Scattering amplitudes and hidden symmetries in supersymmetric gauge theory

Jan Plefka

Institut für Physik, Humboldt-Universität zu Berlin und Institut für Theoretische Physik, ETH Zürich

ETHzürich

Gluons, quarks, gluinos \& strings: Scattering amplitudes and hidden symmetries in supersymmetric gauge theory

Plan:
(1) Introduction: Elementary particle physics and quantum field theory
(2) Symmetries
(3) Supersymmetric gauge field theory
(- String-gauge theory duality
(0) Scattering amplitudes and on-shell methods

- Symmetries of scattering amplitudes
(0) (Generalized unitarity)

Elementary Particle Physics

- Quantum Field Theory: Relativistic many particle quantum theory
- Describes scattering processes in accelerators

Perturbative description:
Series expansion in $g \ll 1 \quad g$: Coupling constant

- Feynman diagrams: Describe particle propagation \& interactions
- Symmetries play central role:
- Determine possible particles \& their interactions
- Can severly constrain results for observables
- Exact analytic methods beyond perturbation theory are sparse
- Desirable to advance our fundamental understanding of quantum field theory

The Standard Model of Particle Physics

Three fundamental forces described by Gauge Field Theories

Forces:
$\mathrm{SU}(\mathbf{3}) \times \mathbf{S U}(\mathbf{2}) \times \mathbf{U}(\mathbf{1}) \quad \hat{=}$ Gauge Field Theories

Electromagnetism (photons)
Weak Force (W \& Z bosons)
Strong Force (gluons) $\hat{=}$ Quantum Chromodynamics (QCD)
$\mathrm{SU}(\mathbf{N})$ Gauge Field Theory: Fields are $N \times N$ matrices: $\quad \mathbf{A}_{\mu}^{\mathrm{SU}(2)}(x)=\left(\begin{array}{cc}Z & W^{+} \\ W^{-} & -Z\end{array}\right)$

Spectrum:

Leptons	Quarks	Vector bosons	Scalar
e, ν_{e}	u, d	A_{μ}	
μ, ν_{μ}	s, c	$W^{ \pm}, Z$	Higgs
τ, ν_{τ}	t, b	A_{μ}^{a}	

Gravity is not
contained!

Symmetries

Symmetries

Symmetries lie at the heart of our understanding of physics. They constrain or even determine physical theories and their observables.

- Mathematically symmetry transformations form a group

$$
G_{1} \circ G_{2}=G_{3} \quad\left\{G_{i}, \mathbb{1}, G_{i}^{-1}\right\} \in \text { group }
$$

- Continous transf.: Lie group $G(\phi)=e^{i \phi^{a} \hat{J}_{a}} \quad \hat{J}_{a}:$ Generator $\quad \phi^{a} \in \mathbb{R}$
- Group property entails commutation relations

$$
\left[\hat{J}_{a}, \hat{J}_{b}\right]=i f_{a b}{ }^{c} \hat{J}_{c} \quad \text { Lie algebra } \quad a, b, c=1, \ldots, \operatorname{dim}(g)
$$

- Known from QM. Example: Rotations and translations

$\left[L_{i}, L_{j}\right]=i \hbar \epsilon_{i j k} L_{k} \quad\left[P_{i}, P_{j}\right]=0$

Symmetries

Symmetries lie at the heart of our understanding of physics. They constrain or even determine physical theories and their observables.

- Mathematically symmetry transformations form a group

$$
G_{1} \circ G_{2}=G_{3} \quad\left\{G_{i}, \mathbb{1}, G_{i}^{-1}\right\} \in \text { group }
$$

- Continous transf.: Lie group $G(\phi)=e^{i \phi^{a} \hat{J}_{a}} \quad \hat{J}_{a}:$ Generator $\quad \phi^{a} \in \mathbb{R}$
- Group property entails commutation relations

$$
\left[\hat{J}_{a}, \hat{J}_{b}\right]=i f_{a b}{ }^{c} \hat{J}_{c} \quad \text { Lie algebra } \quad a, b, c=1, \ldots, \operatorname{dim}(g)
$$

