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Particle Physics: Paradigmatic experiment is Scattering in Colliders

Theory: Relativistic Quantum Field Theory (QFT)

path integral 

quantization

Lattice Field Thy: Bound system 

Extension I: Conformal symmetry

Relativistic QFTs without intrinsic mass scale (=̂ massless or at very high
energies) have an enlarged space-time symmetry: Conformal symmetry

New transformations: Dilatations and inversions

Dilatation transf.: D : xµ ! xµ  2 R

Special conformal transf.: Kµ = I�Pµ�I with I : Inversion xµ ! xµ

x2

Angle preserving transformations

Conformal group is SO(2, 4) with algebra:

[Kµ, P⌫ ] = 2i(⌘µ⌫D � Mµ⌫) , [D, Pµ] = iPµ , [D, Kµ] = �iKµ ,

[K⇢, Mµ⌫ ] = i(⌘⇢µK⌫ � ⌘⇢⌫Kµ) & Poincaré algebra

Prominent examples:

Maxwell’s theory L = 1
4Fµ⌫F

µ⌫ , Fµ⌫ = @µA⌫ � @⌫Aµ

��4 theory L = 1
2(@µ�)2 � ��4

Standard model L = �1
4Fµ⌫F

µ⌫ + i ̄ /D +  iYij j �

up to Higgs mass term + |Dµ�|2 � �|�|4 � m2 |�|2
[7/31]

Aus aktuellem Anlass...
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Projekt C6: Scattering amplitudes: Symmetries and Interrelations in maximal Supergravity and Yang-Mills [2/8]

Perturbative QFT: S-matrix 

Gravity: Gravitational wave emission in Black Hole and Neutron Star 
encounters now routinely measured in LIGO-Virgo-Karga GW detectors

Theory: Need for high-precision solution of classical gravitational two-body 
problem. Here: Apply perturbative QFT techniques in classical limit!
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Classical radiative field theory



GRAVITATIONAL WAVES: A NEW OBSERVATIONAL ERA

Following GW150914: To date 90 binary mergers detected by LIGO-Virgo-Karga 
Collaboration




GRAVITATIONAL WAVES: A NEW OBSERVATIONAL ERA

Measurement of binary parameters: 
Masses, Spins, Distance 
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Figure 7. Marginal posterior distributions for the source chirp mass M, mass ratio q, e↵ective inspiral spin �e↵ , e↵ective
precession spin �p and luminosity distance DL for O3b candidates with pastro > 0.5 plus GW200105 162426. The vertical
extent of each colored region is proportional to one-dimensional marginal posterior distribution at a given parameter value
for the corresponding event. We highlight with italics GW200105 162426 as it has pastro < 0.5, as well as GW191219 163120
because of potential uncertainties in its pastro and because it has significant posterior support outside of mass ratios where the
waveform models have been calibrated. Results for GW200308 173609 and GW200322 091133 include a prior-dominated mode
at large distances and high masses: the hatched posterior probability distribution shown on the lower half of the plots for these
candidates exclude these low-likelihood, prior-dominated modes. Colors correspond to the date of observation.

LVG collaboration arXiv:2111.03606 
mass spin distance

Binary mergers of black 
holes (BHs) and 
neutron stars (NS)

propagation time, the events have a combined signal-to-
noise ratio (SNR) of 24 [45].
Only the LIGO detectors were observing at the time of

GW150914. The Virgo detector was being upgraded,
and GEO 600, though not sufficiently sensitive to detect
this event, was operating but not in observational
mode. With only two detectors the source position is
primarily determined by the relative arrival time and
localized to an area of approximately 600 deg2 (90%
credible region) [39,46].
The basic features of GW150914 point to it being

produced by the coalescence of two black holes—i.e.,
their orbital inspiral and merger, and subsequent final black
hole ringdown. Over 0.2 s, the signal increases in frequency
and amplitude in about 8 cycles from 35 to 150 Hz, where
the amplitude reaches a maximum. The most plausible
explanation for this evolution is the inspiral of two orbiting
masses, m1 and m2, due to gravitational-wave emission. At
the lower frequencies, such evolution is characterized by
the chirp mass [11]

M ¼ ðm1m2Þ3=5

ðm1 þm2Þ1=5
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where f and _f are the observed frequency and its time
derivative and G and c are the gravitational constant and
speed of light. Estimating f and _f from the data in Fig. 1,
we obtain a chirp mass of M≃ 30M⊙, implying that the
total mass M ¼ m1 þm2 is ≳70M⊙ in the detector frame.
This bounds the sum of the Schwarzschild radii of the
binary components to 2GM=c2 ≳ 210 km. To reach an
orbital frequency of 75 Hz (half the gravitational-wave
frequency) the objects must have been very close and very
compact; equal Newtonian point masses orbiting at this
frequency would be only ≃350 km apart. A pair of
neutron stars, while compact, would not have the required
mass, while a black hole neutron star binary with the
deduced chirp mass would have a very large total mass,
and would thus merge at much lower frequency. This
leaves black holes as the only known objects compact
enough to reach an orbital frequency of 75 Hz without
contact. Furthermore, the decay of the waveform after it
peaks is consistent with the damped oscillations of a black
hole relaxing to a final stationary Kerr configuration.
Below, we present a general-relativistic analysis of
GW150914; Fig. 2 shows the calculated waveform using
the resulting source parameters.

III. DETECTORS

Gravitational-wave astronomy exploits multiple, widely
separated detectors to distinguish gravitational waves from
local instrumental and environmental noise, to provide
source sky localization, and to measure wave polarizations.
The LIGO sites each operate a single Advanced LIGO

detector [33], a modified Michelson interferometer (see
Fig. 3) that measures gravitational-wave strain as a differ-
ence in length of its orthogonal arms. Each arm is formed
by two mirrors, acting as test masses, separated by
Lx ¼ Ly ¼ L ¼ 4 km. A passing gravitational wave effec-
tively alters the arm lengths such that the measured
difference is ΔLðtÞ ¼ δLx − δLy ¼ hðtÞL, where h is the
gravitational-wave strain amplitude projected onto the
detector. This differential length variation alters the phase
difference between the two light fields returning to the
beam splitter, transmitting an optical signal proportional to
the gravitational-wave strain to the output photodetector.
To achieve sufficient sensitivity to measure gravitational

waves, the detectors include several enhancements to the
basic Michelson interferometer. First, each arm contains a
resonant optical cavity, formed by its two test mass mirrors,
that multiplies the effect of a gravitational wave on the light
phase by a factor of 300 [48]. Second, a partially trans-
missive power-recycling mirror at the input provides addi-
tional resonant buildup of the laser light in the interferometer
as a whole [49,50]: 20Wof laser input is increased to 700W
incident on the beam splitter, which is further increased to
100 kW circulating in each arm cavity. Third, a partially
transmissive signal-recycling mirror at the output optimizes

FIG. 2. Top: Estimated gravitational-wave strain amplitude
from GW150914 projected onto H1. This shows the full
bandwidth of the waveforms, without the filtering used for Fig. 1.
The inset images show numerical relativity models of the black
hole horizons as the black holes coalesce. Bottom: The Keplerian
effective black hole separation in units of Schwarzschild radii
(RS ¼ 2GM=c2) and the effective relative velocity given by the
post-Newtonian parameter v=c ¼ ðGMπf=c3Þ1=3, where f is the
gravitational-wave frequency calculated with numerical relativity
and M is the total mass (value from Table I).
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PHYSICS CASES
•Black hole formation & evolution

•Neutron star properties: Equation of state, strong 

interacting matter

•Multi-messenger astronomy

•New astrophysical sources of GW 

Astrophysics:

Fundamental physics: •Precision tests of (strong field) GR


•New physics signals? Modifications of GR, 
Higher curvature terms, Dark Matter…


•Black hole properties 


AEI

•3rd generation of GW observatories (Einstein Telescope; Advanced 
LIGO, LISA) to start in 2030’s. Highly increase of  sensitivity. 

•Need for high precision theory predictions



THE GENERAL RELATIVISTIC  2-BODY PROBLEM
As in Newtonian case has either bound or unbound orbits.
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Inspiral of 2 BHs or NSs:


Virial-thm:


post-Newtonian (PN) expansion
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Scattering of 2 BHs or NSs:


Weak field (G), but exact in v


post-Minkowskian (PM) expansion
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gµ⌫ = ⌘µ⌫ + hµ⌫Weak field expansion:
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(c = 1)



THE POST NEWTONIAN EXPANSION
Effective (conservative) action for two massive bodies:

4

can interpret it as the generalized maximal cut of the mo-
mentum space triangle integral where all propagators are
put on shell (green dashed diagram), expressed in terms
of region momenta xj , which map to the dual momenta
Rj via

Rµ
j := xµ

j+1
� xµ

j�1
. (19)

Moreover, I3� is related to a generalized cut of the four-
point (box) integral, in the limit where one point is sent
to infinity. The box integral is invariant under a Yangian
algebra, an extension of its well known conformal sym-
metry [66, 77]. As such, in the region R2

j < 0 the integral
is given by the minimal transcendentally solution of the
Yangian constraints found in [68] (modulo a piecewise
constant):

I3� =
C

�
, �2 := (R2 ·R3)

2
�R2

2
R2

3
. (20)

Note that due to R1+R2+R3 = 0 this representation is
not unique and one may pick any two Ri’s to define �2.

To obtain I3�, it is useful to generalize the steps of
Westpfahl [59], who evaluated the integral for the re-
tarded propagator. This generalization performed in ap-
pendix A shows that the value of the integral depends on
the sign of �2. In fact, for R2

j < 0 with j = 1, 2, 3 the
expression (20) can be compared with the result of [59]
which shows that C(�2 > 0, R2

j < 0) = ⇡/4 in the above
expression. However, more care is needed to obtain C
for generic kinematics. The explicit calculation given in
appendix A shows that for �2 > 0 we have

I3� =
⇡

4�
⇥(�R2

1
R2

2
R2

3
). (21)

Here ⇥ denotes the Heaviside-function as defined in (A7).
For �2 < 0 the integral diverges and for �2 = 0 it is
proportional to

P
i �(R

2

j ), see appendix A.

IV. THE 1PN EXPANSION

In this section we want to provide a first test of the
above expression for the full 2PM e↵ective action against
known results for the three-body potential at 1PN order.
For this we first solve the equation of motion �S/�ei = 0
for ei perturbatively up to order 2:

ei =
1p
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(22)

Plugging this solution back into (13) and expanding to
order 4 yields the 2PM e↵ective action free of the ein-
bein. We then consider its non-relativistic limit, choosing
the convenient gauge ⌧i = ti. Reintroducing the speed of
light c such that

uµ
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c
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we see that in P (xi) of (16) only the second line con-
tributes at leading order in c�1:
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(24)
Note that we have rewritten the sum by discarding prop-
agators with both ends on the same worldline. Using the
non-relativistic expansion of the propagator (10)
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24c4
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where rij = |rij | with rij = xi � xj , yields a localized
time integration in the e↵ective action (17). After some
rearrangements, we find the 1PN three-body e↵ective ac-
tion1
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where we abbreviate nij := rij/rij and G = 2/32⇡. This
result agrees with the well known 1PN expression [14].

V. POST-NEWTONIAN EXPANSION AND
INTEGRAL BOOTSTRAP

The 1PN expansion obtained in the previous section
merely tests the second line of the three-body contribu-
tion (16) to the e↵ective potential. In order to obtain the
expansion at 2PN order, also the third line in (16) has to
be taken into account. This includes second derivatives
of the three-delta integral, @µ

j @
⌫
kI3�, cf. the ⇥-function in

(21). As outlined in detail in appendix B, taking these
derivatives leads to lengthy expressions in terms of delta
functions and their derivatives which are hard to control.
In fact, it is simpler to perform the non-relativistic ex-
pansion directly on the level of the integrand of I3� as we
will demonstrate in the following. For convenience of the
reader we briefly summarize the below strategy: First, we
will show that expanding the integrand of I3� leads to the
family of key integrals given in (31). We will then use the
Yangian level-one symmetry of these integrals, i.e. invari-
ance under the di↵erential operator (33), to obtain the

1 Note that in the GR literature the PN action is typically rescaled
by a factor of c2.
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can interpret it as the generalized maximal cut of the mo-
mentum space triangle integral where all propagators are
put on shell (green dashed diagram), expressed in terms
of region momenta xj , which map to the dual momenta
Rj via

Rµ
j := xµ

j+1
� xµ

j�1
. (19)

Moreover, I3� is related to a generalized cut of the four-
point (box) integral, in the limit where one point is sent
to infinity. The box integral is invariant under a Yangian
algebra, an extension of its well known conformal sym-
metry [66, 77]. As such, in the region R2

j < 0 the integral
is given by the minimal transcendentally solution of the
Yangian constraints found in [68] (modulo a piecewise
constant):

I3� =
C

�
, �2 := (R2 ·R3)

2
�R2

2
R2

3
. (20)

Note that due to R1+R2+R3 = 0 this representation is
not unique and one may pick any two Ri’s to define �2.

To obtain I3�, it is useful to generalize the steps of
Westpfahl [59], who evaluated the integral for the re-
tarded propagator. This generalization performed in ap-
pendix A shows that the value of the integral depends on
the sign of �2. In fact, for R2

j < 0 with j = 1, 2, 3 the
expression (20) can be compared with the result of [59]
which shows that C(�2 > 0, R2

j < 0) = ⇡/4 in the above
expression. However, more care is needed to obtain C
for generic kinematics. The explicit calculation given in
appendix A shows that for �2 > 0 we have

I3� =
⇡

4�
⇥(�R2

1
R2

2
R2

3
). (21)

Here ⇥ denotes the Heaviside-function as defined in (A7).
For �2 < 0 the integral diverges and for �2 = 0 it is
proportional to

P
i �(R

2

j ), see appendix A.

IV. THE 1PN EXPANSION

In this section we want to provide a first test of the
above expression for the full 2PM e↵ective action against
known results for the three-body potential at 1PN order.
For this we first solve the equation of motion �S/�ei = 0
for ei perturbatively up to order 2:

ei =
1p
u2

i

+
X

j 6=i

Z
d⌧j

2mj

16⇡
q

u6

iu
2

j

�
u2

ij �
1

2
u2

iu
2

j

�
+O(4).

(22)

Plugging this solution back into (13) and expanding to
order 4 yields the 2PM e↵ective action free of the ein-
bein. We then consider its non-relativistic limit, choosing
the convenient gauge ⌧i = ti. Reintroducing the speed of
light c such that

uµ
i =

⇣
1,

vi

c

⌘
,

@

@xµ
i

=

✓
@

c@ti
,

@

@xi

◆
,  !



c
, (23)

we see that in P (xi) of (16) only the second line con-
tributes at leading order in c�1:

X

i,j,k

0P (xi) = �
3⇡m1m2m3

8

X

i

X

j 6=i
k 6=i

�(x2

ij)�(x
2

ik)+O(c�2).

(24)
Note that we have rewritten the sum by discarding prop-
agators with both ends on the same worldline. Using the
non-relativistic expansion of the propagator (10)

�(x2

ij) =
�(ti � tj)

rij
�

rij
2c2

@ti@tj�(ti � tj) (25)

+
r3ij
24c4

@2

ti@
2

tj�(ti � tj) +O(c�4),

where rij = |rij | with rij = xi � xj , yields a localized
time integration in the e↵ective action (17). After some
rearrangements, we find the 1PN three-body e↵ective ac-
tion1

S =
X

i

Z
dt


�mi +

1

c2

✓
miv2

i

2
+
X

j 6=i

Gmimj

2rij

◆

+
1

c4

✓
miv4

i

8
+

X

j 6=i

Gmimj

4rij

�
6v2

i �(nij ·vi)(nij ·vj)

� 7vi · vj

�
�

X

j 6=i

X

k 6=i

G2mimjmk

2rijrik

◆�
, (26)

where we abbreviate nij := rij/rij and G = 2/32⇡. This
result agrees with the well known 1PN expression [14].

V. POST-NEWTONIAN EXPANSION AND
INTEGRAL BOOTSTRAP

The 1PN expansion obtained in the previous section
merely tests the second line of the three-body contribu-
tion (16) to the e↵ective potential. In order to obtain the
expansion at 2PN order, also the third line in (16) has to
be taken into account. This includes second derivatives
of the three-delta integral, @µ

j @
⌫
kI3�, cf. the ⇥-function in

(21). As outlined in detail in appendix B, taking these
derivatives leads to lengthy expressions in terms of delta
functions and their derivatives which are hard to control.
In fact, it is simpler to perform the non-relativistic ex-
pansion directly on the level of the integrand of I3� as we
will demonstrate in the following. For convenience of the
reader we briefly summarize the below strategy: First, we
will show that expanding the integrand of I3� leads to the
family of key integrals given in (31). We will then use the
Yangian level-one symmetry of these integrals, i.e. invari-
ance under the di↵erential operator (33), to obtain the

1 Note that in the GR literature the PN action is typically rescaled
by a factor of c2.
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Here we refer to the first term on the right hand side as
the three-body interaction and to the remaining terms as
the two-body interactions. When identifying two of the
three indices, we encounter a divergence 1/rij |j=i and an
indefinite unit vector nij |j=i. In light of the vanishing
of propagators with both ends on the same worldline,
we propose to regularize the divergences as 1/rij |j=i !

0. Terms of odd order in nij |j=i also vanish due to the
anti-symmetry in the indices. For the quadratic terms in
nij |j=i of the 2PN result we adopt the following limiting
prescription:

nij ·v↵ nij ·v� |j=i ! v↵ · v� . (50)

That is, whenever the identification of two points yields
an expression as given on the left hand side, we replace it
by the right hand side. This prescription is natural from
the perspective of dimensional analysis and symmetry
considerations, and it reproduces the correct results as
given in the literature. With regard to the 3PN result to
be discussed in section VII we already give the rule

nij ·v↵ nij ·v� nij ·v⇢ nij ·v�|j=i (51)

! v↵ ·v� v⇢ ·v� + v↵ ·v⇢ v� ·v� + v↵ ·v� v� ·v⇢.

We note that the 1/✏-term in (43) naturally drops out
in the final expression for the action due to the deriva-
tives that have to be applied. Moreover, we expect this
property to hold to all orders in the PN expansion. This
is explicitly shown to be true in the 3PN calculation of
section VII. The 2PN e↵ective action reads

S2PN =
X

i

Z
dt

c6

⇢
miv6

i

16
+
X

j 6=i

Gmimj

16rij

h
3(nij ·vi)

2(nij ·vj)
2
� 6nij ·vi nij ·vj v

2

ij � 2 (nij ·vj)
2 v2

i

+ 3v2

i v
2

j + 2 (vi ·vj)
2
� 20v2

i vi ·vj + 14v4

i

i
+

X

j 6=i

G2mim2

j

2r2ij

h
33 (nij · vij)

2
� 17v2

ij

i

+
X

j 6=i

X

k 6=i

G2mimjmk

8


1

rijrik

�
4(nij · vj)

2 + 18v2

i � 16v2

j � 32vi · vj + 32vj · vk

�
(52)

+
1

r2ij

�
14nik ·vk nij ·vk � 12nij ·vi nik ·vk + nij ·nik (nik ·vk)

2
� nij ·nik v

2

k

� �

+
X

j 6=i

X

k 6=i,j

G2mimjmk


2(nij�njk)·vij

(rij + rik + rjk)2
�
4 (nij + nik)·vij + (nik + njk)·vik

�

+
9 (nij ·vij)

2
� 9v2

ij + 2 (nij ·vik)
2
� 2v2

ik

rij (rij + rik + rjk)

��
+G3

⇥ [static term] ,

where we define vij := vi�vj . Here we have performed a
field redefinition to push terms that involve accelerations
to higher orders in G. We have checked that our result
agrees with the literature [47, 48] up to a total derivative.
Note that we do not have access to the static (velocity
independent) term at O(G3) in our approach as it stems
from a 3PM computation.

VII. NEW CONTRIBUTIONS AT 3PN

In this section we explicitly evaluate the contributions
to the 3PN three-body e↵ective potential. Limiting the
number of point masses to two gives the two-body 3PN
e↵ective action, which we checked to agree with [27] up
to a total derivative. Next to the novel three-point G2v4

terms, the below expression contains terms that scale as
Gv6, as well as two-point terms of order G2v4 which have

been known before. The full 3PN action can be written
in the form

S3PN =
X

i

Z
dt

c8

⇢
5

128
miv

8

i + L3PN

(A)
+ L3PN

(B)
(53)

+ L3PN

(C)
+ L3PN

(D)

�
+O(G3).

Note that the terms at order G3 are not given here and
require two yet unknown four-point integrals at one and
two loops. Moreover, there are additional G4 contribu-
tions at 3PN. In (53) we have ordered the various terms,
which are explicitly given in the following, by their power
of G and the structure of summations. Terms from per-
turbative solutions of the equations of motion for the
einbein, cf. (22), contribute at various places. Explicit
expressions for the terms in (53) are also provided in an
ancillary file to this paper. The term L3PN

(A)
originates
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1PN: 

2PN: 

3PN:

[Newton (1687)]

[Einstein,Infeld,

 Hofmann(1938)]

[Ohta,Okamura,Hiida,   
Kimura (1974)]

[Damour, Jaranowski,Schaefer (2016); Blanchet,Bohe,Faye (2015)]
[Bini,Damour,Geralico (2019); Foffa (2017);Porto, Rothstein, Sturani (2019]

4PN:
5PN:
Partial results at 6PN…



POST-NEWTONIAN VS POST-MINKOWSKIAN EXPANSIONS
Conservative non-spinning 2-body dynamics:

0PN 1PN 2PN 3PN 4PN 5PN

0PM 1 v2 v4 v6 v8 v10 v12 …

1PM G/r G v2/r G v4/r G v6/r G v8/r G v10/r …

2PM G2 1/r2 G2 v2/r2  G2 v4/r2 G2 v6/r2 G2 v8/r2 …

3PM G3 1/r3  G3 v2/r3 G3 v6/r3 G3 v8/r3 …

(4PM) G4 1/r4 G4 v2/r4 G4 v6/r4 …

…. : :

PM state-of-the-art

PN state-of-the-art

[Bern,Cheung,Roiban,Shen, Solon,Zeng][Kälin, Liu, Porto][Di Vecchia, Heissenberg, Russo,Veneziano]
[Bjerrum-Bohr,Vanhove,Damgaard][Brandhuber,Chen,Travaglini,Wen][Jakobsen,Mogull,JP,Sauer]

[Bern,Parra-Martinez,Roiban,Ruf,Shen,Solon,Zeng][Dlapa,Källin,Liu,Porto]

[many]

[Newton] [EIH][Westpfahl]

[Einstein]

~ tree-level 

~ 1-loop

~ 2-loop

~ 3-loop

Integration 
complexity

(w/o radiation)



THE POST-MINKOWSKIAN EXPANSION
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Gn f (n)
µ⌫
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Gn �p(n)µ1



THE GENERAL REALTIVISTIC TWO BODY PROBLEM IN PM: 
TRADITIONAL  APPROACH 
Point-particle approximation for BHs (or NSs)

<latexit sha1_base64="BbYPIhx1CBztnAc7AQCSCpt9i/0="></latexit>

S = �
2X

i=1

Z
d⌧i

q
gµ⌫ ẋ
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16⇡G
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d4x

p
�gR+ Sg.f.

