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Elementary Particle Physics

Quantum Field Theory: Relativistic many particle quantum theory

Describes scattering processes in accelerators

e− e−

e− e−
Zeit

Photon

2

Elementarteilchenphysik (ohne Gravitation)

• Beschrieben durch Quantenfeldtheorie: (hier QED) [1950-1975]

= g2 · + g4 · + g6(. . .) + . . .

Streuprozesse Störungsreihe in g ! 1 g:“Kopplungskonstante”

• Renormierung: g → g(E)

• Drei Naturkräfte beschrieben durch Eichfeldtheorien [1955,1971]

• Was passiert bei g ∼ 1? ⇒ nichtperturbative Quantenfeldtheorie

2

Perturbative description: Series expansion in g � 1 g: Coupling constant

Feynman diagrams: Describe particle propagation & interactions

Symmetries play central role:

Determine possible particles & their interactions
Can severly constrain results for observables

Exact analytic methods beyond perturbation theory are sparse

Desirable to advance our fundamental understanding of quantum field theory
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The Standard Model of Particle Physics

Three fundamental forces described by Gauge Field Theories [1955,1971]

Gravity not contained.

+ anti-particles

ASU(2)
µ (x) =

�
Z W +

W� �Z

⇥

3

Standardmodell der Elementarteilchenphysik

Forces: SU(3)� SU(2)�U(1) =̂ Gauge Field Theories

Electromagnetism (photons)

Weak Force (W & Z bosons)

Strong Force (gluons) =̂ Quantum Chromodynamics (QCD)

SU(N) Gauge Field Theory: Fields are N �N matrices:

Matter:

Leptons Quarks Scalars
e�, �e u, d
µ�, �µ s, c Higgs (?)
⇥�, �� t, b

3

Spectrum:

Leptons Quarks Vector bosons Scalar

e, νe u, d Aµ
µ, νµ s, c W±, Z Higgs
τ , ντ t, b Aaµ

Gravity is not
contained!
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Symmetries

Symmetries lie at the heart of our understanding of physics. They constrain or even
determine physical theories and their observables.

Mathematically symmetry transformations form a group

G1 ◦G2 = G3 {Gi,1, G−1i } ∈ group

Continous transf.: Lie group G(φ) = ei φ
a Ĵa Ĵa : Generator φa ∈ R

Group property entails commutation relations

[Ĵa, Ĵb] = ifab
c Ĵc Lie algebra a, b, c = 1, . . . , dim(g)

Known from QM. Example: Rotations and translations

R(~φ) = ei
~φ·~̂L T (~a) = ei~α·

~̂P

~L : Angular momentum ~P : Momentum

[Li, Lj ] = i~ εijk Lk [Pi, Pj ] = 0 [Li, Pk] = i~ εijk Pk
[4/26]
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Hidden symmetries: The Hydrogen atom

Hamiltonian H =
~p2

2m
− k

r

Rotational symmetry: [H,Li] = 0 ⇒ H |n, l,m〉 = En,l|n, l,m〉

Hidden symmetry in H-atom: Pauli-Lenz vector

~A = 1
2(~p× ~L− ~L× ~p)−mk

~r

r

Conserved quantity: [H,Ai] = 0

Algebra:

[Ai, Aj ] = −i2~
m
H Lk , [Li, Aj ] = i~ εijk Ak , [Li, Lj ] = i~ εijk Lk

Closes on eigenspace HE of fixed energy eigenvalue E.

Operator algebra determines spectrum (=̂ representation theory of SU(2))

En = −mk
2

2~2
1

n2
(degeneracy n2)

[5/26]



Fundamental symmetries: The Poincaré group

Einstein: Physical laws are the same in all systems of inertia

 translations in
 space & time

Poincare symmetry: Lorentz transformations +

rotations boosts

Mµ⌫ , Pµ

Mµ⌫ , Pµ ~L ~K Pµ

Li = 1
2εijkMjk Ki = M0i µ, ν, . . . = {0, i}

Representations

spin field example

0 scalar φ(x) Higgs
1/2 left handed spinor χα(x) leptons, quarks
1/2 right handed spinor ψ̄α̇(x) leptons, quarks
1 vector Aµ(x) photon, gauge bosons

3/2 ψαµ (x) gravitino (Rarita-Schwinger field)
2 hµν(x) graviton

Massless fields only have helicity h = ~p·~S
|~p| states h = ±s
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Extension I: Conformal symmetry

