this case, a spike in the synchronous output
is generated. This spike will be assigned to the time
instant of the reference spike in the RST. From the
theoretical point of view, measuring the synchronous
output in this way is somewhat inconvenient and we
will now introduce a more tractable but still related
function.

We choose the following definition of the synchro-
nous output. In a first step, all n spike trains xk(t) =∑

δ(t − tk,i) are convolved with a smoothing kernel:

yk(t) = F ∗ x(t) =
∫ ∞

−∞
dt′xk(t′)F(t − t′). (2)

The kernel F(τ ) is a Gaussian throughout this work:

F(τ ) = 1√
2πσ 2

e− τ2

2σ2 . (3)

As for the power spectrum of the stimulus, our general
theory does not depend on the Gaussian property of
the filter (although the simplifications done for a pop-
ulation of Poisson neurons do); in the calculations of
the next section we will thus keep the more general
expression for the filter and its Fourier transform (for
the latter, see below).

The convolution will still resemble the original spike
train if the width of the Gaussian is small compared to
the typical interspike interval (ISI), i.e. to the inverse
firing rate r:

rσ � 1. (4)

Below, if not stated otherwise, we will use values of
σr = 0.1 for the Poisson case and σr0 = 0.07 for the LIF
neurons.

As a measure of synchrony, we use the product of all
these convolved spike trains, normalized in such a way
that for perfectly aligned spikes at a certain time t, the
resulting Gaussian peak is normalized to one:

ySO(t) = α

n∏
k=1

yk(t), α = √
n(2πσ 2)

n−1
2 . (5)

Obviously, ySO(t) is not a spike train anymore but a
continuous function of time. However, for sufficiently
small values of σ , the product of Gaussians will only be
finite at time t if all the n neurons have spiked about t
(Fig. 2).

Because we will consider neurons with intrinsic noise
that are driven by a common (also noisy) stimulus s(t)
(also called signal in what follows), we have to deal with
two different statistical ensembles and, consequently,
two distinct averages. We will denote the average with
respect to the stimulus by an index (〈·〉s) while averages
without index (〈·〉) are taken over the intrinsic noise.
For the sake of illustration, consider, for instance, av-
erages of the spike train. The stimulus-induced time-
dependent modulation of the firing rate, is obtained by
an average over only the intrinsic noise

〈x(t)〉 = r(t) (6)

which is, according to linear-response theory (Risken
1984; Rieke et al. 1996; Fourcaud and Brunel 2002) for
a weak signal given by

r(t) = r0 + K ∗ s(t). (7)

Here r0 is the firing rate of the isolated single neuron
(only subject to its intrinsic noise) and the convolution
with the linear-response function K(t) describes the
linear modulation of the firing rate by a time-dependent
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Fig. 2 Synchronous output by multiplication of Gaussian convo-
lutions of spike trains in a population of leaky integrate-and-fire
neurons (here: two neurons). Parameters: μ = 0.9, D = 0.8 and
Ds = 0.24 (for details on the model and definitions of parame-
ters, see Section 3.2)
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stimulus. The linear-response approximation implies
neglecting any rectification and saturation effects of the
neural dynamics, which is justified for sufficiently small
signal strength.

Averaging the spike train additionally with respect
to the mean-zero signal yields in this approximation

〈〈x(t)〉〉s = 〈r(t)〉s = r0, (8)

i.e. the average firing rate of the isolated cell.
In the following we will work mainly in the frequency

domain and denote by a tilde the Fourier transforma-
tion. For numerical simulations, we use a finite-time-
window version of the transform defined by

x̃T( f ) =
∫ T/2

−T/2
dt x(t)ei2π f t, (9)

where T is the size of the time window which is cen-
tered around t = 0. Given, for instance, the spike train
x(t) and the stimulus s(t), the power spectrum of x(t)
and the cross-spectrum of spike train and signal are
defined by

Sx,x( f ) = lim
T→∞

〈〈x̃T( f )x̃∗
T( f )〉〉s

T
,

Sx,s( f ) = lim
T→∞

〈〈x̃T( f )s̃∗
T( f )〉〉s

T
, (10)

where the asterisk in the superscript denotes the com-
plex conjugated. In practice, the large-time limit implies
that we use sufficiently large time windows that ensure
a satisfying frequency resolution.

In the theoretical calculations it turns out to be
advantageous to use the infinite-time transform

x̃( f ) =
∫ ∞

−∞
dt x(t)ei2π f t; (11)

by means of which power and cross-spectra are indi-
rectly defined via (Stratonovich 1967)

〈〈x̃( f )x̃∗( f ′)〉〉s = δ( f − f ′)Sx,x( f ),

〈〈x̃( f )s̃∗( f ′)〉〉s = δ( f − f ′)Sx,s( f ). (12)

Note that we do not remove the DC part from spectral
measures because they play an important and nontrivial
role in our derivations.

In our calculations, we will also need the Fourier
transform of the Gaussian filter F(t), which reads ex-
plicitely

F̃( f ) = exp[−β f 2], (13)

where β = 2π2σ 2.
For Gaussian signals, as used in this study, the in-

formation transmission of a system with output x(t)
driven by a signal s(t) can be quantified in terms of

the spectral input–output statistics. Specifically, we will
employ the spectral coherence function, defined for
positive frequencies ( f > 0)

Cx,s( f ) = |Sx,s( f )|2
Sx,x( f )Ss,s( f )

, (14)

where Sx,s is the cross-spectrum between signal and
output and Sx,x and Ss,s are the power spectra of
input and output, respectively. Unlike the cross-
spectrum, the coherence is a nondimensional corre-
lation coefficient (taking the range 0 < C( f ) < 1) in
the frequency domain that quantifies how much of the
observed variability is shared between input and out-
put. The coherence is related to a lower bound on the
mutual information rate, which is the central quantity
in the theory of information by Shannon (1948). The
lower bound is given by an integral over the bandwidth
fc of the signal (Gabbiani 1996)

ILB = −
∫ fc

0
df log2[1 − C( f )]. (15)

From this formula we see that the contribution of the
coherence at a certain frequency to the total informa-
tion is a monotonic function of C( f )—the closer this
function is to one, the more information is transmitted.