Point particle approximation Bulk gravity & gauge fixing

1) Equations of motion:
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Rµ⌫ � 1

2
gµ⌫ =

2

8
Tµ⌫

Einstein’s eqs.
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⇢
i = 0

Geodesic eqs.
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2) Solve iteratively in 

straight line: „in“ state deflectionsemitted radiation
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gµ⌫ = ⌘µ⌫ +
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Gn h(n)
µ⌫ (x)
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xµ
i (⌧) = bµi + vµi ⌧ +

1X

n=1

Gnz(n)µi (⌧)
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G

3) Construct observables
Far field waveform:

„Impulse“ (change in momentum):
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USE OF QUANTUM FIELD THEORY TECHNIQUES FOR CLASSICAL 2-BODY PROBLEM
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1) Effective world-line field theory:

Construct effective action:

Solve e.oms for          :

[Källin,Porto,Dlapa][Mougiakos,Riva,Vernizzi]
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= 0
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xi(⌧)

[Jakobsen,Mogull,JP,Steinhoff]3) World line quantum field theory: Best of 1) & 2)

Use 1) but also path integrate over          !
Philosophy: Focus on observables (here one-point functions @ tree-level
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xi(⌧)
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e
i
~Seff[xi] =

Z
[Dhµ⌫ ]e

i
~ (Spp[xi,hµ⌫ ]+SG[hµ⌫ ]

2) Scattering amplitudes:

Scalar fields as avatars of BHs & NSs:

+ Modern on-shell techniques:

- Non-trivial classical limit

- Opaque relation to observables

[Bern,Cheung,Roiban,Solon,Parra-Martinex,Ruf,Zeng,Luna,..][Bjerrum-
Bohr,Damgaard,Vanhove,Cristofoli][DiVecchia,Heissenberg,Russo,Venneziano]
[Kosower,Maybee,O’Connell,Vines]…

[Bjerrum,Cristofli,Damgaard,Vanhove]

[Cheung, Rothstein, Solon]

[di Veccia, Heissenberg, Russo, Veneziano] [Parra-Martinez, Ruf, Zeng]

[Kosower, Maybee, O’Connell, Vines]

[Bern, Cheung, Roiban, Shen, Solon; Parra-Martinez, 
Ruf,Zeng]

[Bern, Parra-
Martinez,Roiban,Ruf,Shen]

METHOD 2 :
um

SCATTERING AMPLITUDE S

☐ Use massive Sucher Gelds as QFT auratus for BHS :

2

5- fdI.gr?lgfdrdidudi-m?didi)+?.Sd4-oTR+Sg.s .
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☐ Different methods to eitert Observablen :

② LIPPMANN - SCHWINGER EQS

• EFT - MATCHING

• EIKONAL PHASE

• OPERATOR EXPELTATCON VALLES

☐ state of the art : Conservative 4PM effectie Hamilton

☐ DRAWBACK : One computers more ( ts - teens) than one nach

[Bjerrum,Cristofli,Damgaard,Vanhove]

[Cheung, Rothstein, Solon]

[di Veccia, Heissenberg, Russo, Veneziano] [Parra-Martinez, Ruf, Zeng]

[Kosower, Maybee, O’Connell, Vines]

[Bern, Cheung, Roiban, Shen, Solon; Parra-Martinez, 
Ruf,Zeng]

[Bern, Parra-
Martinez,Roiban,Ruf,Shen]

METHOD 2 :
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SCATTERING AMPLITUDE S

☐ Use massive Sucher Gelds as QFT auratus for BHS :
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② LIPPMANN - SCHWINGER EQS
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• EIKONAL PHASE

• OPERATOR EXPELTATCON VALLES

☐ state of the art : Conservative 4PM effectie Hamilton

☐ DRAWBACK : One computers more ( ts - teens) than one nach
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THE BASIC IDEA: USE OF QFT TO SOLVE CLASSICAL EOMUSING QFT TECHNIQUES TO SOLUE CLASSICAL FIELD EQUATIONS

CONS / DER SCHAR FIELD THY AS PROXY :
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WORLD LINE QUANTUM FIELD

THEORY



[Goldberger,Rothstein] [Porto,Källin] [Foffa,Sturani] 
WORCDLINEEFFECTIUE FELD THEORY
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[Schwinger,Keldysh]

[Jakobsen,Mogull,JP,Steinhoff]

WORLD LINE QFT : FCUCTUATE GRAUTON & WORLDCINE

OBJECTIVE : FOCUS ON OBSERUABCES ?
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THE IN-IN (SCHWINGER-KELDYSH) 

FORMALISM FOR WQFT

background:

h�(k)i =
k

+�
. (2.22)

The grey shaded rectangle subsumes all tree-level interactions containing two-valent,

three-valent and higher-point vertices that connect the n ingoing retarded propaga-

tors emerging from the background Q to the single outgoing leg.

The crucial insight is that at tree level only vertices with a single minus leg can

contribute to these one-point functions. Any tree-level graph will have the topological

structure of a rooted tree, i.e. take a form such as

� +
. (2.23)

From this structure it is immediately clear that inserting a vertex with three (or more)

minus-labeled (outgoing) legs in the shaded box inevitably leads to a loop-level graph,

as we just have a single outgoing leg. So we learn that at tree level only single-minus

vertices may contribute to the one-point functions. Similarly, the h�+�+i Hadamard

propagator cannot make an appearance, as conecting to plus labeled (ingoing) legs

of a vertex inevitably yields a loop diagram as every vertex has at least one minus

labeled leg. The consequence is that exclusively retarded propagators appear in the

computation if one assigns a momentum flow according to causality from Q sources

to the outgoing operator line. Therefore, in practical computations of one-point

functions in a background field theory one may e↵ectively forget about the in-in

formalism altogether. One simply applies the usual (in-out) Feynman rules and uses

retarded propagators everywhere, with the direction of causality always pointing

towards the outgoing line.

In hindsight, this fact is not surprising. As we showed in eq. (2.18), it is a

well-known fact that at tree level the path integral is dominated by solutions to the

classical equations of motion of the theory (the saddle-point approximation). The

sum of rooted tree diagrams is then simply a visual interpretation of a perturbative

expansion of the classical solution in powers of the coupling constant. From a purely

classical perspective, using retarded propagators is then necessary to ensure fixing of

boundary conditions at past infinity.
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Figure 5: The six diagrams contributing to the m1m3

2
component of �p(3)µ

1
in the absence

of tidal corrections. The upper worldline is one continuous fluctuation and hence we have

test-body motion.
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where q
µ =

P
i
k
µ

i
is the total momentum of all emitted gravitons and

R
(n)

↵�⇢�,µ1⌫1...µn⌫n :=
�
n
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(n)
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�hµ1⌫1 · · · �hµn⌫n
. (4.5)

R
(n)

↵�⇢� is given by the n’th order of  =
p
32⇡G in a PM expansion of the curvature

tensor where we replace the graviton field by its Fourier transform hµ⌫(x) ! hµ⌫(�k),

and similarly for the dual of the curvature tensor. The complete set of Feynman rules

also includes bulk interactions arising from theD-dimensional Einstein-Hilbert action

and gauge-fixing term:
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where the gauge-fixing constraint is @⌫h
µ⌫ = 1

2
@
µ
h
⌫
⌫ . Expressions for the retarded

graviton and worldline propagators were provided in eqs. (2.24) and (2.25).

4.1 Impulse

Our main goal is to calculate the impulse (deflection) on the first body, including

radiation-reaction e↵ects. This is recovered from the WQFT using:

�p
µ

1
= �m1!

2
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µ

1
(!)i|!=0 , (4.7)

where the expectation value was discussed in eq. (2.29) and �p
µ

i
=
P

n
G

n�p
(n)µ

i
in

the PM expansion. As the results for �p
(1)µ

i
and �p

(2)µ

i
are well-established — tidal
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(a) (b) (c) (d)

Figure 6: The four types of diagrams contributing to the test-body m1m3

2
components

of �p(3)µ
1

linear in tidal coe�cients.

(a) (b) (c) (d) (e) (f) (g)

(h) (i) (j) (k) (l) (m) (n)

Figure 7: The 14 types of diagrams contributing to the m2

1
m2

2
components of the 3PM

gravitational impulse �p(3)µ
1

without tidal corrections. All diagrams except the last, (n),

are associated with the comparable-mass family I(�1;�2;�3)
n1,n2,...,n7 (3.1); diagrams (l)–(n) are as-

sociated with K(�1;�2;�3)
n1,n2,...,n5 family (3.25).
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Figure 8: The 14 types of diagrams contributing to the m2

1
m2

2
comparable-mass compo-

nents of �p(3)µ
1

linear in tidal coe�cients.

e↵ects beginning at 2PM order [38, 105–107] — we focus here on the 3PM compo-

nent �p
(3)µ

i
. This will allow us to use the retarded integrals derived in section 3.

Results for �p
(1)µ

i
and �p

(2)µ

i
are included in the ancillary file attached to the arXiv

submission of this paper.

We proceed by drawing all diagrams with a single (cut) outgoing z
µ

1
line. There

are four categories of diagrams, displayed in Figs. 5–8. All retarded propagators,

both in the bulk and on the worldlines, point towards the outgoing line: from cause

to e↵ect. In particular: Figs. 5 and 6 contain the contributions to �p
(3)µ

i
in the

test-body limit m1 ⌧ m2, with and without the tidal corrections respectively. These

involve the integral family J
(�1;�2)
n1,n2,...,n7 , consisting only of potential modes. Figs. 7 and

8 contain the comparable-mass diagrams. These latter contributions are modified
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of tidal corrections. The upper worldline is one continuous fluctuation and hence we have

test-body motion.
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where q
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tensor where we replace the graviton field by its Fourier transform hµ⌫(x) ! hµ⌫(�k),

and similarly for the dual of the curvature tensor. The complete set of Feynman rules

also includes bulk interactions arising from theD-dimensional Einstein-Hilbert action

and gauge-fixing term:

SEH = �
2

2

Z
dD

x
p
�g R , Sgf =

Z
dD

x
�
@⌫h

µ⌫
�

1

2
@
µ
h
⌫
⌫

�2
, (4.6)
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µ⌫ = 1
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⌫ . Expressions for the retarded

graviton and worldline propagators were provided in eqs. (2.24) and (2.25).
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. This will allow us to use the retarded integrals derived in section 3.

Results for �p
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are included in the ancillary file attached to the arXiv

submission of this paper.

We proceed by drawing all diagrams with a single (cut) outgoing z
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line. There

are four categories of diagrams, displayed in Figs. 5–8. All retarded propagators,

both in the bulk and on the worldlines, point towards the outgoing line: from cause

to e↵ect. In particular: Figs. 5 and 6 contain the contributions to �p
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in the

test-body limit m1 ⌧ m2, with and without the tidal corrections respectively. These

involve the integral family J
(�1;�2)
n1,n2,...,n7 , consisting only of potential modes. Figs. 7 and

8 contain the comparable-mass diagrams. These latter contributions are modified
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Figure 5: The six diagrams contributing to the m1m3
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component of �p(3)µ

1
in the absence

of tidal corrections. The upper worldline is one continuous fluctuation and hence we have

test-body motion.
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where q
µ =

P
i
k
µ

i
is the total momentum of all emitted gravitons and

R
(n)

↵�⇢�,µ1⌫1...µn⌫n :=
�
n
R

(n)
↵�⇢�

�hµ1⌫1 · · · �hµn⌫n
. (4.5)

R
(n)

↵�⇢� is given by the n’th order of  =
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tensor where we replace the graviton field by its Fourier transform hµ⌫(x) ! hµ⌫(�k),

and similarly for the dual of the curvature tensor. The complete set of Feynman rules
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where the gauge-fixing constraint is @⌫h
µ⌫ = 1

2
@
µ
h
⌫
⌫ . Expressions for the retarded
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submission of this paper.
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line. There
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to e↵ect. In particular: Figs. 5 and 6 contain the contributions to �p
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in the
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of tidal corrections. The upper worldline is one continuous fluctuation and hence we have
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line. There
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to e↵ect. In particular: Figs. 5 and 6 contain the contributions to �p
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in the

test-body limit m1 ⌧ m2, with and without the tidal corrections respectively. These

involve the integral family J
(�1;�2)
n1,n2,...,n7 , consisting only of potential modes. Figs. 7 and

8 contain the comparable-mass diagrams. These latter contributions are modified
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of tidal corrections. The upper worldline is one continuous fluctuation and hence we have
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are included in the ancillary file attached to the arXiv

submission of this paper.

We proceed by drawing all diagrams with a single (cut) outgoing z
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line. There

are four categories of diagrams, displayed in Figs. 5–8. All retarded propagators,

both in the bulk and on the worldlines, point towards the outgoing line: from cause

to e↵ect. In particular: Figs. 5 and 6 contain the contributions to �p
(3)µ

i
in the

test-body limit m1 ⌧ m2, with and without the tidal corrections respectively. These

involve the integral family J
(�1;�2)
n1,n2,...,n7 , consisting only of potential modes. Figs. 7 and

8 contain the comparable-mass diagrams. These latter contributions are modified
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of tidal corrections. The upper worldline is one continuous fluctuation and hence we have
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submission of this paper.

We proceed by drawing all diagrams with a single (cut) outgoing z
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line. There

are four categories of diagrams, displayed in Figs. 5–8. All retarded propagators,

both in the bulk and on the worldlines, point towards the outgoing line: from cause

to e↵ect. In particular: Figs. 5 and 6 contain the contributions to �p
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in the

test-body limit m1 ⌧ m2, with and without the tidal corrections respectively. These

involve the integral family J
(�1;�2)
n1,n2,...,n7 , consisting only of potential modes. Figs. 7 and
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i ẋ⌫
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The energy ! is also taken as outgoing. One also has the
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result of the total radiated momentum at leading order in
G (3PM) established with amplitude techniques [30]. We
comment on how to achieve this result from our methods.

Worldline Quantum Field Theory. — The classical
gravitational scattering of two massive objects mi mov-
ing on trajectories xµ
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i (⌧i) is described

by the worldline quantum field theory (WQFT) with par-
tition function [29]
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with 2 = 32⇡G the gravitational coupling; we have sup-
pressed the ghost contributions in Eq. (1) as they are ir-
relevant in the classical setting. We work in mostly minus
signature, ⌘µ⌫ = diag(1, �1, �1, �1), and set c = ~ = 1.

Correlation functions in the WQFT hO(h, {xi})iWQFT
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The energy ! is also taken as outgoing. One also has the
standard bulk graviton vertices, of which we shall need
only the three-graviton vertex — see e.g. Ref. [31].

To determine the Bremsstrahlung of two travers-
ing black holes we compute the expectation value
k2

hhµ⌫(k)iWQFT. At leading (2PM) order there are three
diagrams contributing, cp. Fig. 1. We integrate over the
momenta or energies of internal gravitons or fluctuations
respectively; lack of three-momentum conservation at the
worldline vertices leaves unresolved integrals for the tree-
level diagrams.
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1) Test body diagrams (geodesic motion in Schwarzschild background):

(a) (b) (c) (d) (e) (f)

Figure 5: The six diagrams contributing to the m1m3

2
component of �p(3)µ

1
in the absence

of tidal corrections. The upper worldline is one continuous fluctuation and hence we have

test-body motion.

Both expressions include

T
✏��⇠

⇢1...⇢n =

 
nY

i=1

q⇢i

!
v
✏
v
�
v
�
v
⇠ + 4

nX

i=1

!i

 
nY

j 6=i

q⇢j

!
v
(✏
v
�
v
�
�
⇠)

⇢i

+ 24
nX

i<j

!i!j

 
nY

k 6=i,j

q⇢k

!
v
(✏
v
�
�
�

⇢i
�
⇠)

⇢j
+ 24

nX

i<j<k

!i!j!k

 
nY

l 6=i,j,k

q⇢l

!
v
(✏
�
�

⇢i
�
�

⇢j
�
⇠)

⇢k

+ 24
nX

i<j<k<l

!i!j!k!l

 
nY

m 6=i,j,k,l

q⇢m

!
�
(✏

⇢i
�
�

⇢j
�
�

⇢k
�
⇠)

⇢l
, (4.4)

where q
µ =

P
i
k
µ

i
is the total momentum of all emitted gravitons and

R
(n)

↵�⇢�,µ1⌫1...µn⌫n :=
�
n
R

(n)
↵�⇢�

�hµ1⌫1 · · · �hµn⌫n
. (4.5)

R
(n)

↵�⇢� is given by the n’th order of  =
p
32⇡G in a PM expansion of the curvature

tensor where we replace the graviton field by its Fourier transform hµ⌫(x) ! hµ⌫(�k),

and similarly for the dual of the curvature tensor. The complete set of Feynman rules

also includes bulk interactions arising from theD-dimensional Einstein-Hilbert action

and gauge-fixing term:

SEH = �
2

2

Z
dD

x
p
�g R , Sgf =

Z
dD

x
�
@⌫h

µ⌫
�

1

2
@
µ
h
⌫
⌫

�2
, (4.6)

where the gauge-fixing constraint is @⌫h
µ⌫ = 1

2
@
µ
h
⌫
⌫ . Expressions for the retarded

graviton and worldline propagators were provided in eqs. (2.24) and (2.25).

4.1 Impulse

Our main goal is to calculate the impulse (deflection) on the first body, including

radiation-reaction e↵ects. This is recovered from the WQFT using:

�p
µ

1
= �m1!

2
hz

µ

1
(!)i|!=0 , (4.7)

where the expectation value was discussed in eq. (2.29) and �p
µ

i
=
P

n
G

n�p
(n)µ

i
in

the PM expansion. As the results for �p
(1)µ

i
and �p

(2)µ

i
are well-established — tidal

24
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⇠ G3m1 m
3
2

2) Comparable mass diagrams (i0 prescription relevant for red propagators):

(a) (b) (c) (d)

Figure 6: The four types of diagrams contributing to the test-body m1m3

2
components

of �p(3)µ
1

linear in tidal coe�cients.

(a) (b) (c) (d) (e) (f) (g)

(h) (i) (j) (k) (l) (m) (n)

Figure 7: The 14 types of diagrams contributing to the m2

1
m2

2
components of the 3PM

gravitational impulse �p(3)µ
1

without tidal corrections. All diagrams except the last, (n),

are associated with the comparable-mass family I(�1;�2;�3)
n1,n2,...,n7 (3.1); diagrams (l)–(n) are as-

sociated with K(�1;�2;�3)
n1,n2,...,n5 family (3.25).

(a) (b) (c) (d) (e) (f) (g)

(h) (i) (j) (k) (l) (m) (n)

Figure 8: The 14 types of diagrams contributing to the m2

1
m2

2
comparable-mass compo-

nents of �p(3)µ
1

linear in tidal coe�cients.

e↵ects beginning at 2PM order [38, 105–107] — we focus here on the 3PM compo-

nent �p
(3)µ

i
. This will allow us to use the retarded integrals derived in section 3.

Results for �p
(1)µ

i
and �p

(2)µ

i
are included in the ancillary file attached to the arXiv

submission of this paper.

We proceed by drawing all diagrams with a single (cut) outgoing z
µ

1
line. There

are four categories of diagrams, displayed in Figs. 5–8. All retarded propagators,

both in the bulk and on the worldlines, point towards the outgoing line: from cause

to e↵ect. In particular: Figs. 5 and 6 contain the contributions to �p
(3)µ

i
in the

test-body limit m1 ⌧ m2, with and without the tidal corrections respectively. These

involve the integral family J
(�1;�2)
n1,n2,...,n7 , consisting only of potential modes. Figs. 7 and

8 contain the comparable-mass diagrams. These latter contributions are modified

25
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Figure B2.2.: Representation of GW observables

two-body problem for the unbound scenario. Yet, in the applications for gravitational wave physics the bound
scenario including radiative e�ects is required and remains underdeveloped. In addition, the systematic inclusion
of higher orders in spin, finite-size and tidal-e�ects including radiative e�ects at high PM orders needs to be
performed. Finally, the present QFT based technology is limited to the weak gravitational field sector, the strong
gravity regime accessible in the small mass ratio expansion (the gravitational self-force approach) remained
untouched by recent innovations.

a.2. Research objectives

The research objectives of the GraWFTy project that I would like to pursue in four work-packages are therefore
the following:

1) Radiative e�ects: How can we systematically control the radiative PM expansion including spin, finite size
and tidal e�ects?

2) Higher spin: What are the hidden symmetries behind Kerr-BH scattering and how do we e�ciently handle
higher spin contributions?

3) Strong gravity: How can we innovate the small mass ratio expansion with QFT techniques in order to access
the strong gravity regime?

4) Bound state: How can we port the QFT based innovations from the scattering to the bound state regime?

I plan to pursue these objectives in the framework of the WQFT formalism outlined above. The ERC grant
would provide me with the means to fully unfold the enormous potential of this approach. My GraWFTy team
will consist of a long-term (5y) senior postdoc with a background in amplitudes and collider physics that will
bring in expertise in modern Feynman integration methods, a postdoc (3y) with a background in gravitational
wave physics in particular EOB and/or the self-force approach, as well as two talented PhD students (4y).

Work-packages

WP1 Radiative e�ects: Retarded WQFT including spin, tidal and finite size e�ects
Team: Senior Postdoc, PhD

As we know in classical physics one needs to use the retarded Green’s function (or propagator) to solve
Maxwell’s equations with time-dependent sources. The same is true for a perturbative PM solution of the
gravitational two-body problem. Yet, to date all QFT based approaches fail to do so and use the Feynman
propagator – this being the correct choice for the quantum regime. This seemingly technical detail actually
has profound consequences: It leads to an unphysical split of the resulting observables into conservative and
radiation reaction contributions. It was also the reason for an initial confusion in the field about a divergent
high-energy limit of the 3PM amplitudes based computation of the e�ective potential. The key advantage of

5

Deflection:

3

(a) (b) (c) (d) (e) (f) (g) (h) (i)

FIG. 1: The nine types of diagram contributing to the m1m
3
2 components of �p(3)µ

1 and the m3
2 components of ��(3)µ

1 ,
involving I(1;±)-type integrals (13). In the test-body limit m1 � m2 these are the only surviving contributions. All graphs
should be considered trees — the dotted lines represent the worldlines on which energy is conserved, instead of momentum.

(a) (b) (c) (d) (e) (f) (g) (h)

(i) (j) (k) (l) (m) (n) (o) (p)

(q) (r) (s) (t) (u) (v)

FIG. 2: The twenty-two types of diagram contributing to the m2
1m

2
2 components of �p(3)µ

1 and the m1m
2
2 components of

��(3)µ
1 , involving I(2;±)-type integrals (13). We exclude “mushroom graphs” that integrate to zero in the potential region.

selecting the G3 component on both sides. Meanwhile
�Sµ�

i we derive from ��µ
i := [�µ

i ]�=+�
�=�� and ��̄µ

i (again
using eq. (2)):
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In the WQFT formalism these quantities are considered
observables:
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Diagrammatically this amounts to a simple prescription:
draw all tree-level diagrams with a single cut external zµ

i
or ��µ

i line.

The diagrams required to calculate both �p(3)µ
1 and

��(3)µ
1 are divided into three categories, the first two of

which are illustrated schematically in Figures 1 and 2.

As the diagrams involved in �p(3)µ
1 and ��(3)µ

1 di�er
only by the cut outgoing line we display them together.
For additional brevity we use only solid lines to repre-
sent propagating worldline modes zµ

i , ��µ
i and �̄�µ

i ; how-
ever, it should be assumed that each internal worldline
mode could be of all three types (with symmetry fac-
tors adjusted accordingly). The third set of diagrams
(not drawn) consists simply of mirrored versions of the
graphs in Figure 1 through a horizontal plane, but with
the external cut line still on the first (upper) worldline.
For the impulse we avoid calculating these contributions

directly, instead making use of momentum conservation

�p(3)µ
2 = ��p(3)µ

1 (for conservative scattering).

We assemble expressions using the WQFT Feynman
rules in D = 4 � 2� spacetime dimensions, with the
later intention of recovering four-dimensional results in
the � � 0 limit. Each retarded worldline propagator (7)
points towards the outgoing line: from cause to e�ect. As
diagrams belonging to each of the three categories carry
common overall factors of the masses m�

1 m�
2 the cate-

gories themselves are separately gauge invariant. This is
a considerable practical benefit to our approach, as it al-
lows us to break up the calculation into gauge-invariant
sub-components. Diagrams in Figure 1 carry the maxi-
mum allowed power of m2, and represent the test-body
limit m1 � m2. Integrals are performed over the ener-
gies (on the worldlines

�
�) or momenta (in the bulk

�
k)

of all internal lines.