- Known from QM. Example: Rotations and translations

$$
\begin{array}{cc}
R(\vec{\phi})=e^{i \vec{\phi} \cdot \hat{\vec{L}}} & T(\vec{a})=e^{i \vec{\alpha} \cdot \hat{P}} \\
\vec{L}: \text { Angular momentum } & \vec{P}: \text { Momentum } \\
{\left[L_{i}, L_{j}\right]=i \hbar \epsilon_{i j k} L_{k} \quad\left[P_{i}, P_{j}\right]=0} & {\left[L_{i}, P_{k}\right]=i \hbar \epsilon_{i j k} P_{k}}
\end{array}
$$

Hidden symmetries: The Hydrogen atom

- Hamiltonian $H=\frac{\vec{p}^{2}}{2 m}-\frac{k}{r}$
- Rotational symmetry: $\left[H, L_{i}\right]=0 \quad \Rightarrow \quad H|n, l, m\rangle=E_{n, l}|n, l, m\rangle$
- Hidden symmetry in H -atom: Pauli-Lenz vector

$$
\vec{A}=\frac{1}{2}(\vec{p} \times \vec{L}-\vec{L} \times \vec{p})-m k \frac{\vec{r}}{r}
$$

- Conserved quantity: $\left[H, A_{i}\right]=0$
- Algebra:

$$
\left[A_{i}, A_{j}\right]=-i \frac{2 \hbar}{m} H L_{k}, \quad\left[L_{i}, A_{j}\right]=i \hbar \epsilon_{i j k} A_{k}, \quad\left[L_{i}, L_{j}\right]=i \hbar \epsilon_{i j k} L_{k}
$$

- Closes on eigenspace \mathcal{H}_{E} of fixed energy eigenvalue E.
- Operator algebra determines spectrum ($\hat{=}$ representation theory of $S U(2)$)

$$
E_{n}=-\frac{m k^{2}}{2 \hbar^{2}} \frac{1}{n^{2}} \quad\left(\text { degeneracy } n^{2}\right)
$$

Fundamental symmetries: The Poincaré group

- Einstein: Physical laws are the same in all systems of inertia

rotations boosts

$$
L_{i}=\frac{1}{2} \epsilon_{i j k} M_{j k} \quad K_{i}=M_{0 i} \quad \mu, \nu, \ldots=\{0, i\}
$$

- Representations

spin	field	example
0	scalar $\phi(x)$	Higgs
$1 / 2$	left handed spinor $\chi_{\alpha}(x)$	leptons, quarks
$1 / 2$	right handed spinor $\bar{\psi}_{\dot{\alpha}}(x)$	leptons, quarks
1	vector $A_{\mu}(x)$	photon, gauge bosons
$3 / 2$	$\psi_{\mu}^{\alpha}(x)$	gravitino (Rarita-Schwinger field)
2	$h_{\mu \nu}(x)$	graviton

- Massless fields only have helicity $h=\frac{\vec{p} \cdot \vec{S}}{|\vec{p}|}$ states $h= \pm s$

Extension I: Conformal symmetry

- Physical theories without an intrinsic mass scale ($\hat{=}$ massless theories or at very high energies) have an enlarged space-time symmetry: Conformal symmetry
- Angle preserving transformations: Dilatations and inversions

Dilatation transf.:	$d: x^{\mu} \rightarrow \kappa x^{\mu}$	$\kappa \in \mathbb{R}$	
Special conformal transf.:	$k^{\mu}=I \circ p^{\mu} \circ I$	with $I:$ Inversion	$x^{\mu} \rightarrow \frac{x^{\mu}}{x^{2}}$

- Conformal group is $\mathfrak{s o}(2,4)$ with algebra:

$$
\begin{aligned}
{\left[K_{\mu}, P_{\nu}\right] } & =2 i\left(\eta_{\mu \nu} D-M_{\mu \nu}\right), & {\left[D, P_{\mu}\right]=i P_{\mu}, } & {\left[D, K_{\mu}\right]=-i K_{\mu}, } \\
{\left[K_{\rho}, M_{\mu \nu}\right] } & =i\left(\eta_{\rho \mu} K_{\nu}-\eta_{\rho \nu} K_{\mu}\right) & \text { \& Poincaré } &
\end{aligned}
$$