The frequency dependence of the coherence func-
tion gives us some idea whether the system under
study preferentially encodes information about slow
components of the signal (coherence is large at low
but small at high frequencies), about fast components
(coherence large at high but small at low frequencies),
or whether information on all components are equally
transmitted. Put differently, the shape of the coherence
function tells us about information filtering in a system;
see Lindner et al. (2009) for an application of this idea
in the context of short-term synaptic plasticity. Note
that the concept of information filtering has nothing to
do with the usual power filtering seen in the transfer
function or susceptibility of a system. A linear system
with white input signal and white background noise
does not filter the information (the coherence is flat),
irrespective of the shape of the transfer function (low-
pass, band-pass or high-pass filter with respect to spec-
tral power).

In the following, we are specifically interested in how
much information the synchronous output ySO(t) car-
ries about the signal with respect to different frequency
bands. To this end, we use the spectral coherence func-
tion of signal and synchronous output

CSO,s( f ) = |SSO,s( f )|2
SSO,SO( f )Ss,s( f )

. (16)
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In particular, we want to compare this to the coherence
for a single (convolved) spike train

Cy,s( f ) = |Sy,s( f )|2
Sy,y( f )Ss,s( f )

= Cx,s( f ). (17)

Note that (as we indicated by the last equation above)
the coherence of original and convolved spike trains
agree. For better comparison of cross- and power spec-
tra, we will however, solely consider spectral measures
for the convolved spike train.

It is also interesting to compare the two coherence
functions CSO,s and Cy,s to a third one that includes
all the available information of the output, namely, the
sum of all the spike trains (“summed spike train”)

Y(t) =
n∑

k=1

yk(t), (18)

the coherence of which

CY,s( f ) = |SY,s( f )|2
SY,Y( f )Ss,s( f )

(19)

is an upper bound to both single-spike-train coherence
and coherence of the synchronous output. Frequency-
dependent differences among the coherence functions
can be understood based on the behavior of cross- and
power spectra.

Before we start with the inspection of these second-
order statistics, it is important to understand how in our
setup the mean value of the synchronous output de-
pends on the systems parameters (number of neurons,
stimulus strength, etc.). This is important because the
coherence of a neuron depends strongly on its firing
rate, and the mean value of the synchronous output
can be regarded (in loose analogy to the mean value
of a spike train) as the synchronous firing rate. For
these reasons, we will first approach the problem of
calculating the mean value 〈ySO〉.

In the next section, we work out a linear-response
theory for our general setup which holds true for weak
common stimulus and sufficiently strong intrinsic noise
within the individual neurons. We then apply our re-
sults to two neuron models, the Poisson model and the
leaky integrate-and-fire neuron model.

2.2 General theory for spectral measures
of the synchronous output

A central ansatz by Lindner et al. (2005b) used previ-
ously for a theory of spectral measures in neural net-
works with delay assumes that the single spike train’s

Fourier transformation obeys a linear response with
respect to an external signal:

x̃( f ) = x̃0( f ) + χ( f )s̃( f ). (20)

Here, χ( f ) = K̃( f ) is the susceptibility, i.e. the Fourier
transform of the linear response function K(t). In the
time domain, our ansatz reads

x(t) = x0(t) + K ∗ s(t). (21)

In particular in the time domain, this linear ansatz seems
to be somewhat doubtful because x0(t) is a spike train
and the signal will change the timing of the spikes and
will not add a continuous contribution as suggested by
Eq. (21). We emphasize, however, that the equation is
correct on average (cf. Eq. (7)). Furthermore, the ansatz
Eq. (20) has been successfully employed for calculating
spectral measures in neural networks (Lindner et al.
2005b; Marinazzo et al. 2007; de la Rocha et al. 2007;
Shea-Brown et al. 2008). We will show in this paper
that it also works well for characterizing the signal
transfer by the SO, provided the common stimulus s(t)
is sufficiently weak.

Before we approach this problem, we first discuss
how the mean value of the SO depends on population
size and how strong the firing rate is modulated by the
common stimulus.

2.3 Mean value (firing rate) of the synchronous output

As pointed out before, for small σr it makes sense to
interpret the mean value of the synchronous output as
the synchronous firing rate rSO, i.e. this mean value
gives us an idea about the number of synchronous
events per unit time. The mean value over the two
ensembles yields

rSO = 〈〈ySO(t)〉〉 = 〈〈α
∏

k

yk(t)〉〉s

= α〈(F ∗ r(t))n〉s. (22)

Using Eq. (7), we arrive at the following expression for
the firing rate of the SO:

rSO = α〈(r0 + F ∗ K ∗ s(t))n〉s. (23)

Because the convolution is a linear operation and the
stimulus is Gaussian, the function ŝ(t) = F ∗ K ∗ s(t)
appearing in Eq. (23) will be Gaussian as well with
a variance 〈ŝ2〉, given by the integral over its power
spectrum. The latter is simply the product of the signal’s
power spectrum and the absolute squares of filter and
susceptibility:

〈ŝ2〉s =
∫ ∞

−∞
|F̃( f )χ( f )|2Ss,s( f ) df. (24)
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Once this variance has been calculated, we can perform
the average in Eq. (23) by integrating over a Gaussian

rSO = αrn
0

∫ ∞

−∞
du

e
− u2

2〈ŝ2〉s√
2π〈ŝ2〉s

(1 + u/r0)
n

= αrn
0

n∑
k=0

(
n
k

)∫ ∞

−∞
du

e
− u2

2〈ŝ2〉s√
2π〈ŝ2〉s

(
u
r0

)k

.

Using the fact that averages over odd powers vanish
and changing the summation index such that it extends
to �n/2� (the largest integer not greater than n/2), we
arrive at the final formula

rSO = r0

√
2n(2π)n−2(r0σ)n−1

×
�n/2�∑
k=0

(
n

2k

)
	

(
1
2

+ k
)(

2〈ŝ2〉s

r2
0

)k

. (25)

This formula permits the following conclusions. The
dependence on the relative width r0σ of the Gaussian
filter (i.e. the ratio of width σ and mean interspike
interval r−1

0 ) is exponential in the population size; rSO ∼
(r0σ)n−1, no matter what neuron model is considered
and whether a stimulus is present or not. Furthermore,
properties of the neuron may affect the rate only via
the effective variance Eq. (24) that is shaped by the
neuron’s susceptibility χ . For vanishing signal, the syn-
chronous rate reads

rSO,0 = r0

√
n(2π)n−1(r0σ)n−1. (26)

It is interesting to note that for sufficiently large relative
width the synchronous rate may increase with n; rSO,0

for two neurons (n = 2), for instance, is smaller than
the isolated rate r0 (i.e. rSO,0 for n = 1) only if

r0σ <
1

2
√

π
; (27)

otherwise, the synchronous rate increases for small n.
However, with our choice r0σ = 1/10, the above in-
equality is always fulfilled and thus the rate drops with
increasing n.

