

CLASSICAL BLACK HOLE SCATTERING FROM A WORLDLINE QFT

Jan Plefka

Humboldt University Berlin

Based on joint work with

Gustav Uhre Jakobsen, Gustav Mogull, Benjamin Sauer,
Jan Steinhoff (AEI)

2010:02865, *JHEP* 02 (2021) 048

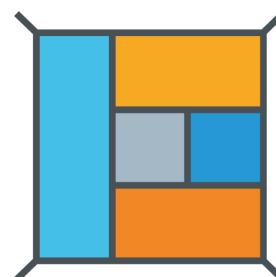
2101.12688, *PRL* 126 (2021) 20

2106.10256, *PRL* 128 (2022) 1

2109.04465, *JHEP* 01 (2022) 027

2201.07778, *PRL* 128 (2022) 14

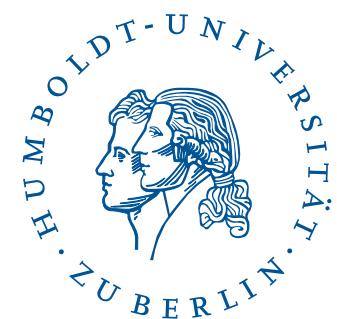
2207.00569,



RTG 2575:

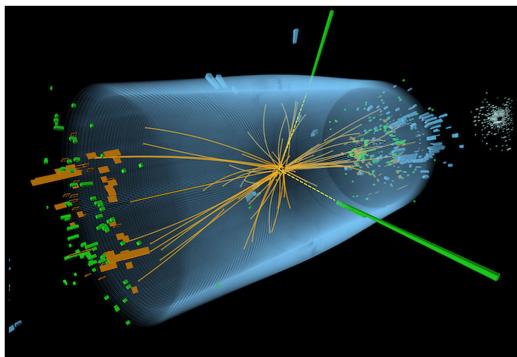
**Rethinking
Quantum Field Theory**

Quantum Universe Cluster Day, DESY, 09/22



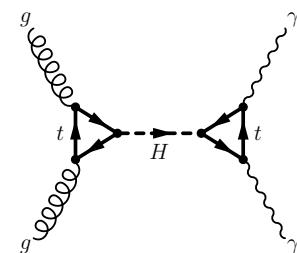
Particle Physics: Paradigmatic experiment is Scattering in Colliders

Theory: Relativistic Quantum Field Theory (QFT)

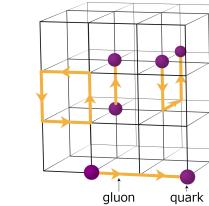


↔
path integral
quantization

$$\mathcal{L} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} + i\bar{\psi}\not{D}\psi + \psi_i Y_{ij}\psi_j \phi + |D_\mu\phi|^2 - \lambda|\phi|^4 - m^2|\phi|^2$$



Perturbative QFT: S-matrix



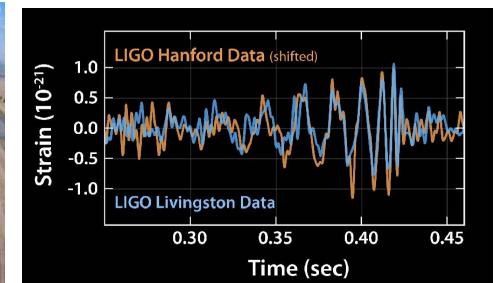
Lattice Field Thy: Bound system

Gravity: Gravitational wave emission in Black Hole and Neutron Star encounters now routinely measured in LIGO-Virgo-Karga GW detectors

Classical radiative field theory

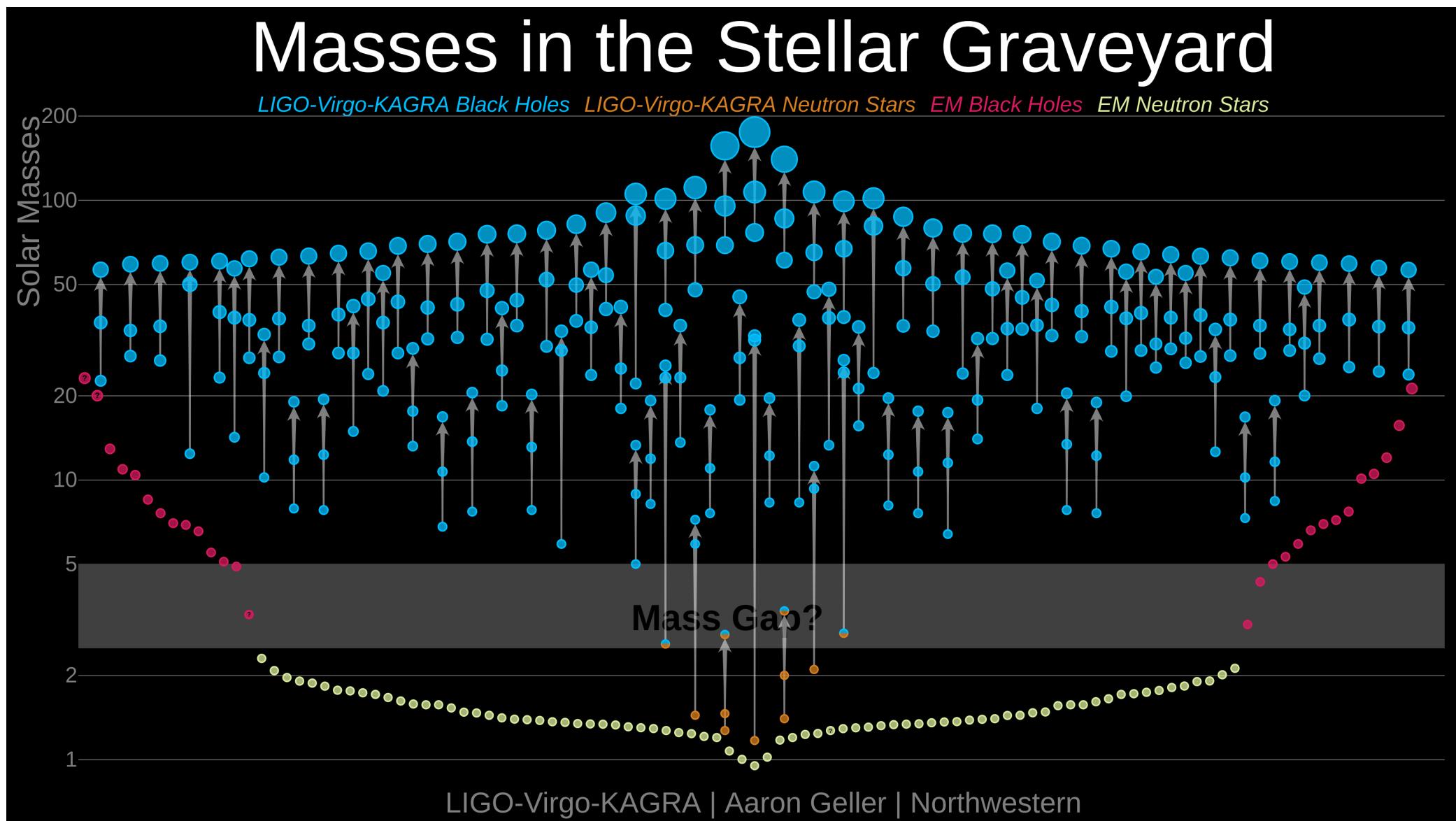


$$\mathcal{L} = \frac{1}{16\pi G}\sqrt{-g}R + \mathcal{L}_{\text{Matter}}$$



Theory: Need for high-precision solution of **classical** gravitational two-body problem. **Here:** Apply perturbative QFT techniques in classical limit!

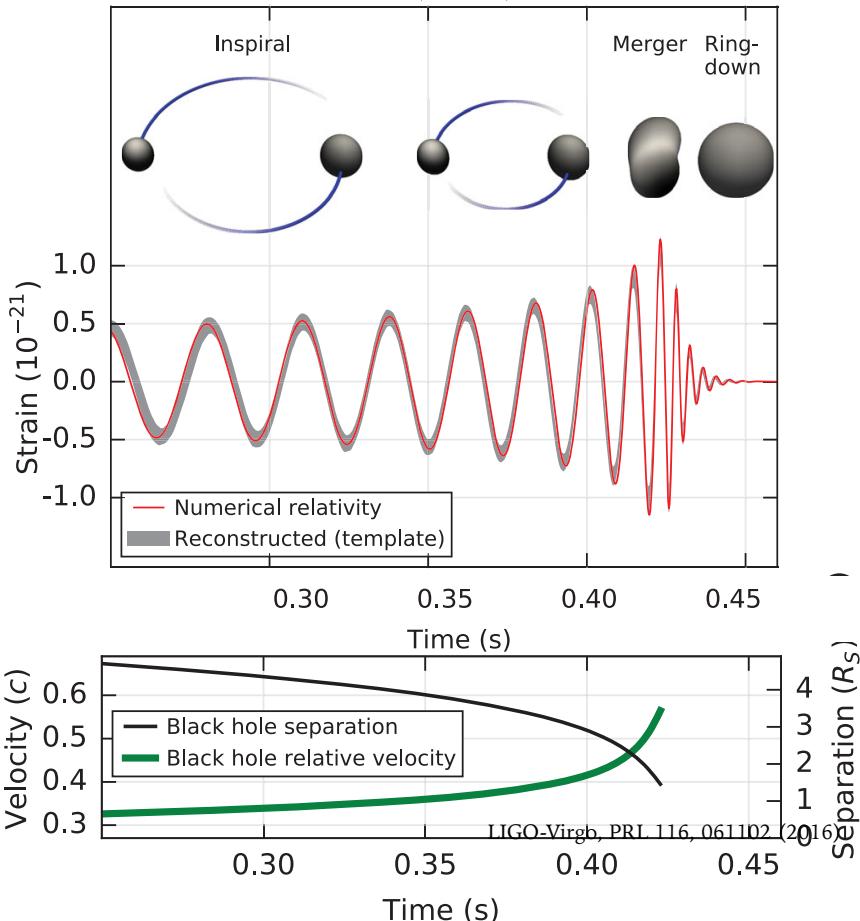
GRAVITATIONAL WAVES: A NEW OBSERVATIONAL ERA



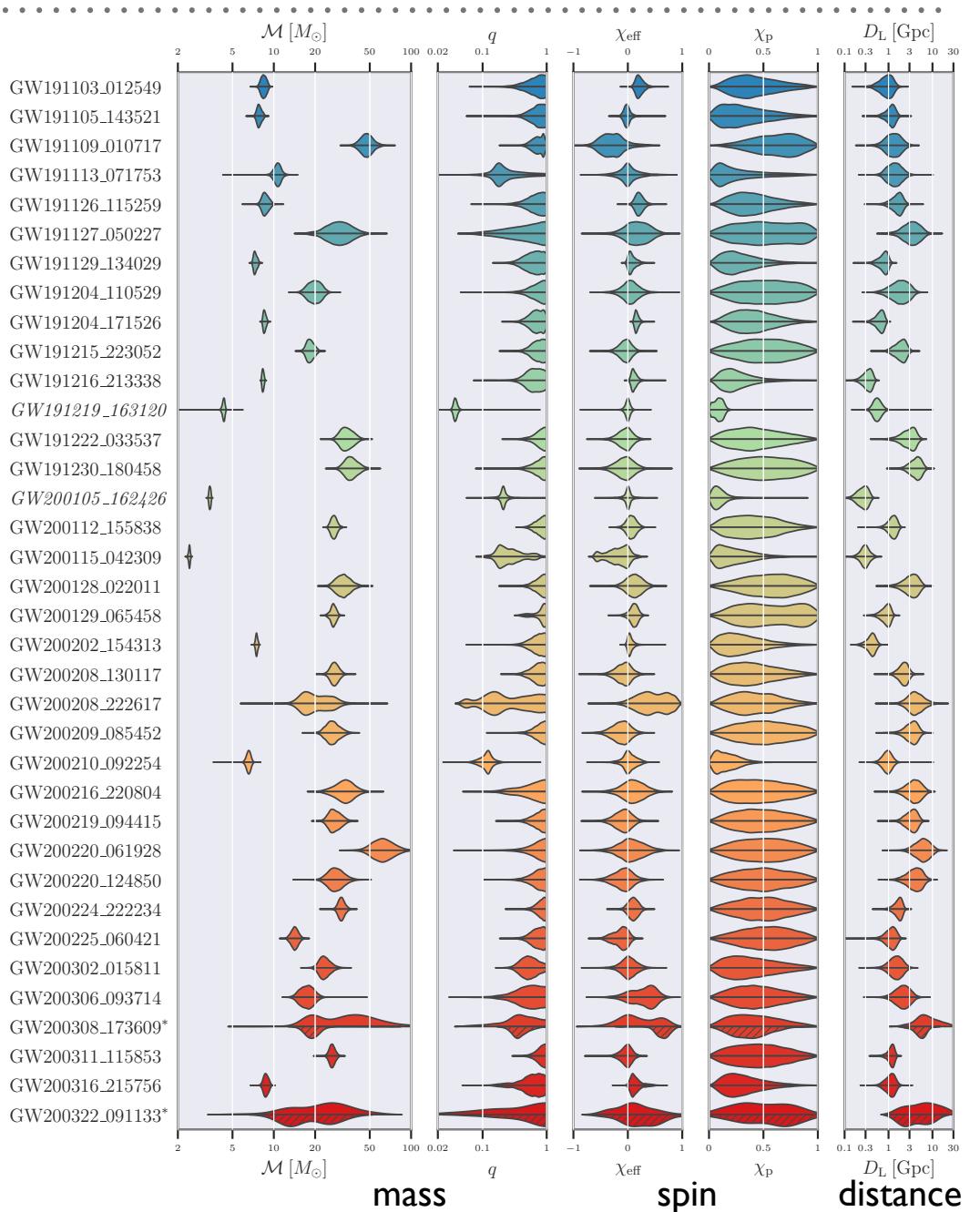
Following GW150914: To date 90 binary mergers detected by LIGO-Virgo-Karga Collaboration