The integrals involved in both �p(3)µ
1 and ��(3)µ

1 are
Fourier transforms of two-loop Feynman integrals:

�

q
eiq·b��(q · v1)�

�(q · v2)|q|�I(i;±)
n1,n2,...,n7

, i = 1, 2, 3, (12)

where qµ is the total momentum exchanged from the sec-
ond to the first worldline and � is an arbitrary power of
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two-body problem for the unbound scenario. Yet, in the applications for gravitational wave physics the bound
scenario including radiative e�ects is required and remains underdeveloped. In addition, the systematic inclusion
of higher orders in spin, finite-size and tidal-e�ects including radiative e�ects at high PM orders needs to be
performed. Finally, the present QFT based technology is limited to the weak gravitational field sector, the strong
gravity regime accessible in the small mass ratio expansion (the gravitational self-force approach) remained
untouched by recent innovations.

a.2. Research objectives

The research objectives of the GraWFTy project that I would like to pursue in four work-packages are therefore
the following:

1) Radiative e�ects: How can we systematically control the radiative PM expansion including spin, finite size
and tidal e�ects?

2) Higher spin: What are the hidden symmetries behind Kerr-BH scattering and how do we e�ciently handle
higher spin contributions?

3) Strong gravity: How can we innovate the small mass ratio expansion with QFT techniques in order to access
the strong gravity regime?

4) Bound state: How can we port the QFT based innovations from the scattering to the bound state regime?

I plan to pursue these objectives in the framework of the WQFT formalism outlined above. The ERC grant
would provide me with the means to fully unfold the enormous potential of this approach. My GraWFTy team
will consist of a long-term (5y) senior postdoc with a background in amplitudes and collider physics that will
bring in expertise in modern Feynman integration methods, a postdoc (3y) with a background in gravitational
wave physics in particular EOB and/or the self-force approach, as well as two talented PhD students (4y).

Work-packages

WP1 Radiative e�ects: Retarded WQFT including spin, tidal and finite size e�ects
Team: Senior Postdoc, PhD

As we know in classical physics one needs to use the retarded Green’s function (or propagator) to solve
Maxwell’s equations with time-dependent sources. The same is true for a perturbative PM solution of the
gravitational two-body problem. Yet, to date all QFT based approaches fail to do so and use the Feynman
propagator – this being the correct choice for the quantum regime. This seemingly technical detail actually
has profound consequences: It leads to an unphysical split of the resulting observables into conservative and
radiation reaction contributions. It was also the reason for an initial confusion in the field about a divergent
high-energy limit of the 3PM amplitudes based computation of the e�ective potential. The key advantage of
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The energy � is also taken as outgoing. Finally, to quadratic order in zµ:
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The associated trivalent Feynman vertex is
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While of course the second worldline fluctuation still travels on the worldline, we

draw it above to distinguish it from its partner.

Given that an n-graviton vertex carries an overall m2�n
Pl , it might seem odd that

each of these z-vertices carries only a single power of m�1
Pl . To rectify this we might

try rescaling zµ � m�1
Pl z

µ, similar to how we write gµ� = �µ� + m�1
Pl hµ� for the

graviton. However, we find this operation to be undesirable as it also rescales the

propagator (4.7) to carry an overall m2
Pl. As we shall see, despite the higher-point

vertices carrying the same overall power of mPl, their appearance at low orders in

the PM expansion is ruled out by the combinatorics of which diagrams we can draw.

The three vertices given above will be su�cient for all of the calculations done in

this paper. However, using eq. (4.10) we can easily generalize to an nth order vertex:
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An intriguing property of this vertex is that, should we set the energy on one of the

external zµ lines to zero, the resulting expression can also be obtained as a derivative

of its lower-point cousin with respect to the impact factor:

V WL,µ�
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(k; �1, . . . , �n, 0) =
�

�b�n+1
V WL,µ�

�1...�n
(k; �1, . . . , �n) . (4.18)

This will be important when we return to the eikonal phase in Section 7.
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Figure B2.1.: Sketch of the non-spinning WQFT momentum space Feynman rules. The dotted line represents the unde-
flected world-line trajectories. There exist hzn vertices for all n.

also produce gravitational radiation, or gravitational Bremsstrahlung. The resulting waveform in the far field
at leading order in G was found (in the spinless case) with traditional techniques in the 1970s [21–24].
Bremsstrahlung events currently appear to be out of reach for GW wave detectors as the signal is not periodic
and typically less intensive [25–27]. Still, there is a debate in the field as to their detectability in the third
generation of GW detectors (see [28] for a summary) calling for accurate waveform models just as well. They
would be relevant for the understanding of dense stellar environments. Due to the lack of an orbital scale r in
the scattering case, the dynamics is organized in an expansion solely in G for arbitrary relative velocities of the
compact objects: the post-Minkowskian (PM) expansion. From a quantum field theorist’s perspective this is
the much more natural and e�cient expansion. It is a pure weak field expansion in powers of Newton’s constant
G and precisely the expansion one performs in a perturbative quantization of general relativity. It is exact in
velocities, subsuming the PN expansion, and maintains Lorentz invariance.

Together with my research team at Humboldt University Berlin and Dr. Jan Steinho� from the MPI for Gravita-
tional Physics in Potsdam, I very recently developed a novel and highly e�cient QFT based formalism to address
the gravitational two-body problem in the PM expansion: worldline quantum field theory (WQFT) [1]. The
WQFT starts out from the identical description as the “non-relativistic general relativity” worldline approach,
discussed above, which may also be used for the PM expansion [29, 30]. We model the black-holes or neutron
stars as (spinning) point-particles coupled to the gravitational field. Using an einbein e in a “Polyakov” type
action in order to linearize the graviton coupling to the world-line one has (in the spin-less case)
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where we exposed the first two finite size corrections with free Wilson-coe�cients cR and cV . It is convenient to
go to proper time gauge e = 1. The key di�erence to the worldline EFT approach in the PM expansion [29,30], is
that in WQFT one quantizes both the graviton field hµ⌫(x) and the fluctuations zµi (⌧i) about the bodies’ straight
worldline trajectories xµa (⌧) = bµi + v

µ
i ⌧i + zµi (⌧i). They are integrated out in the path integral
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in the classical (~ ! 0) limit. In the scattering scenario there are two key observables: The momentum
deflection, i.e. the change in momentum �pµi of the two compact objects undergoing the scatterings, and
the emitted gravitational waveform (“Bremsstrahlung”). These follow directly from the one-point correlation
functions [1, 31]
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This leads to a highly streamlined PM expansion wherein classical scattering observables arise only from sums
of tree-level Feynman diagrams. Hence, the usual expectancy of classical field theory = tree-level quantum
field theory is recovered. In figure B2.1 I sketch the Feynman rules and observables of WQFT.
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The energy � is also taken as outgoing. Finally, to quadratic order in zµ:
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The associated trivalent Feynman vertex is
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While of course the second worldline fluctuation still travels on the worldline, we

draw it above to distinguish it from its partner.

Given that an n-graviton vertex carries an overall m2�n
Pl , it might seem odd that

each of these z-vertices carries only a single power of m�1
Pl . To rectify this we might

try rescaling zµ � m�1
Pl z

µ, similar to how we write gµ� = �µ� + m�1
Pl hµ� for the

graviton. However, we find this operation to be undesirable as it also rescales the

propagator (4.7) to carry an overall m2
Pl. As we shall see, despite the higher-point

vertices carrying the same overall power of mPl, their appearance at low orders in

the PM expansion is ruled out by the combinatorics of which diagrams we can draw.

The three vertices given above will be su�cient for all of the calculations done in

this paper. However, using eq. (4.10) we can easily generalize to an nth order vertex:
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An intriguing property of this vertex is that, should we set the energy on one of the

external zµ lines to zero, the resulting expression can also be obtained as a derivative

of its lower-point cousin with respect to the impact factor:
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This will be important when we return to the eikonal phase in Section 7.
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Figure B2.1.: Sketch of the non-spinning WQFT momentum space Feynman rules. The dotted line represents the unde-
flected world-line trajectories. There exist hzn vertices for all n.

also produce gravitational radiation, or gravitational Bremsstrahlung. The resulting waveform in the far field
at leading order in G was found (in the spinless case) with traditional techniques in the 1970s [21–24].
Bremsstrahlung events currently appear to be out of reach for GW wave detectors as the signal is not periodic
and typically less intensive [25–27]. Still, there is a debate in the field as to their detectability in the third
generation of GW detectors (see [28] for a summary) calling for accurate waveform models just as well. They
would be relevant for the understanding of dense stellar environments. Due to the lack of an orbital scale r in
the scattering case, the dynamics is organized in an expansion solely in G for arbitrary relative velocities of the
compact objects: the post-Minkowskian (PM) expansion. From a quantum field theorist’s perspective this is
the much more natural and e�cient expansion. It is a pure weak field expansion in powers of Newton’s constant
G and precisely the expansion one performs in a perturbative quantization of general relativity. It is exact in
velocities, subsuming the PN expansion, and maintains Lorentz invariance.

Together with my research team at Humboldt University Berlin and Dr. Jan Steinho� from the MPI for Gravita-
tional Physics in Potsdam, I very recently developed a novel and highly e�cient QFT based formalism to address
the gravitational two-body problem in the PM expansion: worldline quantum field theory (WQFT) [1]. The
WQFT starts out from the identical description as the “non-relativistic general relativity” worldline approach,
discussed above, which may also be used for the PM expansion [29, 30]. We model the black-holes or neutron
stars as (spinning) point-particles coupled to the gravitational field. Using an einbein e in a “Polyakov” type
action in order to linearize the graviton coupling to the world-line one has (in the spin-less case)
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where we exposed the first two finite size corrections with free Wilson-coe�cients cR and cV . It is convenient to
go to proper time gauge e = 1. The key di�erence to the worldline EFT approach in the PM expansion [29,30], is
that in WQFT one quantizes both the graviton field hµ⌫(x) and the fluctuations zµi (⌧i) about the bodies’ straight
worldline trajectories xµa (⌧) = bµi + v

µ
i ⌧i + zµi (⌧i). They are integrated out in the path integral
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in the classical (~ ! 0) limit. In the scattering scenario there are two key observables: The momentum
deflection, i.e. the change in momentum �pµi of the two compact objects undergoing the scatterings, and
the emitted gravitational waveform (“Bremsstrahlung”). These follow directly from the one-point correlation
functions [1, 31]
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This leads to a highly streamlined PM expansion wherein classical scattering observables arise only from sums
of tree-level Feynman diagrams. Hence, the usual expectancy of classical field theory = tree-level quantum
field theory is recovered. In figure B2.1 I sketch the Feynman rules and observables of WQFT.
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The energy � is also taken as outgoing. One also has the
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i ẋ�
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The energy � is also taken as outgoing. Finally, to quadratic order in zµ:
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The associated trivalent Feynman vertex is
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While of course the second worldline fluctuation still travels on the worldline, we

draw it above to distinguish it from its partner.

Given that an n-graviton vertex carries an overall m2�n
Pl , it might seem odd that

each of these z-vertices carries only a single power of m�1
Pl . To rectify this we might

try rescaling zµ � m�1
Pl z

µ, similar to how we write gµ� = �µ� + m�1
Pl hµ� for the

graviton. However, we find this operation to be undesirable as it also rescales the

propagator (4.7) to carry an overall m2
Pl. As we shall see, despite the higher-point

vertices carrying the same overall power of mPl, their appearance at low orders in

the PM expansion is ruled out by the combinatorics of which diagrams we can draw.

The three vertices given above will be su�cient for all of the calculations done in

this paper. However, using eq. (4.10) we can easily generalize to an nth order vertex:
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An intriguing property of this vertex is that, should we set the energy on one of the

external zµ lines to zero, the resulting expression can also be obtained as a derivative

of its lower-point cousin with respect to the impact factor:
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This will be important when we return to the eikonal phase in Section 7.
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Figure B2.1.: Sketch of the non-spinning WQFT momentum space Feynman rules. The dotted line represents the unde-
flected world-line trajectories. There exist hzn vertices for all n.

also produce gravitational radiation, or gravitational Bremsstrahlung. The resulting waveform in the far field
at leading order in G was found (in the spinless case) with traditional techniques in the 1970s [21–24].
Bremsstrahlung events currently appear to be out of reach for GW wave detectors as the signal is not periodic
and typically less intensive [25–27]. Still, there is a debate in the field as to their detectability in the third
generation of GW detectors (see [28] for a summary) calling for accurate waveform models just as well. They
would be relevant for the understanding of dense stellar environments. Due to the lack of an orbital scale r in
the scattering case, the dynamics is organized in an expansion solely in G for arbitrary relative velocities of the
compact objects: the post-Minkowskian (PM) expansion. From a quantum field theorist’s perspective this is
the much more natural and e�cient expansion. It is a pure weak field expansion in powers of Newton’s constant
G and precisely the expansion one performs in a perturbative quantization of general relativity. It is exact in
velocities, subsuming the PN expansion, and maintains Lorentz invariance.

Together with my research team at Humboldt University Berlin and Dr. Jan Steinho� from the MPI for Gravita-
tional Physics in Potsdam, I very recently developed a novel and highly e�cient QFT based formalism to address
the gravitational two-body problem in the PM expansion: worldline quantum field theory (WQFT) [1]. The
WQFT starts out from the identical description as the “non-relativistic general relativity” worldline approach,
discussed above, which may also be used for the PM expansion [29, 30]. We model the black-holes or neutron
stars as (spinning) point-particles coupled to the gravitational field. Using an einbein e in a “Polyakov” type
action in order to linearize the graviton coupling to the world-line one has (in the spin-less case)
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where we exposed the first two finite size corrections with free Wilson-coe�cients cR and cV . It is convenient to
go to proper time gauge e = 1. The key di�erence to the worldline EFT approach in the PM expansion [29,30], is
that in WQFT one quantizes both the graviton field hµ⌫(x) and the fluctuations zµi (⌧i) about the bodies’ straight
worldline trajectories xµa (⌧) = bµi + v

µ
i ⌧i + zµi (⌧i). They are integrated out in the path integral
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in the classical (~ ! 0) limit. In the scattering scenario there are two key observables: The momentum
deflection, i.e. the change in momentum �pµi of the two compact objects undergoing the scatterings, and
the emitted gravitational waveform (“Bremsstrahlung”). These follow directly from the one-point correlation
functions [1, 31]
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This leads to a highly streamlined PM expansion wherein classical scattering observables arise only from sums
of tree-level Feynman diagrams. Hence, the usual expectancy of classical field theory = tree-level quantum
field theory is recovered. In figure B2.1 I sketch the Feynman rules and observables of WQFT.
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with �2 = 32�G the gravitational coupling; we have sup-
pressed the ghost contributions in Eq. (1) as they are ir-
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The energy � is also taken as outgoing. One also has the
standard bulk graviton vertices, of which we shall need
only the three-graviton vertex — see e.g. Ref. [31].

To determine the Bremsstrahlung of two travers-
ing black holes we compute the expectation value
k2�hµ�(k)�WQFT. At leading (2PM) order there are three
diagrams contributing, cp. Fig. 1. We integrate over the
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i ẋ�
i

�
,

where SEH+Sgf is the gauge-fixed Einstein-Hilbert action

SEH + Sgf =

�
d4x

�
� 2

�2

�
�gR + (��hµ� � 1

2�µh�
�)2

�
,

(2)

with �2 = 32�G the gravitational coupling; we have sup-
pressed the ghost contributions in Eq. (1) as they are ir-
relevant in the classical setting. We work in mostly minus
signature, �µ� = diag(1, �1, �1, �1), and set c = � = 1.

Correlation functions in the WQFT �O(h, {xi})�WQFT

result from an insertion of the operator O in the path
integral and dividing by ZWQFT. Moving to momentum
space for the graviton hµ�(k) and energy space for the
fluctuations zµ(�) we have the retarded propagators

k

µ� ��
= i

Pµ�;��

(k0 + i�)2 � k2
, (3a)

�

µ � = �i
�µ�

m (� + i�)2
, (3b)

with Pµ�;�� := �µ(���)� � 1
2�µ����. The relevant vertices

for the emission of a graviton o� the worldline read

hµ�(k)

= �i
m�

2
eik·b��(k · v)vµv� , (4)

with k outgoing, ��(�) := (2�)�(�) and

hµ�(k)

z�(�)
=

m�

2
eik·b��(k · v + �) (5)

�
�
2�v(µ��)

� + vµv�k�

�
.

The energy � is also taken as outgoing. One also has the
standard bulk graviton vertices, of which we shall need
only the three-graviton vertex — see e.g. Ref. [31].

To determine the Bremsstrahlung of two travers-
ing black holes we compute the expectation value
k2�hµ�(k)�WQFT. At leading (2PM) order there are three
diagrams contributing, cp. Fig. 1. We integrate over the
momenta or energies of internal gravitons or fluctuations
respectively; lack of three-momentum conservation at the
worldline vertices leaves unresolved integrals for the tree-
level diagrams.

Diagram (a) of Fig. 1 then takes the form1

k2�hµ�(k)�WQFT

���
(a)

= �m1m2�3

8

�

q1,q2

µ1,2(k)
(2�1v

(µ
1 ��)

� � vµ
1 v�

1k�)(2�1v
(�
1 ��)� � v�

1 v�
1 q�

2)

(�1 + i�)2
P��;��

[(q0
2 + i�)2 � q2

2]
v�
2 v�

2 ,

(6)

1 In principle we should also contract with Pµ�;�� for an outgo-
ing graviton line; however as the polarization tensors eµ�

+,� are
traceless we find it unnecessary.

= �i
�µ⌫

m (! + i� )2
,

2

µ,�

���1

k
q2 �

1

2

(a)

µ,�

�2�� k

q1 �

2

1

(b)

µ,�k
q1 �

q2 �

1

2

(c)

FIG. 1. The three diagrams contributing to the
Bremsstrahlung at 2PM order, where �i = k·vi by energy con-
servation at the worldline vertices. All three diagrams have
the integral measure in Eq. (16); in the rest frame of black
hole 1 diagram (a) does not contribute as soon as the outgo-
ing graviton is contracted with a purely spatial polarization
tensor.

these waveforms we furthermore reproduce Damour’s re-
cent result for the total radiated angular momentum [22]
at 2PM order. Our results also complement the recent
result of the total radiated momentum at leading order in
G (3PM) established with amplitude techniques [30]. We
comment on how to achieve this result from our methods.

Worldline Quantum Field Theory. — The classical
gravitational scattering of two massive objects mi mov-
ing on trajectories xµ

i (�i) = bµ
i +vµ

i �i+zµ
i (�i) is described

by the worldline quantum field theory (WQFT) with par-
tition function [29]

ZWQFT := const �
�

D[hµ� ]

� 2�

i=1

D[zi] e
i(SEH+Sgf ) (1)

exp
�
�i

2�

i=1

� �

��
d�i

mi

2
[�µ� + �hµ�(x)]ẋµ
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The energy � is also taken as outgoing. Finally, to quadratic order in zµ:
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The associated trivalent Feynman vertex is
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While of course the second worldline fluctuation still travels on the worldline, we

draw it above to distinguish it from its partner.

Given that an n-graviton vertex carries an overall m2�n
Pl , it might seem odd that

each of these z-vertices carries only a single power of m�1
Pl . To rectify this we might

try rescaling zµ � m�1
Pl z

µ, similar to how we write gµ� = �µ� + m�1
Pl hµ� for the

graviton. However, we find this operation to be undesirable as it also rescales the

propagator (4.7) to carry an overall m2
Pl. As we shall see, despite the higher-point

vertices carrying the same overall power of mPl, their appearance at low orders in

the PM expansion is ruled out by the combinatorics of which diagrams we can draw.

The three vertices given above will be su�cient for all of the calculations done in

this paper. However, using eq. (4.10) we can easily generalize to an nth order vertex:
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An intriguing property of this vertex is that, should we set the energy on one of the

external zµ lines to zero, the resulting expression can also be obtained as a derivative

of its lower-point cousin with respect to the impact factor:

V WL,µ�
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(k; �1, . . . , �n, 0) =
�
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This will be important when we return to the eikonal phase in Section 7.
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Figure B2.1.: Sketch of the non-spinning WQFT momentum space Feynman rules. The dotted line represents the unde-
flected world-line trajectories. There exist hzn vertices for all n.

also produce gravitational radiation, or gravitational Bremsstrahlung. The resulting waveform in the far field
at leading order in G was found (in the spinless case) with traditional techniques in the 1970s [21–24].
Bremsstrahlung events currently appear to be out of reach for GW wave detectors as the signal is not periodic
and typically less intensive [25–27]. Still, there is a debate in the field as to their detectability in the third
generation of GW detectors (see [28] for a summary) calling for accurate waveform models just as well. They
would be relevant for the understanding of dense stellar environments. Due to the lack of an orbital scale r in
the scattering case, the dynamics is organized in an expansion solely in G for arbitrary relative velocities of the
compact objects: the post-Minkowskian (PM) expansion. From a quantum field theorist’s perspective this is
the much more natural and e�cient expansion. It is a pure weak field expansion in powers of Newton’s constant
G and precisely the expansion one performs in a perturbative quantization of general relativity. It is exact in
velocities, subsuming the PN expansion, and maintains Lorentz invariance.

Together with my research team at Humboldt University Berlin and Dr. Jan Steinho� from the MPI for Gravita-
tional Physics in Potsdam, I very recently developed a novel and highly e�cient QFT based formalism to address
the gravitational two-body problem in the PM expansion: worldline quantum field theory (WQFT) [1]. The
WQFT starts out from the identical description as the “non-relativistic general relativity” worldline approach,
discussed above, which may also be used for the PM expansion [29, 30]. We model the black-holes or neutron
stars as (spinning) point-particles coupled to the gravitational field. Using an einbein e in a “Polyakov” type
action in order to linearize the graviton coupling to the world-line one has (in the spin-less case)
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where we exposed the first two finite size corrections with free Wilson-coe�cients cR and cV . It is convenient to
go to proper time gauge e = 1. The key di�erence to the worldline EFT approach in the PM expansion [29,30], is
that in WQFT one quantizes both the graviton field hµ⌫(x) and the fluctuations zµi (⌧i) about the bodies’ straight
worldline trajectories xµa (⌧) = bµi + v

µ
i ⌧i + zµi (⌧i). They are integrated out in the path integral
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in the classical (~ ! 0) limit. In the scattering scenario there are two key observables: The momentum
deflection, i.e. the change in momentum �pµi of the two compact objects undergoing the scatterings, and
the emitted gravitational waveform (“Bremsstrahlung”). These follow directly from the one-point correlation
functions [1, 31]
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This leads to a highly streamlined PM expansion wherein classical scattering observables arise only from sums
of tree-level Feynman diagrams. Hence, the usual expectancy of classical field theory = tree-level quantum
field theory is recovered. In figure B2.1 I sketch the Feynman rules and observables of WQFT.
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FIG. 1. The three diagrams contributing to the
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pressed the ghost contributions in Eq. (1) as they are ir-
relevant in the classical setting. We work in mostly minus
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i ẋ�
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The energy � is also taken as outgoing. Finally, to quadratic order in zµ:
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The associated trivalent Feynman vertex is
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While of course the second worldline fluctuation still travels on the worldline, we

draw it above to distinguish it from its partner.

Given that an n-graviton vertex carries an overall m2�n
Pl , it might seem odd that

each of these z-vertices carries only a single power of m�1
Pl . To rectify this we might

try rescaling zµ � m�1
Pl z

µ, similar to how we write gµ� = �µ� + m�1
Pl hµ� for the

graviton. However, we find this operation to be undesirable as it also rescales the

propagator (4.7) to carry an overall m2
Pl. As we shall see, despite the higher-point

vertices carrying the same overall power of mPl, their appearance at low orders in

the PM expansion is ruled out by the combinatorics of which diagrams we can draw.