Physical theories without an intrinsic mass scale (=̂ massless theories or at very
high energies) have an enlarged space-time symmetry: Conformal symmetry

Angle preserving transformations: Dilatations and inversions

Dilatation transf.: d : xµ → κxµ κ ∈ R

Special conformal transf.: kµ = I ◦ pµ ◦ I with I : Inversion xµ → xµ

x2

Conformal group is so(2, 4) with algebra:

[Kµ, Pν ] = 2i(ηµνD −Mµν) , [D,Pµ] = iPµ , [D,Kµ] = −iKµ ,

[Kρ,Mµν ] = i(ηρµKν − ηρνKµ) & Poincaré

Examples:

Maxwell’s theory L = 1
4FµνF

µν , Fµν = ∂µAν − ∂νAµ
λφ4 theory L = 1

2(∂µφ)2 − λφ4
Standard model L = −1

4FµνF
µν + iψ̄ /Dψ + ψiYijψj φ

up to Higgs mass term + |Dµφ|2 − λ|φ|4 −m2 |φ|2
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Extension II: Supersymmetry

Supersymmetry is a unique extension of space-time symmetries [1971,1974]

“Square root” of the momentum: {Qα, Q̄α̇} = 2 (σµ)αα̇Pµ

Graded Lie algebra: Generators Qα & Q̄α̇ are fermionic.
Super-Poincaré algebra: {Mµ, Pµ;Qα, Q̄α̇}
Relates bosons and fermions:

Q̄α̇ |spin = s〉 = |spin = s+ 1/2〉

SUSY:
Boson ←→ Fermion
Gluon ←→ Gluino

Superpartners are degenerate in all quantum numbers (mass, charge, . . .)

Extended supersymmetry: Can have more than one set of supercharges

→ QAα & Q̄α̇ A with A = 1, . . . ,N :
F1B1

B2 F2

Gluon ←→ N Gluinos

Maximal SUSY: N = 4 spin-range {−1,−1/2, 0, 1/2, 1}
[8/26]
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Gauge Field Theory (or Yang-Mills-Theory)

Builds upon internal (non-space-time) symmetry

SU(N) Gauge theory: [1954]

A generalization of Maxwell’s theory of electromagnetism: Fµν = ∂µAν − ∂νAµ
Vector potential now N ×N hermitian matrix: (Aµ)ab(x) a,b=1,...,N

Local gauge symmetry: Aµ(x)→ UAµU
† + i

g U∂µU
† ∂µ = ∂

∂xµ

with U ∈ SU(N), i.e. unitary N ×N matrix, UU† = 1

Invariant action

SYM = 1
4

∫
d4xTr(Fµν F

µν ) Fµν = ∂µAν − ∂νAµ + ig [Aµ,Aν ]

g: Coupling constant.

N = 1: Maxwell theory!

[9/26]



N = 4 super Yang-Mills theory

Can we have everything?

Poincaré symmetry → relativistic QFT

Conformal symmetry → scale-invariant

Maximal supersymmetry (N = 4)

SU(N) local gauge symmetry (with N →∞)

⇒ N = 4 SYM

Aµ 1 Gluon spin=1

What is the simplest gauge theory?
Maximally supersymmetric Yang-Mills theory

• Most (super)symmetric gauge theory (without gravity)

• Exactly scale-invariant for any coupling

• Connection to string theory (weak/strong coupling duality)

• Particle content

• Interactions

• all proportional to same coupling          and related by supersymmetrygYM

Forum de la Théorie au CEA, Apr 4, 2013 - p. 5/20

The simplest gauge theory

Maximally supersymmetric Yang-Mills theory

✔ Most (super)symmetric theory possible (without gravity)

✔ Uniquely specified by local internal symmetry group - e.g. number of colors Nc for SU(Nc)

✔ Exactly scale-invariant field theory for any coupling (Green functions are powers of distances)

✔ Weak/strong coupling duality (AdS/CFT correspondence, gauge/string duality)

Particle content:
massless spin-1 gluon ( = the same as in QCD)

4 massless spin-1/2 gluinos ( = cousin of the quarks)

6 massless spin-0 scalars

Interaction between particles:

All proportional to same dimensionless coupling gYM and related to each other by supersymmetry
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LSYM = N
λ Tr

[
1
4F

2
µν + 1

2(DµΦI)
2 − 1

4 [ΦI , ΦJ ][ΦI , ΦJ ] + ψ̄ /Dψ + ψAψBΦAB + h.c.
]

Interactions:
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The simplest gauge theory

N = 4 SYM has remarkably rich properties:

Uniquely determined by gYM & N , exactly scale invariant at any coupling, no
UV divergences [1980’s]

Dual to string theory → AdS/CFT correspondence. [1997]

Strong coupling limit (λ = g2N2 →∞): Classical string on AdS5 × S5.