- Examples:

Naxwell's theory
$\lambda \phi^{4}$ theory
Standard model
up to Higgs mass term

Extension I: Conformal symmetry

- Physical theories without an intrinsic mass scale ($\hat{=}$ massless theories or at very high energies) have an enlarged space-time symmetry: Conformal symmetry
- Angle preserving transformations: Dilatations and inversions

Dilatation transf.:	$d:$	$x^{\mu} \rightarrow \kappa x^{\mu}$	$\kappa \in \mathbb{R}$
Special conformal transf.:	$k^{\mu}=I \circ p^{\mu} \circ I$	with $I:$ Inversion	$x^{\mu} \rightarrow \frac{x^{\mu}}{x^{2}}$

- Conformal group is $\mathfrak{s o}(2,4)$ with algebra:

$$
\begin{aligned}
{\left[K_{\mu}, P_{\nu}\right] } & =2 i\left(\eta_{\mu \nu} D-M_{\mu \nu}\right), & {\left[D, P_{\mu}\right]=i P_{\mu}, } & {\left[D, K_{\mu}\right]=-i K_{\mu}, } \\
{\left[K_{\rho}, M_{\mu \nu}\right] } & =i\left(\eta_{\rho \mu} K_{\nu}-\eta_{\rho \nu} K_{\mu}\right) & \text { \& Poincaré } &
\end{aligned}
$$

- Examples:

Maxwell's theory

$$
\mathcal{L}=\frac{1}{4} F_{\mu \nu} F^{\mu \nu}, \quad F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}
$$

$$
\lambda \phi^{4} \text { theory } \quad \mathcal{L}=\frac{1}{2}\left(\partial_{\mu} \phi\right)^{2}-\lambda \phi^{4}
$$

Standard model $\quad \mathcal{L}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+i \bar{\psi} \not D \psi+\psi_{i} Y_{i j} \psi_{j} \phi$
up to Higgs mass term

$$
+\left|D_{\mu} \phi\right|^{2}-\lambda|\phi|^{4}-m^{2}|\phi|^{2}
$$

Extension II: Supersymmetry

Supersymmetry is a unique extension of space-time symmetries
"Square root" of the momentum:

$$
\left\{Q_{\alpha}, \bar{Q}_{\dot{\alpha}}\right\}=2\left(\sigma^{\mu}\right)_{\alpha \dot{\alpha}} P_{\mu}
$$

- Graded Lie algebra: Generators $Q_{\alpha} \& \bar{Q}_{\dot{\alpha}}$ are fermionic. Super-Poincaré algebra: $\left\{M_{\mu}, P_{\mu} ; Q_{\alpha}, \bar{Q}_{\dot{\alpha}}\right\}$
- Relates bosons and fermions:

$$
\left.\left.\bar{Q}_{\dot{\alpha}} \mid \text { spin }=s\right\rangle=\mid \text { spin }=s+1 / 2\right\rangle
$$

- SUSY:

Boson \longleftrightarrow Fermion
Gluon \longleftrightarrow Gluino
Superpartners are degenerate in all quantum numbers (mass, charge, ...)

- Extended supersymmetry: Can have more than one set of supercharges
$\rightarrow Q_{\alpha}^{A} \& \bar{Q}_{\dot{\alpha} A}$ with $A=1, \ldots, \mathcal{N}$:

Gluon $\longleftrightarrow \mathcal{N}$ Gluinos

- Maximal SUSY: $\mathcal{N}=4$ spin-range $\{-1,-1 / 2,0,1 / 2,1\}$

Gauge field theory

Gauge Field Theory (or Yang-Mills-Theory)

- Builds upon internal (non-space-time) symmetry
- $\mathbf{S U}(\mathbf{N})$ Gauge theory: [1954]

A generalization of Maxwell's theory of electromagnetism: $F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}$
Vector potential now $N \times N$ hermitian matrix: $\quad\left(\mathbf{A}_{\mu}\right)_{a b}(x){ }_{a, b=1, \ldots, N}$