GRAVITATIONAL WAVES: A NEW OBSERVATIONAL ERA

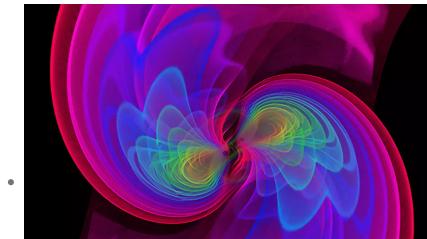
Binary mergers of black holes (BHs) and neutron stars (NS)



Measurement of binary parameters
Masses, Spins, Distance



PHYSICS CASES



AEI

Astrophysics:

- Black hole formation & evolution
- Neutron star properties: Equation of state, strong interacting matter
- Multi-messenger astronomy
- New astrophysical sources of GW

Fundamental physics:

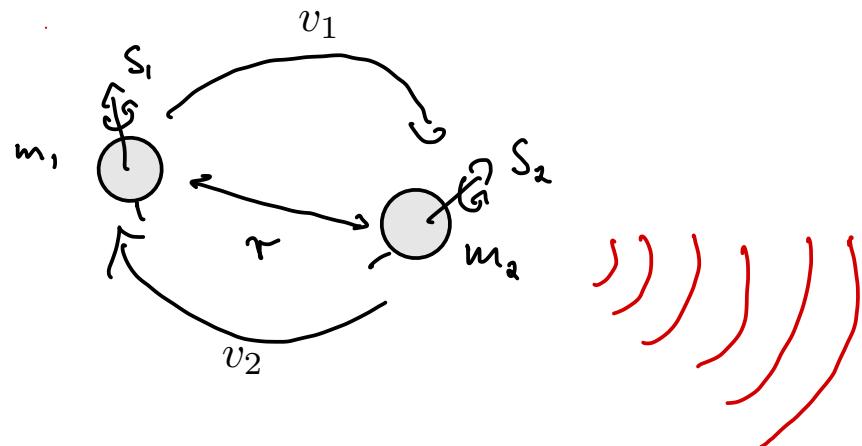
- Precision tests of (strong field) GR
- New physics signals? Modifications of GR, Higher curvature terms, Dark Matter...
- Black hole properties

- 3rd generation of GW observatories (Einstein Telescope; Advanced LIGO, LISA) to start in 2030's. Highly increase of sensitivity.

- Need for high precision theory predictions

THE GENERAL RELATIVISTIC 2-BODY PROBLEM

As in Newtonian case has either **bound** or **unbound** orbits.



Inspiral of 2 BHs or NSs:

Virial-thm: $\frac{GM}{r} \sim v^2$ $(c = 1)$

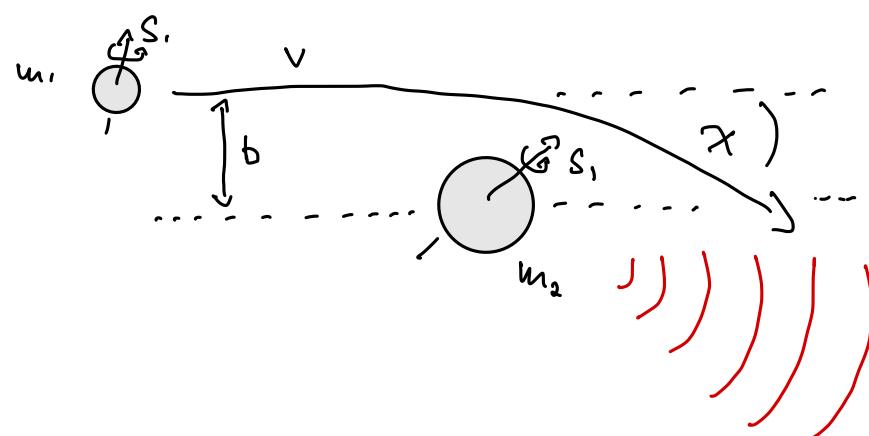
post-Newtonian (PN) expansion

Weak field expansion:

$$g_{\mu\nu} = \eta_{\mu\nu} + \kappa h_{\mu\nu}$$

$$\kappa = \sqrt{32\pi G}$$

Newton's constant



Scattering of 2 BHs or NSs:

Weak field (G), but exact in v

post-Minkowskian (PM) expansion

THE POST NEWTONIAN EXPANSION

Effective (conservative) action for two massive bodies:

$$\begin{aligned}
 S = & \sum_i \int dt \left[-m_i + \left(\frac{m_i \mathbf{v}_i^2}{2} + \sum_{j \neq i} \frac{G m_i m_j}{2 r_{ij}} \right) \right. \\
 & + \left(\frac{m_i \mathbf{v}_i^4}{8} + \sum_{j \neq i} \frac{G m_i m_j}{4 r_{ij}} (6 \mathbf{v}_i^2 - (\mathbf{n}_{ij} \cdot \mathbf{v}_i)(\mathbf{n}_{ij} \cdot \mathbf{v}_j) - 7 \mathbf{v}_i \cdot \mathbf{v}_j) - \sum_{j \neq i} \sum_{k \neq i} \frac{G^2 m_i m_j m_k}{2 r_{ij} r_{ik}} \right) \Big] \\
 & + \sum_i \int dt \left\{ \frac{m_i \mathbf{v}_i^6}{16} + \sum_{j \neq i} \frac{G m_i m_j}{16 r_{ij}} \left[3(\mathbf{n}_{ij} \cdot \mathbf{v}_i)^2 (\mathbf{n}_{ij} \cdot \mathbf{v}_j)^2 - 6 \mathbf{n}_{ij} \cdot \mathbf{v}_i \mathbf{n}_{ij} \cdot \mathbf{v}_j \mathbf{v}_{ij}^2 - 2 (\mathbf{n}_{ij} \cdot \mathbf{v}_j)^2 \mathbf{v}_i^2 \right. \right. \\
 & \quad \left. + 3 \mathbf{v}_i^2 \mathbf{v}_j^2 + 2 (\mathbf{v}_i \cdot \mathbf{v}_j)^2 - 20 \mathbf{v}_i^2 \mathbf{v}_i \cdot \mathbf{v}_j + 14 \mathbf{v}_i^4 \right] + \sum_{j \neq i} \frac{G^2 m_i m_j^2}{2 r_{ij}^2} \left[33 (\mathbf{n}_{ij} \cdot \mathbf{v}_{ij})^2 - 17 \mathbf{v}_{ij}^2 \right] \\
 & \quad \left. + \sum_{j \neq i} \sum_{k \neq i} \frac{G^2 m_i m_j m_k}{8} \left[\frac{1}{r_{ij} r_{ik}} (4(\mathbf{n}_{ij} \cdot \mathbf{v}_j)^2 + 18 \mathbf{v}_i^2 - 16 \mathbf{v}_j^2 - 32 \mathbf{v}_i \cdot \mathbf{v}_j + 32 \mathbf{v}_j \cdot \mathbf{v}_k) \right. \right. \\
 & \quad \left. \left. + \frac{1}{r_{ij}^2} (14 \mathbf{n}_{ik} \cdot \mathbf{v}_k \mathbf{n}_{ij} \cdot \mathbf{v}_k - 12 \mathbf{n}_{ij} \cdot \mathbf{v}_i \mathbf{n}_{ik} \cdot \mathbf{v}_k + \mathbf{n}_{ij} \cdot \mathbf{n}_{ik} (\mathbf{n}_{ik} \cdot \mathbf{v}_k)^2 - \mathbf{n}_{ij} \cdot \mathbf{n}_{ik} \mathbf{v}_k^2) \right] \right. \\
 & \quad \left. + \sum_{j \neq i} \sum_{k \neq i, j} G^2 m_i m_j m_k \left[\frac{2(\mathbf{n}_{ij} - \mathbf{n}_{jk}) \cdot \mathbf{v}_{ij}}{(r_{ij} + r_{ik} + r_{jk})^2} (4(\mathbf{n}_{ij} + \mathbf{n}_{ik}) \cdot \mathbf{v}_{ij} + (\mathbf{n}_{ik} + \mathbf{n}_{jk}) \cdot \mathbf{v}_{ik}) \right. \right. \\
 & \quad \left. \left. + \frac{9(\mathbf{n}_{ij} \cdot \mathbf{v}_{ij})^2 - 9 \mathbf{v}_{ij}^2 + 2(\mathbf{n}_{ij} \cdot \mathbf{v}_{ik})^2 - 2 \mathbf{v}_{ik}^2}{r_{ij} (r_{ij} + r_{ik} + r_{jk})} \right] \right\} + G^3 \times [\text{static term}], \quad + \dots
 \end{aligned}$$

1PN:

[Newton (1687)]

2PN:

[Einstein,Infeld, Hofmann(1938)]

3PN:

[Ohta,Okamura,Hiida, Kimura (1974)]

4PN: [Damour, Jaranowski,Schaefer (2016); Blanchet,Bohe,Faye (2015)]

5PN: [Bini,Damour,Geralico (2019); Foffa (2017); Porto, Rothstein, Sturani (2019)]

Partial results at 6PN...

POST-NEWTONIAN VS POST-MINKOWSKIAN EXPANSIONS

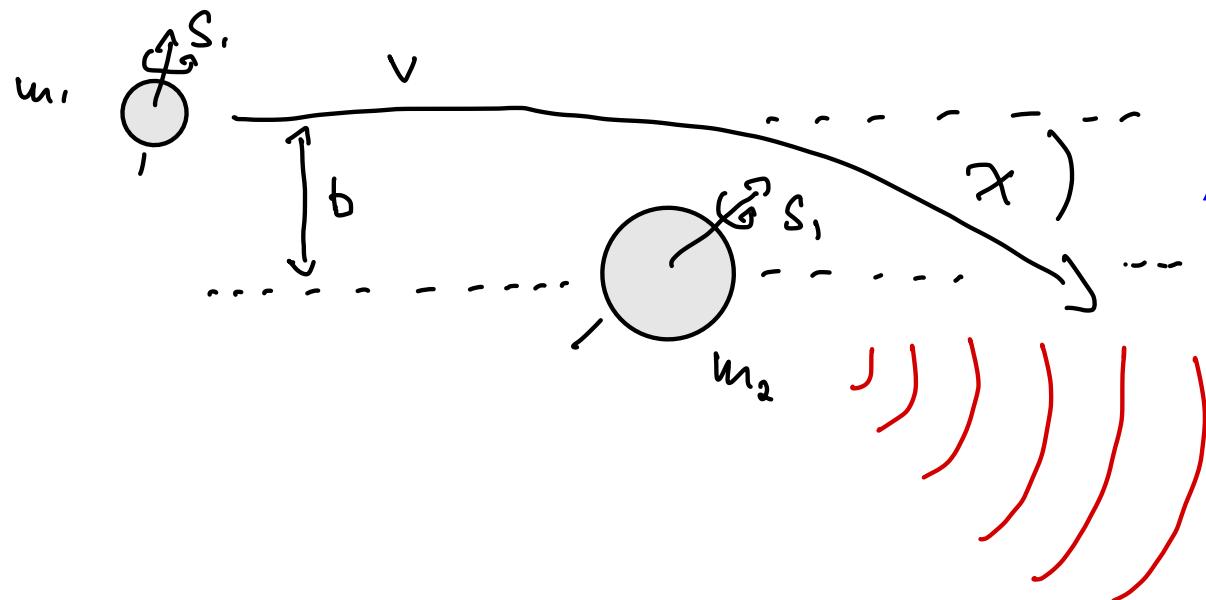
Conservative non-spinning 2-body dynamics:

		0PN	1PN	2PN	3PN	4PN	5PN	Integration complexity
0PM [Einstein]	1	v^2	v^4	v^6	v^8	v^{10}	v^{12}	...
1PM [Westpfahl]		G/r [Newton]	$G v^2/r$ [EIH]	$G v^4/r$	$G v^6/r$	$G v^8/r$	$G v^{10}/r$	~ tree-level
2PM [many]			$G^2 1/r^2$	$G^2 v^2/r^2$	$G^2 v^4/r^2$	$G^2 v^6/r^2$	$G^2 v^8/r^2$	~ 1-loop
3PM				$G^3 1/r^3$	$G^3 v^2/r^3$	$G^3 v^6/r^3$	$G^3 v^8/r^3$	~ 2-loop
(4PM)	PM state-of-the-art	→			$G^4 1/r^4$	$G^4 v^2/r^4$	$G^4 v^6/r^4$...
....	(w/o radiation)				⋮	↑	⋮	~ 3-loop
						PN state-of-the-art		

[Bern,Cheung,Roiban,Shen,Solon,Zeng][Kälin,Liu,Porto][Di Vecchia,Heissenberg,Russo,Veneziano]
[Bjerrum-Bohr,Vanhove,Damgaard][Brandhuber,Chen,Travaglini,Wen][Jakobsen,Mogull,JP,Sauer]

[Bern,Parra-Martinez,Roiban,Ruf,Shen,Solon,Zeng][Dlapa,Kälin,Liu,Porto]

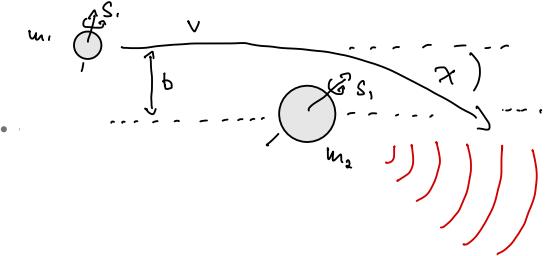
THE POST-MINKOWSKIAN EXPANSION



$$\Delta p_1^\mu = \sum_{n=1}^{\infty} G^n \Delta p_1^{(n) \mu}$$

$$f_{\mu\nu} = \sum_{n=1}^{\infty} G^n f_{\mu\nu}^{(n)}$$

THE GENERAL REALTIVISTIC TWO BODY PROBLEM IN PM: TRADITIONAL APPROACH



Point-particle approximation for BHs (or NSs)

$$S = - \sum_{i=1}^2 \int d\tau_i \sqrt{g_{\mu\nu} \dot{x}_i^\mu(\tau_i) \dot{x}_i^\nu(\tau_i)} + \frac{1}{16\pi G} \int d^4x \sqrt{-g} R + S_{\text{g.f.}}$$

Point particle approximation Bulk gravity & gauge fixing

1) Equations of motion:
$$R_{\mu\nu} - \frac{1}{2}g_{\mu\nu} = \frac{\kappa^2}{8}T_{\mu\nu} \quad \ddot{x}_i^\mu + \Gamma^\mu_{\nu\rho}\dot{x}_i^\nu\dot{x}_i^\rho = 0$$

Einstein's eqs. Geodesic eqs.