The three vertices given above will be su�cient for all of the calculations done in

this paper. However, using eq. (4.10) we can easily generalize to an nth order vertex:
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An intriguing property of this vertex is that, should we set the energy on one of the

external zµ lines to zero, the resulting expression can also be obtained as a derivative

of its lower-point cousin with respect to the impact factor:

V WL,µ�
�1...�n+1

(k; �1, . . . , �n, 0) =
�

�b�n+1
V WL,µ�

�1...�n
(k; �1, . . . , �n) . (4.18)

This will be important when we return to the eikonal phase in Section 7.
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Figure B2.1.: Sketch of the non-spinning WQFT momentum space Feynman rules. The dotted line represents the unde-
flected world-line trajectories. There exist hzn vertices for all n.

also produce gravitational radiation, or gravitational Bremsstrahlung. The resulting waveform in the far field
at leading order in G was found (in the spinless case) with traditional techniques in the 1970s [21–24].
Bremsstrahlung events currently appear to be out of reach for GW wave detectors as the signal is not periodic
and typically less intensive [25–27]. Still, there is a debate in the field as to their detectability in the third
generation of GW detectors (see [28] for a summary) calling for accurate waveform models just as well. They
would be relevant for the understanding of dense stellar environments. Due to the lack of an orbital scale r in
the scattering case, the dynamics is organized in an expansion solely in G for arbitrary relative velocities of the
compact objects: the post-Minkowskian (PM) expansion. From a quantum field theorist’s perspective this is
the much more natural and e�cient expansion. It is a pure weak field expansion in powers of Newton’s constant
G and precisely the expansion one performs in a perturbative quantization of general relativity. It is exact in
velocities, subsuming the PN expansion, and maintains Lorentz invariance.

Together with my research team at Humboldt University Berlin and Dr. Jan Steinho� from the MPI for Gravita-
tional Physics in Potsdam, I very recently developed a novel and highly e�cient QFT based formalism to address
the gravitational two-body problem in the PM expansion: worldline quantum field theory (WQFT) [1]. The
WQFT starts out from the identical description as the “non-relativistic general relativity” worldline approach,
discussed above, which may also be used for the PM expansion [29, 30]. We model the black-holes or neutron
stars as (spinning) point-particles coupled to the gravitational field. Using an einbein e in a “Polyakov” type
action in order to linearize the graviton coupling to the world-line one has (in the spin-less case)
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where we exposed the first two finite size corrections with free Wilson-coe�cients cR and cV . It is convenient to
go to proper time gauge e = 1. The key di�erence to the worldline EFT approach in the PM expansion [29,30], is
that in WQFT one quantizes both the graviton field hµ⌫(x) and the fluctuations zµi (⌧i) about the bodies’ straight
worldline trajectories xµa (⌧) = bµi + v

µ
i ⌧i + zµi (⌧i). They are integrated out in the path integral

e
i
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in the classical (~ ! 0) limit. In the scattering scenario there are two key observables: The momentum
deflection, i.e. the change in momentum �pµi of the two compact objects undergoing the scatterings, and
the emitted gravitational waveform (“Bremsstrahlung”). These follow directly from the one-point correlation
functions [1, 31]
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This leads to a highly streamlined PM expansion wherein classical scattering observables arise only from sums
of tree-level Feynman diagrams. Hence, the usual expectancy of classical field theory = tree-level quantum
field theory is recovered. In figure B2.1 I sketch the Feynman rules and observables of WQFT.
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Figure B2.1.: Sketch of the WQFT momentum space Feynman rules and observables. The dotted line represents the
undeflected world-line trajectories. There exist hzn vertices for all n.

actual state-of-the-art results for the Bremsstrahlung waveform1 [31] including spin up to quadratic order [33],
as well as for deflection of momenta and spin kicks of spinning bodies at the 3PM and quadratic spin order [34],
which were all published in PRL within the past year. Recent work on WQFT includes applications to light
bending [35], the state-of-the-art 2PM three-body potential [36] and on the double copy nature [37].

My WQFT approach is an extension of the traditional worldline EFT approach to the PM expansion [29, 30].
The latter only integrates out the graviton fluctuation hµ⌫ in the path-integral (B2.2). It computes the e�ective
action Se�(xi) whose equations of motion thereafter need to be solved perturbatively in G in a second step. The
WQFT procedure shortcuts this and directly leads to the observables. Still, the emerging e�ective potential
of the scattering problem carries valuable information that may be ported to the bound case. The group or R.
Porto (DESY) has computed the conservative e�ective action, i.e. neglecting radiation reaction contributions,
to 3PM [30] and 4PM [38] order, as well as spin [39] and tidal [40] e�ects at 2PM order, using the worldline
EFT approach.

The WQFT and EFT approaches are complementary to a recently blossoming QFT approach to the gravitational
two-body problem: applying the theory of scattering amplitudes [41–47]. Here, one uses massive scalar fields
as avatars of spinless black holes and studies their 2 ! 2 scattering amplitudes. Only thereafter one takes
the classical limit. The innovations of the scattering amplitude program for constructing tree and loop-level
amplitudes in perturbatively quantized GR allowed a quick advance to higher PM orders in the past three years.
The conservative e�ective potential has been established at 3PM [44–46] and recently at 4PM order [48] all
in the spin-less case, while the inclusion of radiation-reaction e�ects [49–52] needed to be done separately
and to date only exists for the 3PM result. However, the amplitude approach su�ers from three drawbacks:
(i) The need to take a classical limit. This limit is subtle due to the quantum nature of the mass: opposed to
WQFT here it is not equivalent to tree-level amplitudes, rather loop-level amplitudes contribute in parts to the
classical result. Certain super-classical contributions arise that mask the classical result and need to cancel
before one may retrieve the classical result. This implies that one actually needs to compute more than is needed

1See https://box.hu-berlin.de/f/94445439e1b54757b881 for a visualization of an equal mass encounter (plus
polarization) (B.Sc. thesis O. Babayemi, HU Berlin).
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where qµ is the total momentum exchanged via gravitons between the two worldlines.

To bring the diagrams into this form, we need to resolve four-dimensional delta
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After reducing to the master integrals given in section 3.5, our last step is to perform

the q-Fourier transform.

Our final result for �p
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where the center-of-mass momentum is p1 = µ

p
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M = m1+m2 and � = E/M =
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1 + 2⌫(� � 1). All terms proportional to the impact

parameter b
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, come from the imaginary integrals (3.31).
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The entire dynamics is therefore encoded by ✓ and P
µ

rad
, which we present below.
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This is the well-known result of Amati, Ciafaloni and Veneziano [108], the radia-

tive correction ✓rad being required in order to cancel a logarithmic divergence that
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where the dimensionless parameters E2/B2 account for the mass dependence of the

Love numbers c(a)
E2/B2 .

The absence of a radiative part of the tidal correction to the scattering angle at

3PM order is explained using the linear response relation [73, 109, 110]:
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This predicts the radiative part of the scattering angle ✓rad given knowledge of the

radiated energy Erad and angular momentum Jrad. As Erad = P
0

rad
(in the center-of-

mass frame) begins at 3PM order, to deduce the 3PM contribution to ✓rad we need

only Jrad at 2PM order. As we shall see in section 4.4, the absence of a wave memory

in the tidal correction to the 2PM waveform guarantees that Jtidal,rad = O(G3), hence
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where the dimensionless parameters E2/B2 account for the mass dependence of the

Love numbers c(a)
E2/B2 .
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where the dimensionless parameters E2/B2 account for the mass dependence of the

Love numbers c(a)
E2/B2 .

The absence of a radiative part of the tidal correction to the scattering angle at
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FIG. 1. The three diagrams contributing to the
Bremsstrahlung at 2PM order, where !i = k·vi by energy con-
servation at the worldline vertices. All three diagrams have
the integral measure in Eq. (16); in the rest frame of black
hole 1 diagram (a) does not contribute as soon as the outgo-
ing graviton is contracted with a purely spatial polarization
tensor.

these waveforms we furthermore reproduce Damour’s re-
cent result for the total radiated angular momentum [22]
at 2PM order. Our results also complement the recent
result of the total radiated momentum at leading order in
G (3PM) established with amplitude techniques [30]. We
comment on how to achieve this result from our methods.

Worldline Quantum Field Theory. — The classical
gravitational scattering of two massive objects mi mov-
ing on trajectories xµ
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by the worldline quantum field theory (WQFT) with par-
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i ẋ⌫
i

i
,

where SEH+Sgf is the gauge-fixed Einstein-Hilbert action

SEH + Sgf =

Z
d4x

�
�

2

2

p
�gR + (@⌫hµ⌫

�
1

2
@µh⌫

⌫)2
�

,

(2)

with 2 = 32⇡G the gravitational coupling; we have sup-
pressed the ghost contributions in Eq. (1) as they are ir-
relevant in the classical setting. We work in mostly minus
signature, ⌘µ⌫ = diag(1, �1, �1, �1), and set c = ~ = 1.

Correlation functions in the WQFT hO(h, {xi})iWQFT

result from an insertion of the operator O in the path
integral and dividing by ZWQFT. Moving to momentum
space for the graviton hµ⌫(k) and energy space for the
fluctuations zµ(!) we have the retarded propagators
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The energy ! is also taken as outgoing. One also has the
standard bulk graviton vertices, of which we shall need
only the three-graviton vertex — see e.g. Ref. [31].

To determine the Bremsstrahlung of two travers-
ing black holes we compute the expectation value
k2

hhµ⌫(k)iWQFT. At leading (2PM) order there are three
diagrams contributing, cp. Fig. 1. We integrate over the
momenta or energies of internal gravitons or fluctuations
respectively; lack of three-momentum conservation at the
worldline vertices leaves unresolved integrals for the tree-
level diagrams.
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1 In principle we should also contract with Pµ⌫;⇢� for an outgo-
ing graviton line; however as the polarization tensors eµ⌫

+,⇥ are
traceless we find it unnecessary.
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ing black holes we compute the expectation value
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hhµ⌫(k)iWQFT. At leading (2PM) order there are three
diagrams contributing, cp. Fig. 1. We integrate over the
momenta or energies of internal gravitons or fluctuations
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these waveforms we furthermore reproduce Damour’s re-
cent result for the total radiated angular momentum [22]
at 2PM order. Our results also complement the recent
result of the total radiated momentum at leading order in
G (3PM) established with amplitude techniques [30]. We
comment on how to achieve this result from our methods.
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The energy ! is also taken as outgoing. One also has the
standard bulk graviton vertices, of which we shall need
only the three-graviton vertex — see e.g. Ref. [31].

To determine the Bremsstrahlung of two travers-
ing black holes we compute the expectation value
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hhµ⌫(k)iWQFT. At leading (2PM) order there are three
diagrams contributing, cp. Fig. 1. We integrate over the
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respectively; lack of three-momentum conservation at the
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these waveforms we furthermore reproduce Damour’s re-
cent result for the total radiated angular momentum [22]
at 2PM order. Our results also complement the recent
result of the total radiated momentum at leading order in
G (3PM) established with amplitude techniques [30]. We
comment on how to achieve this result from our methods.
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with 2 = 32⇡G the gravitational coupling; we have sup-
pressed the ghost contributions in Eq. (1) as they are ir-
relevant in the classical setting. We work in mostly minus
signature, ⌘µ⌫ = diag(1, �1, �1, �1), and set c = ~ = 1.
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The energy ! is also taken as outgoing. One also has the
standard bulk graviton vertices, of which we shall need
only the three-graviton vertex — see e.g. Ref. [31].

To determine the Bremsstrahlung of two travers-
ing black holes we compute the expectation value
k2

hhµ⌫(k)iWQFT. At leading (2PM) order there are three
diagrams contributing, cp. Fig. 1. We integrate over the
momenta or energies of internal gravitons or fluctuations
respectively; lack of three-momentum conservation at the
worldline vertices leaves unresolved integrals for the tree-
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these waveforms we furthermore reproduce Damour’s re-
cent result for the total radiated angular momentum [22]
at 2PM order. Our results also complement the recent
result of the total radiated momentum at leading order in
G (3PM) established with amplitude techniques [30]. We
comment on how to achieve this result from our methods.
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standard bulk graviton vertices, of which we shall need
only the three-graviton vertex — see e.g. Ref. [31].
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i ẋ⌫
i

i
,

where SEH+Sgf is the gauge-fixed Einstein-Hilbert action

SEH + Sgf =

Z
d4x

�
�

2

2

p
�gR + (@⌫hµ⌫

�
1

2
@µh⌫

⌫)2
�

,

(2)

with 2 = 32⇡G the gravitational coupling; we have sup-
pressed the ghost contributions in Eq. (1) as they are ir-
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cent result for the total radiated angular momentum [22]
at 2PM order. Our results also complement the recent
result of the total radiated momentum at leading order in
G (3PM) established with amplitude techniques [30]. We
comment on how to achieve this result from our methods.
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with 2 = 32⇡G the gravitational coupling; we have sup-
pressed the ghost contributions in Eq. (1) as they are ir-
relevant in the classical setting. We work in mostly minus
signature, ⌘µ⌫ = diag(1, �1, �1, �1), and set c = ~ = 1.
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fluctuations zµ(!) we have the retarded propagators
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The energy ! is also taken as outgoing. One also has the
standard bulk graviton vertices, of which we shall need
only the three-graviton vertex — see e.g. Ref. [31].

To determine the Bremsstrahlung of two travers-
ing black holes we compute the expectation value
k2

hhµ⌫(k)iWQFT. At leading (2PM) order there are three
diagrams contributing, cp. Fig. 1. We integrate over the
momenta or energies of internal gravitons or fluctuations
respectively; lack of three-momentum conservation at the
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these waveforms we furthermore reproduce Damour’s re-
cent result for the total radiated angular momentum [22]
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result of the total radiated momentum at leading order in
G (3PM) established with amplitude techniques [30]. We
comment on how to achieve this result from our methods.
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i ẋ⌫
i

i
,

where SEH+Sgf is the gauge-fixed Einstein-Hilbert action

SEH + Sgf =

Z
d4x

�
�

2

2

p
�gR + (@⌫hµ⌫

�
1

2
@µh⌫

⌫)2
�

,

(2)

with 2 = 32⇡G the gravitational coupling; we have sup-
pressed the ghost contributions in Eq. (1) as they are ir-
relevant in the classical setting. We work in mostly minus
signature, ⌘µ⌫ = diag(1, �1, �1, �1), and set c = ~ = 1.
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The energy ! is also taken as outgoing. One also has the
standard bulk graviton vertices, of which we shall need
only the three-graviton vertex — see e.g. Ref. [31].

To determine the Bremsstrahlung of two travers-
ing black holes we compute the expectation value
k2

hhµ⌫(k)iWQFT. At leading (2PM) order there are three
diagrams contributing, cp. Fig. 1. We integrate over the
momenta or energies of internal gravitons or fluctuations
respectively; lack of three-momentum conservation at the
worldline vertices leaves unresolved integrals for the tree-
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these waveforms we furthermore reproduce Damour’s re-
cent result for the total radiated angular momentum [22]
at 2PM order. Our results also complement the recent
result of the total radiated momentum at leading order in
G (3PM) established with amplitude techniques [30]. We
comment on how to achieve this result from our methods.
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with 2 = 32⇡G the gravitational coupling; we have sup-
pressed the ghost contributions in Eq. (1) as they are ir-
relevant in the classical setting. We work in mostly minus
signature, ⌘µ⌫ = diag(1, �1, �1, �1), and set c = ~ = 1.

Correlation functions in the WQFT hO(h, {xi})iWQFT

result from an insertion of the operator O in the path
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space for the graviton hµ⌫(k) and energy space for the
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The energy ! is also taken as outgoing. One also has the
standard bulk graviton vertices, of which we shall need
only the three-graviton vertex — see e.g. Ref. [31].

To determine the Bremsstrahlung of two travers-
ing black holes we compute the expectation value
k2

hhµ⌫(k)iWQFT. At leading (2PM) order there are three
diagrams contributing, cp. Fig. 1. We integrate over the
momenta or energies of internal gravitons or fluctuations
respectively; lack of three-momentum conservation at the
worldline vertices leaves unresolved integrals for the tree-
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servation at the worldline vertices. All three diagrams have
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hole 1 diagram (a) does not contribute as soon as the outgo-
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these waveforms we furthermore reproduce Damour’s re-
cent result for the total radiated angular momentum [22]
at 2PM order. Our results also complement the recent
result of the total radiated momentum at leading order in
G (3PM) established with amplitude techniques [30]. We
comment on how to achieve this result from our methods.
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with 2 = 32⇡G the gravitational coupling; we have sup-
pressed the ghost contributions in Eq. (1) as they are ir-
relevant in the classical setting. We work in mostly minus
signature, ⌘µ⌫ = diag(1, �1, �1, �1), and set c = ~ = 1.

Correlation functions in the WQFT hO(h, {xi})iWQFT

result from an insertion of the operator O in the path
integral and dividing by ZWQFT. Moving to momentum
space for the graviton hµ⌫(k) and energy space for the
fluctuations zµ(!) we have the retarded propagators
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The energy ! is also taken as outgoing. One also has the
standard bulk graviton vertices, of which we shall need
only the three-graviton vertex — see e.g. Ref. [31].

To determine the Bremsstrahlung of two travers-
ing black holes we compute the expectation value
k2

hhµ⌫(k)iWQFT. At leading (2PM) order there are three
diagrams contributing, cp. Fig. 1. We integrate over the
momenta or energies of internal gravitons or fluctuations
respectively; lack of three-momentum conservation at the
worldline vertices leaves unresolved integrals for the tree-
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ing graviton line; however as the polarization tensors eµ⌫

+,⇥ are
traceless we find it unnecessary.
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FIG. 1. The three diagrams contributing to the
Bremsstrahlung at 2PM order, where !i = k·vi by energy con-
servation at the worldline vertices. All three diagrams have
the integral measure in Eq. (16); in the rest frame of black
hole 1 diagram (a) does not contribute as soon as the outgo-
ing graviton is contracted with a purely spatial polarization
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these waveforms we furthermore reproduce Damour’s re-
cent result for the total radiated angular momentum [22]
at 2PM order. Our results also complement the recent
result of the total radiated momentum at leading order in
G (3PM) established with amplitude techniques [30]. We
comment on how to achieve this result from our methods.
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with 2 = 32⇡G the gravitational coupling; we have sup-
pressed the ghost contributions in Eq. (1) as they are ir-
relevant in the classical setting. We work in mostly minus
signature, ⌘µ⌫ = diag(1, �1, �1, �1), and set c = ~ = 1.
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result from an insertion of the operator O in the path
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The energy ! is also taken as outgoing. One also has the
standard bulk graviton vertices, of which we shall need
only the three-graviton vertex — see e.g. Ref. [31].

To determine the Bremsstrahlung of two travers-
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hhµ⌫(k)iWQFT. At leading (2PM) order there are three
diagrams contributing, cp. Fig. 1. We integrate over the
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relevant in the classical setting. We work in mostly minus
signature, ⌘µ⌫ = diag(1, �1, �1, �1), and set c = ~ = 1.

Correlation functions in the WQFT hO(h, {xi})iWQFT

result from an insertion of the operator O in the path
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The energy ! is also taken as outgoing. One also has the
standard bulk graviton vertices, of which we shall need
only the three-graviton vertex — see e.g. Ref. [31].

To determine the Bremsstrahlung of two travers-
ing black holes we compute the expectation value
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hhµ⌫(k)iWQFT. At leading (2PM) order there are three
diagrams contributing, cp. Fig. 1. We integrate over the
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respectively; lack of three-momentum conservation at the
worldline vertices leaves unresolved integrals for the tree-
level diagrams.

Diagram (a) of Fig. 1 then takes the form1

k2
hhµ⌫(k)iWQFT

���
(a)

= �
m1m23

8

Z

q1,q2

µ1,2(k)
(2!1v

(µ
1

�⌫)

⇢ � vµ
1
v⌫
1
k⇢)(2!1v

(�
1

⌘�)⇢
� v�

1
v�
1
q⇢
2
)

(!1 + i✏)2
P��;↵�

[(q0

2
+ i✏)2 � q2

2]
v↵
2
v�
2
,

(6)

1 In principle we should also contract with Pµ⌫;⇢� for an outgo-
ing graviton line; however as the polarization tensors eµ⌫

+,⇥ are
traceless we find it unnecessary.

=
m

2
eik·b��(k · v + !) (5)

⇥

⇣
2!v(µ�⌫)

⇢ + vµv⌫k⇢

⌘
.

The energy ! is also taken as outgoing. One also has the
standard bulk graviton vertices, of which we shall need
only the three-graviton vertex — see e.g. Ref. [31].

To determine the Bremsstrahlung of two travers-
ing black holes we compute the expectation value
k2

hhµ⌫(k)iWQFT. At leading (2PM) order there are three
diagrams contributing, cp. Fig. 1. We integrate over the
momenta or energies of internal gravitons or fluctuations
respectively; lack of three-momentum conservation at the
worldline vertices leaves unresolved integrals for the tree-
level diagrams.

Diagram (a) of Fig. 1 then takes the form1

k2
hhµ⌫(k)iWQFT

���
(a)

= �
m1m23

8

Z

q1,q2

µ1,2(k)
(2!1v

(µ
1

�⌫)

⇢ � vµ
1
v⌫
1
k⇢)(2!1v

(�
1

⌘�)⇢
� v�

1
v�
1
q⇢
2
)

(!1 + i✏)2
P��;↵�

[(q0

2
+ i✏)2 � q2

2]
v↵
2
v�
2
,

(6)

1 In principle we should also contract with Pµ⌫;⇢� for an outgo-
ing graviton line; however as the polarization tensors eµ⌫

+,⇥ are
traceless we find it unnecessary.

2
2

µ,⌫

��
!1

k
q2 �

1

2

(a)

µ,⌫

!2
�� k

q1 �

2

1

(b)

µ,⌫k

q1 �

q2 �

1

2

(c)

FIG. 1. The three diagrams contributing to the
Bremsstrahlung at 2PM order, where !i = k·vi by energy con-
servation at the worldline vertices. All three diagrams have
the integral measure in Eq. (16); in the rest frame of black
hole 1 diagram (a) does not contribute as soon as the outgo-
ing graviton is contracted with a purely spatial polarization
tensor.

these waveforms we furthermore reproduce Damour’s re-
cent result for the total radiated angular momentum [22]
at 2PM order. Our results also complement the recent
result of the total radiated momentum at leading order in
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i ẋ⌫
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N (q) and M(q) have a uniform power counting in q for
each spin order:

N (q) = Nµqµ + Nµ⌫qµq⌫ + Nµ⌫⇢q
µq⌫q⇢ , (19)

M(q) = Mµ⌫qµq⌫ + Mµ⌫⇢q
µq⌫q⇢ + Mµ⌫⇢�qµq⌫q⇢q� ,

and the non-spinning result involves only Nµ and Mµ⌫ .
We present full expressions for N and M in the ancillary
file attached to the arXiv submission of this Letter.
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where the coe�cients ↵(s)
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i are associated with the
N - and M-type contributions in Eq. (18) respectively;
they are functions of b, ui, vi, ⇢ and Si and bi-linear
in ✏. In the Kerr-BH case (CE,i = 0) the waveform f
is invariant under the SUSY transformations in Eq. (8):
For this we expand the waveform at any PM order in
powers of spin

f = f0+
2X

i=1

Si,µ⌫fµ⌫
i +

2X

i,j=1

Si,µ⌫Sj,⇢� + O(S3) (25)

where SUSY links higher-spin terms to lower ones
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To illustrate the waveform we consider the gravita-
tional wave memory �f(x̂) := f(+1, x̂) � f(�1, x̂).
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FIG. 2. Total radiated angular momenta for the scattering of
two Kerr-BHs with v = 0.2 as a function of the angle between
the total initial spins a3 = a1 + a2 and b (with ai · vi =
0) for a range of ratios |a3|/|b|. We show the normalized
ratio of angular momenta emitted orthogonal to the b,v plane
(left plot) and in the b direction (right plot), normalization
is w.r.t. angular momentum emitted in the spin-less.
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where we have introduced aµ
3 = aµ

1 + aµ
2 with length

|a3|. For two Kerr black holes (CE,i = 0) with equal-
and-opposite spins (aµ

1 = �aµ
2 ) the result is the same as

the non-spinning; we observe this also when the spins are
mis-aligned to the plane of scattering.

There is also a 1PM (non-radiating) contribution to
the waveform consisting of single-graviton emission from
either massive body:

f (1)(x̂) =
2m1

⇢ · v1
(✏ · v1)

2 +
2m2

⇢ · v2
(✏ · v2)

2 . (28)

At 1PM order there is manifestly no dependence on either
the spins S

µ⌫
i or impact parameters bµ

i , so the SUSY
identities in Eq. (26) are trivially satisfied.