- Local gauge symmetry: $\quad \mathbf{A}_{\mu}(x) \rightarrow \mathbf{U} \mathbf{A}_{\mu} \mathbf{U}^{\dagger}+\frac{i}{\mathrm{~g}} \mathbf{U} \partial_{\mu} \mathbf{U}^{\dagger} \quad \partial_{\mu}=\frac{\partial}{\partial x^{\mu}}$ with $\mathbf{U} \in S U(N)$, i.e. unitary $N \times N$ matrix, $\mathbf{U}^{\dagger}{ }^{\dagger}=1$
- Invariant action

$$
S_{\mathrm{YM}}=\frac{1}{4} \int d^{4} x \operatorname{Tr}\left(\mathbf{F}_{\mu \nu} \mathbf{F}^{\mu \nu}\right) \quad \mathbf{F}_{\mu \nu}=\partial_{\mu} \mathbf{A}_{\nu}-\partial_{\nu} \mathbf{A}_{\mu}+i \mathbf{g}\left[\mathbf{A}_{\mu}, \mathbf{A}_{\nu}\right]
$$

g: Coupling constant.

- $N=1$: Maxwell theory!

$\mathcal{N}=4$ super Yang-Mills theory

Can we have everything?

- Poincaré symmetry \rightarrow relativistic QFT
- Conformal symmetry \rightarrow scale-invariant

$$
\Rightarrow \quad \mathcal{N}=4 \mathrm{SYM}
$$

- Maximal supersymmetry $(\mathcal{N}=4)$
- $S U(N)$ local gauge symmetry (with $N \rightarrow \infty$)

A_{μ}	1 Gluon	$\operatorname{spin}=1$	mor	(= same as in QCD)
ψ_{α}^{A}	4 Gluinos	$\operatorname{spin}=1 / 2$	-	(= cousin of the quarks)
ϕ_{I}	6 Scalars	$\operatorname{spin}=0$	$\ldots \ldots \ldots$	

$$
\mathcal{L}_{\mathrm{SYM}}=\frac{N}{\lambda} \operatorname{Tr}\left[\frac{1}{4} F_{\mu \nu}^{2}+\frac{1}{2}\left(D_{\mu} \Phi_{I}\right)^{2}-\frac{1}{4}\left[\Phi_{I}, \Phi_{J}\right]\left[\Phi_{I}, \Phi_{J}\right]+\bar{\psi} D \phi \psi+\psi^{A} \psi^{B} \Phi_{A B}+\text { h.c. }\right]
$$

Interactions:

All fields $N \times N$ matrices. In $N \rightarrow \infty$ (planar) limit: One parameter $\lambda=g^{2} N$

The simplest gauge theory

$\mathcal{N}=4$ SYM has remarkably rich properties:

- Uniquely determined by $g_{Y M} \& N$, exactly scale invariant at any coupling, no UV divergences [1980's]
- Dual to string theory \rightarrow AdS/CFT correspondence. [1997]

Strong coupling limit $\left(\lambda=g^{2} N^{2} \rightarrow \infty\right)$: Classical string on $A d S_{5} \times S^{5}$.

- Appears to be integrable in $N \rightarrow \infty$ limit: [since 2003]
- Exact results for two-point correlation functions $\langle\mathcal{O}(x) \mathcal{O}(y)\rangle=(x-y)^{2 \Delta+\gamma(\lambda)}$
- Hidden symmetries beyond super-conformal group: Yangian algebra
- Deep mathematical understanding of scattering amplitudes

Renders model an ideal theoretical laboratory to study gauge theories (and string theory)!

Could be the first exactly solvable interacting 4d QFT.
\Rightarrow Non-physical! But possible starting point for novel perturbative approach.
\Rightarrow Already now application to massless QCD exist.