2) Solve iteratively in G

$$g_{\mu\nu} = \eta_{\mu\nu} + \sum_{n=1}^{\infty} \textcolor{red}{G^n} h_{\mu\nu}^{(n)}(x) \quad \text{emitted radiation} \quad x_i^\mu(\tau) = \textcolor{blue}{b_i^\mu} + v_i^\mu \tau + \sum_{n=1}^{\infty} \textcolor{red}{G^n} z_i^{(n)\mu}(\tau) \quad \text{straight line: „in“ state} \quad \text{deflections}$$

3) Construct observables

$$\text{Far field waveform: } \lim_{r \rightarrow \infty} h_{\mu\nu} = \frac{f_{\mu\nu}(t-r, \theta, \varphi)}{r} + \mathcal{O}\left(\frac{1}{r^2}\right)$$

„Impulse“ (change in momentum): $\Delta p_i^\mu = m_i \dot{x}_i^\mu \Big|_{\tau=-\infty}^{\tau=+\infty} = m_i \int d\tau \ddot{x}_i^\mu(\tau)$

USE OF QUANTUM FIELD THEORY TECHNIQUES FOR CLASSICAL 2-BODY PROBLEM

1) Effective world-line field theory:

[Källin,Porto,Dlapa][Mougiakos,Riva,Vernizzi]

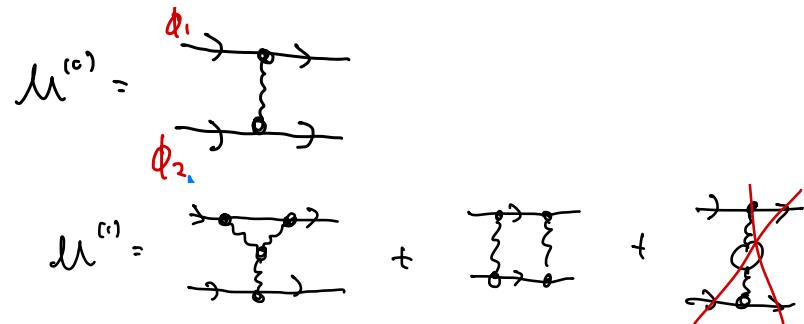
Construct effective action: $e^{\frac{i}{\hbar} S_{\text{eff}}[\mathbf{x}_i]} = \int [Dh_{\mu\nu}] e^{\frac{i}{\hbar} (S_{\text{pp}}[\mathbf{x}_i, h_{\mu\nu}] + S_G[h_{\mu\nu}])}$

Solve e.o.m.s for $x_i(\tau)$: $\frac{\delta S_{\text{eff}}[\mathbf{x}_i]}{\delta \mathbf{x}_i} = 0$

2) Scattering amplitudes:

[Bern,Cheung,Roiban,Solon,Parra-Martinex,Ruf,Zeng,Luna,...][Bjerrum-Bohr,Damgaard,Vanhove,Cristofoli][DiVecchia,Heissenberg,Russo,Veneziano]
[Kosower,Maybee,O'Connell,Vines]...

Scalar fields as avatars of BHs & NSs:



+ Modern on-shell techniques:

- Non-trivial classical limit
- Opaque relation to observables

3) World line quantum field theory: Best of 1) & 2)

[Jakobsen,Mogull,JP,Steinhoff]

Philosophy: Focus on observables (here one-point functions @ tree-level)

Use 1) but also path integrate over $x_i(\tau)$!

THE BASIC IDEA: USE OF QFT TO SOLVE CLASSICAL EOM

CONSIDER SCALAR FIELD ϕ AS PROXY:

$$S[\phi; Q] = \frac{1}{2} \int d^4x [(\partial_\mu \phi)^2 + m^2 \phi^2] + S_{\text{int}}[\phi; Q]$$

Q : PHYSICAL SOURCE OR BACKGROUND

GOAL: (PERTURBATIVE) SOLUTION OF E.O.M.:

$$\frac{\delta S[\phi, Q]}{\delta \phi} \Big|_{\phi = \phi_{\text{class}}(x)} = 0$$

QFT: GENERATING FUNCTIONAL

$$e^{\frac{i}{\hbar} W[J]} = \int [D\phi] \exp \left\{ i \int S[\phi; Q] + \frac{i}{\hbar} \int d^4x J(x) \phi(x) \right\}$$

ONE-POINT FUNCTION

$$\langle \hat{\phi}_H(x) \rangle_{\text{in-out}} = \frac{\delta W[J]}{\delta J(x)} \Big|_{J=0}$$

EFFECTIVE ACTION:

(LEGENDRE - TRANSFORM)

$$S_{\text{eff}}[\phi] = \frac{i}{\hbar} \int d^4x \langle \bar{J}(x) \phi(x) \rangle - W[J]$$

ONE-POINT FUNCTION & E.O.M.

① EFFECTIVE E.O.M. ARE SOLVED BY ONE-POINT FUNCTION

$$\frac{\delta S_{\text{eff}}[\phi]}{\delta \phi(x)} = 0$$

$$\phi(x) = \langle \hat{\phi}_H(x) \rangle$$

② TREE-LEVEL \Rightarrow CLASSICAL ACTION: $S_{\text{eff}}[\phi] = S[\phi; Q] + \mathcal{O}(\hbar)$

\Rightarrow TREE-LEVEL (FEYMAN-DIAGRAMATIC) EVALUATION OF $\langle \hat{\phi}_H \rangle$ YIELDS SOLUTION TO CLASSICAL E.O.M.

CAUSALITY:

EXAMPLE:

$$S[\phi] = \frac{1}{2} \int d^4x \left[(\partial_\mu \phi)^2 + m^2 \phi^2 + Q(x) \phi(x) \right]$$

ONE POINT
FUNCTION:

$$\langle \hat{\phi}_H(x) \rangle_{\text{IN-OUT}} = \text{---} \otimes Q \bullet x = \int d^4y G_{\text{FEYN}}(x-y) Q(y)$$

SOLVES E.O.M. BUT WE WANT RETARDED PROPAGATOR!

WORLDLINE QUANTUM FIELD

THEORY

$$G(x, x') = x - x' + x - \bullet - x' + x - \bullet - h - x' + x - \bullet - h - h - x' + \dots$$

WORLDLINE EFFECTIVE FIELD THEORY

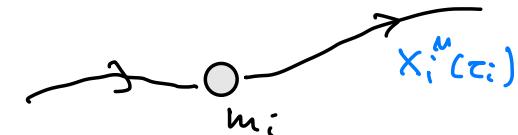
[Goldberger, Rothstein] [Porto, Källin] [Foffa, Sturani]

□ MODEL BHs/NSs AS POINT PARTICLES:

$$S_p = - \sum_{i=1}^2 m_i \int_{-\infty}^{\infty} dz_i \sqrt{g_{\mu\nu} \dot{x}_i^\mu \dot{x}_i^\nu}$$

BETTER: INTRODUCE EINSTEIN $e(z)$:

$$S_p = - \frac{m}{2} \int dz (e^{-1} g_{\mu\nu} \dot{x}^\mu \dot{x}^\nu + \mathcal{E})$$



ALGEBRAIC E.O.M. YIELDS $e^2 = g_{\mu\nu} \dot{x}^\mu \dot{x}^\nu \Rightarrow$ PROPER TIME GAUGE $e=1 \Leftrightarrow \dot{x}^2 = 1$.

□ INCLUSION OF FINITE SIZE/TIDAL EFFECTS

\Leftrightarrow EFT logic

$$S_p = - \frac{m}{2} \int dz (g_{\mu\nu} \dot{x}^\mu \dot{x}^\nu + c_1 R \dot{x}^2 + c_2 R_{\mu\nu} \dot{x}^\mu \dot{x}^\nu + + c_E R_{\mu\alpha\nu\beta} \dot{x}^\alpha \dot{x}^\beta + c_B R_{\mu\alpha\nu\beta}^* \dot{x}^\alpha \dot{x}^\beta + \dots)$$

□ COUPLE TO GRAVITY

$$S_G = \frac{2}{k^2} \int d^4x \sqrt{-g} R + S_{g.f.}$$

WEAK GRAVITATIONAL FIELD

$$g_{\mu\nu} = \eta_{\mu\nu} + k \cdot h_{\mu\nu}$$

WORLDLINE QFT: FLUCTUATE WORLDLINE & GRAVITON

OBJECTIVE: FOCUS ON OBSERVABLES ?

[Jakobsen, Mogull, JP, Steinhoff]

$$S = -2m_{\text{Pl}}^2 \int d^4x \sqrt{g} R - \sum_i \frac{m_i}{2} \int d\tau_i g_{\mu\nu} \dot{x}_i^\mu \dot{x}_i^\nu$$

$$\left. \begin{array}{l} g_{\mu\nu}(x) = \eta_{\mu\nu} + \kappa h_{\mu\nu}(x) \\ x_i^\mu(\tau_i) = b_i^\mu + \tau_i v_i^\mu + z_i^\mu(\tau_i) \end{array} \right\}$$

(QUANTUM FIELDS)

Graviton propagator in de Donder gauge

$$v^\mu \eta_{\mu\nu} \eta^{\nu\rho} = i \frac{P_{\mu\nu;\rho\sigma}}{(k^0 + i\zeta)^2 - k^2}$$

$$P_{\mu\nu;\rho\sigma} = \eta_{\mu\rho} \eta_{\nu\sigma} - \frac{1}{2} \eta_{\mu\nu} \eta_{\rho\sigma}$$

Worldline fluctuation propagator:

$$z^\mu - z^\nu = -i \frac{\eta^{\mu\nu}}{m (w + i\zeta)^2}$$

N.B.: $i\zeta$ prescription is crucial here!

For classical physics want retarded prop.
 \Rightarrow 10-1N FORMALISM

[Schwinger, Keldysh]

Graviton interactions:

Worldline Interactions

ENERGE FROM $h_{\mu\nu} [X(z)] \dot{X}^\mu(z) \dot{X}^\nu(z)$ WITH $X_i^\mu(t_i) = \underbrace{b_i^\mu + t_i v_i^\mu}_{\text{"p"}}$ $+ \underbrace{z_i^\mu(t_i)}_{\text{"f"}}$

$$v.b \cdots \text{---} \cdots \text{---} \cdots = -im \mathbf{k} e^{i\mathbf{k} \cdot \mathbf{b}} \delta(\mathbf{k} \cdot \mathbf{v}) v^\mu v^\nu$$

$$ZP(\omega) = m \mathbf{K} e^{i \mathbf{h} \cdot \mathbf{b}} \delta(\mathbf{k} \cdot \mathbf{v} + \omega) (2\omega V^{\mu} \delta_{\mu}^{\nu} + V^{\mu} V^{\nu} k_{\mu})$$

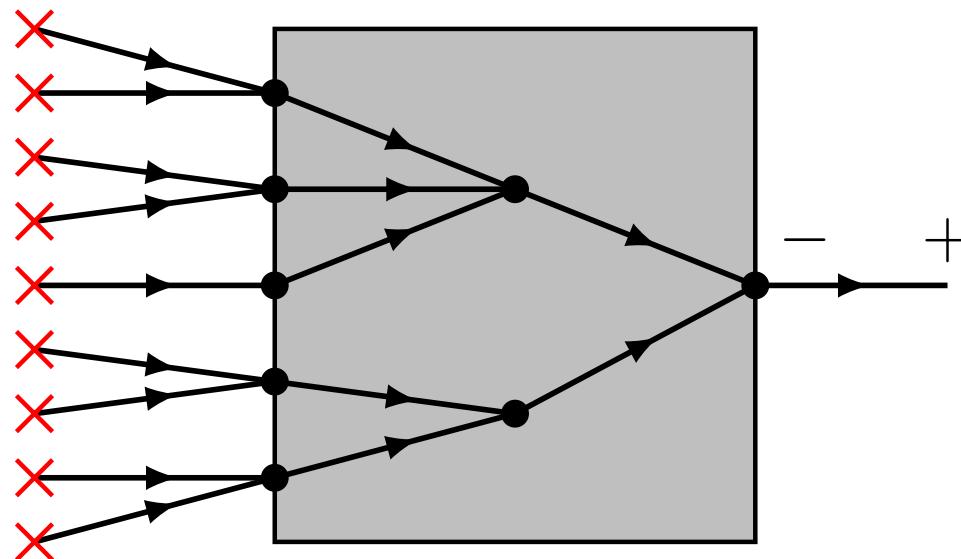
Diagram illustrating a system of two coupled oscillators. A horizontal dashed line represents the equilibrium position. A mass m_1 is attached to a spring with stiffness k_1 , oscillating with frequency ω_1 and amplitude A_1 . A second mass m_2 is attached to the first mass m_1 and to a second spring with stiffness k_2 , oscillating with frequency ω_2 and amplitude A_2 . The displacement z^s is measured from the equilibrium position.