Finally, the wave memory and 1PM part of the wave-
form contribute to the total radiated angular momentum
J rad

ij . Using three-dimensional Cartesian basis vectors êi,
we choose a frame of reference with the initial velocities
vµ

i restricted to the t–x plane; b = b ê2 is orthogonal to
these. Then we find two non-zero components of J rad

ij :
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the total initial spins a3 = a1 + a2 and b (with ai · vi =
0) for a range of ratios |a3|/|b|. We show the normalized
ratio of angular momenta emitted orthogonal to the b,v plane
(left plot) and in the b direction (right plot), normalization
is w.r.t. angular momentum emitted in the spinless case.
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and these identities are satisfied by the waveform (24).
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tional wave memory �f(x̂) := f(+1, x̂) � f(�1, x̂).
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To illustrate the waveform we consider the gravita-
tional wave memory �f(x̂) := f(+1, x̂) � f(�1, x̂).
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FIG. 2. Total radiated angular momenta for the scattering of
two Kerr-BHs with v = 0.2 as a function of the angle between
the total initial spins a3 = a1 + a2 and b (with ai · vi =
0) for a range of ratios |a3|/|b|. We show the normalized
ratio of angular momenta emitted orthogonal to the b,v plane
(left plot) and in the b direction (right plot), normalization
is w.r.t. angular momentum emitted in the spin-less.
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the non-spinning; we observe this also when the spins are
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FIG. 2. Total radiated angular momenta for the scattering of
two Kerr-BHs with v = 0.2 as a function of the angle between
the total initial spins a3 = a1 + a2 and b (with ai · vi =
0) for a range of ratios |a3|/|b|. We show the normalized
ratio of angular momenta emitted orthogonal to the b,v plane
(left plot) and in the b direction (right plot), normalization
is w.r.t. angular momentum emitted in the spinless case.

where fµ⌫
i and fµ⌫;⇢�

ij are defined modulo terms that van-
ish on support of vi,µS

µ⌫
i = 0. The SUSY links higher-

spin to lower-spin terms:
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ij , (26)

and these identities are satisfied by the waveform (24).
To illustrate the waveform we consider the gravita-

tional wave memory �f(x̂) := f(+1, x̂) � f(�1, x̂).
The constant spin tensors are decomposed in terms of
the Pauli-Lubanski vectors aµ

i as S
µ⌫
i = ✏µ⌫

⇢�v⇢
i a�

i , the
latter satisfying ai · vi = 0. In the aligned-spin case
ai · b = ai · vj = 0, i.e. the spin vectors are orthogo-

nal to the plane of scattering. Writing |ai| =
p

�a2
i the

wave memory is then proportional to the non-spinning
result:
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where aµ
3 = aµ

1 +aµ
2 . For two Kerr black holes (CE,i = 0)

with equal-and-opposite spins (aµ
1 = �aµ

2 ) we see that

�f (2) = �f (2)
S=0, which we observe also when the spins

are mis-aligned to the plane of scattering.
There is also a 1PM (non-radiating) contribution to

the waveform consisting of single-graviton emission from
either massive body:

f (1)(x̂) =
2m1

⇢ · v1
(✏ · v1)

2 +
2m2

⇢ · v2
(✏ · v2)

2 . (28)

At 1PM order there is manifestly no dependence on either
the spins S

µ⌫
i or impact parameters bµ

i , so the SUSY
identities in Eq. (26) are trivially satisfied.

Finally, the wave memory and 1PM part of the wave-
form contribute to the total radiated angular momentum

4

N (q) and M(q) have a uniform power counting in q for
each spin order:

N (q) = Nµqµ + Nµ⌫qµq⌫ + Nµ⌫⇢q
µq⌫q⇢ , (19)

M(q) = Mµ⌫qµq⌫ + Mµ⌫⇢q
µq⌫q⇢ + Mµ⌫⇢�qµq⌫q⇢q� ,

and the non-spinning result involves only Nµ and Mµ⌫ .
We present full expressions for N and M in the ancillary
file attached to the arXiv submission of this Letter.

To lowest order in qµ, the first integral in eq. (18) is
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where Pµ⌫
i := ⌘µ⌫

�vµ
i v⌫

i is a projector into the rest frame
of the i’th body, |b| = �

p
bµbµ (the impact parameter is

spacelike) and
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are the lengths of the shifted impact parameter b̃µ (16)
in the two rest frames. The second integral in eq. (18) is
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where we have introduced the symmetric tensor

Kµ⌫
i := Pµ⌫

i |b̃|
2
i + (Pi · b̃)µ(Pi · b̃)⌫ , (23)

with the property that Kµ⌫
i vi,⌫ = Kµ⌫

i b̃⌫ = 0. Both
integrals are derived in the Supplementary Material; one
generalizes to higher powers of qµ in the numerators by
taking derivatives with respect to b̃µ.

Results. — The 2PM waveform takes the schematic
form
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where the coe�cients ↵(s)
i , �(s)

i , provided in the ancillary
file, are associated with the N - and M-type contribu-
tions in Eq. (18) respectively; they are functions of ui,
bµ, vµ

i , ⇢µ, and S
µ⌫
i and bi-linear in ✏µ. The waveform f

is invariant under the SUSY transformations in Eq. (8)
to quadratic order in spin regardless of the values of CE,i.
To see this we expand the waveform at all PM orders in
powers of spin:

f = f0+
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(25)
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i b̃⌫ = 0. Both inte-
grals are derived in the Supplementary Material; versions
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where the coe�cients ↵(s)
i , �(s)

i are associated with the
N - and M-type contributions in Eq. (18) respectively;
they are functions of b, ui, vi, ⇢ and Si and bi-linear
in ✏. In the Kerr-BH case (CE,i = 0) the waveform f
is invariant under the SUSY transformations in Eq. (8):
For this we expand the waveform at any PM order in
powers of spin

f = f0+
2X

i=1

Si,µ⌫fµ⌫
i +
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Si,µ⌫Sj,⇢� + O(S3) (25)

where SUSY links higher-spin terms to lower ones
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To illustrate the waveform we consider the gravita-
tional wave memory �f(x̂) := f(+1, x̂) � f(�1, x̂).
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FIG. 2. Total radiated angular momenta for the scattering of
two Kerr-BHs with v = 0.2 as a function of the angle between
the total initial spins a3 = a1 + a2 and b (with ai · vi =
0) for a range of ratios |a3|/|b|. We show the normalized
ratio of angular momenta emitted orthogonal to the b,v plane
(left plot) and in the b direction (right plot), normalization
is w.r.t. angular momentum emitted in the spin-less.

The constant spin tensors are decomposed in terms of
the Pauli-Lubanski vectors aµ

i as S
µ⌫
i = ✏µ⌫

⇢�v⇢
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i ; they
satisfy ai · vi = 0. In the aligned-spin case where
ai · b = ai · vj = 0, i.e. the spin vectors are orthogo-
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where we have introduced aµ
3 = aµ

1 + aµ
2 with length

|a3|. For two Kerr black holes (CE,i = 0) with equal-
and-opposite spins (aµ

1 = �aµ
2 ) the result is the same as

the non-spinning; we observe this also when the spins are
mis-aligned to the plane of scattering.

There is also a 1PM (non-radiating) contribution to
the waveform consisting of single-graviton emission from
either massive body:

f (1)(x̂) =
2m1

⇢ · v1
(✏ · v1)

2 +
2m2

⇢ · v2
(✏ · v2)

2 . (28)

At 1PM order there is manifestly no dependence on either
the spins S

µ⌫
i or impact parameters bµ

i , so the SUSY
identities in Eq. (26) are trivially satisfied.

Finally, the wave memory and 1PM part of the wave-
form contribute to the total radiated angular momentum
J rad

ij . Using three-dimensional Cartesian basis vectors êi,
we choose a frame of reference with the initial velocities
vµ

i restricted to the t–x plane; b = b ê2 is orthogonal to
these. Then we find two non-zero components of J rad

ij :

FIG. 2. Total radiated angular momenta for the scattering of
two Kerr-BHs with v = 0.2 as a function of the angle between
the total initial spins a3 = a1 + a2 and b (with ai · vi =
0) for a range of ratios |a3|/|b|. We show the normalized
ratio of angular momenta emitted orthogonal to the b,v plane
(left plot) and in the b direction (right plot), normalization
is w.r.t. angular momentum emitted in the spinless case.
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and these identities are satisfied by the waveform (24).
To illustrate the waveform we consider the gravita-

tional wave memory �f(x̂) := f(+1, x̂) � f(�1, x̂).
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2 ) we see that
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are mis-aligned to the plane of scattering.
There is also a 1PM (non-radiating) contribution to

the waveform consisting of single-graviton emission from
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At 1PM order there is manifestly no dependence on either
the spins S
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identities in Eq. (26) are trivially satisfied.

Finally, the wave memory and 1PM part of the wave-
form contribute to the total radiated angular momentum
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FIG. 1. The four diagram topologies contributing to the 2PM
Bremsstrahlung up to O(S2), where !i = k ·vi by energy con-
servation at the worldline vertices. For diagrams (b)–(d) we
also include the corresponding flipped topologies with massive
bodies 1$2; for diagram (d) (which includes the propagating
fermion  0µ

2 ) we also include the graph with the arrow re-
versed.

where ��(!) := (2⇡)�(!) and we have used S
µ⌫ =

�2i ̄[µ ⌫]. The other worldline-based vertices required
for the 2PM Bremsstrahlung all appear in Fig. 1: the
two-point interaction between a graviton and a single zµ

mode in (b), the two-graviton emission vertex in (c), and
the two-point interaction between a graviton and  0µ in
(d). Full expressions for these vertices are provided in
the Supplementary Material.

Waveform from WQFT. — To describe the
Bremsstrahlung at 2PM order including spin e↵ects we
compute the expectation value k2

hhµ⌫(k)iWQFT. This
requires us to compute four kinds of Feynman graphs,
illustrated in Fig. 1. Explicit expressions for the first
two graphs (a) and (b) were given in the non-spinning
case [16]; these are now modified by terms up to O(S2).
Graphs (c) and (d) are unique to the spinning case — for
the latter we sum over both routings of the fermion line.

From this result we seek to obtain the waveform in
spacetime in the wave zone, where the distance to the
observer |x| = r is large compared to all other lengths.
Following Ref. [16] the gauge-invariant frequency-domain
waveform 4G Sij(kµ = ⌦ (1, x̂)) is extracted from the
WQFT via

Sµ⌫(k) =
2


k2

hhµ⌫(k)iWQFT , (12)

where ⌦ is the GW frequency and x̂ = x/r points to-
wards the observer. However, it is advantageous to study
the time-domain waveform f(u, x̂) which is given by a
Fourier transform:

✏µ⌫hµ⌫ =
f(u, x̂)

r
=

4G

r

Z

⌦
e�ik·x ✏µ⌫ Sµ⌫(k)

���
kµ=⌦ ⇢µ

,
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where we have contracted with a polarization tensor
✏µ⌫ = 1

2✏
µ✏⌫ ,

R
⌦ :=

R 1
�1

d⌦
2⇡ , ⇢µ = (1, x̂) and, in a PM

decomposition f =
P

n Gnf (n), we seek the 2PM compo-
nent f (2). Note that k · x = ⌦(t � r) yields the retarded
time u = t � r, and ✏ · ✏ = ✏ · ⇢ = 0.

Integration. — Our integration procedure follows
closely that used for the non-spinning calculation in
Ref. [16], the main di↵erence being that we maintain
four-dimensional Lorentz covariance. Each diagram con-
tributing to k2

hhµ⌫(k)iWQFT carries the overall factor

µ1,2(k) = ei(q1·b1+q2·b2)��(q1 · v1)�
�(q2 · v2)�

�(k � q1 � q2) .
(14)

We integrate over qi, the momentum emitted from each
worldline (see Fig. 1). When we also integrate over ⌦ —
as in Eq. (13) — the full integration measure becomes

Z

⌦,q1,q2

µ1,2(k)e�ik·x =
1

⇢ · v2

Z

q1

��(q1 · v1)e
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where
R

qi
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R d4qi

(2⇡)4 ; the delta function constraints give

⌦ = q1·v2

⇢·v2

and q2 = k�q1. The shifted impact parameter

b̃µ is

b̃µ = b̃µ
2 � b̃µ

1 , b̃µ
i = bµ

i + uiv
µ
i , (16)

which extends the original impact parameter bµ = bµ
2 �

bµ
1 along the undeflected trajectories of the two bodies.

Finally, ui is the retarded time in the i’th rest frame:

ui =
⇢ · (x � bi)

⇢ · vi
, (17)

This implies ⇢ · b̃i = ⇢ · x = u, so ⇢ · b̃ = 0.
Rewriting the integral measure as in Eq. (15) is con-

venient for performing the integrals of diagrams (b)–(d),
in the rest frame of body 1. The mirrored counterparts
to these diagrams are easily recovered after integration
using the 1 $ 2 symmetry of the waveform. To inte-
grate diagram (a) we insert the partial-fraction identity
q�2
1 q�2

2 = �q�2
1 (2k ·q1)�1

�q�2
2 (2k ·q2)�1 (which is valid

for k on-shell) and focus on the first term.
The full 2PM waveform is then written schematically

as (dropping the subscript on q1)GM: fix margin
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the N - and M-contributions corresponding to diagrams
(b)–(d) and (a) in Fig. 1 respectively. The numerators
N (q) and M(q) have a uniform power counting in q for
each spin order:

N (q) = Nµqµ + Nµ⌫qµq⌫ + Nµ⌫⇢q
µq⌫q⇢ , (19)
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FIG. 1. The four diagram topologies contributing to the 2PM
Bremsstrahlung up to O(S2), where !i = k ·vi by energy con-
servation at the worldline vertices. For diagrams (b)–(d) we
also include the corresponding flipped topologies with massive
bodies 1$2; for diagram (d) (which includes the propagating
fermion  0µ

2 ) we also include the graph with the arrow re-
versed.

Next we consider the worldline vertices. The simplest
of these is the single-graviton emission vertex:
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where ��(!) := (2⇡)�(!) and we have used S
µ⌫ =

�2i ̄[µ ⌫]. The other worldline-based vertices required
for the 2PM Bremsstrahlung all appear in Fig. 1: the
two-point interaction between a graviton and a single zµ

mode in (b), the two-graviton emission vertex in (c), and
the two-point interaction between a graviton and  0µ in
(d). Full expressions for these vertices are provided in
the Supplementary Material.

Waveform from WQFT. — To describe the
Bremsstrahlung at 2PM order including spin e↵ects we
compute the expectation value k2

hhµ⌫(k)iWQFT. This
requires us to compute four kinds of Feynman graphs,
illustrated in Fig. 1. Explicit expressions for the first
two graphs (a) and (b) were given in the non-spinning
case [16]; these are now modified by terms up to O(S2).
Graphs (c) and (d) are unique to the spinning case — for
the latter we sum over both routings of the fermion line.

From this result we seek to obtain the waveform in
spacetime in the wave zone, where the distance to the
observer |x| = r is large compared to all other lengths.
Following Ref. [16] the gauge-invariant frequency-domain
waveform 4G ✏µ⌫Sµ⌫(kµ = ⌦ (1, x̂)) is extracted from the
WQFT via
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where ⌦ is the GW frequency and x̂ = x/r points to-
wards the observer. However, it is advantageous to study
the time-domain waveform f(u, x̂) which is given by a
Fourier transform:
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f (2). Note that k · x = ⌦(t � r) yields the retarded time
u = t � r, and ✏ · ✏ = ✏ · ⇢ = 0.

Integration. — Our integration procedure follows
closely that used for the non-spinning calculation in
Ref. [16], the main di↵erence being that we maintain
four-dimensional Lorentz covariance. Each diagram con-
tributing to k2

hhµ⌫(k)iWQFT carries the overall factor

µ1,2(k) = ei(q1·b1+q2·b2)��(q1 · v1)�
�(q2 · v2)�

�(k � q1 � q2) .
(14)

We integrate over qi, the momentum emitted from each
worldline (see Fig. 1). When we also integrate over ⌦ —
as in Eq. (13) — the full integration measure becomes

Z

⌦,q1,q2

µ1,2(k)e�ik·x =
1

⇢ · v2

Z

q1

��(q1 · v1)e
�iq1·b̃ , (15)

where
R

qi
:=

R d4qi

(2⇡)4 ; the delta function constraints give

⌦ = q1·v2

⇢·v2

and q2 = k�q1. The shifted impact parameter,

b̃µ = b̃µ
2 � b̃µ

1 , b̃µ
i = bµ

i + uiv
µ
i , (16)

extends the original impact parameter bµ = bµ
2 �bµ

1 along
the undeflected trajectories of the two bodies. Finally, ui

is the retarded time in the i’th rest frame:

ui =
⇢ · (x � bi)

⇢ · vi
, (17)

This implies ⇢ · b̃i = ⇢ · x = u, so ⇢ · b̃ = 0.
Rewriting the integral measure as in Eq. (15) is con-

venient for performing the integrals of diagrams (b)–(d),
in the rest frame of body 1. The mirrored counterparts
to these diagrams are easily recovered after integration
using the 1 $ 2 symmetry of the waveform. To inte-
grate diagram (a) we insert the partial-fraction identity
q�2
1 q�2

2 = �q�2
1 (2k ·q1)�1

�q�2
2 (2k ·q2)�1 (which is valid

for k on-shell) and focus on the first term.
The full 2PM waveform is then written schematically

as (dropping the subscript on q1)

f (2)

m1m2
= 4⇡

Z

q
��(q · v1)

e�iq·b̃

q2

✓
N (q)

q · v2 + i✏
+

M(q)

(q · v2)(q · ⇢)

◆
,

+ (1 $ 2) , (18)

the N - and M-contributions corresponding to diagrams
(b)–(d) and (a) in Fig. 1 respectively. The numerators

4

N (q) and M(q) have a uniform power counting in q for
each spin order:

N (q) = Nµqµ + Nµ⌫qµq⌫ + Nµ⌫⇢q
µq⌫q⇢ , (19)

M(q) = Mµ⌫qµq⌫ + Mµ⌫⇢q
µq⌫q⇢ + Mµ⌫⇢�qµq⌫q⇢q� ,

and the non-spinning result involves only Nµ and Mµ⌫ .
We present full expressions for N and M in the ancillary
file attached to the arXiv submission of this Letter.

To lowest order in qµ, the first integral in eq. (18) is

4⇡

Z

q
��(q · v1)

e�iq·b̃

q2

qµ

q · v2 + i✏

=
Pµ⌫

1 v2,⌫

(�2 � 1)|b̃|1

�
bµ

|b|2

 
1p

�2 � 1
+

u2

|b̃|1

!
,

(20)

where Pµ⌫
i := ⌘µ⌫

�vµ
i v⌫

i is a projector into the rest frame
of the i’th body, |b| = �

p
bµbµ (the impact parameter is

spacelike) and

|b̃|1,2 :=
q

�b̃µPµ⌫
1,2 b̃⌫ =

q
|b|2 + (�2 � 1)u2

2,1 (21)

are the lengths of the shifted impact parameter b̃µ (16)
in the two rest frames. The second integral in eq. (18) is

4⇡

Z

q
��(q · v1)

e�iq·b̃

q2

qµq⌫

q · v2 q · ⇢

=
Kµ⌫

1 v2 · K1 · ⇢ � 2(v2 · K1)(µ(⇢ · K1)⌫)

(�2 � 1) (⇢ · v1)2 |b|2 |b̃|2 |b̃|1

,

(22)

where we have introduced the symmetric tensor

Kµ⌫
i := Pµ⌫

i |b̃|
2
i + (Pi · b̃)µ(Pi · b̃)⌫ , (23)

with the property that Kµ⌫
i vi,⌫ = Kµ⌫

i b̃⌫ = 0. Both
integrals are derived in the Supplementary Material; one
generalizes to higher powers of qµ in the numerators by
taking derivatives with respect to b̃µ.

Results. — The 2PM waveform takes the schematic
form

f (2)

m1m2
=

2X

s=0

1

|b̃|
2s+1
1

"
↵(s)

1 +
�(s)

1

|b̃|2s+2

#
+ (1 $ 2) , (24)

where the coe�cients ↵(s)
i , �(s)

i , provided in the ancillary
file, are associated with the N - and M-type contribu-
tions in Eq. (18) respectively; they are functions of ui,
bµ, vµ

i , ⇢µ, and S
µ⌫
i and bi-linear in ✏µ. The waveform f

is invariant under the SUSY transformations in Eq. (8)
to quadratic order in spin regardless of the values of CE,i.
To see this we expand the waveform at all PM orders in
powers of spin:

f = f0+
2X

i=1

Si,µ⌫fµ⌫
i +

2X

i,j=1

Si,µ⌫Sj,⇢�fµ⌫;⇢�
ij + O(S3) ,

(25)
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where the non-spinning result involves only Nµ and Mµ⌫ .
We present full expressions for N and M in the ancillary
file attached to the arXiv submission of this Letter.

To lowest order in qµ, the first integral in eq. (18) is

4⇡

Z

q
��(q · v1)

e�iq·b̃

q2

qµ

q · v2 + i✏

=
Pµ⌫

1 v2,⌫

(�2 � 1)|b̃|1

�
bµ

b2

 
1p

�2 � 1
+

u2

|b̃|1

!
,

(20)

where Pµ⌫
i := ⌘µ⌫

� vµ
i v⌫

i is a projector into the rest
frame of the i’th body; b2 = |b|2 = �bµbµ (the impact
parameter is spacelike) and

|b̃|1,2 :=
q

�b̃µPµ⌫
1,2 b̃⌫ =

q
b2 + (�2 � 1)u2

2,1 (21)

are the lengths of the shifted impact parameter b̃µ (16)
in the two rest frames. The second integral in eq. (18) is

4⇡

Z

q
��(q · v1)

e�iq·b̃

q2

qµq⌫

q · v2 q · ⇢

=
Kµ⌫

1 v2 · K1 · ⇢ � 2(v2 · K1)(µ(⇢ · K1)⌫)

(�2 � 1) (⇢ · v1)2 b2 |b̃|2 |b̃|1

,

(22)

where we have introduced the symmetric tensor

Kµ⌫
i := Pµ⌫

i |b̃|
2
i + (Pi · b̃)µ(Pi · b̃)⌫ , (23)

with the property that Kµ⌫
i vi,⌫ = Kµ⌫

i b̃⌫ = 0. Both inte-
grals are derived in the Supplementary Material; versions
with higher powers of qµ in the numerators are derived
by taking derivatives with respect to b̃µ.

Results. — The 2PM waveform takes the schematic
form

f (2)

m1m2
=

2X

s=0

1

|b̃|
2s+1
1

"
↵(s)

1 +
�(s)

1

|b̃|2s+2

#
+ (1 $ 2) , (24)

where the coe�cients ↵(s)
i , �(s)

i are associated with the
N - and M-type contributions in Eq. (18) respectively;
they are functions of b, ui, vi, ⇢ and Si and bi-linear
in ✏. In the Kerr-BH case (CE,i = 0) the waveform f
is invariant under the SUSY transformations in Eq. (8):
For this we expand the waveform at any PM order in
powers of spin

f = f0+
2X

i=1

Si,µ⌫fµ⌫
i +

2X

i,j=1

Si,µ⌫Sj,⇢� + O(S3) (25)

where SUSY links higher-spin terms to lower ones

1

2

@f0

@bi,⌫
= vi,µ f [µ⌫]

i ,
1

4

@fµ⌫
i

@bj,⇢
= vj,� fµ⌫;[⇢�]

ij . (26)

To illustrate the waveform we consider the gravita-
tional wave memory �f(x̂) := f(+1, x̂) � f(�1, x̂).
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FIG. 2. Total radiated angular momenta for the scattering of
two Kerr-BHs with v = 0.2 as a function of the angle between
the total initial spins a3 = a1 + a2 and b (with ai · vi =
0) for a range of ratios |a3|/|b|. We show the normalized
ratio of angular momenta emitted orthogonal to the b,v plane
(left plot) and in the b direction (right plot), normalization
is w.r.t. angular momentum emitted in the spin-less.