Appears to be integrable in N →∞ limit: [since 2003]

Exact results for two-point correlation functions 〈O(x)O(y)〉 = (x− y)2∆+γ(λ)

Hidden symmetries beyond super-conformal group: Yangian algebra

Deep mathematical understanding of scattering amplitudes

Renders model an ideal theoretical laboratory to study gauge theories (and string
theory)!

Could be the first exactly solvable interacting 4d QFT.

⇒ Non-physical! But possible starting point for novel perturbative approach.
⇒ Already now application to massless QCD exist.

[11/26]
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Dual string theory in a nut-shell

Idea: Replace particle by extended 1d object: string

String Theory as a consistent theory of quantum gravity

Idea: Replace particle by extended 1d object: string

Graviton Eichteilchen Materieteilchen

Vibrationsspektrum =̂ Spektrum der “Elementarteilchen”

5

Stringtheorie

• Idee: Ersetze Teilchen durch ausgedehntes 1d Objekt: “String”

�
lS ⇠ 10�33cm

• Quantenmechanik einer “Saite”: Schwerpunktsbewegung + Eigenschwingung:

5

Quantum mechanics of a relativistic string in flat space-time:

Graviton Gauge boson Matter particle

Vibrationsspektrum =̂ Spektrum der “Elementarteilchen”

5

Stringtheorie

• Idee: Ersetze Teilchen durch ausgedehntes 1d Objekt: “String”

�
lS ⇠ 10�33cm

• Quantenmechanik einer “Saite”: Schwerpunktsbewegung + Eigenschwingung:

5

Oscillation spectrum =̂ spectrum of “elementary particles”

Extended structure ’softens’ divergences:

Zeit

7

Stringwechselwirkungen: Störungsreihe

• Verallgemeinerung von Teilchengraphen: [1984-1995]

+ g2
S · + g4

S · +g6
S · (. . .)+ . . .

gS: Stringkopplungskonstante

Es treten keine Divergenzen mehr auf! Wechselwirkung ist “weich”

• Gravitonstreuung: =̂ Einsteins Gravitationstheorie

g2
S · =̂ Quantenkorrekturen zu Einsteins Theorie

7

Finite quantum theory of gravity! But: Needs higher dimensions d = 1 + 9

[8/27]

Quantum mechanics of a relativistic string in flat space-time:

Graviton Gauge boson Matter particle

Vibrationsspektrum =̂ Spektrum der “Elementarteilchen”

5

Stringtheorie

• Idee: Ersetze Teilchen durch ausgedehntes 1d Objekt: “String”

}
lS ∼ 10−33cm

• Quantenmechanik einer “Saite”: Schwerpunktsbewegung + Eigenschwingung:

5

Oscillation spectrum =̂ spectrum of “elementary particles”

Quantum consistency: Strings must propagate in d=9+1.

Yields theory of quantum gravity
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The String-Gauge Theory (or AdS/CFT) duality [Maldacena, 1997]

Holographic duality: Strings move in a space-time with boundary
(Anti-de-Sitter Space): AdS5 ×M5

Gauge field theory on 4d boundary

String theory in higher 
dimensional space

Two alternative mathematical descriptions of one physical object:

Gauge field theory =̂ String theory in space-time with boundary
[13/26]
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Scattering amplitudes

p1

p2
p3

pn−1pn

hn
hn−1

h1

h2

h3

S An({pi, hi}) =
probability amplitude for
scattering process

Central quantum field theory prediction for collider
experiments

Computed via Feynman diagrams:

Propagator

1.5 Massless particles: Helicity 13
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Table 1.2: Momentum space Feynman rules for gluons and massive Dirac fermions
in the representation R. We will specialize to the Feynman gauge x = 1.
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Feynman diagramatics

Task:

a) Draw all Feynman diagrams contributing to a given process

b) Integrate over all intermediate (off-shell) momenta
∫
d4−2εl imposing momentum

conservation δ(4)(
∑

i pi) at each vertex

c) An =
∑

all diagrams

Can rapidly get out of hand: (even at tree-level)

4 gluons:
= + + +

= +24 more

1

5 gluons:

= + + +

= +24 more

1

+ 24 more → result

Theory tools for scattering amplitudes
• theoretical input needed: scattering amplitudes

final results much simpler than intermediate steps!