For weak stimulation, it suffices in Eq. (25) to take
into account only the term proportional to the variance
〈ŝ2〉s. This yields a stimulus-induced increase in the rate
by a factor of

rSO

rSO,0
≈
(

1 + n(n − 1)

2
〈ŝ2〉s

r2
0

)
, (28)

which becomes more important for larger populations
(note, however, the exponential decrease of the SO
firing rate with increasing n, given by the prefactor).

2.4 Cross-spectra of outputs with the common stimulus

For the single spike train, we find as expected:

〈〈ỹ( f )s̃∗( f ′)〉〉s = F̃( f )〈〈[x̃0( f ) + χ( f )s̃( f )]s̃∗( f ′)〉〉s

= F̃( f )χ( f )〈s( f )s∗( f ′)〉s. (29)

By means of Eq. (12), we thus find the cross-spectrum
of stimulus and single spike train to be given by

Sy,s( f ) = F̃( f )χ( f )Ss,s( f ). (30)

For the sum of the spike trains, the cross-spectrum is
just the sum of the cross-spectra between single spike
train and stimulus, hence for n identical neurons, we
have

SY,s( f ) = nF̃( f )χ( f )Ss,s( f ) = nSy,s( f ). (31)

In order to calculate the cross-spectrum of the syn-
chronous output, it is helpful to express the output’s
Fourier transform as an n-fold convolution of the n
spike trains

ỹSO( f ) = α ỹ1( f ) ∗ ỹ2( f ) ∗ · · · ∗ ỹn( f )︸ ︷︷ ︸
n-times

.

Writing the convolution integrals explicitly, we obtain

〈〈ỹSO( f )s̃∗( f ′)〉〉s = α

∫
. . .

∫
df1 . . . dfn−1 (32)

F̃( f1) . . . F̃( fn−1)F̃( f − f1 . . . − fn−1) × 〈s̃∗( f ′)

[r0δ( f1) + χ( f1)s̃( f1)] · · · [r0δ( fn−1) + χ( fn−1)s̃( fn−1)]
[r0δ( f − . . . fn−1) + χ( f − . . . fn−1)s̃( f − . . . fn−1)]〉s.

For a weak stimulus, the two strongest contributions
to the cross-spectrum read

SSO,s( f ) � αnrn−1
0 F̃χ Ss,s + αrn−3

0
n(n − 1)(n − 2)

2

×F̃χ Ss,s

∫
F̃2( f1)|χ( f1)|2Ss,s( f1) df1. (33)

For the ease of notation, here and in the following we
omit the frequency argument f from filter, susceptibil-
ity, and spectrum if it is not an integration variable.
Higher-order contributions to the cross-spectrum will
involve multidimensional integrals over the stimulus
spectrum, response function, and the neuron’s suscep-
tibility. An important conclusion from Eq. (33) is that
to lowest order the cross-spectrum of the synchronous
output shares the frequency dependence of that of the
single spike train given by F̃χ Ss,s.
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2.5 Power spectra

With our assumption of a realization-wise linearity
of the input–output relation, it is easy to calculate
the power spectrum of the single filtered spike train
(for a critical evaluation of this approximation of the
spectrum, see Lindner et al. (2005a)). In terms of the
unperturbed power spectrum Sx0,x0 (in the absence of
a stimulus), response function χ , and driving spectrum
Ss,s, the power spectrum of y(t) reads

Sy,y = |F̃|2[Sx0,x0 + |χ |2Ss,s
]
, (34)

where Sx0,x0 is the power spectrum of the spontaneous
spike train and, correspondingly,

Sy0,y0 = |F̃|2Sx0,x0 (35)

is the power spectrum of the filtered spontaneous spike
train. From Eq. (34) it is evident that for a weak signal
the leading contribution to the spectrum comes from
the unperturbed power spectrum.

For the calculation of the spectrum of the summed
spike train, one has to take into account that the
unperturbed spike trains are statistically independent
(yielding only n non-vanishing terms) but the stimulus
dependent parts are not (yielding n2 finite terms):

SY,Y = |F̃|2[nSx0,x0 + n2|χ( f )|2Ss,s]. (36)

Compared to the spectrum of the single spike train,
the stimulus makes a far stronger contribution, in par-
ticular, for large networks with n � 1. In the case of
interest here, in which we only consider a few neurons,
we may still assume that for a weak stimulus the spon-
taneous spectrum dominates the power spectrum.

The synchronous output’s power spectrum reads

〈〈ỹSO( f )ỹ∗
SO( f ′)〉〉s = α2

〈∫
df1df ′

1 . . . dfn−1df ′
n−1

〈ỹ1( f1)ỹ∗
1( f ′

1)〉 . . . 〈ỹn−1( fn−1)ỹ∗
n−1( f ′

n−1)〉

〈ỹn( f − f1 . . . fn−1)ỹ∗
n( f ′ − f ′

1 . . . − f ′
n−1)〉

〉
s
. (37)

Here products involving the same spike train have been
treated as statistically independent of other products
within the 〈· · ·〉s average; in this picture, s(t) corre-
sponds to a frozen stimulus. The product (not averaged
over the stimulus) of the spike train’s Fourier trans-
forms can be expressed as follows:

〈ỹ( f )ỹ∗( f ′)〉 = F̃( f )F̃∗( f ′)
{
δ( f − f ′)Sx0,x0( f ) +

r0

[
δ( f ′)χ( f )s̃( f ) + δ( f )χ∗( f ′)s̃∗( f ′)

]

+χ( f )χ∗( f ′)s̃( f )s̃∗( f ′)
}
. (38)

To zeroth order (〈|s̃|2〉 = 0), this yields, if inserted
above, that the power spectrum of the synchronous
output is proportional to an n-fold convolution of
the spontaneous power spectrum Sy0,y0 (the latter was
given in Eq. (35)). As can be shown, the next order
correction in 〈|s̃|2〉 is proportional to the stimulus power
spectrum and an n − 1-fold convolution of Sy0,y0 . For a
weak stimulus, the power spectrum of the synchronous
output reads

SSO,SO � α2

⎡
⎢⎣ Sy0,y0 ∗ · · · ∗ Sy0,y0( f )︸ ︷︷ ︸

n-times

+ n(|F̃χ |2Ss,s) ∗ Sy0,y0 ∗ . . . ∗ Sy0,y0( f )︸ ︷︷ ︸
(n-1)-times

+ 2n(n − 1)r2
0(|F̃χ |2Ss,s) ∗ Sy0,y0 ∗ . . . ∗ Sy0,y0( f )︸ ︷︷ ︸

(n-2)-times

)

⎤
⎥⎦ .(39)

Note that the unperturbed power spectrum still in-
cludes a DC peak (a delta peak at zero frequency).