The constant spin tensors are decomposed in terms of
the Pauli-Lubanski vectors aµ

i as S
µ⌫
i = ✏µ⌫

⇢�v⇢
i a�

i ; they
satisfy ai · vi = 0. In the aligned-spin case where
ai · b = ai · vj = 0, i.e. the spin vectors are orthogo-

nal to the plane of scattering. Writing li =
p

�a2
i the

wave memory is proportional to the non-spinning result:

�f (2) =

 
1 +

2vl3
b(1 + v2)

+
l23
b2

�

2X

i=1

CE,il2i
b2

!
�f (2)

S=0,

�f (2)
S=0

m1m2
=

4(2�2
� 1)✏ · v1(2b · ✏ ⇢ · v1 � b · ⇢ ✏ · v1)

b2
p

�2 � 1(⇢ · v1)2

+ (1 $ 2) , (27)

where we have introduced aµ
3 = aµ

1 + aµ
2 with length

|a3|. For two Kerr black holes (CE,i = 0) with equal-
and-opposite spins (aµ

1 = �aµ
2 ) the result is the same as

the non-spinning; we observe this also when the spins are
mis-aligned to the plane of scattering.

There is also a 1PM (non-radiating) contribution to
the waveform consisting of single-graviton emission from
either massive body:

f (1)(x̂) =
2m1

⇢ · v1
(✏ · v1)

2 +
2m2

⇢ · v2
(✏ · v2)

2 . (28)

At 1PM order there is manifestly no dependence on either
the spins S

µ⌫
i or impact parameters bµ

i , so the SUSY
identities in Eq. (26) are trivially satisfied.

Finally, the wave memory and 1PM part of the wave-
form contribute to the total radiated angular momentum
J rad

ij . Using three-dimensional Cartesian basis vectors êi,
we choose a frame of reference with the initial velocities
vµ

i restricted to the t–x plane; b = b ê2 is orthogonal to
these. Then we find two non-zero components of J rad

ij :

FIG. 2. Total radiated angular momenta for the scattering of
two Kerr-BHs with v = 0.2 as a function of the angle between
the total initial spins a3 = a1 + a2 and b (with ai · vi =
0) for a range of ratios |a3|/|b|. We show the normalized
ratio of angular momenta emitted orthogonal to the b,v plane
(left plot) and in the b direction (right plot), normalization
is w.r.t. angular momentum emitted in the spinless case.

where fµ⌫
i and fµ⌫;⇢�

ij are defined modulo terms that van-
ish on support of vi,µS

µ⌫
i = 0. The SUSY links higher-

spin to lower-spin terms:

1

2

@f0

@bi,µ
= vi,⌫ f [µ⌫]

i ,
1

4

@fµ⌫
i

@bj,⇢
= vj,� fµ⌫;[⇢�]

ij , (26)

and these identities are satisfied by the waveform (24).
To illustrate the waveform we consider the gravita-

tional wave memory �f(x̂) := f(+1, x̂) � f(�1, x̂).
The constant spin tensors are decomposed in terms of
the Pauli-Lubanski vectors aµ

i as S
µ⌫
i = ✏µ⌫

⇢�v⇢
i a�

i , the
latter satisfying ai · vi = 0. In the aligned-spin case
ai · b = ai · vj = 0, i.e. the spin vectors are orthogo-

nal to the plane of scattering. Writing |ai| =
p

�a2
i the

wave memory is then proportional to the non-spinning
result:

�f (2) =
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b(1 + v2)
+
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m1m2
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4(2�2
� 1)✏ · v1(2b · ✏ ⇢ · v1 � b · ⇢ ✏ · v1)

|b|2
p

�2 � 1(⇢ · v1)2

+ (1 $ 2) , (27)

where aµ
3 = aµ

1 +aµ
2 . For two Kerr black holes (CE,i = 0)

with equal-and-opposite spins (aµ
1 = �aµ

2 ) we see that

�f (2) = �f (2)
S=0, which we observe also when the spins

are mis-aligned to the plane of scattering.
There is also a 1PM (non-radiating) contribution to

the waveform consisting of single-graviton emission from
either massive body:

f (1)(x̂) =
2m1

⇢ · v1
(✏ · v1)

2 +
2m2

⇢ · v2
(✏ · v2)

2 . (28)

At 1PM order there is manifestly no dependence on either
the spins S

µ⌫
i or impact parameters bµ

i , so the SUSY
identities in Eq. (26) are trivially satisfied.

Finally, the wave memory and 1PM part of the wave-
form contribute to the total radiated angular momentum
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FIG. 2. Plots of the wave memories �f+,⇥ for v = 0.2. For a
visualisation of the complete waveforms as they evolve with
retarded time u see f+(u, ✓, �)|v=0.2 and f⇥(u, ✓, �)|v=0.2.

beauty of our result (26) lies in the fact that the memo-
ries only receive contributions from the second term, and
read

�f+,⇥ = �2G2m1m2

bi
N

i
+,⇥

b2
+ O(G3) . (28)

Diagrammatically they exclusively emerge from diagram
(b) of Fig. 1. So they are manifestly insensitive to grav-
itational self-interactions — this was also pointed out in
Ref. [22].

Radiated Energy and Angular Momentum. — One
may now use our result for the waveform (26) to com-
pute the total radiated momentum and angular momen-
tum. Expressions for these quantities in terms of the
asymptotic waveform are given in Refs. [22, 33]:

Pµ
rad

=
1

32⇡G

Z
dud�[ḟij ]

2⇢µ , (29)

J rad

ij =
1

8⇡G

Z
dud�

✓
fk[iḟj]k �

1

2
x[i@j]fklḟkl

◆
, (30)

where ḟij := @ufij and d� = sin ✓d✓d� is the unit sphere
measure.

We first concentrate on J rad

ij as it contributes at lead-
ing order O(G2) and was recently obtained in the center-

of-mass frame [22]. The static nature of f (1)

ij (27) allows
one to trivially perform the u-integration and express the
radiated angular momentum in terms of the wave mem-
ories �f+,⇥. Inserting the basis of polarization tensors

(15) (and using f (1)

⇥ = 0) gives

J rad

xy =
1

8⇡

Z
d�

h sin �

sin ✓
f (1)

+
�f⇥ �

1

2
cos � @✓f

(1)

+
�f+

i

+ O(G3) . (31)

The spherical integral is elementary and yields

J rad

xy

J init
xy

=
4G2m1m2

b2

(2�2
� 1)p

�2 � 1
I(v) + O(G3) , (32a)

I(v) = �
8

3
+

1

v2
+

(3v2
� 1)

v3
arctanh(v) , (32b)

where we have normalized our result with respect to the
initial angular momentum in the rest frame of black hole

1: J init

xy = m2|v2||b| = m2�vb. We find perfect agree-
ment with Ref. [22].3

Similarly, Pµ
rad

of Eq. (29) should reproduce the recent
result of Ref. [30] contributing at O(G3). So far we have
only been able to perform the integral in the PN expan-
sion recovering the result of Ref. [30] to order v6. Yet it is
straightforward to obtain di↵erential quantities derived
from the integrand of Eq. (29). The di↵erential power
spectrum (total energy radiated per unit frequency) as
well as the total energy radiated per unit solid angle are
collected in the supplementary material to this letter.
These results go well beyond Kovacs and Thorne [4] and
may be expanded to any desired order in v.

Conclusions. — Searching for GWs from scattering
events over the full range of impact velocities requires
precision predictions in the PM approximation. While
the potential and radiation of bound systems was calcu-
lated to high PN order [34] (see Refs. [35] for spinning
bodies), a resummation of PN results in the strong-field
and fast-motion regimes is essential for building accu-
rate waveform models [8]. The PM resummation is one
promising recent attempt [21, 36, 37].

Our results provide a stepping stone for higher-order
calculations, where a repertoire of advanced integration
techniques can be put to use [17, 24, 30, 38]. In fact the
3PM integrand has essentially been presented in Ref. [29].
The present challenge lies in the multi-scale integrals,
which despite their tree-level structure are of higher loop
three-momentum type as the worldline only preserves en-
ergy. Generalizations to spin and finite-size e↵ects are
possible and lead to the same families of integrations at
2PM. Also the extensions to bound systems using map-
pings between bound and unbound orbits [24, 39] would
be of great utility.
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SUPPLEMENTAL MATERIAL

Integrals. — We begin with the simpler integral in
Eq. (22), corresponding to diagram (b) in Fig. 1. Work-
ing in Cartesian components with b = (b1, b2, b3) (in the

main text we replace b ! eb) and q = (q1, q2, q3) it is
su�cient to show

Z

q
eiq·b q2

q2(q1 � i✏)
= �

b2

4⇡(b2 � b2

1
)

✓
1 +

b1

|b|

◆
. (33)

3 As the two frames are related by a boost in the x direction this
implies that Jrad

0y = 0 in both frames.

Our NLO result reproduces [Kovacs,Thorne ’75] obtained with traditional
GR techniques in 4 long papers

LO non-radiating:

33
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FIG. 1. The four diagram topologies contributing to the 2PM
Bremsstrahlung up to O(S2), where !i = k ·vi by energy con-
servation at the worldline vertices. For diagrams (b)–(d) we
also include the corresponding flipped topologies with massive
bodies 1$2; for diagram (d) (which includes the propagating
fermion  0µ

2 ) we also include the graph with the arrow re-
versed.

where ��(!) := (2⇡)�(!) and we have used S
µ⌫ =

�2i ̄[µ ⌫]. The other worldline-based vertices required
for the 2PM Bremsstrahlung all appear in Fig. 1: the
two-point interaction between a graviton and a single zµ

mode in (b), the two-graviton emission vertex in (c), and
the two-point interaction between a graviton and  0µ in
(d). Full expressions for these vertices are provided in
the Supplementary Material.

Waveform from WQFT. — To describe the
Bremsstrahlung at 2PM order including spin e↵ects we
compute the expectation value k2

hhµ⌫(k)iWQFT. This
requires us to compute four kinds of Feynman graphs,
illustrated in Fig. 1. Explicit expressions for the first
two graphs (a) and (b) were given in the non-spinning
case [16]; these are now modified by terms up to O(S2).
Graphs (c) and (d) are unique to the spinning case — for
the latter we sum over both routings of the fermion line.

From this result we seek to obtain the waveform in
spacetime in the wave zone, where the distance to the
observer |x| = r is large compared to all other lengths.
Following Ref. [16] the gauge-invariant frequency-domain
waveform 4G Sij(kµ = ⌦ (1, x̂)) is extracted from the
WQFT via

Sµ⌫(k) =
2


k2

hhµ⌫(k)iWQFT , (12)

where ⌦ is the GW frequency and x̂ = x/r points to-
wards the observer. However, it is advantageous to study
the time-domain waveform f(u, x̂) which is given by a
Fourier transform:

✏µ⌫hµ⌫ =
f(u, x̂)

r
=

4G

r

Z

⌦
e�ik·x ✏µ⌫ Sµ⌫(k)

���
kµ=⌦ ⇢µ

,

(13)

where we have contracted with a polarization tensor
✏µ⌫ = 1

2✏
µ✏⌫ ,

R
⌦ :=

R 1
�1

d⌦
2⇡ , ⇢µ = (1, x̂) and, in a PM

decomposition f =
P

n Gnf (n), we seek the 2PM compo-
nent f (2). Note that k · x = ⌦(t � r) yields the retarded
time u = t � r, and ✏ · ✏ = ✏ · ⇢ = 0.

Integration. — Our integration procedure follows
closely that used for the non-spinning calculation in
Ref. [16], the main di↵erence being that we maintain
four-dimensional Lorentz covariance. Each diagram con-
tributing to k2

hhµ⌫(k)iWQFT carries the overall factor

µ1,2(k) = ei(q1·b1+q2·b2)��(q1 · v1)�
�(q2 · v2)�

�(k � q1 � q2) .
(14)

We integrate over qi, the momentum emitted from each
worldline (see Fig. 1). When we also integrate over ⌦ —
as in Eq. (13) — the full integration measure becomes

Z

⌦,q1,q2

µ1,2(k)e�ik·x =
1

⇢ · v2

Z

q1

��(q1 · v1)e
�iq1·b̃ , (15)

where
R

qi
:=

R d4qi

(2⇡)4 ; the delta function constraints give

⌦ = q1·v2

⇢·v2

and q2 = k�q1. The shifted impact parameter

b̃µ is

b̃µ = b̃µ
2 � b̃µ

1 , b̃µ
i = bµ

i + uiv
µ
i , (16)

which extends the original impact parameter bµ = bµ
2 �

bµ
1 along the undeflected trajectories of the two bodies.

Finally, ui is the retarded time in the i’th rest frame:

ui =
⇢ · (x � bi)

⇢ · vi
, (17)

This implies ⇢ · b̃i = ⇢ · x = u, so ⇢ · b̃ = 0.
Rewriting the integral measure as in Eq. (15) is con-

venient for performing the integrals of diagrams (b)–(d),
in the rest frame of body 1. The mirrored counterparts
to these diagrams are easily recovered after integration
using the 1 $ 2 symmetry of the waveform. To inte-
grate diagram (a) we insert the partial-fraction identity
q�2
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�q�2
2 (2k ·q2)�1 (which is valid

for k on-shell) and focus on the first term.
The full 2PM waveform is then written schematically
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FIG. 1. The four diagram topologies contributing to the 2PM
Bremsstrahlung up to O(S2), where !i = k ·vi by energy con-
servation at the worldline vertices. For diagrams (b)–(d) we
also include the corresponding flipped topologies with massive
bodies 1$2; for diagram (d) (which includes the propagating
fermion  0µ

2 ) we also include the graph with the arrow re-
versed.
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where ��(!) := (2⇡)�(!) and we have used S
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mode in (b), the two-graviton emission vertex in (c), and
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(d). Full expressions for these vertices are provided in
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Waveform from WQFT. — To describe the
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compute the expectation value k2

hhµ⌫(k)iWQFT. This
requires us to compute four kinds of Feynman graphs,
illustrated in Fig. 1. Explicit expressions for the first
two graphs (a) and (b) were given in the non-spinning
case [16]; these are now modified by terms up to O(S2).
Graphs (c) and (d) are unique to the spinning case — for
the latter we sum over both routings of the fermion line.
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spacetime in the wave zone, where the distance to the
observer |x| = r is large compared to all other lengths.
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ui =
⇢ · (x � bi)
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This implies ⇢ · b̃i = ⇢ · x = u, so ⇢ · b̃ = 0.
Rewriting the integral measure as in Eq. (15) is con-

venient for performing the integrals of diagrams (b)–(d),
in the rest frame of body 1. The mirrored counterparts
to these diagrams are easily recovered after integration
using the 1 $ 2 symmetry of the waveform. To inte-
grate diagram (a) we insert the partial-fraction identity
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1 (2k ·q1)�1
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servation at the worldline vertices. For diagrams (b)–(d) we
also include the corresponding flipped topologies with massive
bodies 1$2; for diagram (d) (which includes the propagating
fermion  

0µ
2 ) we also include the graph with the arrow re-

versed.

where ��(!) := (2⇡)�(!) and we have used Sµ⌫ =
�2i ̄[µ ⌫]. The other worldline-based vertices required
for the 2PM Bremsstrahlung all appear in Fig. 1: the
two-point interaction between a graviton and a single zµ

mode in (b), the two-graviton emission vertex in (c), and
the two-point interaction between a graviton and  0µ

in
(d). Full expressions for these vertices are provided in
the Supplementary Material.

Waveform from WQFT. — To describe the
Bremsstrahlung at 2PM order including spin e↵ects we
compute the expectation value k2hhµ⌫(k)iWQFT. This
requires us to compute four kinds of Feynman graphs,
illustrated in Fig. 1. Explicit expressions for the first
two graphs (a) and (b) were given in the non-spinning
case [16]; these are now modified by terms up to O(S2).
Graphs (c) and (d) are unique to the spinning case — for
the latter we sum over both routings of the fermion line.

From this result we seek to obtain the waveform in
spacetime in the wave zone, where the distance to the
observer |x| = r is large compared to all other lengths.
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where ⌦ is the GW frequency and x̂ = x/r points to-
wards the observer. However, it is advantageous to study
the time-domain waveform f(u, x̂) which is given by a
Fourier transform:
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nent f (2). Note that k · x = ⌦(t � r) yields the retarded
time u = t � r, and ✏ · ✏ = ✏ · ⇢ = 0.

Integration. — Our integration procedure follows
closely that used for the non-spinning calculation in
Ref. [16], the main di↵erence being that we maintain
four-dimensional Lorentz covariance. Each diagram con-
tributing to k2hhµ⌫(k)iWQFT carries the overall factor
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We integrate over qi, the momentum emitted from each
worldline (see Fig. 1). When we also integrate over ⌦ —
as in Eq. (13) — the full integration measure becomes
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This implies ⇢ · b̃i = ⇢ · x = u, so ⇢ · b̃ = 0.
Rewriting the integral measure as in Eq. (15) is con-

venient for performing the integrals of diagrams (b)–(d),
in the rest frame of body 1. The mirrored counterparts
to these diagrams are easily recovered after integration
using the 1 $ 2 symmetry of the waveform. To inte-
grate diagram (a) we insert the partial-fraction identity
q�2
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2 = �q�2
1 (2k ·q1)�1 �q�2

2 (2k ·q2)�1 (which is valid
for k on-shell) and focus on the first term.

The full 2PM waveform is then written schematically
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also include the corresponding flipped topologies with massive
bodies 1$2; for diagram (d) (which includes the propagating
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versed.
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where ��(!) := (2⇡)�(!) and we have used Sµ⌫ =
�2i ̄[µ ⌫]. The other worldline-based vertices required
for the 2PM Bremsstrahlung all appear in Fig. 1: the
two-point interaction between a graviton and a single zµ

mode in (b), the two-graviton emission vertex in (c), and
the two-point interaction between a graviton and  0µ

in
(d). Full expressions for these vertices are provided in
the Supplementary Material.

Waveform from WQFT. — To describe the
Bremsstrahlung at 2PM order including spin e↵ects we
compute the expectation value k2hhµ⌫(k)iWQFT. This
requires us to compute four kinds of Feynman graphs,
illustrated in Fig. 1. Explicit expressions for the first
two graphs (a) and (b) were given in the non-spinning
case [16]; these are now modified by terms up to O(S2).
Graphs (c) and (d) are unique to the spinning case — for
the latter we sum over both routings of the fermion line.

From this result we seek to obtain the waveform in
spacetime in the wave zone, where the distance to the
observer |x| = r is large compared to all other lengths.
Following Ref. [16] the gauge-invariant frequency-domain
waveform 4G ✏µ⌫Sµ⌫(kµ = ⌦ (1, x̂)) is extracted from the
WQFT via

Sµ⌫(k) =
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hhµ⌫(k)iWQFT , (12)

where ⌦ is the GW frequency and x̂ = x/r points to-
wards the observer. However, it is advantageous to study
the time-domain waveform f(u, x̂) which is given by a
Fourier transform:
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n Gnf (n) we seek the 2PM component
f (2). Note that k · x = ⌦(t � r) yields the retarded time
u = t � r, and ✏ · ✏ = ✏ · ⇢ = 0.

Integration. — Our integration procedure follows
closely that used for the non-spinning calculation in
Ref. [16], the main di↵erence being that we maintain
four-dimensional Lorentz covariance. Each diagram con-
tributing to k2hhµ⌫(k)iWQFT carries the overall factor
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worldline (see Fig. 1). When we also integrate over ⌦ —
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This implies ⇢ · b̃i = ⇢ · x = u, so ⇢ · b̃ = 0.
Rewriting the integral measure as in Eq. (15) is con-

venient for performing the integrals of diagrams (b)–(d),
in the rest frame of body 1. The mirrored counterparts
to these diagrams are easily recovered after integration
using the 1 $ 2 symmetry of the waveform. To inte-
grate diagram (a) we insert the partial-fraction identity
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for k on-shell) and focus on the first term.
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zµi , 
0a
i ,  ̄0a

i

<latexit sha1_base64="r6oJBTutmhs0R7AkPaRLYBYNfTg="></latexit>

 a
i =  a

1 + i a
2Scattering scenario:

Initial spins

of BHs/NSs

Captures spin-orbit and spin-spin interactions up to order 

<latexit sha1_base64="0yzyVauFSgggTCLqMu6j+gcSLvk="></latexit>

 a =  a
1 + i a
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PHYSICAL INTERPRETATION OF SUSY
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Traditional approach:

Spin tensor              & co-moving frame
<latexit sha1_base64="gCcfs3AQNSILycg/KUnkIdHxxLk="></latexit>

Sµ⌫
i (⌧)

<latexit sha1_base64="bkhA4fjz1FHD5N5UHGKYIqPZ3zY="></latexit>

⇤Aµ
i (⌧)

Eoms:
<latexit sha1_base64="+IhQvUK2jRh7gcajbUGAyayIgRQ="></latexit>

Dp⌫

D⌧
+

1

2
Sµ⇢Rµ⇢⌫ẋ

 = 0

<latexit sha1_base64="fsojP6PiIXNb/UKLEfU8S/nida0="></latexit>

DSµ⌫

D⌧
+ 2ẋ[µ p⌫] = 0

Freedom of imposing a Spin-Supplementary 
Condition (SSC):

<latexit sha1_base64="Q8JuQmP7vu06taUi97vtxv9o5Xk="></latexit>

pµ S
µ⌫ = 0
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Our approach:  Spinning super-particle

Asymptotic SUSY 
transformations: 

Are a symmetry of all observables. 

2

We therefore augment the worldline trajectories xµ
i (⌧i)

(i = 1, 2) of our two massive bodies by anticommuting
complex Grassmann fields  a

i (⌧i). These are vectors in
the flat tangent Minkowski spacetime connected to the
curved spacetime via the vierbein ea

µ(x). The worldline
action in the massive case for each body takes the form
(suppressing the i subscripts) [20, 33]

S = �m

Z
d⌧

h
1
2gµ⌫ ẋ

µẋ⌫+i ̄a
D a

D⌧ + 1
2Rabcd ̄

a b ̄c d
i
,

(1)

where gµ⌫ = ea
µeb
⌫⌘ab is the metric in mostly minus signa-

ture, D a

D⌧ =  ̇a + ẋµ!µ
a

b 
b includes the spin connection

!µab and the Riemann tensor is Rµ⌫ab = ec
µed
⌫Rabcd =

2(@[µ!⌫]ab + ![µ| a
c!⌫]cb). This theory enjoys a global

N = 2 SUSY: it is invariant under

�xµ = i✏̄ µ + i✏ ̄µ , � a = �✏ea
µẋµ

� �xµ !µ
a

b 
b , (2)

with constant SUSY parameters ✏ and ✏̄ = ✏†.
The connection to a traditional description of spin-

ning bodies in general relativity, using the spin field Sµ⌫

and the Lorentz body-fixed frame ⇤A
µ [21, 22, 24, 34, 35],

comes about upon identifying the spin field Sµ⌫(⌧) with
the Grassmann bilinear:

Sµ⌫ = �2ieµ
ae⌫b  ̄

[a b] . (3)

One can easily show that Sab obeys the Lorentz algebra
under Poisson brackets { a,  ̄b

}P.B. = �i⌘ab. In fact, the
spin-supplementary condition (SSC) and preservation of
spin length may be related to N = 2 SUSY-related con-
straints [33]. Finally, by deriving the classical equations
of motion from the action these can be shown to match
the Mathisson-Papapetrou equations [36] at quadratic
spin order. This indicates a hidden N = 2 SUSY in
the actions of Refs. [22, 34, 35].

The actions of Refs. [22, 34, 35] also carry a first
spin-induced multipole moment term at quadratic order
in spins with an undertermined Wilson coe�cient CE ,
where here CE = 0 for a Kerr BH. Translating it to our
formalism this term reads

SES2 := �m

Z
d⌧ CEEab ̄

a b  ̄ ·  , (4)

where Eab := Raµb⌫ ẋµẋ⌫ is the “electric” part of the Rie-
mann tensor. The N = 2 SUSY is now maintained only
in an approximate sense [33]: it survives in the action for
terms up to O( 5), i.e. quadratic order in spin.