J. Henn On gluon scattering amplitudes SFB talk April 28, 2009 - p. 2/18

Motivation and outline

✔ tree-level gluon scattering amplitudes in Yang-Mills theory

number of external gluons 4 5 6 7 8 9 10
number of diagrams 4 25 220 2485 34300 559405 10525900

Questions we want to ask:

✔ can we compute tree-level amplitudes for an arbitrary number of gluons?

✔ what are the symmetry properties of the amplitudes?

understand why this is the case!

Forum de la Théorie au CEA, Apr 4, 2013 - p. 7/20

Conventional approach

Simplest example: Gluon scattering amplitudes

1

2

3 4

5

6

7

+ . . .S =

Number of external gluons 4 5 6 7 8 9 10
Number of ‘tree’ diagrams 4 25 220 2485 34300 559405 10525900

✔ Number of diagrams grows factorially for large number of external gluons/number of loops

✔ If one spent 1 second for each diagram, computation of 10 gluon amplitude would take 121 days!

✔ ... but the final expression for tree amplitudes looks remarkably simple

Atree
n (1+2+3− . . . n−) =

⟨12⟩4
⟨12⟩⟨23⟩ . . . ⟨n1⟩ ,

ˆ
spinor notations: ⟨ij⟩ = λα(pi)λα(pj)

˜

• for LHC physics: need amplitudes with many particles

We know how to do this in principle:

(1) draw all Feynman diagrams
(2) compute them!

Often not so simple in practice! E.g. for gluon amplitudes:

Thursday, November 7, 13

[Mangano,Parke]
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From Z. Bern’s KITP Colloquium:

Result of a brute force calculation (actually only a small part of it):

k1 · k4 ε2 · k1 ε1 · ε3 ε4 · ε5

6



Simplicity of the result

When expressed in right variables the result is remarkably simple: [Parke,Taylor]

A5(1
±, 2+, 3+, 4+, 5+) = 0

A5(1
−, 2−, 3+, 4+, 5+) =

〈12〉4
〈12〉〈23〉〈34〉〈45〉〈51〉

A5(1
−, 2+, 3−, 4+, 5+) =

〈13〉4
〈12〉〈23〉〈34〉〈45〉〈51〉

(all others from cyclicity and parity)

Spinor helicity: pµ → pαα̇ = λαλ̃α̇ (makes pµpµ = 0 manifest)

λα =
1√

p0 + p3

(
p0 + p3

p1 + ip2

)
, λ̃α̇ = (λα)† , 〈ij〉 = εαβλ

α
i λ

β
j

What is the reason for this simplicity?

Hidden symmetries (→ hidden super-conformal invariance & more)

Analytic structure of the amplitude (→ factorization, soft & colinear limits)
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Basic problem of Feynman diagramatic approach

In Feynman graph techniques one sums and integrates over non-physical terms:

= + + +

= +24 more

Z d3 pdE
(2p)4 E2�~p2 6= m2

1

Internal states are off-
shell, violate mass-shell
condition

Similarly individual diagrams are gauge variant, but final result is gauge invariant!

On-shell approaches:

Since 2005 tremendous progress in our understanding of scattering amplitudes based
on on-shell formulations:

On-shell recursion relations X

Hidden symmetries X

Generalized unitarity X

Twistors & the Grassmannian ×
The N = 4 SYM theory has been instrumental in this progress!
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Britto-Cachazo-Feng-Witten (BCFW) recursion

Idea: Complexify momenta but stay on-shell z ∈ C

p1 → p̂1 = λ1 (λ̃1 − z λ̃n) pn → p̂n = (λn + z λ1) λ̃n

An → An(z)

An(z = 0) =
∑

ResAn(zi)

2.1 Britto-Cachazo-Feng-Witten (BCFW) on-shell recursion 37

zpi

z

!

Fig. 2.2: Pulling the initial circle C0 off to infinity in eqn. (2.16).