String Theory

Dual string theory in a nut-shell

- Idea: Replace particle by extended 1d object: string

- Quantum mechanics of a relativistic string in flat space-time:

Graviton

Gauge boson

Matter particle

- Oscillation spectrum $\hat{=}$ spectrum of "elementary particles"
- Quantum consistency: Strings must propagate in $d=9+1$.
- Yields theory of quantum gravity

The String-Gauge Theory (or AdS/CFT) duality [Mildeane, 1997]

- Holographic duality: Strings move in a space-time with boundary (Anti-de-Sitter Space): $\quad A d S_{5} \times \mathcal{M}_{5}$

- Two alternative mathematical descriptions of one physical object:

Gauge field theory $\hat{=}$ String theory in space-time with boundary

Scattering amplitudes

Scattering amplitudes

$$
\mathcal{A}_{n}\left(\left\{p_{i}, h_{i}\right\}\right)=\begin{aligned}
& \text { probability amplitude for } \\
& \text { scattering process }
\end{aligned}
$$

Central quantum field theory prediction for collider experiments

Computed via Feynman diagrams:
Propagator

Vertices

$$
\begin{gathered}
=g f^{a b c}\left[(q-r)_{\mu} \eta_{v \rho}+(r-p)_{v} \eta_{\rho \mu}\right. \\
\left.+(p-q)_{\rho} \eta_{\mu v}\right]
\end{gathered}
$$

$$
=-i g^{2}\left[f^{a b e} f^{c d e}\left(\eta_{\mu \rho} \eta_{\nu \sigma}-\eta_{\mu \sigma} \eta_{v \rho}\right)\right.
$$

$$
+f^{a c e} f^{d b e}\left(\eta_{\mu \sigma} \eta_{\rho v}-\eta_{\mu \nu} \eta_{\rho \sigma}\right)
$$

$$
\left.+f^{a d e} f^{b c e}\left(\eta_{\mu v} \eta_{\sigma \rho}-\eta_{\mu \rho} \eta_{\sigma v}\right)\right]
$$

Feynman diagramatics

Task:

a) Draw all Feynman diagrams contributing to a given process
b) Integrate over all intermediate (off-shell) momenta $\int d^{4-2 \epsilon} l$ imposing momentum conservation $\delta^{(4)}\left(\sum_{i} p_{i}\right)$ at each vertex
c) $\mathcal{A}_{n}=\sum$ all diagrams

Can rapidly get out of hand: (even at tree-level)

4 gluons:

5 gluons:

number of external gluons	4	5	6	7	8	9	10
number of diagrams	4	25	220	2485	34300	559405	10525900

[Mangano,Parke]

Result of a brute force calculation (actually only a small part of it):

 $4 \mathrm{n} \cdot 4 \boldsymbol{4}$

 $f\left(x_{3}, \operatorname{ch}_{5}-41\right.$

 -an men

 $-\mathrm{H}_{1} \cdot \mathrm{MR}$

Simplicity of the result

When expressed in right variables the result is remarkably simple:

$$
\begin{aligned}
\mathcal{A}_{5}\left(1^{ \pm}, 2^{+}, 3^{+}, 4^{+}, 5^{+}\right) & =0 \\
\mathcal{A}_{5}\left(1^{-}, 2^{-}, 3^{+}, 4^{+}, 5^{+}\right) & =\frac{\langle 12\rangle^{4}}{\langle 12\rangle\langle 23\rangle\langle 34\rangle\langle 45\rangle\langle 51\rangle} \\
\mathcal{A}_{5}\left(1^{-}, 2^{+}, 3^{-}, 4^{+}, 5^{+}\right) & =\frac{\langle 13\rangle^{4}}{\langle 12\rangle\langle 23\rangle\langle 34\rangle\langle 45\rangle\langle 51\rangle}
\end{aligned}
$$

(all others from cyclicity and parity)
Spinor helicity: $\quad p^{\mu} \rightarrow p^{\alpha \dot{\alpha}}=\lambda^{\alpha} \tilde{\lambda}^{\dot{\alpha}} \quad$ (makes $p^{\mu} p_{\mu}=0$ manifest)

$$
\lambda^{\alpha}=\frac{1}{\sqrt{p^{0}+p^{3}}}\binom{p^{0}+p^{3}}{p^{1}+i p^{2}}, \quad \tilde{\lambda}^{\dot{\alpha}}=\left(\lambda^{\alpha}\right)^{\dagger}, \quad\langle i j\rangle=\epsilon_{\alpha \beta} \lambda_{i}^{\alpha} \lambda_{j}^{\beta}
$$

What is the reason for this simplicity?