In order to describe a scattering scenario we expand
the worldline fields about solutions of the equations of
motion along straight-line trajectories:

xµ
i (⌧i) = bµ

i + vµ
i ⌧i + zµ

i (⌧i) ,

 a
i (⌧i) =  a

i +  0a
i (⌧i) ,

(5)

where S
µ⌫
i := �2i ̄[µ

i  
⌫]
i captures the initial spin of the

two massive objects. The weak gravity expansion of the

vierbein reads

ea
µ = ⌘a⌫

✓
⌘µ⌫ +



2
hµ⌫ �

2

8
hµ⇢h

⇢
⌫ + O(3)

◆
, (6)

introducing the graviton field hµ⌫(x) and the gravita-
tional coupling 2 = 32⇡G. Note that in this pertur-
bative framework the distinction between curved µ, ⌫, . . .
and tangent a, b, . . . indices necessarily drops.

The spinning WQFT has the partition function

ZWQFT := const ⇥

Z
D[hµ⌫ ] e

i(SEH+Sgf ) (7)

⇥

Z 2Y

i=1

D[zµ
i ]D[ 0

i
µ
] exp

h
i

2X

i=1

S(i) + S(i)
ES2

i
,

where SEH is the Einstein-Hilbert action and the gauge-
fixing term Sgf enforces de Donder gauge. The SUSY
variations (2) leave an imprint on the free energy (or
eikonal) FWQFT(bi, vi, Si) := �i log ZWQFT: after inte-
grating out the fluctuations zµ and  0µ in the path inte-
gral (7), the SUSY variations of the background trajecto-
ries (5) remain intact in an asymptotically flat spacetime.
That is, the transformations

�bµ
i = i✏̄ µ

i + i✏ ̄µ
i , �vµ

i = 0 , � µ
i = �✏vµ

i

) �Sµ⌫
i = vµ

i �b
⌫
i � v⌫i �b

µ
i

(8)

are a symmetry of FWQFT(bi, vi, Si) (only up to quadratic
spin order when the Wilson coe�cients CE,i are in-
cluded). As we shall see, this is also a symmetry of the
waveform. Using a suitable shift of the proper times ⌧i
we may choose b·vi = 0, where bµ = bµ

2 �bµ
1 is the relative

impact parameter; by gauge fixing the SUSY transforma-
tions (8) we impose vi,µS

µ⌫
i = 0 (the covariant SSC).

Feynman rules. — As the Feynman rules for the
Einstein-Hilbert action are conventional we will not dwell
on them; the only subtlety is our use of a retarded gravi-
ton propagator:

k

µ⌫ ⇢�
= i

Pµ⌫;⇢�

(k0 + i✏)2 � k2
, (9)

with Pµ⌫;⇢� := ⌘µ(⇢⌘�)⌫ �
1
2⌘µ⌫⌘⇢�. On the worldline

we work in one-dimensional energy (frequency) space:
the propagators for the fluctuations zµ(!) and anti-
commuting vectors  0µ(!) are respectively

!

µ ⌫ = �i
⌘µ⌫

m (! + i✏)2
, (10a)

!

µ ⌫ = �i
⌘µ⌫

m (! + i✏)
, (10b)

which also both involve a retarded i✏ prescription. The
former was already used in Refs. [16, 17].

<latexit sha1_base64="8+gwrgCqaVun/JVEGuWLrriv8go="></latexit>

Sµ⌫
i = �2i ̄[µ

i  
⌫]
i

SUSY = Freedom of picking a SSC.
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Interpretation of SUSY:

Covariant SSC:
<latexit sha1_base64="5ntD3DRZRy/7yaKd6xugr2Zqna8="></latexit>

vi · i = 0 ) vi,µS
µ⌫
i = 0
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SPINNING WAVEFORM @ NLO
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[Jakobsen,Mogull,JP,Steinhoff]

retarded time in ith rest frame 

4

N (q) and M(q) have a uniform power counting in q for
each spin order:

N (q) = Nµqµ + Nµ⌫qµq⌫ + Nµ⌫⇢q
µq⌫q⇢ , (19)

M(q) = Mµ⌫qµq⌫ + Mµ⌫⇢q
µq⌫q⇢ + Mµ⌫⇢�qµq⌫q⇢q� ,

and the non-spinning result involves only Nµ and Mµ⌫ .
We present full expressions for N and M in the ancillary
file attached to the arXiv submission of this Letter.

To lowest order in qµ, the first integral in eq. (18) is

4⇡

Z

q
��(q · v1)

e�iq·b̃

q2

qµ

q · v2 + i✏

=
Pµ⌫

1 v2,⌫

(�2 � 1)|b̃|1

�
bµ

|b|2

 
1p

�2 � 1
+

u2

|b̃|1

!
,

(20)

where Pµ⌫
i := ⌘µ⌫

�vµ
i v⌫

i is a projector into the rest frame
of the i’th body, |b| = �

p
bµbµ (the impact parameter is

spacelike) and

|b̃|1,2 :=
q

�b̃µPµ⌫
1,2 b̃⌫ =

q
|b|2 + (�2 � 1)u2

2,1 (21)

are the lengths of the shifted impact parameter b̃µ (16)
in the two rest frames. The second integral in eq. (18) is

4⇡

Z

q
��(q · v1)

e�iq·b̃

q2

qµq⌫

q · v2 q · ⇢

=
Kµ⌫

1 v2 · K1 · ⇢ � 2(v2 · K1)(µ(⇢ · K1)⌫)

(�2 � 1) (⇢ · v1)2 |b|2 |b̃|2 |b̃|1

,

(22)

where we have introduced the symmetric tensor

Kµ⌫
i := Pµ⌫

i |b̃|
2
i + (Pi · b̃)µ(Pi · b̃)⌫ , (23)

with the property that Kµ⌫
i vi,⌫ = Kµ⌫

i b̃⌫ = 0. Both
integrals are derived in the Supplementary Material; one
generalizes to higher powers of qµ in the numerators by
taking derivatives with respect to b̃µ.

Results. — The 2PM waveform takes the schematic
form

f (2)

m1m2
=

2X

s=0

1

|b̃|
2s+1
1

"
↵(s)

1 +
�(s)

1

|b̃|2s+2

#
+ (1 $ 2) , (24)

where the coe�cients ↵(s)
i , �(s)

i , provided in the ancillary
file, are associated with the N - and M-type contribu-
tions in Eq. (18) respectively; they are functions of ui,
bµ, vµ

i , ⇢µ, and S
µ⌫
i and bi-linear in ✏µ. The waveform f

is invariant under the SUSY transformations in Eq. (8)
to quadratic order in spin regardless of the values of CE,i.
To see this we expand the waveform at all PM orders in
powers of spin:

f = f0+
2X

i=1

Si,µ⌫fµ⌫
i +

2X

i,j=1

Si,µ⌫Sj,⇢�fµ⌫;⇢�
ij + O(S3) ,

(25)

4

where the non-spinning result involves only Nµ and Mµ⌫ .
We present full expressions for N and M in the ancillary
file attached to the arXiv submission of this Letter.

To lowest order in qµ, the first integral in eq. (18) is

4⇡

Z

q
��(q · v1)

e�iq·b̃

q2

qµ

q · v2 + i✏

=
Pµ⌫

1 v2,⌫

(�2 � 1)|b̃|1

�
bµ

b2

 
1p

�2 � 1
+

u2

|b̃|1

!
,

(20)

where Pµ⌫
i := ⌘µ⌫

� vµ
i v⌫

i is a projector into the rest
frame of the i’th body; b2 = |b|2 = �bµbµ (the impact
parameter is spacelike) and

|b̃|1,2 :=
q

�b̃µPµ⌫
1,2 b̃⌫ =

q
b2 + (�2 � 1)u2

2,1 (21)

are the lengths of the shifted impact parameter b̃µ (16)
in the two rest frames. The second integral in eq. (18) is

4⇡

Z

q
��(q · v1)

e�iq·b̃

q2

qµq⌫

q · v2 q · ⇢

=
Kµ⌫

1 v2 · K1 · ⇢ � 2(v2 · K1)(µ(⇢ · K1)⌫)

(�2 � 1) (⇢ · v1)2 b2 |b̃|2 |b̃|1

,

(22)

where we have introduced the symmetric tensor

Kµ⌫
i := Pµ⌫

i |b̃|
2
i + (Pi · b̃)µ(Pi · b̃)⌫ , (23)

with the property that Kµ⌫
i vi,⌫ = Kµ⌫

i b̃⌫ = 0. Both inte-
grals are derived in the Supplementary Material; versions
with higher powers of qµ in the numerators are derived
by taking derivatives with respect to b̃µ.

Results. — The 2PM waveform takes the schematic
form

f (2)

m1m2
=

2X

s=0

1

|b̃|
2s+1
1

"
↵(s)

1 +
�(s)

1

|b̃|2s+2

#
+ (1 $ 2) , (24)

where the coe�cients ↵(s)
i , �(s)

i are associated with the
N - and M-type contributions in Eq. (18) respectively;
they are functions of b, ui, vi, ⇢ and Si and bi-linear
in ✏. In the Kerr-BH case (CE,i = 0) the waveform f
is invariant under the SUSY transformations in Eq. (8):
For this we expand the waveform at any PM order in
powers of spin

f = f0+
2X

i=1

Si,µ⌫fµ⌫
i +

2X

i,j=1

Si,µ⌫Sj,⇢� + O(S3) (25)

where SUSY links higher-spin terms to lower ones

1

2

@f0

@bi,⌫
= vi,µ f [µ⌫]

i ,
1

4

@fµ⌫
i

@bj,⇢
= vj,� fµ⌫;[⇢�]

ij . (26)

To illustrate the waveform we consider the gravita-
tional wave memory �f(x̂) := f(+1, x̂) � f(�1, x̂).
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FIG. 2. Total radiated angular momenta for the scattering of
two Kerr-BHs with v = 0.2 as a function of the angle between
the total initial spins a3 = a1 + a2 and b (with ai · vi =
0) for a range of ratios |a3|/|b|. We show the normalized
ratio of angular momenta emitted orthogonal to the b,v plane
(left plot) and in the b direction (right plot), normalization
is w.r.t. angular momentum emitted in the spin-less.

The constant spin tensors are decomposed in terms of
the Pauli-Lubanski vectors aµ

i as S
µ⌫
i = ✏µ⌫

⇢�v⇢
i a�

i ; they
satisfy ai · vi = 0. In the aligned-spin case where
ai · b = ai · vj = 0, i.e. the spin vectors are orthogo-

nal to the plane of scattering. Writing li =
p

�a2
i the

wave memory is proportional to the non-spinning result:

�f (2) =

 
1 +

2vl3
b(1 + v2)

+
l23
b2

�

2X

i=1

CE,il2i
b2

!
�f (2)

S=0,

�f (2)
S=0

m1m2
=

4(2�2
� 1)✏ · v1(2b · ✏ ⇢ · v1 � b · ⇢ ✏ · v1)

b2
p

�2 � 1(⇢ · v1)2

+ (1 $ 2) , (27)

where we have introduced aµ
3 = aµ

1 + aµ
2 with length

|a3|. For two Kerr black holes (CE,i = 0) with equal-
and-opposite spins (aµ

1 = �aµ
2 ) the result is the same as

the non-spinning; we observe this also when the spins are
mis-aligned to the plane of scattering.

There is also a 1PM (non-radiating) contribution to
the waveform consisting of single-graviton emission from
either massive body:

f (1)(x̂) =
2m1

⇢ · v1
(✏ · v1)

2 +
2m2

⇢ · v2
(✏ · v2)

2 . (28)

At 1PM order there is manifestly no dependence on either
the spins S

µ⌫
i or impact parameters bµ

i , so the SUSY
identities in Eq. (26) are trivially satisfied.

Finally, the wave memory and 1PM part of the wave-
form contribute to the total radiated angular momentum
J rad

ij . Using three-dimensional Cartesian basis vectors êi,
we choose a frame of reference with the initial velocities
vµ

i restricted to the t–x plane; b = b ê2 is orthogonal to
these. Then we find two non-zero components of J rad

ij :

FIG. 2. Total radiated angular momenta for the scattering of
two Kerr-BHs with v = 0.2 as a function of the angle between
the total initial spins a3 = a1 + a2 and b (with ai · vi =
0) for a range of ratios |a3|/|b|. We show the normalized
ratio of angular momenta emitted orthogonal to the b,v plane
(left plot) and in the b direction (right plot), normalization
is w.r.t. angular momentum emitted in the spinless case.

where fµ⌫
i and fµ⌫;⇢�

ij are defined modulo terms that van-
ish on support of vi,µS

µ⌫
i = 0. The SUSY links higher-

spin to lower-spin terms:
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= vj,� fµ⌫;[⇢�]

ij , (26)

and these identities are satisfied by the waveform (24).
To illustrate the waveform we consider the gravita-

tional wave memory �f(x̂) := f(+1, x̂) � f(�1, x̂).
The constant spin tensors are decomposed in terms of
the Pauli-Lubanski vectors aµ

i as S
µ⌫
i = ✏µ⌫

⇢�v⇢
i a�

i , the
latter satisfying ai · vi = 0. In the aligned-spin case
ai · b = ai · vj = 0, i.e. the spin vectors are orthogo-

nal to the plane of scattering. Writing |ai| =
p

�a2
i the

wave memory is then proportional to the non-spinning
result:
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where aµ
3 = aµ

1 +aµ
2 . For two Kerr black holes (CE,i = 0)

with equal-and-opposite spins (aµ
1 = �aµ

2 ) we see that

�f (2) = �f (2)
S=0, which we observe also when the spins

are mis-aligned to the plane of scattering.
There is also a 1PM (non-radiating) contribution to

the waveform consisting of single-graviton emission from
either massive body:

f (1)(x̂) =
2m1

⇢ · v1
(✏ · v1)

2 +
2m2

⇢ · v2
(✏ · v2)

2 . (28)

At 1PM order there is manifestly no dependence on either
the spins S

µ⌫
i or impact parameters bµ

i , so the SUSY
identities in Eq. (26) are trivially satisfied.

Finally, the wave memory and 1PM part of the wave-
form contribute to the total radiated angular momentum

4

N (q) and M(q) have a uniform power counting in q for
each spin order:

N (q) = Nµqµ + Nµ⌫qµq⌫ + Nµ⌫⇢q
µq⌫q⇢ , (19)

M(q) = Mµ⌫qµq⌫ + Mµ⌫⇢q
µq⌫q⇢ + Mµ⌫⇢�qµq⌫q⇢q� ,

and the non-spinning result involves only Nµ and Mµ⌫ .
We present full expressions for N and M in the ancillary
file attached to the arXiv submission of this Letter.

To lowest order in qµ, the first integral in eq. (18) is
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where Pµ⌫
i := ⌘µ⌫

�vµ
i v⌫

i is a projector into the rest frame
of the i’th body, |b| = �

p
bµbµ (the impact parameter is

spacelike) and
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are the lengths of the shifted impact parameter b̃µ (16)
in the two rest frames. The second integral in eq. (18) is
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where we have introduced the symmetric tensor

Kµ⌫
i := Pµ⌫

i |b̃|
2
i + (Pi · b̃)µ(Pi · b̃)⌫ , (23)

with the property that Kµ⌫
i vi,⌫ = Kµ⌫

i b̃⌫ = 0. Both
integrals are derived in the Supplementary Material; one
generalizes to higher powers of qµ in the numerators by
taking derivatives with respect to b̃µ.

Results. — The 2PM waveform takes the schematic
form
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where the coe�cients ↵(s)
i , �(s)

i , provided in the ancillary
file, are associated with the N - and M-type contribu-
tions in Eq. (18) respectively; they are functions of ui,
bµ, vµ

i , ⇢µ, and S
µ⌫
i and bi-linear in ✏µ. The waveform f

is invariant under the SUSY transformations in Eq. (8)
to quadratic order in spin regardless of the values of CE,i.
To see this we expand the waveform at all PM orders in
powers of spin:
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(25)
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We present full expressions for N and M in the ancillary
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i b̃⌫ = 0. Both inte-
grals are derived in the Supplementary Material; versions
with higher powers of qµ in the numerators are derived
by taking derivatives with respect to b̃µ.
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where the coe�cients ↵(s)
i , �(s)

i are associated with the
N - and M-type contributions in Eq. (18) respectively;
they are functions of b, ui, vi, ⇢ and Si and bi-linear
in ✏. In the Kerr-BH case (CE,i = 0) the waveform f
is invariant under the SUSY transformations in Eq. (8):
For this we expand the waveform at any PM order in
powers of spin

f = f0+
2X

i=1

Si,µ⌫fµ⌫
i +

2X

i,j=1

Si,µ⌫Sj,⇢� + O(S3) (25)

where SUSY links higher-spin terms to lower ones
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To illustrate the waveform we consider the gravita-
tional wave memory �f(x̂) := f(+1, x̂) � f(�1, x̂).
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FIG. 2. Total radiated angular momenta for the scattering of
two Kerr-BHs with v = 0.2 as a function of the angle between
the total initial spins a3 = a1 + a2 and b (with ai · vi =
0) for a range of ratios |a3|/|b|. We show the normalized
ratio of angular momenta emitted orthogonal to the b,v plane
(left plot) and in the b direction (right plot), normalization
is w.r.t. angular momentum emitted in the spin-less.

The constant spin tensors are decomposed in terms of
the Pauli-Lubanski vectors aµ

i as S
µ⌫
i = ✏µ⌫

⇢�v⇢
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i ; they
satisfy ai · vi = 0. In the aligned-spin case where
ai · b = ai · vj = 0, i.e. the spin vectors are orthogo-
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where we have introduced aµ
3 = aµ

1 + aµ
2 with length

|a3|. For two Kerr black holes (CE,i = 0) with equal-
and-opposite spins (aµ

1 = �aµ
2 ) the result is the same as

the non-spinning; we observe this also when the spins are
mis-aligned to the plane of scattering.

There is also a 1PM (non-radiating) contribution to
the waveform consisting of single-graviton emission from
either massive body:

f (1)(x̂) =
2m1

⇢ · v1
(✏ · v1)

2 +
2m2

⇢ · v2
(✏ · v2)

2 . (28)

At 1PM order there is manifestly no dependence on either
the spins S

µ⌫
i or impact parameters bµ

i , so the SUSY
identities in Eq. (26) are trivially satisfied.

Finally, the wave memory and 1PM part of the wave-
form contribute to the total radiated angular momentum
J rad

ij . Using three-dimensional Cartesian basis vectors êi,
we choose a frame of reference with the initial velocities
vµ

i restricted to the t–x plane; b = b ê2 is orthogonal to
these. Then we find two non-zero components of J rad

ij :

FIG. 2. Total radiated angular momenta for the scattering of
two Kerr-BHs with v = 0.2 as a function of the angle between
the total initial spins a3 = a1 + a2 and b (with ai · vi =
0) for a range of ratios |a3|/|b|. We show the normalized
ratio of angular momenta emitted orthogonal to the b,v plane
(left plot) and in the b direction (right plot), normalization
is w.r.t. angular momentum emitted in the spinless case.
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and these identities are satisfied by the waveform (24).
To illustrate the waveform we consider the gravita-

tional wave memory �f(x̂) := f(+1, x̂) � f(�1, x̂).
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2 ) we see that
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are mis-aligned to the plane of scattering.
There is also a 1PM (non-radiating) contribution to

the waveform consisting of single-graviton emission from
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At 1PM order there is manifestly no dependence on either
the spins S
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identities in Eq. (26) are trivially satisfied.

Finally, the wave memory and 1PM part of the wave-
form contribute to the total radiated angular momentum
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FIG. 1. The four diagram topologies contributing to the 2PM
Bremsstrahlung up to O(S2), where !i = k ·vi by energy con-
servation at the worldline vertices. For diagrams (b)–(d) we
also include the corresponding flipped topologies with massive
bodies 1$2; for diagram (d) (which includes the propagating
fermion  0µ

2 ) we also include the graph with the arrow re-
versed.

where ��(!) := (2⇡)�(!) and we have used S
µ⌫ =

�2i ̄[µ ⌫]. The other worldline-based vertices required
for the 2PM Bremsstrahlung all appear in Fig. 1: the
two-point interaction between a graviton and a single zµ

mode in (b), the two-graviton emission vertex in (c), and
the two-point interaction between a graviton and  0µ in
(d). Full expressions for these vertices are provided in
the Supplementary Material.

Waveform from WQFT. — To describe the
Bremsstrahlung at 2PM order including spin e↵ects we
compute the expectation value k2

hhµ⌫(k)iWQFT. This
requires us to compute four kinds of Feynman graphs,
illustrated in Fig. 1. Explicit expressions for the first
two graphs (a) and (b) were given in the non-spinning
case [16]; these are now modified by terms up to O(S2).
Graphs (c) and (d) are unique to the spinning case — for
the latter we sum over both routings of the fermion line.

From this result we seek to obtain the waveform in
spacetime in the wave zone, where the distance to the
observer |x| = r is large compared to all other lengths.
Following Ref. [16] the gauge-invariant frequency-domain
waveform 4G Sij(kµ = ⌦ (1, x̂)) is extracted from the
WQFT via

Sµ⌫(k) =
2


k2

hhµ⌫(k)iWQFT , (12)

where ⌦ is the GW frequency and x̂ = x/r points to-
wards the observer. However, it is advantageous to study
the time-domain waveform f(u, x̂) which is given by a
Fourier transform:

✏µ⌫hµ⌫ =
f(u, x̂)

r
=

4G

r

Z

⌦
e�ik·x ✏µ⌫ Sµ⌫(k)

���
kµ=⌦ ⇢µ

,

(13)

where we have contracted with a polarization tensor
✏µ⌫ = 1

2✏
µ✏⌫ ,

R
⌦ :=

R 1
�1

d⌦
2⇡ , ⇢µ = (1, x̂) and, in a PM

decomposition f =
P

n Gnf (n), we seek the 2PM compo-
nent f (2). Note that k · x = ⌦(t � r) yields the retarded
time u = t � r, and ✏ · ✏ = ✏ · ⇢ = 0.

Integration. — Our integration procedure follows
closely that used for the non-spinning calculation in
Ref. [16], the main di↵erence being that we maintain
four-dimensional Lorentz covariance. Each diagram con-
tributing to k2

hhµ⌫(k)iWQFT carries the overall factor

µ1,2(k) = ei(q1·b1+q2·b2)��(q1 · v1)�
�(q2 · v2)�

�(k � q1 � q2) .
(14)

We integrate over qi, the momentum emitted from each
worldline (see Fig. 1). When we also integrate over ⌦ —
as in Eq. (13) — the full integration measure becomes

Z

⌦,q1,q2

µ1,2(k)e�ik·x =
1

⇢ · v2

Z

q1

��(q1 · v1)e
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where
R

qi
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R d4qi

(2⇡)4 ; the delta function constraints give

⌦ = q1·v2

⇢·v2

and q2 = k�q1. The shifted impact parameter

b̃µ is

b̃µ = b̃µ
2 � b̃µ

1 , b̃µ
i = bµ

i + uiv
µ
i , (16)

which extends the original impact parameter bµ = bµ
2 �

bµ
1 along the undeflected trajectories of the two bodies.

Finally, ui is the retarded time in the i’th rest frame:

ui =
⇢ · (x � bi)

⇢ · vi
, (17)

This implies ⇢ · b̃i = ⇢ · x = u, so ⇢ · b̃ = 0.
Rewriting the integral measure as in Eq. (15) is con-

venient for performing the integrals of diagrams (b)–(d),
in the rest frame of body 1. The mirrored counterparts
to these diagrams are easily recovered after integration
using the 1 $ 2 symmetry of the waveform. To inte-
grate diagram (a) we insert the partial-fraction identity
q�2
1 q�2

2 = �q�2
1 (2k ·q1)�1

�q�2
2 (2k ·q2)�1 (which is valid

for k on-shell) and focus on the first term.
The full 2PM waveform is then written schematically

as (dropping the subscript on q1)GM: fix margin

f (2)

m1m2
= 4⇡

Z

q
��(q · v1)

e�iq·b̃

q2

✓
N (q)

q · v2 + i✏
+

M(q)

(q · v2)(q · ⇢)

◆
,
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the N - and M-contributions corresponding to diagrams
(b)–(d) and (a) in Fig. 1 respectively. The numerators
N (q) and M(q) have a uniform power counting in q for
each spin order:

N (q) = Nµqµ + Nµ⌫qµq⌫ + Nµ⌫⇢q
µq⌫q⇢ , (19)

M(q) = Mµ⌫qµq⌫ + Mµ⌫⇢q
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FIG. 1. The four diagram topologies contributing to the 2PM
Bremsstrahlung up to O(S2), where !i = k ·vi by energy con-
servation at the worldline vertices. For diagrams (b)–(d) we
also include the corresponding flipped topologies with massive
bodies 1$2; for diagram (d) (which includes the propagating
fermion  0µ

2 ) we also include the graph with the arrow re-
versed.