As
L(zPi) = AL

i (1̂(zPi),2, . . . , i�1,�P̂s(zPi)) (2.14)
As̄

R(zPi) = AR
i (P̂s̄(zPi), i, . . . ,n�1, n̂(zPi)) . (2.15)

Of course we are interested in the original amplitude An = An(z = 0). Using the
residue theorem it may be written as

An = An(z = 0) =
I

C0

dz
2pi

A(z)
z

=
n�1

Â
i=2

Â
s

As
L(zPi)

1
P2

i
As̄

R(zPi)+Res(z = •) . (2.16)

Here C0 is a small circle around the origin at z = 0 not embracing any of the poles
zPi . To reach the final expression we have pulled this circle off to infinity capturing
all the poles zPi in the complex plane, now encircled in the opposite orientation, see
figure 2.2. If An(z)! 0 as z! • we can drop the residue at z = • (also called
boundary term.) As we show presently, this is the case for gauge theories, under
certain conditions. Assuming this for now we arrive at the BCFW recursion relation
[27]:

An =
n�1

Â
i=2

Â
s

As
L(zPi)

1
P2

i
As̄

R(zPi) . (2.17)

The following comments are in order. We chose neighboring legs 1̂ and n̂ to perform
the complex shifts. One may generalize to non-adjacent legs. In that case, there are
typically more BCFW diagrams to consider. In general, different BCFW deforma-
tions lead to equivalent representations of the same amplitude. The equivalence may
not always be easy to see analytically. Multi-line shifts involving more than two legs
have also been considered in the literature [28].

Yields recursive relation for on-shell amplitudes

An =
∑

i

Ahi+1

1

P 2
i

A−hn−i+1

. . .. .
.. . .. .
.

1̂
2

n̄

P̂iP̂i

i − 1 i

∑∑ ALAL ARAR

x̂1 , θ̂1x2 , θ2

xi , θi
xi−1 , θi−1

xn , θn

r.h.s. of on-shell recursion relation dual variables

Figure 1: Illustration of the r.h.s of the on-shell recursion relations (9),(12). The picture on the right
illustrates the transition to dual variables.

Hatted quantities denote the shifted variables. This shift, called an |n1〉 shift, is depicted in
Fig. 1. Note that the amplitudes Ah

L(zPi
), A−h

R (zPi
) are on-shell. Indeed, the shift parameter zP

must be chosen such that this is the case, which amounts to saying that the shifted intermediate
momentum P̂i = −(λ̂1λ̃1 +

∑i−1
j=2 λjλ̃j) is on-shell, i.e.

(P̂i)
2 =

(
−

i−1∑

j=1

λjλ̃j + zPi
λnλ̃1

)2

= 0 . (11)

Note also that the propagator 1/P 2
i in (9) is evaluated for unshifted kinematics.

We will use the supersymmetric version of the BCF recursion relations of [17, 18, 19]. This
amounts to replacing the sum over intermediate states by a superspace integral, and the on-shell
amplitudes by super-amplitudes, i.e.

A =
∑

Pi

∫
d4ηPi

AL(zPi
)

1

P 2
i

AR(zP ) . (12)

The validity of the supersymmetric equations can be justified by relating the z → ∞ behaviour
of the shifted super-amplitudes A(z) to the known behaviour of component amplitudes [15] using
supersymmetry [17, 18, 19].

For the supersymmetric equations, supersymmetry requires that in addition to (10) we also
have

η̂n = ηn + zPi
η1 . (13)

In the following sections it will be very useful to use the dual variables [21]

λiλ̃i = xi − xi+1 . (14)

As was already mentioned, these have a natural generalisation to dual superspace [1], i.e.

λiηi = θi − θi+1 . (15)

Following [18], in the supersymmetric recursion relations only the following dual variables get
shifted,

x̂1 = x1 − zPi
λnλ̃1 , θ̂1 = θ1 − zPi

λnη1 . (16)

See Fig. 1. The fact that all other dual variables remain inert under the shift will prove useful
when solving the supersymmetric recursion relations.