Simplicity of the result

When expressed in right variables the result is remarkably simple:

$$
\begin{aligned}
& \mathcal{A}_{5}\left(1^{ \pm}, 2^{+}, 3^{+}, 4^{+}, 5^{+}\right)=0 \\
& \mathcal{A}_{5}\left(1^{-}, 2^{-}, 3^{+}, 4^{+}, 5^{+}\right)=\frac{\langle 12\rangle^{4}}{\langle 12\rangle\langle 23\rangle\langle 34\rangle\langle 45\rangle\langle 51\rangle} \\
& \mathcal{A}_{5}\left(1^{-}, 2^{+}, 3^{-}, 4^{+}, 5^{+}\right)=\frac{\langle 13\rangle^{4}}{\langle 12\rangle\langle 23\rangle\langle 34\rangle\langle 45\rangle\langle 51\rangle}
\end{aligned}
$$

(all others from cyclicity and parity)
Spinor helicity: $\quad p^{\mu} \rightarrow p^{\alpha \dot{\alpha}}=\lambda^{\alpha} \tilde{\lambda}^{\dot{\alpha}} \quad$ (makes $p^{\mu} p_{\mu}=0$ manifest)

$$
\lambda^{\alpha}=\frac{1}{\sqrt{p^{0}+p^{3}}}\binom{p^{0}+p^{3}}{p^{1}+i p^{2}}, \quad \tilde{\lambda}^{\dot{\alpha}}=\left(\lambda^{\alpha}\right)^{\dagger}, \quad\langle i j\rangle=\epsilon_{\alpha \beta} \lambda_{i}^{\alpha} \lambda_{j}^{\beta}
$$

What is the reason for this simplicity?

- Hidden symmetries (\rightarrow hidden super-conformal invariance \& more)
- Analytic structure of the amplitude (\rightarrow factorization, soft \& colinear limits)

Basic problem of Feynman diagramatic approach

In Feynman graph techniques one sums and integrates over non-physical terms:

$$
\int \frac{d^{3} p d E}{(2 \pi)^{4}}
$$

Similarly individual diagrams are gauge variant, but final result is gauge invariant!
On-shell approaches:
Since 2005 tremendous progress in our understanding of scattering amplitudes based on on-shell formulations:

- On-shell recursion relations \checkmark
- Hidden symmetries \checkmark
- Generalized unitarity
- Twistors \& the Grassmannian \times

The $\mathcal{N}=4$ SYM theory has been instrumental in this progress!

Britto-Cachazo-Feng-Witten (BCFW) recursion

- Idea: Complexify momenta but stay on-shell $z \in \mathbb{C}$

$$
\begin{aligned}
& p_{1} \rightarrow \hat{p}_{1}=\lambda_{1}\left(\tilde{\lambda}_{1}-z \tilde{\lambda}_{n}\right) \quad p_{n} \rightarrow \hat{p}_{n}=\left(\lambda_{n}+z \lambda_{1}\right) \tilde{\lambda}_{n} \\
& \mathcal{A}_{n} \rightarrow \mathcal{A}_{n}(z) \\
& \mathcal{A}_{n}(z=0)=\sum \operatorname{Res} \mathcal{A}_{n}\left(z_{i}\right)
\end{aligned}
$$

- Yields recursive relation for on-shell amplitudes

$$
\mathcal{A}_{n}=\sum_{i} \mathcal{A}_{i+1}^{h} \frac{1}{P_{i}^{2}} \mathcal{A}_{n-i+1}^{-h} \quad \sum \underbrace{\vdots}_{2} \mathcal{A}_{\hat{\mathrm{L}}} \hat{P}_{\overline{1}}^{i-1} \hat{P}_{i} \mathcal{A}_{\mathrm{R}}=0
$$

- "Atoms" are the 3-point amplitudes: $\quad A_{3}\left(i^{-}, j^{-}\right)=\frac{\langle i j\rangle}{\langle 12\rangle\langle 23\rangle\langle 31\rangle}$
- No 4 point vertices needed!