TREE LEVEL WQFT GRAPHS YIELD LOOP-LEVEL FEYNMAN INTEGRALS

$$S(q, \omega) \approx \int d^4 q_1 \int d\omega \ \delta(\omega) \dots = S(q \cdot v_1) S(q \cdot v_2) \int d^4 q_1 \ S(q_1, v_1) \dots$$

1-Loop

THE IN-IN (SCHWINGER-KELDYSH) FORMALISM FOR WQFT



IN-OUT FORMALISM: STANDARD PATH INTEGRAL

[Galley,Tiglio] [Jordan]

TIME EVOLUTION OPERATOR

$$U_J(T, T') = \int \exp \left\{ \frac{i}{\hbar} \int_{T'}^T dt \int d^3x \left[\hat{H}_{int}(\phi_I(\vec{x}, t), Q(\vec{x}, t)) + J(x) \phi_I(\vec{x}, t) \right] \right\}$$

$$\hat{H} = \hat{H}_0 + \hat{H}_{int}$$

INTERACTION
PICTURE

PATH INTEGRAL REPRESENTATION

$|0\rangle$: GROUNDSTATE AT $T = -\infty$

$$\langle 0 | U_J(\infty, -\infty) | 0 \rangle = \int [D\phi] \exp \left\{ \frac{i}{\hbar} S[\phi; Q] + \frac{i}{\hbar} \int d^4x \times J(x) \phi(x) \right\} = e^{\frac{i}{\hbar} W[J]}$$

ONE POINT FUNCTION

NOT A TRUE VACUUM EXPECTATION VALUE \square

$$\langle \hat{\phi}_H(t, \vec{x}) \rangle_{in-out} = \frac{\delta W[J]}{\delta J(t, \vec{x})} \Bigg|_{J=0} = \langle 0 | U(\infty, t) \underbrace{\hat{\phi}_I(t, \vec{x})}_{= U(t, -\infty) \hat{\phi}_H(t, \vec{x})} U(t, -\infty) | 0 \rangle$$

$$= \langle 0 | U(\infty, -\infty) \hat{\phi}_H(t, \vec{x}) | 0 \rangle = \langle_{out} \langle 0 | \hat{\phi}_H(t, \vec{x}) | 0 \rangle_{in}$$

IN-OUT (SCHWINGER-KELDYSH) FORMALISM

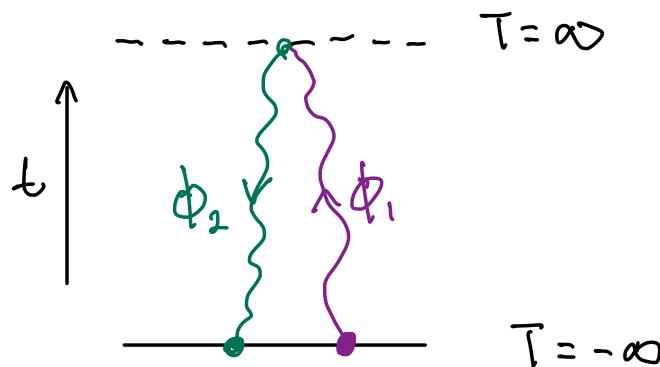
[Galley, Tiglio] [Jordan]

IN-OUT (STANDARD) FORMALISM YIELDS $\langle \hat{\phi}_u(x) \rangle_{\text{in-out}} = \langle 0 | \hat{\phi}_u(x) | 0 \rangle_{\text{in}}$ BUT WANT

$$\langle \hat{\phi}_u(x) \rangle_{\text{in-in}} := \langle 0 | \hat{\phi}_u(x) | 0 \rangle_{\text{in}} = \langle 0 | \hat{u}(-\infty, t) \hat{\phi}_I^{(t, \vec{x})} \hat{u}(t, -\infty) | 0 \rangle$$

NEED TWO TIME EVOLUTION OPERATORS \Rightarrow DOUBLE FIELDS IN PATH-INTEGRAL

$$\begin{aligned} e^{\frac{i}{\hbar} W[J_1, J_2]} &= \langle 0 | \hat{U}_{J_2}(-\infty, \infty) \hat{U}_{J_1}(\infty, -\infty) | 0 \rangle \\ &= \int \mathcal{D}\phi_1 \mathcal{D}\phi_2 \exp \left\{ \frac{i}{\hbar} \left(S[\phi_1] - S[\phi_2] + \int d^4x [J_1(x) \phi_1(x) - J_2(x) \phi_2(x)] \right) \right\} \end{aligned}$$



BOUNDARY CONDITIONS:

$$\phi_1(T=\infty, \vec{x}) = \phi_2(T=\infty, \vec{x})$$

$$\phi_1(T=-\infty, \vec{x}) = \phi_2(T=-\infty, \vec{x}) = 0$$

$$\begin{aligned} \langle \hat{\phi}_u(x) \rangle_{\text{in-in}} &= \frac{\mathcal{S} W[J_1, J_2]}{\mathcal{S} J_1(x)} \Big|_{J_2=0} \end{aligned}$$

KELDYSH BASIS

$$\phi_+ = \frac{1}{2}(\phi_1 + \phi_2) \quad \phi_- = \phi_1 - \phi_2$$

THIS YIELDS

(SAME FOR J_{\pm})

$$e^{\frac{i}{\hbar}W[S_+, S_-]} = \int D\phi_+ D\phi_- \exp \left\{ \frac{i}{\hbar} \left(S[\phi_+ + \frac{1}{2}\phi_-] - S[\phi_+ - \frac{1}{2}\phi_-] + \int d^4x (S_+ \phi_- + S_- \phi_+) \right) \right\}$$

PROPAGATOR MATRIX FROM FREE PART:

$$\Rightarrow D^{ab}(x, y) = \begin{pmatrix} + & D_{adv}(x, y) \\ 0 & - \\ - & \frac{i}{2} D_F(x, y) \end{pmatrix}$$

\uparrow RETARDED
PROPAGATOR \uparrow $\langle \{\phi(x), \phi(y) \} \rangle$

$$D_{ret}(h) = \frac{i}{(h^0 + i\varepsilon)^2 - \vec{h}^2}$$

$$D_{adv}(h) = \frac{-i}{(h^0 - i\varepsilon)^2 - \vec{h}^2}$$

VERTICES FROM

$$S_{\text{int}}[\phi_+ + \frac{1}{2}\phi_-] - S_{\text{int}}[\phi_+ - \frac{1}{2}\phi_-] = \phi_- \left(\frac{SS_{\text{int}}(\phi)}{\delta\phi} \right)_{\phi \rightarrow \phi_+} + \mathcal{O}(\phi_-^3)$$

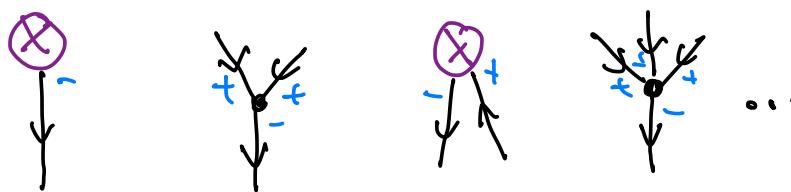
⇒ ONLY ODD NUMBER OF LEGS

ONE-POINT FUNCTIONS @ TREE-LEVEL

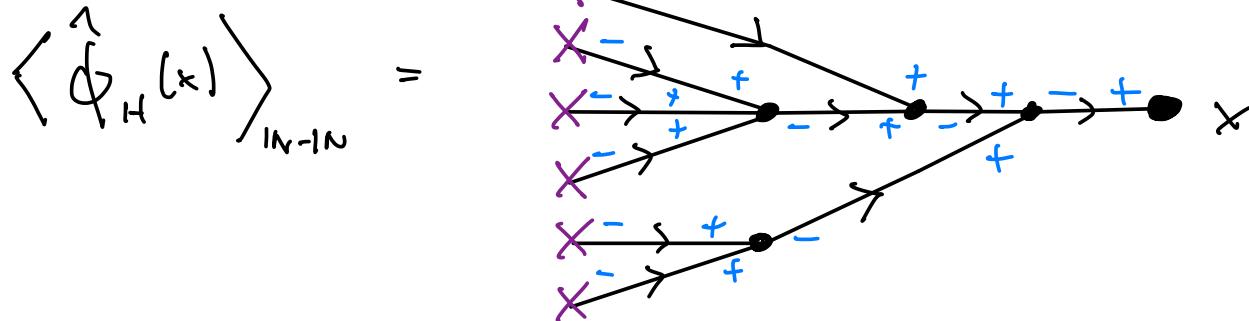
[Jakobsen, Mogull, JP, Sauer]

$$S_{\text{int}}[\phi; Q] \underset{\text{IN-IN}}{\rightarrow} \phi_- \left(\frac{S S_{\text{int}}[\phi, Q]}{\delta \phi} \right)_{\phi \rightarrow \phi_+} + \mathcal{O}(Q^3)$$

VERTICES:



ONE-POINT FCT. \Rightarrow



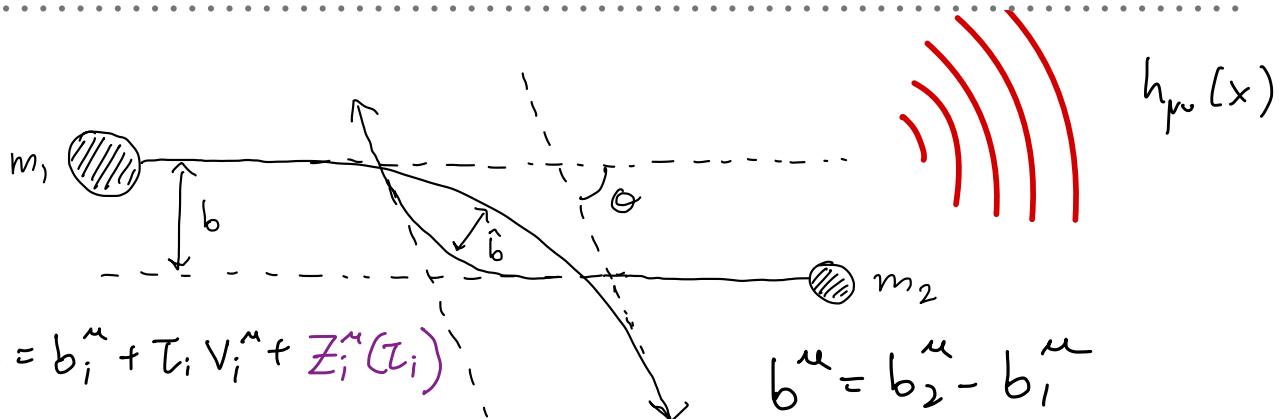
ONLY RETARDED PROPAGATORS

CONTRIBUTE ∇_6

OBSERVABLES OF WQFT: ONE POINT FUNCTIONS

[Jakobsen, Mogull, JP, Steinhoff]

Spin-less BH/NS
scattering:

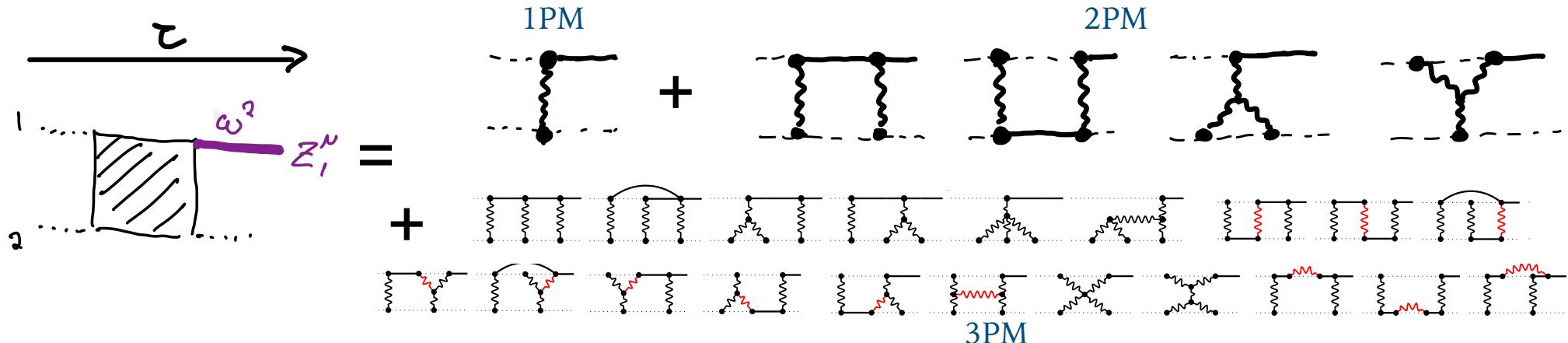


1) Impulse (change of momentum)

$$\Delta p_i^\mu = m_i \langle \dot{x}_i^\mu \rangle \Big|_{\tau=-\infty}^{\tau=+\infty} = m_i \int d\tau \langle \ddot{x}_i^\mu(\tau) \rangle = m_i \int d\tau \frac{d^2}{d\tau^2} \langle z_i^\mu(\tau) \rangle = -m_i \omega^2 \langle z_i^\mu(\omega) \rangle \Big|_{\omega \rightarrow 0}$$

↑
Fourier trans.