4

P̂ 2
i = 0

“Atoms” are the 3-point amplitudes: A3(i
−, j−) =

〈ij〉
〈12〉〈23〉〈31〉

No 4 point vertices needed!
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N = 4 SYM: Superamplitudes and Super-BCFW recursion

Consider super momentum-space
using 4 anti-commuting coordinates ηA:

q↵A = �↵ ⌘A

p↵↵̇ = �↵ �̃↵̇

Define superamplitudes in this formal space: [Nair]

2.7 N = 4 super Yang-Mills theory 61

Bosons Fermions
Field g+ g� SAB g̃A ¯̃gA

Name gluon scalar gluino anti-gluino
Helicity +1 �1 0 +1/2 �1/2

Degrees of freedom 1 1 6 4 4
SU(4)R representation singlet anti-symmetric (6) fundamental (4) anti-fund. (4̄)

This N = 4 SYM on-shell multiplet may be assembled into one on-shell superfield
F upon introducing the Grassmann odd parameter hA with A = 1,2,3,4

F(p,h) =g+(p)+hA g̃A(p)+ 1
2! hA hB SAB(p)

+ 1
3! hA hB hC eABCD ¯̃gD(p)+ 1

4! hA hB hC hD eABCD g�(p) . (2.109)

If we assign the helicity h = 1/2 to the Grassmann variable hA then the on-shell
superfield F(h) carries uniform helicity h = 1. This extends our definition eq. (1.75)
for the helicity operator h to the supersymmetric case

h = 1
2 [�l a ∂a + l̃ ȧ ∂ȧ +hA ∂A ] , ∂A :=

∂
∂hA , (2.110)

with hF(h) = F(h). The introduced superspace {l a , l̃ ȧ ,hA} is chiral in the fol-
lowing sense: The complex conjugate of hA is not part of the superspace: (hA) = h̄A.

It is natural to consider color ordered superamplitudes in N = 4 SYM whose
external legs are parametrized by a point in super-momentum space Li := {li, l̃i,hi}
associated to an on-shell superfield F(Li), i.e.

l2, l̃2,h2l1, l̃1,h1

ln, l̃n,hn ln�1, l̃n�1,hn�1

An({li, l̃i,hi}) = hF(l1, l̃1,h1) . . .F(ln, l̃n,hn)i . (2.111)

This prescription packages all possible component field amplitudes involving glu-
ons, gluinos and scalars as external states into a single object. The component level
amplitudes may then be extracted from a known An({li, l̃i,hi}) upon expanding it
in the Grassmann odd hA

i variables.
For example, the expansion of the hA

i -polynomial of An(Li) will contain terms
such as

(h1)
4 (h2)

4 An(�,�,+, . . . ,+) with h4
i := 1

4! eABCD hA
i hB

i hC
i hD

i ,

An =
δ(4)(

∑
i pi) δ

(8)(
∑

i qi)

〈12〉 〈23〉 . . . 〈n1〉 Pn({λi, λ̃i, ηi})

Superamplitudes package all gluon-gluino-scalar amplitudes together.

Super-BCFW recursion exists: [Arkani-Hamed,Cachazo,Cheung,Kaplan]

An(1, . . . , n) =

n−1∑

i=3

∫
d4ηP̂i A

L
i

(
1̂, . . . ,−P̂i

) 1

P 2
i

ARn−i+2

(
P̂i, . . . , n̂

)

Recursion may be solved completely!
⇒ All tree-amplitudes in N = 4 SYM known in analytic form. [Drummond,Henn]
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Application to massless QCD

Use gluon-gluino amplitudes from N = 4 superamplitudes to construct analytic
formulae for all n-point tree-level gluon-quark (gn−2l(qq̄)l) amplitudes with l ≤ 4.
[Dixon,Henn,JP,Schuster]

Needs to suppress intermediate
production of scalars

B

− +AA

+B − B

− +AB

+A −

Figure 1: Unwanted scalar exchange between fermions of di↵erent flavors, A 6= B.

+A

A

(a)

+

+

+A

A

(c)

+

A

B

(d)

+

!

A

B

(b)

!

Figure 2: These vertices all vanish, as explained in the text. This fact allows us to
avoid scalar exchange and control the flow of fermion flavor.

analyzing whether scalar exchange can be avoided, as well as the pattern of fermion flavor flow,
one can ignore the gluons altogether. For example, figure 3 shows the possible cases for amplitudes
with one or two fermion lines. The left-hand side of the equality shows the desired (color-ordered)
fermion-line flow and helicity assignment for a QCD tree amplitude. All gluons have been omitted,
and all fermion lines on the left-hand side are assumed to have distinct flavors. The right-hand
side of the equality displays a choice of gluino flavor that leads to the desired amplitude. All other
one- and two-fermion-line cases are related to the ones shown by parity or cyclic or reflection
symmetries.