2.6 Coherence function

As pointed out before, the spectral coherence is es-
sentially formed by the ratio of squared transferred
signal power and power spectrum. From the theoretical
results achieved so far, we can draw already some
conclusions about differences of the signal coherence
for a single neuron and for the synchronous output.

If we restrict ourself to very weak stimulation, we
find for the cross-spectrum from Eqs. (30) and (33)

SSO,s � αnrn−1
0 F̃( f )χ Ss,s( f ) � αnrn−1

0 Sy,s( f ). (40)

Because the prefactor on the right hand side does
not depend on frequency, this proves that the cross-
spectrum of signal and SO is to lowest order in signal
power just a rescaled version of what we would observe
for the single spike train. Any change in the frequency
dependence of the coherence between single neuron
and synchronous output (or between ‘all spikes’ and
synchronous output) cannot be related to what happens
in the numerator (squared cross-spectrum) but must be
thus due to the frequency dependence of the denomi-
nator, that is, the power spectrum.

Indeed, for the power spectrum we find to lowest
order (no stimulus) a qualitative difference: while for
single and summed spike train, the power spectrum
Eqs. (34) and (36), respectively, is proportional to the
power spectrum of the unperturbed system Sy0,y0 =
|F̃|2Sx0,x0 , for the power spectrum of the synchronous
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output, this is rather proportional to the n-fold con-
volution of Sy0,y0 Eq. (39). We will now explore what
the consequences of this convolution is in the cases of
Poisson neurons and of LIF neurons.

3 Results

3.1 Population of Poisson neurons

The first model of the single neuron is the inhomo-
geneous Poisson process. The spike train of the kth
neuron occurs with a time-dependent rate

rk(t) = r0[1 + s(t)]. (41)

Apart from the common rate modulation, spikes of
different neurons are independent of each other. The
signal s(t) is a Gaussian bandpass-limited white noise
with variance 〈s2〉 that we take to be much smaller
than 1, in order to avoid a trivial rectification effect:
for strong modulation, the rate r(t) will go to negative
values, which cannot affect the spike generator and
cannot be properly encoded in the sequence of spikes.
To simplify some of the formulas, we will also assume
a cut-off frequency fc that is much larger than that
of the Gaussian filter σ−1. Information transmission
through a Poisson model has been studied analytically
by different authors (Bialek and Zee 1990; Gabbiani
1996; Goychuk 2001).

Because in our model the rate is directly propor-
tional to the signal s(t), the susceptibility is just a real
constant:

χ( f ) = r0. (42)

For a Gaussian filter (Eq. 3), a band-pass limited
white noise with cut-off frequency fc, and the constant
susceptibility, we can calculate the effective variance
(Eq. 24):

〈ŝ2〉s = r2
0 Ss,s

∫ fc

− fc

df exp[−4π2σ 2 f 2]

= r2
0 Ds

σ
√

π
erf(2πσ fc) ≈ r2

0 Ds

σ
√

π
. (43)

where in the last step we used the assumption of a
high cut-off frequency. Inserting this into our general
expression for the rate (Eq. 25), we can compare the
resulting formula to simulation results (cf. Fig. 3).

As expected the rate drops with increasing number
of neurons (spike trains) and a common stimulus s(t)
amplifies the rate, in particular at higher number of
neurons. The agreement of the simulations and the
theory is good.
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Fig. 3 Mean of the synchronous output (“synchronous firing
rate”) vs number of spike trains for different amplitudes of the
signal as indicated and a cut-off frequency of fc = 10

Next, we compare the spectral measures for single
spike train, summed spike train, and SO. For the single
neuron, we obtain for f < fc and using Eq. (13):

Sy,s( f ) = 2Dsr0e−β f 2
(44)

Sy,y( f ) = (r0 + 2r2
0 Ds + r2

0δ( f ))e−2β f 2
(45)

Cy,s( f ) = 2r0 Ds

(1 + 2r0 Ds)
; (46)

we recall that β = 2π2σ 2.
In order to obtain the respective statistics for the

summed output, we would have to replace r0 simply by
nr0.

Although due to the effect of filtering by F the
cross- as well as the power spectra of the single spike
train and the summed output show a low-pass behav-
ior, the coherence function is spectrally flat because
the frequency dependencies of both spectra cancel (cf.
Fig. 4). Of course, the coherence of the summed output
is generally larger: for a weak signal, the coherence of
Y is just the n-fold coherence of the single spike train.

For the SO, the cross-spectrum (33) reads

SSO,s( f ) = 2n3/2rn
0 Ds

(2πσ 2)
1−n

2

e−β f 2
[

1 + (n − 1)(n − 2)Ds√
2β/π

]
,

(47)

where because of the high cut-off frequency we have
approximated erf(

√
2β fc) ≈ 1. Equation (47) is to low-

est order proportional to the cross-spectrum of the
single spike train and the signal as discussed above. In
particular, we find that the filter introduces a low-pass
behavior in the cross-spectrum.
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Fig. 4 Spectral measures of information transmission in a pop-
ulation of Poisson neurons. Cross-spectra, power spectra and
coherence of the stimulus with the single spike train (blue),
with the summed output (magenta), and with the synchronous
output (red). Simulation results are compared to the theoretical
expressions (black) obtained from Eqs. (44–47, 31, 36, 19) for
single and summed spike trains and from Eqs. (47, 51, 16) for
the synchronous output. Parameters: n = 2 , r0 = 1, Ds = 0.01,
fc = 5

Because of its importance for the discussion of
the coherence, we present several expressions for the
power spectrum in special cases. First, for the quali-
tative behavior of the coherence for weak stimuli, it
suffices to consider the unperturbed power spectrum
SSO,SO of the SO (no stimulus) which is given by the
n-fold convolution of the unperturbed power spectrum
Sy0,y0 (obtained from Eq. (45) by setting Ds = 0). Sim-
pler than to carry out the n convolution integrals ex-
plicitly is to Fourier-transform the n-th power of the
correlation function ky0,y0(τ ) (i.e. the Fourier transform
of Sy0,y0, which is a constant plus a Gaussian):

SSO,SO = α2
∫ ∞

−∞
dτ e2π i f τ kn

y0,y0(τ )