Needs sum of all graphs with outgoing z-line:



OBSERVABLES OF WQFT: ONE POINT FUNCTIONS

[Jakobsen, Mogull, JP, Steinhoff]

2) Emitted Waveform (Gravitational Bremsstrahlung)

$$\tilde{E}_{\mu\nu}^{\text{TT.}} = \mathcal{R}^2 \left\langle h_{\mu\nu}(z) \right\rangle_{\text{WQFT}} = \text{[Diagram of a plane wave source with wavy lines and a wavy arrow]} = \mathcal{R}^2 h_{\mu\nu}(z) \cdot \mathcal{R}^2$$

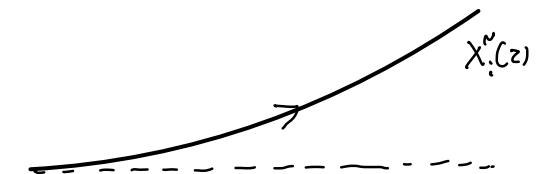
\Rightarrow

\mathcal{R}

$=$

3) Trajectory!

$$X_i^{\mu}(z) = b_i^{\mu} + v_i^{\mu} z + \int d\omega e^{i\omega z} \left\langle Z_i^{\mu}(\omega) \right\rangle_{\text{WQFT}}$$

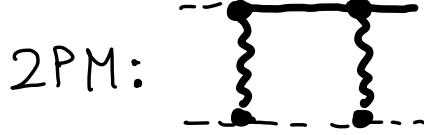
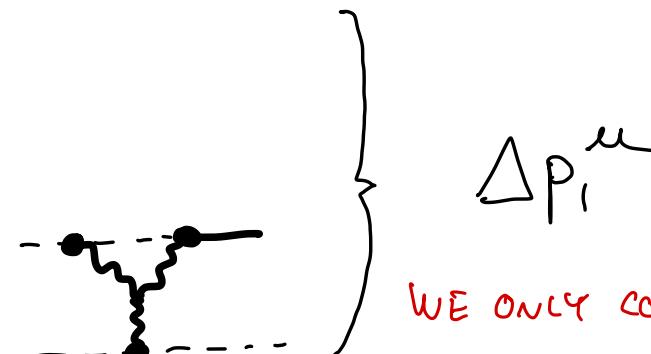


Deflections

$$\Delta p_i^\mu = -m_i \omega^2 \langle Z_i^\mu(\omega) \rangle_{\text{WQFT}} \Big|_{\omega=0}$$

Graphs with single outgoing worldline excitation Z_i^μ

outgoing line, $\omega = 0$



$$\Delta p_i^\mu$$

WE ONLY COMPUTE
TREE-LEVEL GRAPHS
($t=0$)

Integration gives (w/o spin)

$$\Delta p_i^\mu = \frac{G m_1 m_2 b^\mu}{b^2} \left(\frac{2(2\gamma^2 - 1)}{\sqrt{\gamma^2 - 1}} + \frac{3\pi}{4} \frac{(5\gamma^2 - 1)}{\sqrt{\gamma^2 - 1}} \frac{G(m_1 + m_2)}{b} \right) + \mathcal{O}(G^3) \quad \gamma = v_1 \cdot v_2$$

1PM

[Mogull,JP,Steinhoff]

2PM

[Jakobsen,Mogull,JP,Steinhoff]

3PM

[Jakobsen,Mogull]

AGREES WITH

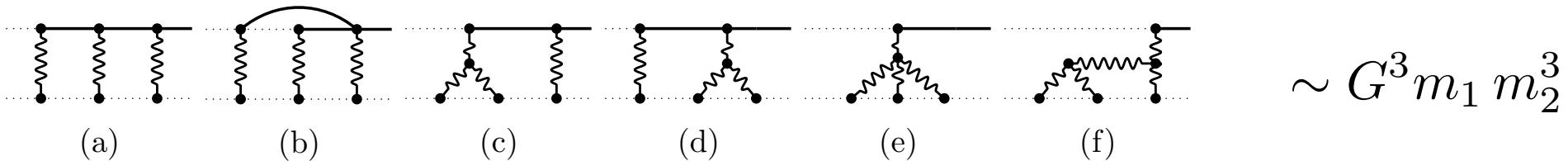
WEFT & AMPLITUDE APPROACHES

[Källin,Porto][Bern et al][Brandhuber et al][Bjerrum-Bohr et al]

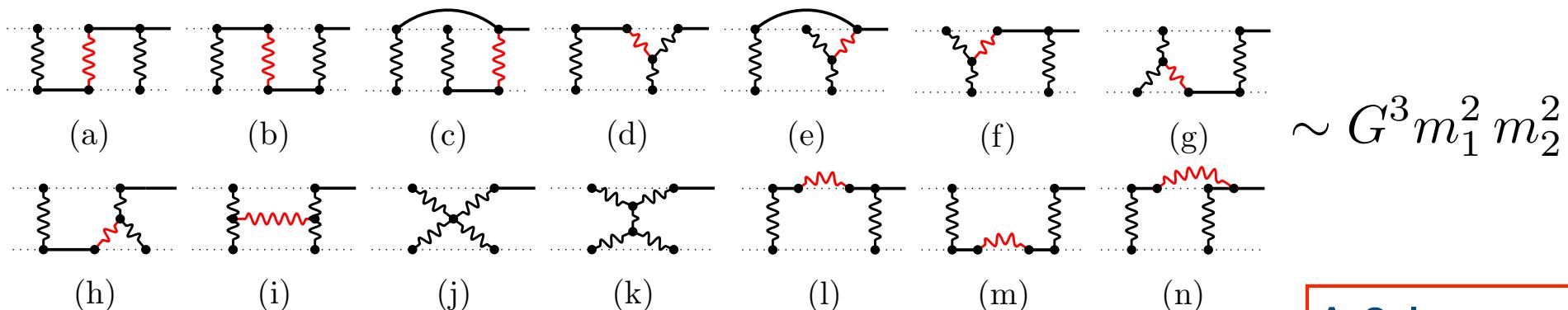
MOMENTUM DEFLECTION (IMPULSE) @ 3PM ORDER:

[Jakobsen, Mogull, JP, Sauer]

1) Test body diagrams (geodesic motion in Schwarzschild background):



2) Comparable mass diagrams (i0 prescription relevant for red propagators):



Integral family (with retarded propagators!)

A 2-loop computation!

$$\begin{aligned}
 I_{n_1, n_2, n_3, n_4, n_5, n_6, n_7} := & \\
 \int d^d l_1 d^d l_2 & \frac{\delta(l_1 \cdot v_2) \delta(l_2 \cdot v_1)}{(l_1 \cdot v_1 \pm i\epsilon)^{n_1} (l_1 \cdot v_2 \pm i\epsilon)^{n_2} ((l_1 + l_2 - q)^2 + i\epsilon \operatorname{sgn}(l_1^0 \cdot l_2^0 - q^0))^{n_3} (l_1^2)^{n_4} (l_2^2)^{n_5} ((l_1 - q)^2)^{n_6} ((l_2 - q)^2)^{n_7}}
 \end{aligned}$$

active worldline prop. active graviton propagator.

RESULT IMPULSE @ 3PM ORDER:

Jakobsen, Mogull, JP, Sauer]

$$\Delta p_1^\mu = p_\infty \sin \theta \frac{b^\mu}{|b|} + (\cos \theta - 1) \frac{m_1 m_2}{E^2} [(\gamma m_1 + m_2) v_1^\mu - (\gamma m_2 + m_1) v_2^\mu] - v_2 \cdot P_{\text{rad}} w_2^\mu$$

Scattering angle:

$$\gamma = v_1 \cdot v_2 \quad w_1^\mu = \frac{\gamma v_2^\mu - v_1^\mu}{\gamma^2 - 1}$$

$$\begin{aligned} \frac{\theta}{\Gamma} = & \frac{GM}{|b|} \frac{2(2\gamma^2 - 1)}{\gamma^2 - 1} + \left(\frac{GM}{|b|} \right)^2 \frac{3\pi(5\gamma^2 - 1)}{4(\gamma^2 - 1)} + \left(\frac{GM}{|b|} \right)^3 \left(2 \frac{64\gamma^6 - 120\gamma^4 + 60\gamma^2 - 5}{3(\gamma^2 - 1)^3} \Gamma^2 - \frac{8\nu\gamma(14\gamma^2 + 25)}{3(\gamma^2 - 1)} - 8\nu \frac{(4\gamma^4 - 12\gamma^2 - 3)}{(\gamma^2 - 1)} \frac{\text{arccosh}\gamma}{\sqrt{\gamma^2 - 1}} \right) \\ & \quad \text{1PM} \qquad \qquad \qquad \text{2PM} \qquad \qquad \qquad \text{3PM conservative} \\ & + \left(\frac{GM}{|b|} \right)^3 \frac{4\nu(2\gamma^2 - 1)^2}{(\gamma^2 - 1)^{3/2}} \left(-\frac{8}{3} + \frac{1}{v^2} + \frac{(3v^2 - 1)}{v^3} \text{arccosh}\gamma \right) \\ & \quad \qquad \qquad \qquad \text{3PM radiation-reaction} \\ & \quad \qquad \qquad \qquad \Gamma = E/M = \sqrt{1 + 2\nu(\gamma - 1)} \\ & \quad \qquad \qquad \qquad \nu = \frac{m_1 m_2}{M^2} \end{aligned}$$

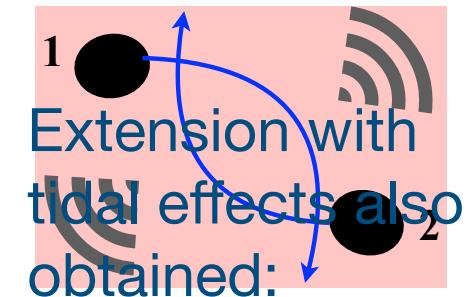
Radiated 4-momentum: $P_{\text{rad}}^\mu = -\Delta p_1^\mu - \Delta p_2^\mu$

$$P_{\text{rad}}^\mu = \frac{G^3 m_1^2 m_2^2 \pi}{|b|^3} \frac{v_1^\mu + v_2^\mu}{\gamma + 1} \left[e_1 + e_2 \log \left(\frac{\gamma + 1}{2} \right) + e_3 \frac{\text{arccosh}\gamma}{\sqrt{\gamma^2 - 1}} \right]$$

$$e_1 = \frac{210\gamma^6 - 552\gamma^5 + 339\gamma^4 - 912\gamma^3 + 3148\gamma^2 - 3336\gamma + 1151}{48(\gamma^2 - 1)^{3/2}}$$

$$e_2 = -\frac{35\gamma^4 + 60\gamma^3 - 150\gamma^2 + 76\gamma - 5}{8\sqrt{\gamma^2 - 1}},$$

$$e_3 = \frac{\gamma(2\gamma^2 - 3)(35\gamma^4 - 30\gamma^2 + 11)}{16(\gamma^2 - 1)^{3/2}}.$$



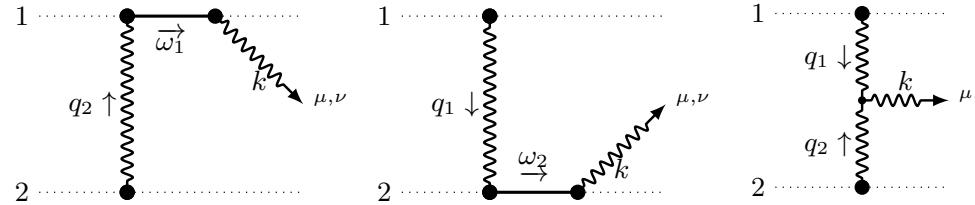
$$\begin{aligned} & C_E^2 \left(R_{\mu\alpha\nu\beta} \dot{x}^\alpha \dot{x}^\beta \right)^2 \\ & + C_B^2 \left(R_{\mu\alpha\nu\beta}^* \dot{x}^\alpha \dot{x}^\beta \right)^2 \end{aligned}$$

FAR FIELD WAVEFORM @ NLO

[Jakobsen, Mogull, JP, Steinhoff]

Sum of diagrams with **outgoing graviton**:

$$\langle h_{\mu\nu}(k) \rangle =$$



For **time-domain waveform** needs to integrate over outgoing energy Ω :

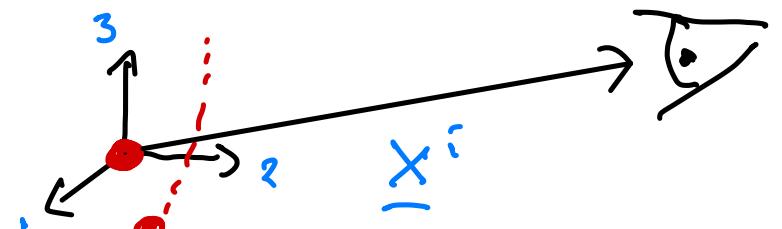
$$\frac{f_{+,\times}(t-r, \hat{\mathbf{x}})}{r} = \frac{4G}{r} \int d\Omega e^{-i\Omega(t-r)} \varepsilon_{+,\times}^{\mu\nu} \langle h_{\mu\nu}(k = \Omega(1, \hat{\mathbf{x}})) \rangle$$

where unit vector $\hat{\mathbf{x}}$ points towards the observer

The **waveform** has two polarizations

$$f_{+,\times}(t-r, \underbrace{\theta, \phi}_{u}, \underbrace{\hat{\mathbf{x}}}; v, |b|, m_1, m_2)$$

retarded time



INTEGRATED WAVEFORM @ NLO

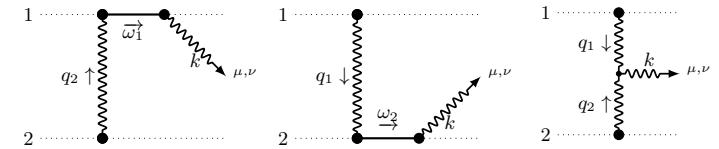
[Jakobsen, Mogull, JP, Steinhoff]

LO non-radiating:

$$f^{(1)}(\hat{\mathbf{x}}) = \frac{2m_1}{\rho \cdot v_1} (\epsilon \cdot v_1)^2 + \frac{2m_2}{\rho \cdot v_2} (\epsilon \cdot v_2)^2$$

Our NLO result reproduces [Kovacs, Thorne '75] obtained with traditional GR techniques in 4 long papers

$$f^{(2)}(\mathbf{u}, \hat{\mathbf{x}}) = \frac{1}{|\tilde{\mathbf{b}}|_1} \left[\alpha_1(u_1, \rho) + \frac{\beta_1(u_1, \rho)}{\tilde{b}^2} \right] + (1 \leftrightarrow 2)$$



$$|\tilde{\mathbf{b}}|_{1,2} := \sqrt{|b|^2 + (\gamma^2 - 1)u_{2,1}^2}$$

$$u_i = \frac{\rho \cdot (x - b_i)}{\rho \cdot v_i}$$

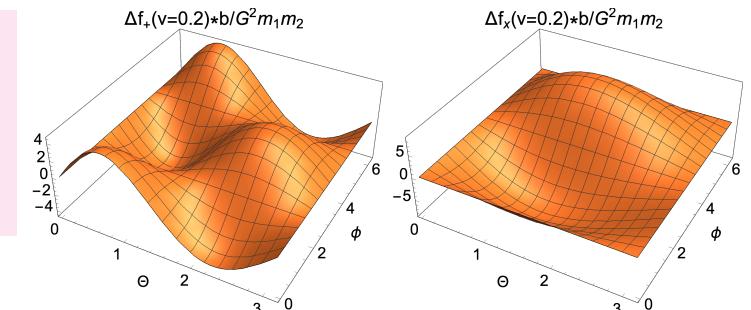
$$\rho = (1, \hat{\mathbf{x}})$$

retarded time in i th rest frame

The wave memory effect: $\Delta f^{(2)} = f^{(2)}(\mathbf{u} = +\infty) - f^{(2)}(\mathbf{u} = -\infty)$

$$\frac{\Delta f_{\mathcal{S}=0}^{(2)}}{m_1 m_2} = \frac{4(2\gamma^2 - 1)\epsilon \cdot v_1(2b \cdot \epsilon \rho \cdot v_1 - b \cdot \rho \epsilon \cdot v_1)}{|b|^2 \sqrt{\gamma^2 - 1} (\rho \cdot v_1)^2}$$

$$\gamma = v_1 \cdot v_2$$



SUSY IN THE SKY WITH GRAVITONS

PUTTING SPIN ON THE WORLD-LINE

□ Generalization of $(\square + m^2) G(x, x') = \delta(x - x')$ to general Spin $N/2$ in **flat** Space-time: **N -extended supersymmetric particle** [Howe, Penati, Pernici, Townsend]