The one-fermion line, case (1), is trivial because N = 1 SYM forms a closed subsector of
N = 4 SYM. In case (2a) we must choose all gluinos to have the same flavor; otherwise a scalar
would be exchanged in the horizontal direction. Here, helicity conservation prevents the exchange
of an unwanted gluon in this direction, keeping the two flavors distinct as desired. In case (2b),
we must use two di↵erent gluino flavors, as shown; otherwise helicity conservation would allow
gluon exchange in the wrong channel, corresponding to identical rather than distinct quarks.

More generally, in order to avoid scalar exchange, if two color-adjacent gluinos have the same
helicity, then we should choose them to have the same flavor. In other words, we should forbid all
configurations of the form (. . . , A+, B+, . . .) and (. . . , A�, B�, . . .) for A 6= B, where A± stands
for the gluino state g̃±

A . While this is necessary, it is not su�cient. For example, we also need
to forbid configurations such as (. . . , A+, C±, C⌥, B+, . . .), because the pair (C±, C⌥) could be
produced by a gluon splitting into this pair, which also connects to the (A+, B+) fermion line.
As a secondary consideration, if two color-adjacent gluinos have opposite helicity, then we should
choose them to have the same flavor or di↵erent flavor according to the desired quark flavor flow

8

Leads to numerically fast and
stable results
[Badger,Biedermann,Hackl,JP,Schuster,Uwer]
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multiplicity N
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BG

(N-2) gluon 2 quark amplitudes

Figure 2: Evaluation time per phase space point for amplitudes with a quark–anti-quark
pair and N�2 gluons.

In Fig. 2, Fig. 3 and Fig. 4 we show the results of a similar analysis, now for amplitudes
involving up to three quark–anti-quark pairs. Again the Berends-Giele recursion method is
presented only for a fixed number of negative helicity gluons since our implementation is
independent of the gluon helicities. However, to take into account that the runtime depends on
the position of the quarks in the primitive amplitude we took the same configuration average as
for the corresponding analytic formula of smallest MHV degree. Overall we observe a picture
similar to the pure gluon case: for MHV and NMHV amplitudes the analytic results are much
faster than the evaluation based on the Berends-Giele recursion. Comparing the performance
of the Berends-Giele recursion for 0, 2, 4, 6 quarks we find a decreasing dependence on the
parton multiplicity. This is simply due to the fact that for a fixed multiplicity the number of
currents which have to be evaluated decreases if more fermions are involved. Since the n4

asymptotic of the recursion is due to the four gluon vertex, we expect that the asymptotic
scaling will be approached from below. Indeed, for two, four, six quarks we get n3.96, n3.83,
n3.64 from the last five data points compared to n3.77, n3.43, n3.19 for up to n = 15 partons. The
timings of the analytical formulae show only a small dependence on the number of quarks.
As a consequence the Berends-Giele recursion is more efficient for the NNMHV amplitudes
involving quarks. In case of all MHV amplitudes it is remarkable that the analytic formulae
for MHV amplitudes show a very weak dependence on the parton multiplicity. The evaluation

12

Are being used for cross section computations of LHC processes today!
[BlackHat collaboration]
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Symmetries of scattering amplitudes

Superconformal symmetry of N = 4 SYM constrains superamplitudes

Atree
n =

δ(4)(
∑

i pi) δ
(8)(
∑

i qi)

〈12〉 〈23〉 . . . 〈n1〉 Pn(λi, λ̃i, ηi)

Obvious symmetries:

pαα̇ =

n∑

i=1

λαi λ̃
α̇
i qαA =

n∑

i=1

λαi η
A
i ⇒ pAtree = 0 = qAtree

explains vanishing of An(1±, 2+, . . . , n+)

Less obvious symmetries [Witten]

kαα̇ =

n∑

i=1

∂

∂λαi

∂

∂λ̃α̇i
sαA =

n∑

i=1

∂

∂λαi

∂

∂ηAi
⇒ kAtree = 0 = sAtree

explains form of An(1−, 2−, 3+ . . . , n+)

We have super-conformal invariance of tree-amplitudes (32+32 generators):

JaAtree
n = 0 with Ja ∈ { p, k, m̄,m, d, r, q, q̄, s, s̄,ci }
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Hidden symmetries