= α2r2n
0

∫ ∞

−∞
dτ e2π i f τ

⎡
⎣1 + e− π2τ2

2β

r0
√

2β/π

⎤
⎦

n

= α2r2n
0

∫ ∞

−∞
dτ e2π i f τ

n∑
k=0

(
n
k

)
e− kπ2τ2

2β

(2r2
0β/π)(k/2)

which results in the following expression for the power
spectrum:

SSO,SO = α2r2n−1
0

n∑
k=1

(
n
k

)
1√
k

(
π

2r2
0β

) k−1
2

exp
[−2β f 2

k

]
,

(48)

where we omitted the DC peak. Now, for a sufficiently
small width of the Gaussian with respect to the mean
interspike interval, i.e. if

r0σ <
1

2
√

π
≈ 0.28 (49)

(which is met with our standard parameter choice r0σ =
1/10) and small number of neurons (n < 5), one can
show that all terms in the sum make significant con-
tributions. (Note that the above condition is identical
with Eq. (27) granting a monotonic decrease in the
synchronous output rate with growing n.) In particular,
the exponential

exp
[−2β f 2

n

]

has the slowest decay in f and thus determines the
effective cut-off frequency of the power spectrum. Be-
cause of this term the power spectrum drops slower
than the square of the cross spectrum which leads to
an overall low-pass behavior of the coherence.

Using only the leading order terms for both the
cross- and power spectrum, we obtain the following
expression for the coherence

CSO,s( f ) � n2Ss,s∑n
k=1

(n
k

) 1√
krk

0

(
π
2β

)(k−1)/2
e2β f 2( k−1

k )

. (50)

For comparison to numerical simulations, we also
give the expressions for the power spectrum including
the first-order corrections due to the stimulus (assum-
ing again high cut-off frequency) for the cases n = 2

SSO,SO( f ) = r2
0α

2

2

[
4(6Dsr2

0 + r0)e−2β f 2 +
√

π

β
×

(
1 + 2r0 Ds

[
1 + erf(2

√
β( fc − f/2))

])
e−β f 2

]
(51)

and n = 3

SSO,SO( f ) = α2r3
0

[
3r0(1 + 10r2

0 Ds)e−2β f 2 +

+ 3r0

2

√
π

β

(
1 + 6Dsr0

[
1 + erf(2

√
β( fc − f/2))

])
e−β f 2

π/2√
3β

(
1 + 3Dsr0

[
1 + erf(

√
3β( fc − f/3))

])
e− 2

3 β f 2
]

(52)

The spectral measures for single spike trains,
summed trains and SO are shown in Fig. 4; here and
in Fig. 5 we have used Eqs. (51), (52), (47), and (16)
to calculate cross and power spectra, and the coherence
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Fig. 5 Spectral measures of the SO of Poisson neurons for
different population size as indicated. All measures have been
rescaled to their global maximum. Theoretical results obtained
from same equations as in Fig. 4 except for the expression for
the power spectrum for n = 3 for which we used here Eq. (52).
Parameters: r0 = 1 and Ds = 0.01, fc = 5

function, respectively. As can be seen in Fig. 4, the syn-
chronous output acts as a low-pass filter on information
about the stimulus: the coherence of the SO drops with
frequency and the cut-off for this drop is roughly set by

f ≈ 1√
2β

n
n − 1

= 1
2πσ

n
n − 1

. (53)

Although the dependence of the cut-off on n is modest,
our analytical results confirm the shift to lower values
for larger n (cf. Fig. 5).

The drop in coherence at higher frequencies is
clearly due to the change in the shape of the power
spectrum, more specifically, due to the sum over the
exponentials with decreasing decay rate. To illustrate
this shape change, we consider the SO spectrum S2( f )
for n = 2 and write the single spike train spectrum as
S1( f ) = g( f ) + δ( f ), consisting of a symmetric finite-
width peak g( f ) around zero (essentially the filter func-
tion) and a delta peak (the DC peak) δ( f ) (setting the
rate for simplicity to one). Then, to lowest order the SO
power spectrum reads

S2 = S1 ∗ S1 = g ∗ g( f ) + 2g( f ) + δ( f ). (54)

A symmetric finite-width peak around zero, if con-
volved with itself, becomes broader, so the first term
turns in our example of a Gaussian filter into a
Gaussian with twice the variance. There is, however,
also a term proportional to the original peak and there
is also the DC peak left. Another convolution with
g( f ) + δ( f ) will yield for S3( f ) all combinations of
Gaussians with unit, double, and triple variance and
also a delta function.

Our interpretation of the low-pass filtering of infor-
mation is as follows. The operation by which we define
the SO (Gaussian filter and multiplication) comes along
with a loss of temporal precision and thus with a dimin-
ished information transfer at higher frequencies. De-
creasing σ , the width of the filter, would push the cut-
off frequency to higher values, although it would also
result in a substantial overall reduction of coherence
because of the decrease in the SO firing rate.

We also would like to point out that the Poisson
model is unable to reproduce the experimental finding
of a SO coherence maximum at finite frequency - the
maximum of the coherence of the SO of a Poisson
population is always at zero frequency. We confirmed
this finding also using another filter, the box filter and
the method by Middleton et al. (2009) involving the
reference spike train.

3.2 Population of leaky integrate-and-fire neurons

As a second and more realistic neuron model we use
the leaky integrate-and-fire (LIF) neuron driven by
a white noise current and by a current stimulus. The
subthreshold voltage of this stochastic LIF model, i.e. of
the kth neuron of our population obeys the well-known
dynamics

v̇k = −vk + μ + s(t) + √
2Diξk(t), (55)

where μ is the constant base current, ξk(t) is a Gaussian
white noise with zero mean and correlation function
〈ξk(t)ξk′(t′)〉 = δk,k′δ(t − t′), and Di is the intrinsic noise
intensity; time is measured in units of the effective
membrane time constant. Note that the intrinsic white-
noise sources ξk(t) are completely uncorrelated among
each other, whereas the stimulus is common to all
neurons. Whenever the voltage crosses the threshold
vt, a spike is generated and the voltage is reset to the
value vr. In this paper we work with a nondimensional
rescaled voltage, for which we can choose vr = 0 and
vt = 1 without loss of generality (Vilela and Lindner
2009a).