$\mathcal{N}=4$ SYM: Superamplitudes and Super-BCFW recursion

- Consider super momentum-space using 4 anti-commuting coordinates η^{A} :

- Define superamplitudes in this formal space:

Superamplitudes package all gluon-gluino-scalar amplitudes together.

- Super-BCFW recursion exists:
[Arkani-Hamed,Cachazo, Cheung, Kaplan]

$$
\mathbb{A}_{n}(1, \ldots, n)=\sum_{i=3}^{n-1} \int d^{4} \eta_{\hat{P}_{i}} \mathbb{A}_{i}^{L}\left(\hat{1}, \ldots,-\hat{P}_{i}\right) \frac{1}{P_{i}^{2}} \mathbb{A}_{n-i+2}^{R}\left(\hat{P}_{i}, \ldots, \hat{n}\right)
$$

- Recursion may be solved completely!
\Rightarrow All tree-amplitudes in $\mathcal{N}=4$ SYM known in analytic form.

Application to massless QCD

Use gluon-gluino amplitudes from $\mathcal{N}=4$ superamplitudes to construct analytic formulae for all n-point tree-level gluon-quark $\left(g^{n-2 l}(q \bar{q})^{l}\right)$ amplitudes with $l \leq 4$.
[Dixon,Henn,JP,Schuster]
($\mathrm{N}-2$) gluon 2 quark amplitudes
Needs to suppress intermediate production of scalars

Leads to numerically fast and stable results
[Badger,Biedermann,Hackl,JP,Schuster,Uwer]

Are being used for cross section computations of LHC processes today!
[BlackHat collaboration]

Symmetries of scattering amplitudes

- Superconformal symmetry of $\mathcal{N}=4$ SYM constrains superamplitudes

$$
\mathbb{A}_{n}^{\text {tree }}=\frac{\delta^{(4)}\left(\sum_{i} p_{i}\right) \delta^{(8)}\left(\sum_{i} q_{i}\right)}{\langle 12\rangle\langle 23\rangle \ldots\langle n 1\rangle} \mathcal{P}_{n}\left(\lambda_{i}, \tilde{\lambda}_{i}, \eta_{i}\right)
$$

- Obvious symmetries:

$$
p^{\alpha \dot{\alpha}}=\sum_{i=1}^{n} \lambda_{i}^{\alpha} \tilde{\lambda}_{i}^{\dot{\alpha}} \quad q^{\alpha A}=\sum_{i=1}^{n} \lambda_{i}^{\alpha} \eta_{i}^{A} \quad \Rightarrow p \mathbb{A}^{\text {tree }}=0=q \mathbb{A}^{\text {tree }}
$$

explains vanishing of $A_{n}\left(1^{ \pm}, 2^{+}, \ldots, n^{+}\right)$

- Less obvious symmetries

$$
k_{\alpha \dot{\alpha}}=\sum_{i=1}^{n} \frac{\partial}{\partial \lambda_{i}^{\alpha}} \frac{\partial}{\partial \tilde{\lambda}_{i}^{\dot{\alpha}}} \quad s_{\alpha A}=\sum_{i=1}^{n} \frac{\partial}{\partial \lambda_{i}^{\alpha}} \frac{\partial}{\partial \eta_{i}^{A}} \quad \Rightarrow k \mathbb{A}^{\text {tree }}=0=s \mathbb{A}^{\text {tree }}
$$

explains form of $A_{n}\left(1^{-}, 2^{-}, 3^{+} \ldots, n^{+}\right)$

- We have super-conformal invariance of tree-amplitudes $(32+32$ generators $)$:

$$
J^{a} \mathbb{A}_{n}^{\text {tree }}=0 \quad \text { with } \quad J^{a} \in\left\{p, k, \bar{m}, m, d, r, q, \bar{q}, s, \bar{s}, c_{i}\right\}
$$