□ Worldline fields: $X^\mu(\tau)$; $\psi_\alpha^\alpha(\tau)$ $\alpha = 1, \dots, N$

□ Supercharge: $Q_\alpha = P \cdot \psi_\alpha$

$$\{ \psi_\alpha^\alpha, \psi_\beta^\beta \}_{\text{PB}} = i S_{\alpha\beta} \gamma^{ab} \psi^{ab}$$

$$\xrightarrow{\qquad\qquad\qquad} \{ Q_\alpha, Q_\beta \}_{\text{PB}} = -2i S_{\alpha\beta} H$$

Hamiltonian: $H = \frac{1}{2} \dot{\phi}^2$

R-charge: $R_{\alpha\beta} = \psi_\alpha \cdot \psi_\beta$

□ In curved space-time background: SUSY only possible for $N \leq 2^*$

[Bastianelli, Benincasa, Giombi] [Bonezzi, Meyer, Sachs]

$$Q = \psi^\alpha e^\mu_a(x) (P_\mu - i \omega_{\mu ab} \bar{\psi}^a \psi^b)$$

$N=2$ $\psi^\alpha = \psi_1^\alpha + i \psi_2^\alpha$
SUSY

SUSY IN THE SKY WITH GRAVITONS

1 "Gaugey" 1st order form of action:

$$\bar{\Pi}_\mu = P_\mu - i \omega_{\mu ab} \bar{\psi}^a \psi^b$$

$$S = \int d\tau \left[P_\mu \dot{x}^\mu + i \bar{\psi}^a \dot{\psi}^b \eta_{ab} + \frac{e}{2} \left(g^{\mu\nu} \bar{\Pi}_\mu \bar{\Pi}_\nu - m^2 + R_{abcd} \bar{\psi}^a \psi^b \bar{\psi}^c \psi^d \right) \right]$$

Identify Spin-fields

$$S^{\mu\nu} = -2i \bar{\psi}^{\bar{\mu}} \psi^{\bar{\nu}}$$

2 Is equivalent to "Traditional form" of massive spinning body:

$$S_{PS} = \int dz \left[\bar{\Pi}_\mu \dot{x}^\mu + \frac{1}{2} S_{\mu\nu} \wedge_A^{\mu} \frac{D\Lambda^{\nu}}{Dz} - e \left(\bar{\Pi}^2 - m^2 \right) \right]$$

↗
SPIN FIELD ↙
BODY FIXED FRAME

[Vines, Kunst, Steinhoff, Hinderer][Steinhoff]
[Porto][Levi]

$$m^2 = m^2 - \frac{1}{4} R_{\mu\nu\gamma\delta} S^{\mu\nu} S^{\gamma\delta} + C_E E_{\mu\nu} S^{\mu\sigma} P_{\sigma\delta} S^{\nu\delta} + \mathcal{O}(S^3)$$

✓

✓

✗

✗

KERR BH AND FINITE SIZE TERMS

- In "traditional form" of [Vines,Kunst,Steinhoff,Hinderer][Steinhoff][Porto][Levi]

$$M^2 = m^2 - \frac{1}{4} R_{\mu\nu} g_{\sigma} S^{\mu\nu} S^{\sigma\tau} + C_E E_{\mu\nu} S^{\mu\sigma} P_{\sigma\tau} S^{\tau\nu} + \mathcal{O}(S^3)$$

✓

✓

✗

✗

- Spin induced quadrupole moment: $E_{\mu\nu} = R_{\mu\alpha\nu\beta} \bar{\pi}^\alpha \bar{\pi}^\beta / m^2$
- $P_{\sigma\tau} = g_{\sigma\tau} - T_S^{\sigma} T_S^{\tau} / \bar{a}^2$

KERR-BH has $C_E = 0$!

But all order S^n terms...

⇒ Up to S^2 -interactions

KERR BH $\stackrel{?}{=} N=2$ Superparticle

- Can include C_E term in our spinning WQFT: Add

$$S_{ES^2} = \frac{C_E}{2m} \int dz \ R_{\mu\nu\sigma\tau} \dot{x}^\mu \dot{x}^\nu \bar{\psi}^\alpha \psi^\beta \bar{\psi}^\cdot \cdot P_\cdot \psi$$

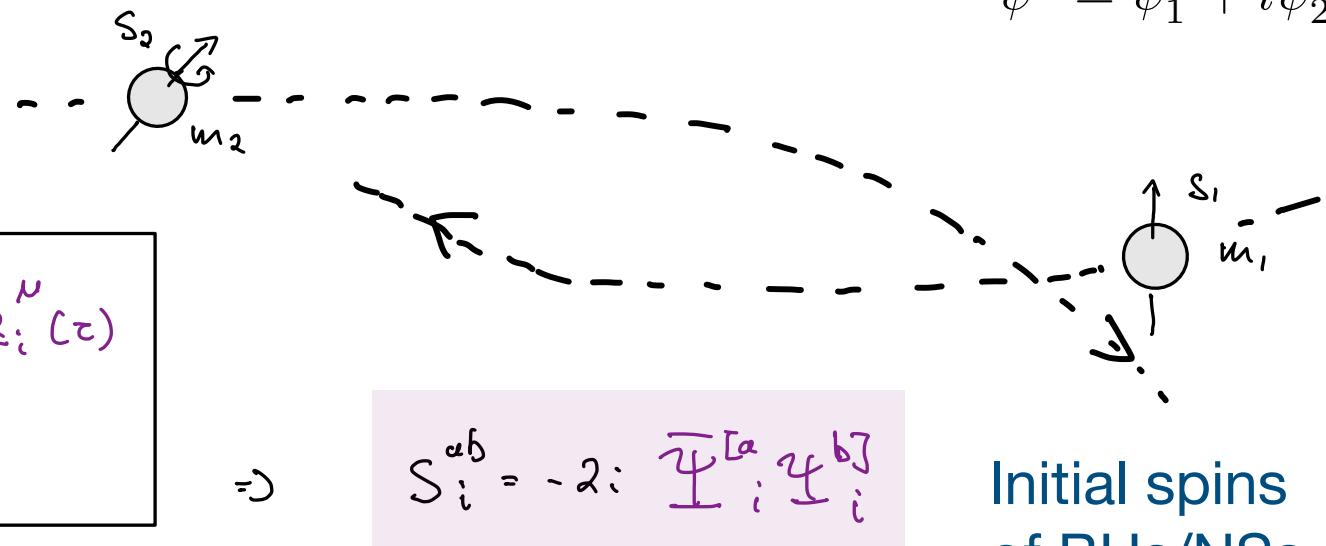
PRESERVES SUSY APPROXIMATELY (up to S^3 terms) !

SPINNING WORLDLINE QUANTUM FIELD THEORY

The spinning WQFT action (with exact N=2 SUSY for Kerr-BH)

$$S_{\text{sWQFT}} = \sum_{i=1}^2 \int d\tau \left[-\frac{m_i}{2} g_{\mu\nu} \dot{x}_i^\mu \dot{x}_i^\nu + i \bar{\psi}_{ia} D_\tau \psi_i^a + \frac{1}{2m_i} R_{abcd} \bar{\psi}_i^a \psi_i^b \bar{\psi}_i^c \psi_i^d \right. \\ \left. + \frac{C_{E,i}}{2m_i} R_{a\mu b\nu} \dot{x}_i^\mu \dot{x}_i^\nu \bar{\psi}_i^a \psi_i^b \bar{\psi}_i^c \psi_i^d \right] \quad D_\tau \psi^a = \dot{\psi}^a + \omega_\mu{}^{ab} \dot{x}^\mu \psi_b$$

Scattering scenario:



Integrate out $z_i^\mu, \psi_i^a, \bar{\psi}_i^a$ perturbatively!

[Jakobsen, Mogull, JP, Steinhoff]

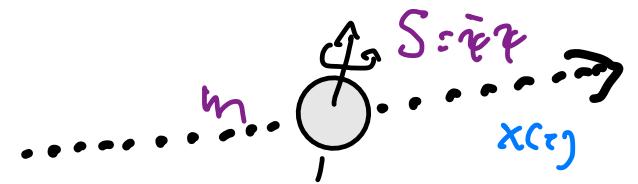
Captures spin-orbit and spin-spin interactions up to order $S_1^2, S_2^2, S_1 S_2$

PHYSICAL INTERPRETATION OF SUSY

- Traditional approach:

Spin tensor $S_i^{\mu\nu}(\tau)$ & co-moving frame $\Lambda_i^{A\mu}(\tau)$

Eoms: $\frac{Dp^\nu}{D\tau} + \frac{1}{2} S^{\mu\rho} R_{\mu\rho\nu\kappa} \dot{x}^\kappa = 0$ $\frac{DS^{\mu\nu}}{D\tau} + 2\dot{x}^{[\mu} p^{\nu]} = 0$ [Matthisson-Papapetrou-Dixon]



Freedom of imposing a Spin-Supplementary Condition (SSC): $p_\mu S^{\mu\nu} = 0$

- Our approach: Spinning super-particle

$$S_i^{\mu\nu} = -2i\bar{\psi}_i^{[\mu} \psi_i^{\nu]}$$

Asymptotic SUSY transformations: $\delta b_i^\mu = i\bar{\epsilon}\Psi_i^\mu + i\epsilon\bar{\Psi}_i^\mu, \quad \delta v_i^\mu = 0, \quad \delta\Psi_i^\mu = -\epsilon v_i^\mu$
 $\Rightarrow \quad \delta S_i^{\mu\nu} = v_i^\mu \delta b_i^\nu - v_i^\nu \delta b_i^\mu$

Are a symmetry of all observables.

- Interpretation of SUSY: **SUSY = Freedom of picking a SSC.**

Covariant SSC: $v_i \cdot \Psi_i = 0 \Rightarrow v_{i,\mu} S_i^{\mu\nu} = 0$

Spinning WQFT Feynman rules

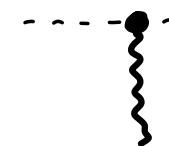
Graviton propagator

$$v \overset{\mu}{\circ} \underset{k}{\circ} \rho = i \frac{P_{\mu\nu;\rho\sigma}}{(k^0 \pm i\varepsilon)^2 - \vec{k}^2}$$

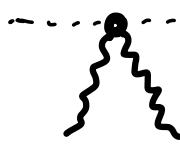
Worldline fluctuation propagator:

$$\begin{aligned} \overset{\mu}{z} \underset{\omega}{\circ} \overset{\nu}{z} &= -\frac{i}{m} \frac{\eta^{\mu\nu}}{(\omega \pm i\varepsilon)^2} \\ \overset{\nu}{\psi} \underset{\omega}{\circ} \overset{\mu}{\psi} &= i \frac{\eta^{\mu\nu}}{\omega \pm i\varepsilon} \end{aligned}$$

Worldline interactions

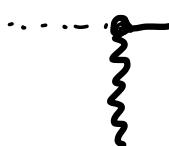


$$\sim v^2 + S v + S^2$$

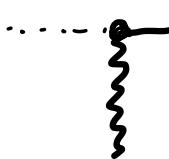


$$\sim S^2$$

...

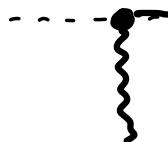


$$\sim v^2 + S v + S^2$$

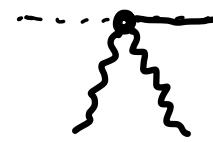


$$\sim v + S$$

...

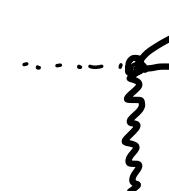


$$\sim v^2 + S v + v^2$$

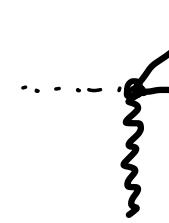


$$\sim S^2$$

...



$$\sim v^2 + S v + v^2$$



$$\sim v + S$$

...