Because both intrinsic fluctuations and stimulus are
modeled as white Gaussian noise, we will also refer in
the following to the total noise intensity

D = Di + Ds. (56)

The dynamics of a single LIF neuron under white
noise stimulation and its response to weak signals has
been reviewed in a number of papers (Fourcaud and
Brunel 2002; Burkitt 2006a, b), in particular, its spectral
coherence function has been inspected and compared
to those of other integrate-and-fire neurons (Vilela and
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Lindner 2009b). Here we need some formulas for the
single white-noise driven LIF and will thus state them
briefly in the following.

The firing rate r0 in the absence of a signal is
(Ricciardi 1977)

r0 =
[
√

π

∫ (μ−vr)/
√

2D

(μ−vt)/
√

2D
dz ez2

erfc(z)

]−1

. (57)

The background spectrum, which is the power spec-
trum of a single spike train in the absence of a signal,
can be expressed by (Lindner et al. 2002)

Sx0,x0( f ) = r0

|D2π i f (
μ−vt√

D
)|2 − e2�|D2π i f (

μ−vr√
D

)|2
|D2π i f (

μ−vt√
D

) − e�D2π i f (
μ−vr√

D
)|2

+ r2
0δ( f ), (58)

where

� = v2
r − v2

t + 2μ(vt − vr)

4D
, (59)

and Da(z) is the parabolic cylinder function
(Abramowitz and Stegun 1970). The susceptibility χ( f )
of the white-noise driven LIF neuron is (Lindner and
Schimansky-Geier 2001) (for alternative expressions in
terms of hypergeometric functions, see Fourcaud and
Brunel (2002) and references therein)

χ( f ) = r02π i f/
√

D
2π i f − 1

D2π i f−1(
μ−vt√

D
) − e�D2π i f−1(

μ−vr√
D

)

D2π i f (
μ−vt√

D
) − e�D2π i f (

μ−vr√
D

)
.

(60)

For the theoretical results on spectral measures, we
use in the following numerical evaluations of the in-
tegrals involving convolutions of power spectra and
susceptibility, i.e. there are no further simplifications
possible because the appearing integrals are intractable
analytically.

First, we consider the mean output. Similar to the
Poissonian case, the synchronous firing rate drops with
the population size and increases with the intensity of
the common stimulus (Fig. 6) as predicted by theory.
The curves for different stimulus variance give us also
an idea about the range of validity of our linear re-
sponse assumption—deviations (theory underestimat-
ing the simulation results) are seen if the signal makes
up about 30% of the stochastic driving and are even
more severe for a 50% contribution, for both sub- and
suprathreshold base current (upper and lower panel in
Fig. 6).

The firing statistics of the LIF neuron depends
strongly on the parameter regime (Fourcaud and
Brunel 2002; Burkitt 2006a; Lindner et al. 2002; Ostojic
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Fig. 6 The mean synchronous output (‘synchronous firing rate’)
of LIF neurons as a function of the population size n for different
signal intensities as indicated. Parameters: μ = 0.8, D = 0.2 (up-
per panel); μ = 1.2, D = 0.01 (lower panel)

2011). For small subthreshold μ (μ < vT) and small
noise, the spontaneous spiking approaches a Poisson
process, i.e. the coefficient of variation of the interspike
intervals, Cv , is close to one and the interspike interval
density is nearly exponential. For strong μ (μ > vT)
and low noise, in contrast, the firing is rather regular
with a low Cv and a histogram sharply peaked around
the mean ISI. The regime of very strong noise is yet
another case, in which the Cv can become much larger
than one and the voltage can perform long excursions
towards negative values before reaching the threshold
(this case might be the biological least relevant on phys-
iological grounds). We do not expect that the coding of
a common stimulus by synchronous spikes shares the
same properties in all these regimes and inspect them
therefore separately.

For subthreshold base current μ = 0.8 and moderate
noise D = 0.2, where spiking is rather irregular (Cv =
0.73), we observe a low-pass coherence function for
single and summed spike train and SO (cf. Fig. 7). The
LIF model on its own, however, shows already some
low-pass behavior with respect to coherence (Vilela
and Lindner 2009b). We observe an additional low-
pass effect on the synchronous output, which becomes
apparent when comparing the SO coherence to that of
the single spike train as is done in the inset of Fig. 7
(lower panel). This is similar to the model of Poisson
neurons in the previous section. For the latter we also
observed that by increasing the number of spike trains,
the effective cut-off frequency of the coherence attains
lower values. The same effect is found for increasing the
number of LIF spike trains in the SO (Fig. 8): for n = 3
the effective cut-off occurs at a lower frequency than it
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Fig. 7 Spectral measures of the single spike train, the summed
spike train, and the SO for LIF neurons in the subthreshold
(noise-induced) firing regime. Parameters: n = 2, μ = 0.8, D =
0.2 and Ds = 0.02

does for n = 2 as becomes best visible on a logarithmic
scale (inset of Fig. 8, lower panel).

As shown in Fig. 9, a different behavior is observed
for the LIF in the deterministic firing regime with a base
current μ = 1.2 and a weak noise D = 0.01 resulting in
a rather regular firing (Cv = 0.24). Here, power (Fig. 9,
upper panel) and cross-spectra (Fig. 9, middle panel)
are all peaked around a frequency corresponding to
the firing rate (see e.g. Knight (1972a); Fourcaud and
Brunel (2002) for the cross-spectral peak and Lindner
et al. (2002) for the peak in the power spectrum).

For the single and the summed spike train, both
peaks cancel in the coherence, which decays monoton-
ically with frequency. In contrast, for the SO the peaks
in the squared cross spectrum and power spectrum are
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Fig. 8 Spectral measures of the SO for LIF neurons in the
subthreshold (noise-induced) firing regime for different numbers
of neurons as indicated. All curves are rescaled to their respective
maximum. Parameters: μ = 0.8, D = 0.2 and Ds = 0.02
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Fig. 9 Spectral measures of the single and summed spike trains,
and the SO for LIF neurons in the suprathreshold (deterministic)
firing regime. Parameters: n = 2 μ = 1.2, D = 0.01 and Ds =
0.001

sufficiently different to still result in a peak in the co-
herence function around the firing rate. This maximum
of the SO coherence vs frequency is attained at finite
frequency and is thus qualitatively similar to the one
observed in experiment (see Fig. 3(c) by Middleton
et al. (2009)). The maximum is more pronounced for
a larger population of spike trains.