Hidden symmetries

Tree superamplitudes are invariant under additional hidden dual conformal or Yangian symmetry (as in H -atom)
[Drummond,Henn,Korchemsky,Sokatchev][Drummond,Henn,JP]

- Dual coordinates: $p_{i}=x_{i+1}-x_{i} \quad q_{i}=\theta_{i+1}-\theta_{i}$
- Has two copies of (super)-conformal symmetry generators
(1) Acting in momentum space: $k_{\alpha \dot{\alpha}}=\sum_{i} \frac{\partial}{\partial \lambda_{i}^{\alpha}} \frac{\partial}{\partial \tilde{\lambda}_{i}^{\dot{\alpha}}}$
(2) Acting on dual coordinates: $K_{\mu}=\sum_{i} x_{i}^{2} \frac{\partial}{\partial x_{i}^{\mu}}-2 x_{i \mu} x_{i} \cdot \frac{\partial}{\partial x_{i}}$
- Origin: Duality between Scattering amplitudes and Wilson loops

$$
x_{i+1}^{\mu}-x_{i}^{\mu}=p_{i}^{\mu}
$$

- AdS/CFT: T-duality of dual string theory. [Alday,Maldacena][Beisert,Ricci,Tseytlin][Berkovits,Maldacena]

Yangian symmetry

- Mathematical structure of hidden symmetries: Yangian algebra $Y[\mathfrak{p s u}(2,2 \mid 4)]$
[Drinfeld]

$$
J^{a}=\sum_{i=1}^{n} J_{i}^{a} \quad\left(\text { level 0) } \quad J_{(1)}^{a}=f^{a}{ }_{b c} \sum_{i<j}^{n} J_{i}^{b} J_{j}^{c} \quad(\text { level 1) }\right.
$$

An ∞-dim non-local symmetry algebra $\quad J_{(n)}^{a} n=0,1,2, \ldots$

$$
\begin{aligned}
{\left[J^{a}, J^{b}\right] } & =i f_{c}^{a b} J^{c} \\
{\left[J^{a}, J_{(1)}^{b}\right] } & =i f_{c}^{a b} J_{(1)}^{c} \\
{\left[J_{(1)}^{a}, J_{(1)}^{b}\right] } & =i f_{c}^{a b} J_{(2)}^{c}+g_{a b}\left(J^{a}, J_{(1)}^{a}\right) \\
& J_{(n)}^{a} \mathbb{A}_{n}^{\text {tree }}=0
\end{aligned} n n ?
$$

- Signature of integrable field theory. Explains simplicity of $\mathbb{A}_{n}^{\text {tree }} \Leftrightarrow$ Determines form of $\mathbb{A}_{n}^{\text {tree }}$ [Bargheer,Beisert,McLoughlin,Loebbert,Galleas]

Generalized unitarity

- On-shell methods also constructive at 1-loop (NLO-order) [Bern,Dixon,Dunbar,Kosower]
- General 1-loop amplitude may be decomposed in basis integrals
[Passarino, Veltman][Ossola,Papadopoulos,Pittau,][Giele,Kunszt,Melnikov]

- In $\mathcal{N}=4$ SYM: Only box integrals occur due to dual conformal symmetry.

$$
A_{n}^{1-\text { loop }}=\sum_{i} c_{i} \mathrm{Box}_{i}
$$

- Find c_{i} by putting internal propagators on-shell

$$
c_{i}=\sim_{i}^{e^{2}-\vec{p}^{2}=0}
$$

State of the art

Known MHV amplitudes: $A_{n}\left(1^{-}, 2^{-}, 3^{+}, \ldots, n^{+}\right)$in $\mathcal{N}=4$ SYM

Summary

Field combines a multitude of areas in theoretical and mathematical physics:

\Rightarrow Intellectually rich and fascinating research area with "real physics" applications!

Thank you for your attention

Literature:

Bern, Dixon, Kosower, Scientific American 2012 Beisert et. al. „Review of AdS/CFT integrability", Lett.Math.Phys. 99 Ellis, Kunszt, Melnikov, Zanderighi, Phys. Rep. 518 (2012) Henn \& Plefka, „Scattering Amplitudes in Gauge Theories"

LNP 883, Springer