Tree superamplitudes are invariant under additional hidden dual conformal or
Yangian symmetry (as in H-atom) [Drummond,Henn,Korchemsky,Sokatchev][Drummond,Henn,JP]

Dual coordinates: pi = xi+1 − xi qi = θi+1 − θi
Has two copies of (super)-conformal symmetry generators

(1) Acting in momentum space: kαα̇ =
∑

i

∂

∂λαi

∂

∂λ̃α̇i

(2) Acting on dual coordinates: Kµ =
∑

i

x2i
∂

∂xµi
− 2xi µ xi ·

∂

∂xi

Origin: Duality between Scattering amplitudes and Wilson loops

J. Henn Scattering amplitudes, Wilson loops, and dual superconformal symmetry DESY Zeuthen December 11, 2008 - p. 11/23

Gluon scattering amplitudes / Wilson loops duality

⇐⇒

. . .

x1 x2

x3 xµ
i+1 − xµ

i = pµ
i

. . .
xn−1

xnp1

p2p3

.

.

.

pn−1 pn

ln W (Cn) = div + F (WL)(a, pi · pj) + O(ε)

! Proposal: MHV gluon amplitudes at are dual to light-like Wilson loops

F (A)(a, pi · pj) = F (WL)(a, pi · pj) + O(1/Nc) + const

! motivated at strong coupling via AdS/CFT [Alday, Maldacena ’07]

! field theory:

" valid at one loop [Drummond,Korchemsky,Sokatchev ’07],[Brandhuber, Heslop, Travaglini ’07]

" two-loop calculation for n = 4, 5 points [Drummond,J.H.,Korchemsky,Sokatchev ’07]

" result agrees with BDS formula!

# Why is the result so simple?

AdS/CFT: T-duality of dual string theory. [Alday,Maldacena][Beisert,Ricci,Tseytlin][Berkovits,Maldacena]
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Yangian symmetry

Mathematical structure of hidden symmetries: Yangian algebra Y [psu(2, 2|4)]
[Drinfeld]

Ja =

n∑

i=1

Jai (level 0) Ja(1) = fabc

n∑

i<j

Jbi J
c
j (level 1)

An ∞-dim non-local symmetry algebra Ja(n) n = 0, 1, 2, . . .

[Ja, Jb] = ifabc J
c

[Ja, Jb(1)] = ifabc J
c
(1)

[Ja(1), J
b
(1)] = ifabc J

c
(2) + gab(J

a, Ja(1))

Ja(n)A
tree
n = 0 ∀n [Drummond,Henn,JP]

Signature of integrable field theory. Explains simplicity of Atree
n ⇔ Determines

form of Atree
n [Bargheer,Beisert,McLoughlin,Loebbert,Galleas]
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Generalized unitarity

On-shell methods also constructive at 1-loop (NLO-order) [Bern,Dixon,Dunbar,Kosower]

General 1-loop amplitude may be decomposed in basis integrals
[Passarino,Veltman][Ossola,Papadopoulos,Pittau,][Giele,Kunszt,Melnikov]

In N = 4 SYM: Only box integrals occur due to dual conformal symmetry.

A1-loop
n =

∑

i

ciBoxi

Find ci by putting internal propagators on-shell [Bern,Dixon,Kosower,Smirnov]

ci = = 1
2

∑

l±

Atree
1 (l±)Atree

2 (l±)Atree
3 (l±)Atree

4 (l±)
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State of the art

Known MHV amplitudes: An(1−, 2−, 3+, . . . , n+) in N = 4 SYM

# legs

# loops

4 5 6 7 8 ...

0

1

9

2

3

4

5

1
...

...

...

BCFW recursion

unitarity

...
...

integrands (loop level recursion)
[Arkani-Hamed et al]

AdS/CFT
[Alday,Maldacena]

...

Bern-Dixon-Smirnov ansatz & dual conformal symmetry
          [Anastasiou,Bern,Dixon,Kosower][Drummond,Henn,Sokatchev,Korchemsky]

bootstrap [Drummond,Dixon,Duhr, Pennington,Hippel] 
 & integrability [Basso-Sever-Vieira]
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Summary

Field combines a multitude of areas in theoretical and mathematical physics:

Fundamental aspects
of quantum field theory

Phenomenology of
elementary particles

String Theory

Integrable systems

Mathematics: Algebraic 
geometry & number theory

⇒ Intellectually rich and fascinating research area with “real physics” applications!
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