In Fig. 10 we inspect whether the qualitative change
in the coherence function is due to the cross- or due
to the power spectra. The frequency dependence of
the cross spectrum does not change significantly (apart
from a change in magnitude that has been compen-
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Fig. 10 Spectral measures of the SO for LIF neurons in the
suprathreshold (deterministic) firing regime for different num-
bers of neurons as indicated. All curves are rescaled to their re-
spective maximum. Note that while cross-spectra are very similar,
the width of the spectral peak in the power spectra depends on
n and because of the increasing width, the coherence for n > 1
shows a maximum vs frequency. Parameters: μ = 1.2, D = 0.01
and Ds = 0.001
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sated by rescaling each curve by its maximum) upon
increasing the population size, see Fig. 10, upper panel.
The power spectrum, in marked contrast, changes dras-
tically: the more spike trains are used to define the
synchronous output, the broader becomes the peak
around the firing rate, further, the larger n, the stronger
becomes the peak at zero frequency. This change in the
power spectrum is evidently responsible for the peak in
the coherence function.

To lowest order, the power spectrum of the SO
is given by an n-fold convolution of the spontaneous
power spectrum with itself. To see what happens to a
peaked power spectrum upon convolution with itself,
we consider a generic spectrum of the form

S( f ) = t̂−g( f ) + r2
0δ( f ) + t̂+g( f ) (61)

where g( f ) is a function with a finite-width peak at f =
0, r2

0δ( f ) is the DC peak of the spectrum, and t̂± are
shift operators that shift the function by the firing rate
r0. Convolving this spectrum with itself and using the
translation invariance of the convolution, we obtain

S2( f ) = S ∗ S( f )

= (t̂−g + r2
0δ( f ) + t̂+g) ∗ (t̂−g + r2

0δ( f ) + t̂+g)

= t̂2
−(g ∗ g) + t̂2

+(g ∗ g) + 2r2
0[t̂−g + t̂+g]

+ r4
0δ( f ) + 2(g ∗ g), (62)

where we have used that the shift operator commutes
with the convolution and that t̂− t̂+ = t̂+ t̂− = 1. Restrict-
ing ourself to positive frequencies, the spectrum S2

shows finite-width peaks at (1) the firing rate; (2) twice
the firing rate (a higher harmonics); (3) at zero fre-
quency. The latter two peaks are proportional to g ∗ g
and thus have an increased width. These peaks con-
tribute to increase the effective width of the summed
peak around r0. Hence, it is the nonlinear operation of
multiplication leading to higher harmonics and peaks
at zero frequency that shape the power spectrum and
increase effectively the width of the peak around the
firing rate.

In Fig. 11, we show simulation results for the case
of very strong stimulation. In the deterministic firing
regime (e.g. μ = 1.2) the spectral measures are still
peaked around the firing rate and a peak in the coher-
ence is obtained. However, the peak frequency moves
to smaller values and the coherence curve of the SO
approaches the coherence curve of the summed spike
train from below.

Because in the paper by Middleton et al. (2009)
the peak of the coherence did not appear around the
firing rate but at lower values, we conclude that the
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Fig. 11 Spectral measures of the SO for LIF neurons in
the suprathreshold (deterministic) firing regime for different
strength of the stimulus. Parameters: n = 3, μ = 1.2 D = 0.01

stimulus amplitude in the experiment were chosen in
the nonlinear response regime of the sensory cell.

Last but not least, we compare in Fig. 12 the peaked
SO coherence to the coherence of the synchronous
output as it was defined by Middleton et al. (2009). The
criterium for the width of the time window was here
that a similar mean value of the synchronous output
was achieved; the respective time window was �t =
0.89 in our nondimensional time units, which compares
well to the value used for the experimental data by
Middleton et al. (2009) if we assume a membrane time
constant of 1 ms (Chacron 2006).

Although peak values of the coherence differ some-
what for the two distinct definitions of the SO, the
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Fig. 12 Spectral measures of the SO and the summed spike train
for two LIF neurons (n = 2) compared for different definitions
of the SO: coherence for the product of Gaussian convolutions
(multiplication method) with σ = 0.26 and coherence for the SO
obtained from coincidences of the other spike train with the
reference spike train (bin method) in a time bin of width 0.89.
Other parameters: μ = 0.95, D = 0.014 and Ds = 0.0084
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overall shape and, in particular, the location of the
peak coincides. This suggests that our results (derived
for the product of Gaussian convolutions) are robust
and hold true also for slightly different definitions of
synchronous activity for populations of neurons.

We also note that although the coherence of the
SO never becomes larger than that for all spikes, it
can become larger than the coherence of a single spike
train—see e.g. how the red line exceeds the blue one in
a small intermediate frequency band in the lower panel
of Fig. 9. This is at the first glance surprising because we
essentially obtain the synchronous output by deleting
spikes from a reference spike train which seems to
necessitate a reduction in information. However, this
reduction is applied according to the firing of the re-
maining n − 1 neurons, hence, in part according to what
the stimulus does. It is not hard to see that by deleting
spikes from a spike train in a signal-dependent way,
we can make (even a previously stimulus-unrelated)
spike train carry information about the stimulus. That
is why it is meaningful to compare the coherence of
synchronous activity to both the coherence of all spikes
generated in the population as well as to the coherence
of the single neuron.

4 Summary and conclusions

In this paper, we have developed a framework for the
analytical study of coding properties of synchrony in
neural populations. We derived general formulas for
stimulus transfer and noise spectrum of the synchro-
nous output of a homogeneous population of neurons
which are driven by a common stimulus. By choosing
a rather strict multiplicative synchrony criterion we
were able to use a linear response ansatz to calculate
spectral spike train statistics for single, summed, and
synchronous outputs. As we have shown by comparison
to numerical simulations of populations of Poisson and
LIF neurons, this theory yields reliable results as long
as the stimulation is weak.

We were interested under which circumstances the
synchronous output selectively encodes certain features
of a stimulus. For this to occur, a first condition to
be met is certainly that the population has a notewor-
thy synchronous output at all. By analyzing the mean
synchronous output (Eq. 25 and Figs. 3 and 6), we
found that for small numbers of neurons and moderate
common stimuli the mean is an appreciable fraction
of the firing rate (mean of the spike train) of a single
neuron.

For the case of a sufficiently strong synchronous
output, we then asked whether its coherence with the

signal can show a maximum vs frequency as suggested
by the experiments of Middleton et al. (2009). We
found that for Poisson neurons and for LIF neurons
in the subthreshold regime with weak noise (irregular
firing with a Cv not too far from one), the coherence of
the synchronous output decreases with frequency. This
effect is caused by a shaping of the power spectrum of
the synchronous output. While the transfer function of
the synchronous output does not change qualitatively
by the multiplication operation (it is proportional to
that of the single cell), the power spectrum becomes
broader. Hence, for neurons with rather irregular firing
pattern (Cv ≈ 0.7 − 1.3), the coherence of the synchro-
nous output did not show a peak at finite frequency and
thus synchronous spikes carry qualitatively the same
kind of information as all spikes.