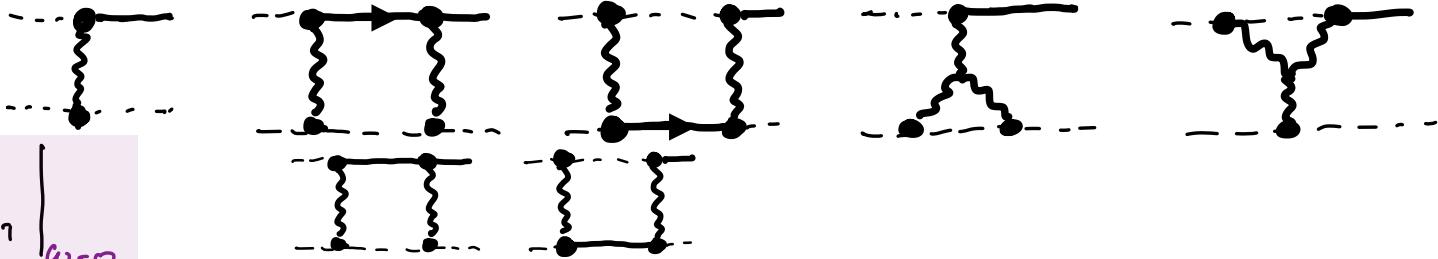
OBSERVABLES @ NLO

1PM

2PM

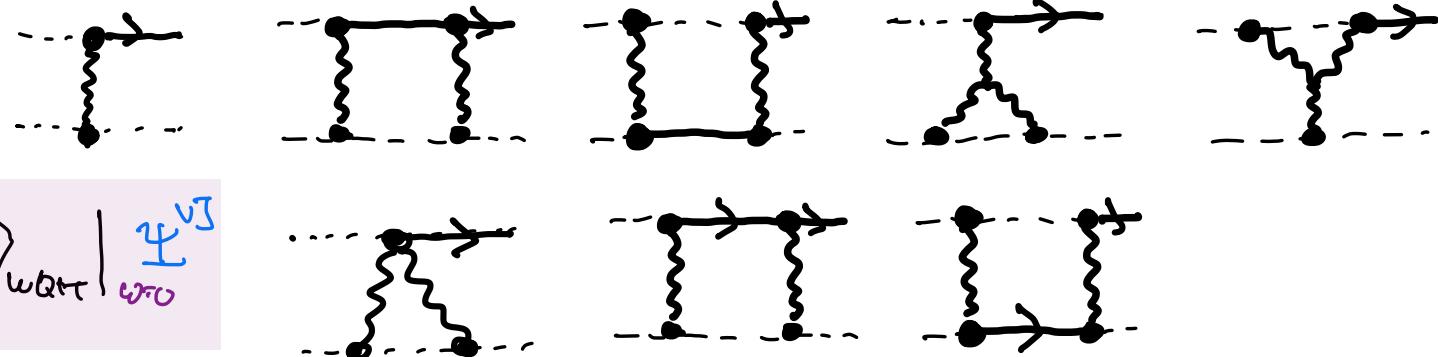
DEFLECTION

$$\Delta p_i^\mu = -m_i \omega^2 \left\langle z_i^\mu(\omega) \right\rangle_{WQFT} \Big|_{\omega=0}$$



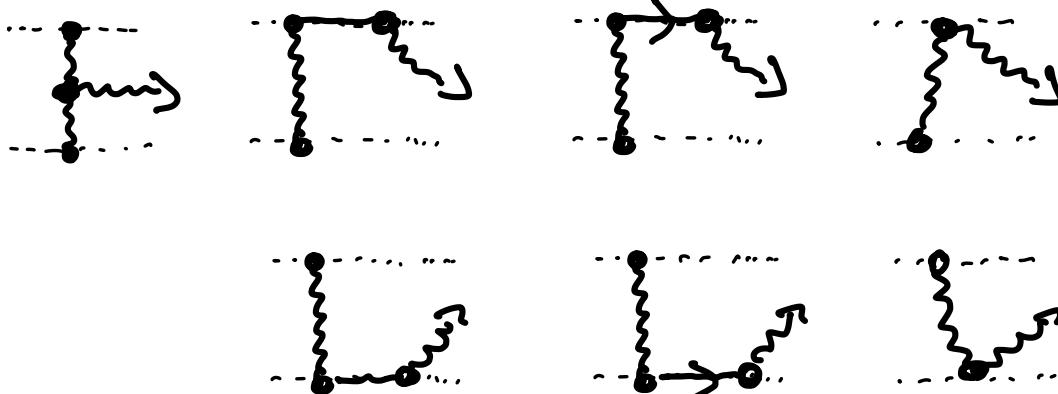
SPIN KICK

$$\Delta S_i^{\mu\nu} = -2i\omega \left\langle \bar{\psi}^{\mu}(\omega) \right\rangle_{WQFT} \Big|_{\omega=0}$$



BREMSSSTRÄHLUNG

$$-iR^2 \left\langle h^{\mu\nu}(R) \right\rangle_{WQFT}$$



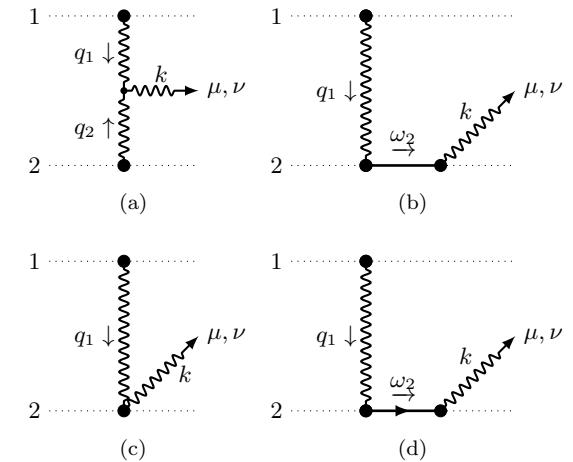
SPINNING WAVEFORM @ NLO

[Jakobsen, Mogull, JP, Steinhoff]

$$\frac{f^{(2)}}{m_1 m_2} = \sum_{s=0}^2 \frac{1}{|\tilde{\mathbf{b}}|_1^{2s+1}} \left[\alpha_1^{(s)} + \frac{\beta_1^{(s)}}{|\tilde{b}|^{2s+2}} \right] + (1 \leftrightarrow 2)$$

$$|\tilde{\mathbf{b}}|_{1,2} := \sqrt{|b|^2 + (\gamma^2 - 1)u_{2,1}^2} \quad u_i = \frac{\rho \cdot (x - b_i)}{\rho \cdot v_i} \quad \rho = (1, \hat{\mathbf{x}})$$

retarded time in i th rest frame



Updates Kovacs-Thorne with spin.

The spinning **wave memory**: $\Delta f^{(2)} = f^{(2)}(\textcolor{red}{u} = +\infty) - f^{(2)}(\textcolor{red}{u} = -\infty)$

$$\Delta f^{(2)} = \left(1 + \frac{2v|a_3|}{b(1+v^2)} + \frac{|a_3|^2}{|b|^2} - \sum_{i=1}^2 \frac{C_{E,i}|a_i|^2}{|b|^2} \right) \Delta f_{S=0}^{(2)}$$

(Aligned spin case)

Using Pauli-Lubanski vector: $\mathcal{S}_i^{\mu\nu} = \epsilon^{\mu\nu}{}_{\rho\sigma} v_i^\rho a_i^\sigma$ $a_3^\mu = a_1^\mu + a_2^\mu$

Radiated angular momentum in COM:

$$\begin{aligned} \frac{J_{xy}^{\text{rad}} + iJ_{zx}^{\text{rad}}}{J_{xy}^{\text{init}}|_{S=0}} &= \frac{4G^2 m_1 m_2}{|b|^2} \frac{(2\gamma^2 - 1)}{\sqrt{\gamma^2 - 1}} \mathcal{I}(v) \\ &\times \left(1 - \frac{2iv \mathbf{a}_3 \cdot \mathbf{l}}{|b|(1+v^2)} - \frac{(\mathbf{a}_3 \cdot \mathbf{l})^2}{|b|^2} + \sum_{i=1}^2 \frac{C_{E,i}}{|b|^2} (\mathbf{a}_i \cdot \mathbf{l})^2 \right) \end{aligned}$$

INTEGRATION TECHNOLOGY

$$\mathcal{I}_{0,0,0,1,1,0,1}^{(2;\pm)} = 0,$$

$$\mathcal{I}_{0,0,1,1,0,1,1}^{(2;\pm)} = (4\pi)^{-3+2\epsilon} \frac{\Gamma^4(\frac{1}{2}-\epsilon)\Gamma^2(\frac{1}{2}+\epsilon)}{\Gamma^2(1-2\epsilon)},$$

$$\mathcal{I}_{0,0,1,1,1,0,0}^{(2;\pm)} = -(4\pi)^{-2+2\epsilon} e^{-2\epsilon\gamma_E} \frac{\operatorname{arccosh}\gamma}{4\epsilon\sqrt{\gamma^2-1}} + \mathcal{O}(\epsilon^0),$$

$$\mathcal{I}_{0,0,2,1,1,0,0}^{(2;\pm)} = -(4\pi)^{-2+2\epsilon} e^{-2\epsilon\gamma_E} \frac{(1-2\epsilon)\gamma\sqrt{\gamma^2-1} + 2\epsilon(\gamma^2-1)\operatorname{arccosh}\gamma}{2\sqrt{\gamma^2-1}} + \mathcal{O}(\epsilon^2),$$

$$\mathcal{I}_{0,0,1,1,2,0,0}^{(2;\pm)} = -(4\pi)^{-2+2\epsilon} e^{-2\epsilon\gamma_E} \frac{\operatorname{arccosh}\gamma}{2\sqrt{\gamma^2-1}} + \mathcal{O}(\epsilon),$$

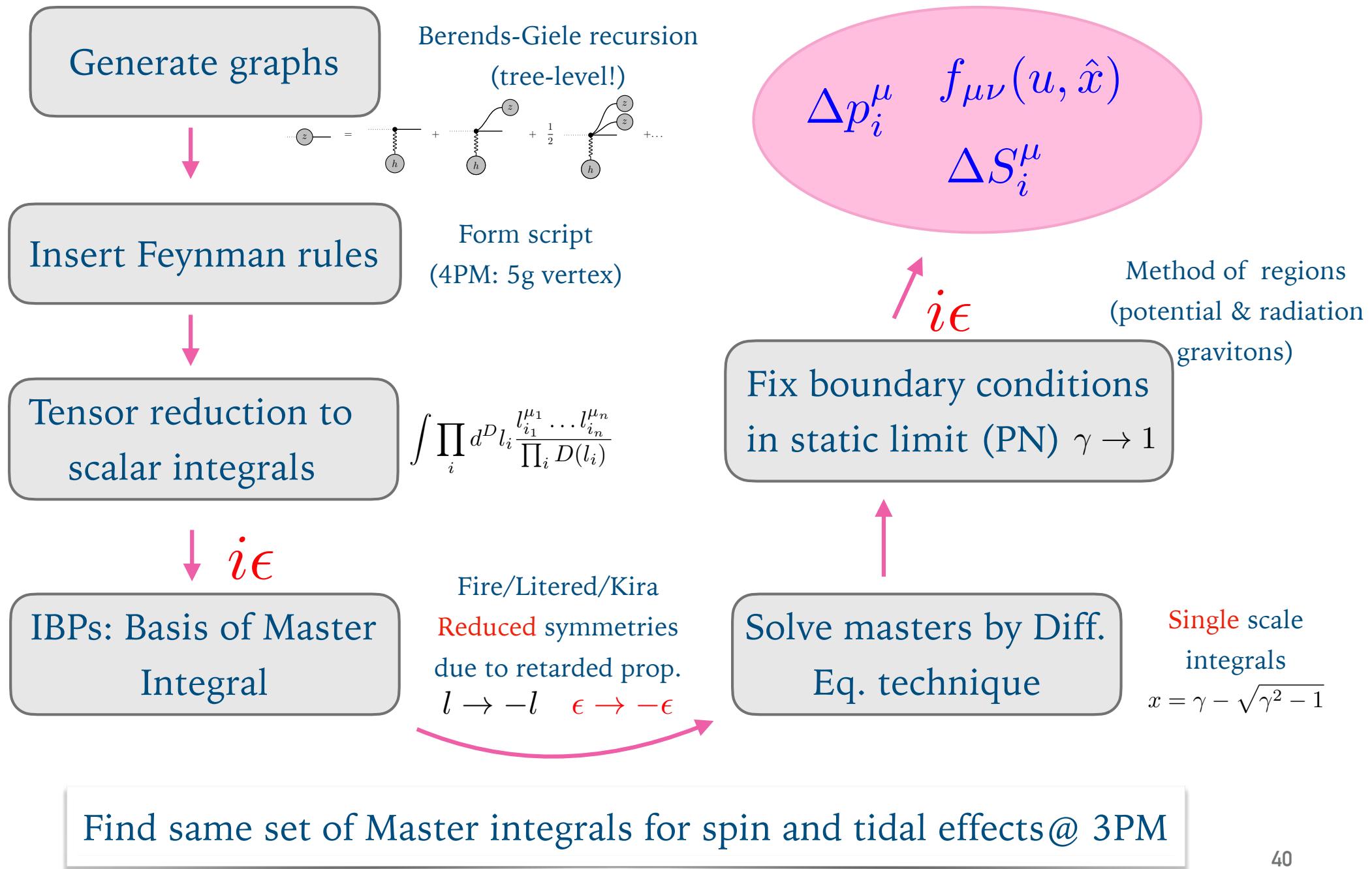
$$\mathcal{I}_{0,0,1,1,1,1,1}^{(2;\pm)} = (4\pi)^{-2+2\epsilon} e^{-2\epsilon\gamma_E} \frac{\operatorname{arccosh}\gamma + \epsilon(\operatorname{arccosh}^2\gamma + \operatorname{Li}_2)}{2\epsilon\sqrt{\gamma^2-1}} + \mathcal{O}(\epsilon),$$

$$\mathcal{I}_{0,0,1,1,2,1,1}^{(2;\pm)} = (4\pi)^{-2+2\epsilon} e^{-2\epsilon\gamma_E} \frac{(1+5\epsilon)\gamma\sqrt{\gamma^2-1} - (1+\epsilon+2\gamma^2\epsilon)\operatorname{arccosh}\gamma - \epsilon(\operatorname{arccosh}^2\gamma + \operatorname{Li}_2)}{2\sqrt{\gamma^2-1}} + \mathcal{O}(\epsilon^2),$$

$$\mathcal{I}_{1,1,1,1,1,0,0}^{(2;+)} = \frac{1}{2} \mathcal{I}_{1,1,1,1,1,0,0}^{(2;-)} = (4\pi)^{-2+2\epsilon} e^{-2\epsilon\gamma_E} \frac{1}{2\epsilon^2(\gamma^2-1)} + \mathcal{O}(\epsilon^{-1}),$$

WORKFLOW WITH RETARDED INTEGRALS

[Jakobsen, Mogull, JP, Sauer]



INTEGRATION TECHNOLOGY @ 3PM

3PM DEFLECTION, ONLY RETARDED PROPAGATORS ARISE:

$$\Delta p_i^\mu = \text{Diagram 1} + \text{Diagram 2} + \text{Diagram 3} + \dots$$

INTEGRAL FAMILY:

$I_{n_1, n_2, n_3, n_4, n_5, n_6, n_7} :=$

$$\int d^d l_1 d^d l_2 \frac{\delta(l_1 \cdot v_2) \delta(l_2 \cdot v_1)}{(l_1 \cdot v_1 \pm i\epsilon)^{n_1} (l_2 \cdot v_2 \pm i\epsilon)^{n_2} \underbrace{(l_1 + l_2 - q)^2 \pm i\epsilon}_{\text{active worldline prop.}} \text{sgn}(l_1^0 + l_2^0 - q^0)^{n_3} (l_1^2)^{n_4} (l_2^2)^{n_5} ((l_1 - q)^2)^{n_6} ((l_2 - q)^2)^{n_7}}$$

$\text{active worldline prop.} \quad \text{active gravity propagator.}$

INTEGRALS ARE (PSEUDO)-REAL IN PHYSICAL $\gamma = v_1 \cdot v_2$ REGION

$$I_{n_1, n_2, \dots, n_7}^* = (-1)^{n_1 + n_2} I_{n_1, n_2, \dots, n_7} \quad \} \text{ when } |\gamma| < 1$$

Contrast with Feynman integrals, real for $-1 < \gamma < 1$.

Performing Retarded Integrals

USE STATE-OF-THE-ART INTEGRATION TECHNOLOGY:

IBP, DIFF. EQUATIONS & METHOD OF REGIONS ADAPTED TO RETARDED PROPAGATORS!

$$I_{n_1, n_2, \dots, n_7}^{(\sigma_1, \sigma_2, \sigma_3)} := \int \frac{\delta(\ell_1 \cdot v_2) \delta(\ell_2 \cdot v_1)}{(\ell_1 \cdot v_1 + \sigma_1 i\varepsilon)^{n_1} (\ell_2 \cdot v_2 + \sigma_2 i\varepsilon)^{n_2} ((\ell_1 \cdot \ell_2 \cdot q)^2 + i\varepsilon \sigma_3 \text{sgn}(\ell_1^0 \cdot \ell_2^0 \cdot q^0))^{n_3} (\ell_1^2)^{n_4} (\ell_2^2)^{n_5} ((\ell_1 \cdot q)^2)^{n_6} ((\ell_2 \cdot q)^2)^{n_7}}$$

$$\frac{\delta^{(n)}(\omega)}{(-1)^n n!} = \frac{i}{(\omega + i\varepsilon)^{n+1}} - \frac{i}{(\omega - i\varepsilon)^{n-1}}$$

} treat $\delta(\omega)$ as a propagator from perspective of IBPs

$i\varepsilon$ RELEVANT FOR SYMMETRIES IN IBP REDUCTION. HERE: 3 FAMILIES

$$I_{n_1, n_2, \dots, n_7}^{(fff)} \quad I_{n_1, n_2, \dots, n_7}^{(--+)} \quad I_{n_1, n_2, \dots, n_7}^{(+-+)}$$

System of DEs in $x = \sqrt{\varepsilon^2 - 1}$ takes canonical form:

$$\frac{d\vec{I}}{dx} = \varepsilon \left(\frac{A}{x} + \frac{B_+}{1+x} - \frac{B_-}{1-x} \right) \vec{I} \quad \left. \right\} \vec{I} = \vec{I}^{(0)} + \varepsilon \vec{I}^{(1)} + \mathcal{O}(\varepsilon^2)$$

Method of Regions

Fix boundary conditions to leading order in the static limit $v \rightarrow 0$.
 Behavior characterized by one graviton:

$$\begin{aligned} k^{\text{pot}} &= (k^0, \vec{k}) \sim (v, 1) \\ k^{\text{rad}} &= (h^0, \vec{h}) \sim (v, v) \end{aligned}$$

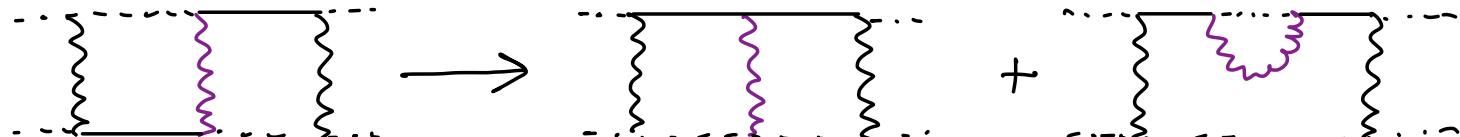
$$I_{n_1, n_2, \dots, n_7}^{(\sigma_1, \sigma_2, \sigma_3)} = I_{n_1, n_2, \dots, n_7}^{(\sigma_1, \sigma_2, \sigma_3) \text{pot}} + I_{n_1, n_2, \dots, n_7}^{(\sigma_1, \sigma_2, \sigma_3) \text{rad}}$$

Expand integrand in v , assuming all other loop momenta are potential.
 Reduce to **simpler integrals** with manifest dependence on $\mathcal{D} = (1 - v^2)^{-1/2}$.

$$I_{n_1, n_2, \dots, n_7}^{(\sigma_1, \sigma_2, \sigma_3) \text{pot}} = \int_{\ell_1, \ell_2} \frac{\delta(\ell_1 \cdot v_1) \delta(\ell_2 \cdot v_1)}{(\ell_1 \cdot v_1 + \sigma_1 i\varepsilon)^{n_1} (\ell_2 \cdot v_1 + \sigma_2 i\varepsilon)^{n_2} ((\ell_1 + \ell_2 - q)^2)^{n_3} (\ell_1^2)^{n_4} (\ell_2^2)^{n_5} ((\ell_1 \cdot q)^2)^{n_6} ((\ell_2 \cdot q)^2)^{n_7}} + \mathcal{O}(v^{2-n_1-n_2})$$

$$I_{n_1, n_2, \dots, n_7}^{(\sigma_1, \sigma_2, \sigma_3) \text{rad}} = \int_{\ell, h} \frac{\delta((h - \ell) \cdot v_1) \delta(\ell \cdot v_2)}{(h \cdot v_1 + \sigma_1 i\varepsilon)^{n_1} (h \cdot v_1 + \sigma_2 i\varepsilon)^{n_2} (h^2 + \sigma_3 \text{sgn}(h^0) i\varepsilon)^{n_3} (\ell^2)^{n_4} \epsilon^{n_7} ((\ell - q)^2)^{n_5} ((h - q)^2)^{n_6}} + \mathcal{O}(v^{D+1-n_1-n_2-2n_3})$$

Intuitively...



POST-MINKOWSKIAN SCATTERING PRECISION RACE

WQFT [us]	WEFT [Källin,Porto,Dlapa,Cho,Liu,...] [Riva,Vernizzi,Mougiakakos...]	Amps [Bern,Roiban,Shen,Parra-Martinez,Ruf,...] [Bjerrum-Bohr,Damgaard,Vanhove,...] [Di Vecchia,Veneziano,Heissenberg,Russo] [Solon,Cheung,...][Huang,...][Guevera,Ochirov,Vines,...] [Johansson,Pichini][Kosower,O'Connell,Maybee,Cristofoli, Gonzo...]	HEFT [Aoude,Haddad,Helset] [Brandhuber,Travaglini,Chen]					
deflection & spin kick waveform								
	plain	spin ²	spin ^{>2}	tidal	plain	spin ²	tidal	Integration complexity
1PM	WQFT WEFT WQFT WEFT Amps HEFT Amps HEFT			X		trivial	trivial	trivial
2PM	WQFT WEFT WQFT WEFT Amps HEFT		HEFT	Amps	WQFT WEFT WQFT WEFT Amps		WQFT WEFT WQFT WEFT (Amps)	~ tree-level
3PM w/o r-r	WQFT WEFT WQFT Amps HEFT (Amps)				WQFT WEFT			~ 1-loop
3PM r-r	WQFT WEFT WQFT (WEFT) Amps HEFT				WQFT WEFT			~ 2-loop
4PM w/o r-r		WEFT						~ 3-loop

r-r: Radiation-reaction

(...) : partial results

SUMMARY

WQFT: Highly efficient technology for classical scattering in GR

- „Quantize“ world-line degrees of freedom & focus on observables (=one-point functions)
- Only compute tree-level diagrams (=classical theory). No „super-classical“ contributions
- IN-IN Formalism: Take all propagators retarded.
- Include spin degrees of freedom through Grassmann odd vectors on the world-line (spinning particle)
- Hidden Supersymmetry = Spin Supplementary Condition

OUTLOOK

WQFT still needs to be extended:

- Higher precision (4PM)
- Higher spin (beyond Spin squared)
- Bound orbits? Relation to EOB
- Relation to self force expansion

Thank you for your attention!

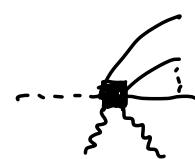
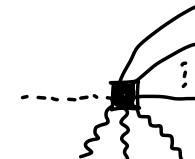
Tidal effects - work with Benjamin Sauer

Consider a simple extension to the non-spinning theory:

$$S_{\text{pp}} + S_{\text{tidal}} = m \int d\tau \left[-\frac{1}{2} g_{\mu\nu} \dot{\tilde{X}}^\mu \dot{\tilde{X}}^\nu + C_E^2 E_{\mu\nu} E^{\mu\nu} + C_B^2 B_{\mu\nu} B^{\mu\nu} \right]$$

$$E_{\mu\nu} = R_{\mu\alpha\nu\beta} \dot{X}^\alpha \dot{X}^\beta, \quad B_{\mu\nu} = R^*_{\mu\alpha\nu\beta} \dot{X}^\alpha \dot{X}^\beta, \quad R^*_{\mu\alpha\nu\beta} = \frac{1}{2} \epsilon_{\nu\beta\sigma} R_{\mu\alpha}^{\sigma}$$

Gives rise to new kinds of vertices:



C_E^2 } quadrupole
 C_B^2 } Love no's

We begin with the waveform, consists of 2 diagrams:

$$\langle h_{\mu\nu} \rangle = \text{Diagram 1} + \text{Diagram 2}$$

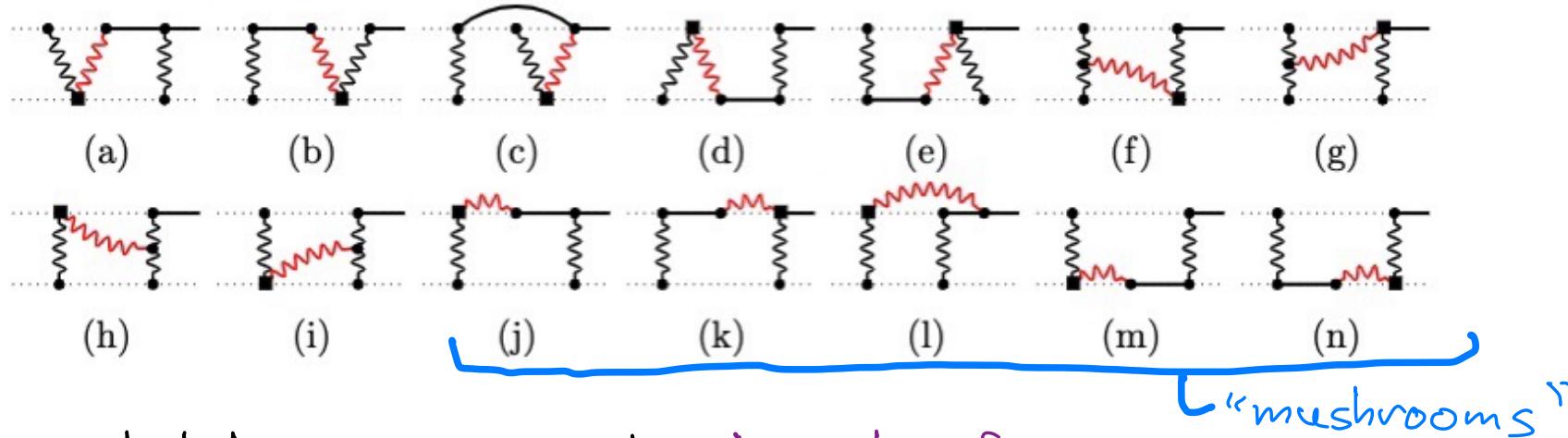
Lack of diagrams with a propagating worldline mode \Rightarrow vanishing wave memory

$$\Delta f_{\text{tidal}}(\hat{x}) := f_{\text{tidal}}(t=+\infty, \hat{x}) - f_{\text{tidal}}(t=-\infty, \hat{x}) = \mathcal{O}(G^3)$$

$$\Rightarrow \mathcal{I}^{\text{rad}} \sim p^{\text{rad}} \sim \mathcal{O}(G^3) \quad \Rightarrow \quad \Theta_{\text{rad, tidal}} \sim \mathcal{O}(G^4)$$

Tidal effects (2)

To compute ΔP_1 , similar diagrams to spinning calculation:



Final result takes a convenient schematic form:

$$\Delta P_1^{\mu, \text{cons}} = \rho \omega \sin \Omega_{\text{cons}} \frac{b^{\mu}}{|b|} + (\cos \Omega_{\text{cons}}) \frac{m_1 m_2}{E^2} \left[(\gamma m_1 + m_2) V_1^{\mu} - (\gamma m_2 + m_1) V_2^{\mu} \right]$$

$$\Delta P_1^{\mu, \text{rad}} = \rho \omega \sin \Omega_{\text{rad}} \frac{b^{\mu}}{|b|} + \underbrace{\frac{P_{\text{rad}} \cdot V_2}{\gamma^2 - 1} (V_2^{\mu} - \gamma V_1^{\mu})}_{\text{real integrals}}$$

$$+ \underbrace{\frac{P_{\text{rad}} \cdot V_1}{\gamma^2 - 1} (V_1^{\mu} - \gamma V_2^{\mu})}_{\text{imaginary integrals}}$$

Confirmed: $\Omega_{\text{rad}} = 0$, Ω_{cons} has finite high-energy $\gamma \rightarrow \infty$ limit
 P_{rad} agrees with result from squaring waveforms
(PN expansion)