However, for LIF neurons with a pronounced peak
at finite frequency in both power- and cross-spectra, we
found a different effect. While the transfer function is
again unchanged, the nonlinear operation of multipli-
cation of spike trains, that we use to compute the syn-
chronous output, gives rise to new peaks in the power
spectrum. These new peaks broaden the peak around
the firing rate and via the denominator of Eq. (16)
suppress the coherence at low and high frequencies but
not around the firing rate.

What are the conditions for a peak of the coher-
ence of the synchronous output at finite frequency?
Apparently, the power spectrum of the single cell has
to have a finite-width peak at finite frequency.This
is the case for an LIF neuron with a suprathreshold
base current (in our setting μ > 1) and with small to
moderate noise intensity or for a subthreshold base
current (μ < 1) and a properly tuned noise intensity
(so-called coherence resonance effect as demonstrated
in the LIF neuron e.g. by Pakdaman et al. (2001) and
Lindner et al. (2002)). We have verified that indeed
a maximum in the coherence can be observed for a
subthreshold base current (e.g. μ = 0.9) and a suitable
noise intensity causing a peak in the power spectrum.
We also note that factors like adaptation (Benda and
Herz 2003), threshold fatigue (Chacron et al. 2007), or
bursting (Bair et al. 1994) shape the response function
and the power spectrum (leading to more pronounced
spectral peaks, see e.g. Lindner and Longtin 2003) and
may thus influence the information filtering seen in the
synchronous activity.

Although a peaked coherence is observed only in a
regime of rather regular firing, the firing must not be
“too regular”, i.e. the effect hinges upon the presence of
a sufficient amount of intrinsic fluctuations. Certainly,
in the absence of internal noise, all neurons fire phase-
locked with respect to the stimulus (Knight 1972a)
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and the synchronized output converges to the spike
train of a single neuron, which possesses a low-pass
coherence. Our results indicate that for weak stimulus
and sufficient intrinsic noise, new peaks in the power
spectrum of the synchronous activity have to be broad
enough to make an impact on the peak around the
firing rate. Because these peaks arise from the convo-
lution of the former peak, this requires that also the
original peak is not “too thin”. Coming from this weak-
stimulus-and-moderate-intrinsic-noise scenario and in-
creasing either the stimulus amplitude or decreasing
the intrinsic noise (both was done at the same time in
Fig. 11), the maximum of the coherence moves towards
zero, and the coherence of the synchronous output
becomes more similar to both the coherence of the
single spike train and the coherence of all spikes. In
other words, the intrinsic noise as well as the stimulus
amplitude control the best frequency of the coherence
of the synchronous output. The maximal best frequency
possible seems to be the firing rate. In order to generate
an information filter with this frequency, the intrinsic
noise should not be too weak (keeping a finite width
of the spectral peak and linearizing the transfer), but
also not too strong (keeping a peak at finite frequency
at all). For a given stimulus amplitude there should be
an optimal noise strength in order to establish an infor-
mation bandpass-filter that employs the synchronous
output.

There is another parameter of interest in our
model— the width σ of the Gaussian filter. In real
neurons, the time-scale of the filter could correspond
to the width of the postsynaptic potential. According
to our results, coding by synchrony is meaningful only
if this postsynaptic time scale is much smaller than
the mean ISI of each presynaptic cell. In addition, we
expect a peaked coherence only if these two time-
scales are sufficiently separated because a too broad
filter destroys the peaked structure of cross- and power
spectra on which the information filtering is based.

Note also that we defined the synchronous output as
the multiplication of the spike trains convolved with a
Gaussian filter. This allowed us to derive expressions
for the coherence of the synchronous output but at the
same time is a rather strict notion of synchrony. Every
neuron in the population needs to fire a spike within the
width of the filter to result in a non-zero synchronous
output. This notion of synchrony compares well to the
binning method for two spike trains (Fig. 12) as used for
analyzing the data by Middleton et al. (2009). However,
for populations larger than a few neurons this definition
of synchrony results in vanishing output rates. The
more realistic situation is a much larger population of
neurons that converges onto a target neuron and that

the synchronous activity of only a certain fraction of the
neurons is sufficient to trigger an action potential in the
target neuron. This would result in higher synchronous
outputs. Simulations show that in such a case the re-
sponse of the target neuron has a peak in the coherence
as well (Middleton et al. 2009), demonstrating that our
results translate to larger populations of neurons with a
softer synchrony criterion.

Our theory generally demonstrates that by solely
reading out synchronous spikes from a population of
neurons receiving a common stimulus a target neuron
can selectively extract specific features of the stimulus,
namely those frequency components that are close to
the firing rate of the input population. This is in marked
contrast to the much more broad-band coherence be-
tween all spikes of such a population and the stimulus.
The non-linear operation of reading out synchronous
spikes thus processes the information about the stimu-
lus that is contained in the spiking activity of a popula-
tion of neurons. In addition, this offers the possibility
of a parallel readout of different levels of synchrony
by different target neurons in order to extract different
aspects of the encoded common stimulus.

In the electrosensory system of weakly electric fish
electric stimuli are encoded by a population of elec-
troreceptors. The receptor afferents project to pyrami-
dal cells in three parallel maps. There is experimental
evidence that in the map where the pyramidal cells
have a peaked coherence function (Krahe et al. 2008)
the pyramidal cells indeed read out synchronous spikes
by coincidence detection from about one thousand
afferents (Maler 2009). In another map, where only
about ten afferents converge onto a target cell, the
pyramidal cells show a broad-band coherence and pre-
sumably decode all input spikes (Middleton et al. 2009).
Since this effect is a quite general property of popula-
tions of spiking neurons we expect it to be employed in
many other sensory systems as well. In higher process-
ing stages of the brain, however, where neurons have
low firing rates and operate in their fluctuation driven
regime reading out different levels of synchrony does
not yield different aspects about the signal anymore.

Our analytical approach can be also extended to
other filter functions, to heterogeneous populations of
neurons, and to populations, in which only a fraction of
cells receives the common stimulus. A more advanced
generalization of the theory concerns populations of
coupled neurons instead of neurons that are only syn-
chronized by a common drive. In the coupled case, the
shaping of the information transfer in the synchronous
activity may be even more severe. These are exciting
problems for future studies on information transfer in
neural populations.
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