Next we consider the worldline vertices. The simplest
of these is the single-graviton emission vertex:
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where ��(!) := (2⇡)�(!) and we have used S
µ⌫ =

�2i ̄[µ ⌫]. The other worldline-based vertices required
for the 2PM Bremsstrahlung all appear in Fig. 1: the
two-point interaction between a graviton and a single zµ

mode in (b), the two-graviton emission vertex in (c), and
the two-point interaction between a graviton and  0µ in
(d). Full expressions for these vertices are provided in
the Supplementary Material.

Waveform from WQFT. — To describe the
Bremsstrahlung at 2PM order including spin e↵ects we
compute the expectation value k2

hhµ⌫(k)iWQFT. This
requires us to compute four kinds of Feynman graphs,
illustrated in Fig. 1. Explicit expressions for the first
two graphs (a) and (b) were given in the non-spinning
case [16]; these are now modified by terms up to O(S2).
Graphs (c) and (d) are unique to the spinning case — for
the latter we sum over both routings of the fermion line.

From this result we seek to obtain the waveform in
spacetime in the wave zone, where the distance to the
observer |x| = r is large compared to all other lengths.
Following Ref. [16] the gauge-invariant frequency-domain
waveform 4G ✏µ⌫Sµ⌫(kµ = ⌦ (1, x̂)) is extracted from the
WQFT via
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where ⌦ is the GW frequency and x̂ = x/r points to-
wards the observer. However, it is advantageous to study
the time-domain waveform f(u, x̂) which is given by a
Fourier transform:
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f (2). Note that k · x = ⌦(t � r) yields the retarded time
u = t � r, and ✏ · ✏ = ✏ · ⇢ = 0.

Integration. — Our integration procedure follows
closely that used for the non-spinning calculation in
Ref. [16], the main di↵erence being that we maintain
four-dimensional Lorentz covariance. Each diagram con-
tributing to k2

hhµ⌫(k)iWQFT carries the overall factor

µ1,2(k) = ei(q1·b1+q2·b2)��(q1 · v1)�
�(q2 · v2)�

�(k � q1 � q2) .
(14)

We integrate over qi, the momentum emitted from each
worldline (see Fig. 1). When we also integrate over ⌦ —
as in Eq. (13) — the full integration measure becomes

Z

⌦,q1,q2

µ1,2(k)e�ik·x =
1

⇢ · v2

Z

q1

��(q1 · v1)e
�iq1·b̃ , (15)

where
R

qi
:=

R d4qi

(2⇡)4 ; the delta function constraints give

⌦ = q1·v2

⇢·v2

and q2 = k�q1. The shifted impact parameter,

b̃µ = b̃µ
2 � b̃µ

1 , b̃µ
i = bµ

i + uiv
µ
i , (16)

extends the original impact parameter bµ = bµ
2 �bµ

1 along
the undeflected trajectories of the two bodies. Finally, ui

is the retarded time in the i’th rest frame:

ui =
⇢ · (x � bi)

⇢ · vi
, (17)

This implies ⇢ · b̃i = ⇢ · x = u, so ⇢ · b̃ = 0.
Rewriting the integral measure as in Eq. (15) is con-

venient for performing the integrals of diagrams (b)–(d),
in the rest frame of body 1. The mirrored counterparts
to these diagrams are easily recovered after integration
using the 1 $ 2 symmetry of the waveform. To inte-
grate diagram (a) we insert the partial-fraction identity
q�2
1 q�2

2 = �q�2
1 (2k ·q1)�1

�q�2
2 (2k ·q2)�1 (which is valid

for k on-shell) and focus on the first term.
The full 2PM waveform is then written schematically

as (dropping the subscript on q1)

f (2)

m1m2
= 4⇡

Z

q
��(q · v1)

e�iq·b̃

q2

✓
N (q)

q · v2 + i✏
+

M(q)

(q · v2)(q · ⇢)

◆
,

+ (1 $ 2) , (18)

the N - and M-contributions corresponding to diagrams
(b)–(d) and (a) in Fig. 1 respectively. The numerators

4

N (q) and M(q) have a uniform power counting in q for
each spin order:

N (q) = Nµqµ + Nµ⌫qµq⌫ + Nµ⌫⇢q
µq⌫q⇢ , (19)

M(q) = Mµ⌫qµq⌫ + Mµ⌫⇢q
µq⌫q⇢ + Mµ⌫⇢�qµq⌫q⇢q� ,

and the non-spinning result involves only Nµ and Mµ⌫ .
We present full expressions for N and M in the ancillary
file attached to the arXiv submission of this Letter.

To lowest order in qµ, the first integral in eq. (18) is

4⇡

Z

q
��(q · v1)

e�iq·b̃

q2

qµ

q · v2 + i✏

=
Pµ⌫

1 v2,⌫

(�2 � 1)|b̃|1

�
bµ

|b|2

 
1p

�2 � 1
+

u2

|b̃|1

!
,

(20)

where Pµ⌫
i := ⌘µ⌫

�vµ
i v⌫

i is a projector into the rest frame
of the i’th body, |b| = �

p
bµbµ (the impact parameter is

spacelike) and

|b̃|1,2 :=
q

�b̃µPµ⌫
1,2 b̃⌫ =

q
|b|2 + (�2 � 1)u2

2,1 (21)

are the lengths of the shifted impact parameter b̃µ (16)
in the two rest frames. The second integral in eq. (18) is

4⇡

Z

q
��(q · v1)

e�iq·b̃

q2

qµq⌫

q · v2 q · ⇢

=
Kµ⌫

1 v2 · K1 · ⇢ � 2(v2 · K1)(µ(⇢ · K1)⌫)

(�2 � 1) (⇢ · v1)2 |b|2 |b̃|2 |b̃|1

,

(22)

where we have introduced the symmetric tensor

Kµ⌫
i := Pµ⌫

i |b̃|
2
i + (Pi · b̃)µ(Pi · b̃)⌫ , (23)

with the property that Kµ⌫
i vi,⌫ = Kµ⌫

i b̃⌫ = 0. Both
integrals are derived in the Supplementary Material; one
generalizes to higher powers of qµ in the numerators by
taking derivatives with respect to b̃µ.

Results. — The 2PM waveform takes the schematic
form

f (2)

m1m2
=

2X

s=0

1

|b̃|
2s+1
1

"
↵(s)

1 +
�(s)

1

|b̃|2s+2

#
+ (1 $ 2) , (24)

where the coe�cients ↵(s)
i , �(s)

i , provided in the ancillary
file, are associated with the N - and M-type contribu-
tions in Eq. (18) respectively; they are functions of ui,
bµ, vµ

i , ⇢µ, and S
µ⌫
i and bi-linear in ✏µ. The waveform f

is invariant under the SUSY transformations in Eq. (8)
to quadratic order in spin regardless of the values of CE,i.
To see this we expand the waveform at all PM orders in
powers of spin:

f = f0+
2X

i=1

Si,µ⌫fµ⌫
i +

2X

i,j=1

Si,µ⌫Sj,⇢�fµ⌫;⇢�
ij + O(S3) ,

(25)
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where the non-spinning result involves only Nµ and Mµ⌫ .
We present full expressions for N and M in the ancillary
file attached to the arXiv submission of this Letter.

To lowest order in qµ, the first integral in eq. (18) is
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where Pµ⌫
i := ⌘µ⌫

� vµ
i v⌫

i is a projector into the rest
frame of the i’th body; b2 = |b|2 = �bµbµ (the impact
parameter is spacelike) and

|b̃|1,2 :=
q

�b̃µPµ⌫
1,2 b̃⌫ =

q
b2 + (�2 � 1)u2

2,1 (21)

are the lengths of the shifted impact parameter b̃µ (16)
in the two rest frames. The second integral in eq. (18) is

4⇡

Z
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e�iq·b̃

q2

qµq⌫

q · v2 q · ⇢
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(22)

where we have introduced the symmetric tensor

Kµ⌫
i := Pµ⌫

i |b̃|
2
i + (Pi · b̃)µ(Pi · b̃)⌫ , (23)

with the property that Kµ⌫
i vi,⌫ = Kµ⌫

i b̃⌫ = 0. Both inte-
grals are derived in the Supplementary Material; versions
with higher powers of qµ in the numerators are derived
by taking derivatives with respect to b̃µ.

Results. — The 2PM waveform takes the schematic
form

f (2)

m1m2
=

2X

s=0

1

|b̃|
2s+1
1

"
↵(s)

1 +
�(s)

1

|b̃|2s+2

#
+ (1 $ 2) , (24)

where the coe�cients ↵(s)
i , �(s)

i are associated with the
N - and M-type contributions in Eq. (18) respectively;
they are functions of b, ui, vi, ⇢ and Si and bi-linear
in ✏. In the Kerr-BH case (CE,i = 0) the waveform f
is invariant under the SUSY transformations in Eq. (8):
For this we expand the waveform at any PM order in
powers of spin

f = f0+
2X

i=1

Si,µ⌫fµ⌫
i +

2X

i,j=1

Si,µ⌫Sj,⇢� + O(S3) (25)

where SUSY links higher-spin terms to lower ones

1

2

@f0

@bi,⌫
= vi,µ f [µ⌫]

i ,
1

4

@fµ⌫
i

@bj,⇢
= vj,� fµ⌫;[⇢�]

ij . (26)

To illustrate the waveform we consider the gravita-
tional wave memory �f(x̂) := f(+1, x̂) � f(�1, x̂).
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FIG. 2. Total radiated angular momenta for the scattering of
two Kerr-BHs with v = 0.2 as a function of the angle between
the total initial spins a3 = a1 + a2 and b (with ai · vi =
0) for a range of ratios |a3|/|b|. We show the normalized
ratio of angular momenta emitted orthogonal to the b,v plane
(left plot) and in the b direction (right plot), normalization
is w.r.t. angular momentum emitted in the spin-less.

The constant spin tensors are decomposed in terms of
the Pauli-Lubanski vectors aµ

i as S
µ⌫
i = ✏µ⌫

⇢�v⇢
i a�

i ; they
satisfy ai · vi = 0. In the aligned-spin case where
ai · b = ai · vj = 0, i.e. the spin vectors are orthogo-

nal to the plane of scattering. Writing li =
p

�a2
i the

wave memory is proportional to the non-spinning result:

�f (2) =

 
1 +

2vl3
b(1 + v2)

+
l23
b2

�

2X

i=1

CE,il2i
b2

!
�f (2)

S=0,

�f (2)
S=0

m1m2
=

4(2�2
� 1)✏ · v1(2b · ✏ ⇢ · v1 � b · ⇢ ✏ · v1)

b2
p

�2 � 1(⇢ · v1)2

+ (1 $ 2) , (27)

where we have introduced aµ
3 = aµ

1 + aµ
2 with length

|a3|. For two Kerr black holes (CE,i = 0) with equal-
and-opposite spins (aµ

1 = �aµ
2 ) the result is the same as

the non-spinning; we observe this also when the spins are
mis-aligned to the plane of scattering.

There is also a 1PM (non-radiating) contribution to
the waveform consisting of single-graviton emission from
either massive body:

f (1)(x̂) =
2m1

⇢ · v1
(✏ · v1)

2 +
2m2

⇢ · v2
(✏ · v2)

2 . (28)

At 1PM order there is manifestly no dependence on either
the spins S

µ⌫
i or impact parameters bµ

i , so the SUSY
identities in Eq. (26) are trivially satisfied.

Finally, the wave memory and 1PM part of the wave-
form contribute to the total radiated angular momentum
J rad

ij . Using three-dimensional Cartesian basis vectors êi,
we choose a frame of reference with the initial velocities
vµ

i restricted to the t–x plane; b = b ê2 is orthogonal to
these. Then we find two non-zero components of J rad

ij :

FIG. 2. Total radiated angular momenta for the scattering of
two Kerr-BHs with v = 0.2 as a function of the angle between
the total initial spins a3 = a1 + a2 and b (with ai · vi =
0) for a range of ratios |a3|/|b|. We show the normalized
ratio of angular momenta emitted orthogonal to the b,v plane
(left plot) and in the b direction (right plot), normalization
is w.r.t. angular momentum emitted in the spinless case.

where fµ⌫
i and fµ⌫;⇢�

ij are defined modulo terms that van-
ish on support of vi,µS

µ⌫
i = 0. The SUSY links higher-

spin to lower-spin terms:
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= vi,⌫ f [µ⌫]

i ,
1

4

@fµ⌫
i

@bj,⇢
= vj,� fµ⌫;[⇢�]

ij , (26)

and these identities are satisfied by the waveform (24).
To illustrate the waveform we consider the gravita-

tional wave memory �f(x̂) := f(+1, x̂) � f(�1, x̂).
The constant spin tensors are decomposed in terms of
the Pauli-Lubanski vectors aµ

i as S
µ⌫
i = ✏µ⌫

⇢�v⇢
i a�

i , the
latter satisfying ai · vi = 0. In the aligned-spin case
ai · b = ai · vj = 0, i.e. the spin vectors are orthogo-

nal to the plane of scattering. Writing |ai| =
p

�a2
i the

wave memory is then proportional to the non-spinning
result:
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where aµ
3 = aµ

1 +aµ
2 . For two Kerr black holes (CE,i = 0)

with equal-and-opposite spins (aµ
1 = �aµ

2 ) we see that

�f (2) = �f (2)
S=0, which we observe also when the spins

are mis-aligned to the plane of scattering.
There is also a 1PM (non-radiating) contribution to

the waveform consisting of single-graviton emission from
either massive body:

f (1)(x̂) =
2m1

⇢ · v1
(✏ · v1)

2 +
2m2

⇢ · v2
(✏ · v2)

2 . (28)

At 1PM order there is manifestly no dependence on either
the spins S

µ⌫
i or impact parameters bµ

i , so the SUSY
identities in Eq. (26) are trivially satisfied.

Finally, the wave memory and 1PM part of the wave-
form contribute to the total radiated angular momentum
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FIG. 1. The four diagram topologies contributing to the 2PM
Bremsstrahlung up to O(S2), where !i = k ·vi by energy con-
servation at the worldline vertices. For diagrams (b)–(d) we
also include the corresponding flipped topologies with massive
bodies 1$2; for diagram (d) (which includes the propagating
fermion  0µ

2 ) we also include the graph with the arrow re-
versed.

where ��(!) := (2⇡)�(!) and we have used S
µ⌫ =

�2i ̄[µ ⌫]. The other worldline-based vertices required
for the 2PM Bremsstrahlung all appear in Fig. 1: the
two-point interaction between a graviton and a single zµ

mode in (b), the two-graviton emission vertex in (c), and
the two-point interaction between a graviton and  0µ in
(d). Full expressions for these vertices are provided in
the Supplementary Material.

Waveform from WQFT. — To describe the
Bremsstrahlung at 2PM order including spin e↵ects we
compute the expectation value k2

hhµ⌫(k)iWQFT. This
requires us to compute four kinds of Feynman graphs,
illustrated in Fig. 1. Explicit expressions for the first
two graphs (a) and (b) were given in the non-spinning
case [16]; these are now modified by terms up to O(S2).
Graphs (c) and (d) are unique to the spinning case — for
the latter we sum over both routings of the fermion line.

From this result we seek to obtain the waveform in
spacetime in the wave zone, where the distance to the
observer |x| = r is large compared to all other lengths.
Following Ref. [16] the gauge-invariant frequency-domain
waveform 4G Sij(kµ = ⌦ (1, x̂)) is extracted from the
WQFT via

Sµ⌫(k) =
2


k2

hhµ⌫(k)iWQFT , (12)

where ⌦ is the GW frequency and x̂ = x/r points to-
wards the observer. However, it is advantageous to study
the time-domain waveform f(u, x̂) which is given by a
Fourier transform:

✏µ⌫hµ⌫ =
f(u, x̂)

r
=

4G

r

Z

⌦
e�ik·x ✏µ⌫ Sµ⌫(k)

���
kµ=⌦ ⇢µ

,

(13)

where we have contracted with a polarization tensor
✏µ⌫ = 1

2✏
µ✏⌫ ,

R
⌦ :=

R 1
�1

d⌦
2⇡ , ⇢µ = (1, x̂) and, in a PM

decomposition f =
P

n Gnf (n), we seek the 2PM compo-
nent f (2). Note that k · x = ⌦(t � r) yields the retarded
time u = t � r, and ✏ · ✏ = ✏ · ⇢ = 0.

Integration. — Our integration procedure follows
closely that used for the non-spinning calculation in
Ref. [16], the main di↵erence being that we maintain
four-dimensional Lorentz covariance. Each diagram con-
tributing to k2

hhµ⌫(k)iWQFT carries the overall factor

µ1,2(k) = ei(q1·b1+q2·b2)��(q1 · v1)�
�(q2 · v2)�

�(k � q1 � q2) .
(14)

We integrate over qi, the momentum emitted from each
worldline (see Fig. 1). When we also integrate over ⌦ —
as in Eq. (13) — the full integration measure becomes

Z

⌦,q1,q2

µ1,2(k)e�ik·x =
1

⇢ · v2

Z

q1

��(q1 · v1)e
�iq1·b̃ , (15)

where
R

qi
:=

R d4qi

(2⇡)4 ; the delta function constraints give

⌦ = q1·v2

⇢·v2

and q2 = k�q1. The shifted impact parameter

b̃µ is

b̃µ = b̃µ
2 � b̃µ

1 , b̃µ
i = bµ

i + uiv
µ
i , (16)

which extends the original impact parameter bµ = bµ
2 �

bµ
1 along the undeflected trajectories of the two bodies.

Finally, ui is the retarded time in the i’th rest frame:

ui =
⇢ · (x � bi)

⇢ · vi
, (17)

This implies ⇢ · b̃i = ⇢ · x = u, so ⇢ · b̃ = 0.
Rewriting the integral measure as in Eq. (15) is con-

venient for performing the integrals of diagrams (b)–(d),
in the rest frame of body 1. The mirrored counterparts
to these diagrams are easily recovered after integration
using the 1 $ 2 symmetry of the waveform. To inte-
grate diagram (a) we insert the partial-fraction identity
q�2
1 q�2

2 = �q�2
1 (2k ·q1)�1

�q�2
2 (2k ·q2)�1 (which is valid

for k on-shell) and focus on the first term.
The full 2PM waveform is then written schematically

as (dropping the subscript on q1)GM: fix margin
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◆
,

+ (1 $ 2) , (18)

the N - and M-contributions corresponding to diagrams
(b)–(d) and (a) in Fig. 1 respectively. The numerators
N (q) and M(q) have a uniform power counting in q for
each spin order:

N (q) = Nµqµ + Nµ⌫qµq⌫ + Nµ⌫⇢q
µq⌫q⇢ , (19)

M(q) = Mµ⌫qµq⌫ + Mµ⌫⇢q
µq⌫q⇢ + Mµ⌫⇢�qµq⌫q⇢q� ,

FIG. 1. The four diagram topologies contributing to the 2PM
Bremsstrahlung up to O(S2), where !i = k ·vi by energy con-
servation at the worldline vertices. For diagrams (b)–(d) we
also include the corresponding flipped topologies with massive
bodies 1$2; for diagram (d) (which includes the propagating
fermion  0µ

2 ) we also include the graph with the arrow re-
versed.

Next we consider the worldline vertices. The simplest
of these is the single-graviton emission vertex:
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(11)

where ��(!) := (2⇡)�(!) and we have used S
µ⌫ =

�2i ̄[µ ⌫]. The other worldline-based vertices required
for the 2PM Bremsstrahlung all appear in Fig. 1: the
two-point interaction between a graviton and a single zµ

mode in (b), the two-graviton emission vertex in (c), and
the two-point interaction between a graviton and  0µ in
(d). Full expressions for these vertices are provided in
the Supplementary Material.

Waveform from WQFT. — To describe the
Bremsstrahlung at 2PM order including spin e↵ects we
compute the expectation value k2

hhµ⌫(k)iWQFT. This
requires us to compute four kinds of Feynman graphs,
illustrated in Fig. 1. Explicit expressions for the first
two graphs (a) and (b) were given in the non-spinning
case [16]; these are now modified by terms up to O(S2).
Graphs (c) and (d) are unique to the spinning case — for
the latter we sum over both routings of the fermion line.

From this result we seek to obtain the waveform in
spacetime in the wave zone, where the distance to the
observer |x| = r is large compared to all other lengths.
Following Ref. [16] the gauge-invariant frequency-domain
waveform 4G ✏µ⌫Sµ⌫(kµ = ⌦ (1, x̂)) is extracted from the
WQFT via

Sµ⌫(k) =
2


k2

hhµ⌫(k)iWQFT , (12)

where ⌦ is the GW frequency and x̂ = x/r points to-
wards the observer. However, it is advantageous to study
the time-domain waveform f(u, x̂) which is given by a
Fourier transform:
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1
2✏

µ✏⌫ ,
R
⌦ :=

R 1
�1

d⌦
2⇡ , and ⇢µ = (1, x̂); in a PM decom-

position f =
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n Gnf (n) we seek the 2PM component
f (2). Note that k · x = ⌦(t � r) yields the retarded time
u = t � r, and ✏ · ✏ = ✏ · ⇢ = 0.

Integration. — Our integration procedure follows
closely that used for the non-spinning calculation in
Ref. [16], the main di↵erence being that we maintain
four-dimensional Lorentz covariance. Each diagram con-
tributing to k2

hhµ⌫(k)iWQFT carries the overall factor

µ1,2(k) = ei(q1·b1+q2·b2)��(q1 · v1)�
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We integrate over qi, the momentum emitted from each
worldline (see Fig. 1). When we also integrate over ⌦ —
as in Eq. (13) — the full integration measure becomes
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where
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(2⇡)4 ; the delta function constraints give

⌦ = q1·v2

⇢·v2

and q2 = k�q1. The shifted impact parameter,

b̃µ = b̃µ
2 � b̃µ

1 , b̃µ
i = bµ

i + uiv
µ
i , (16)

extends the original impact parameter bµ = bµ
2 �bµ

1 along
the undeflected trajectories of the two bodies. Finally, ui

is the retarded time in the i’th rest frame:

ui =
⇢ · (x � bi)

⇢ · vi
, (17)

This implies ⇢ · b̃i = ⇢ · x = u, so ⇢ · b̃ = 0.
Rewriting the integral measure as in Eq. (15) is con-

venient for performing the integrals of diagrams (b)–(d),
in the rest frame of body 1. The mirrored counterparts
to these diagrams are easily recovered after integration
using the 1 $ 2 symmetry of the waveform. To inte-
grate diagram (a) we insert the partial-fraction identity
q�2
1 q�2

2 = �q�2
1 (2k ·q1)�1

�q�2
2 (2k ·q2)�1 (which is valid

for k on-shell) and focus on the first term.
The full 2PM waveform is then written schematically

as (dropping the subscript on q1)
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+ (1 $ 2) , (18)

the N - and M-contributions corresponding to diagrams
(b)–(d) and (a) in Fig. 1 respectively. The numerators

The spinning wave memory:

4

N (q) and M(q) have a uniform power counting in q for
each spin order:

N (q) = Nµqµ + Nµ⌫qµq⌫ + Nµ⌫⇢q
µq⌫q⇢ , (19)

M(q) = Mµ⌫qµq⌫ + Mµ⌫⇢q
µq⌫q⇢ + Mµ⌫⇢�qµq⌫q⇢q� ,

and the non-spinning result involves only Nµ and Mµ⌫ .
We present full expressions for N and M in the ancillary
file attached to the arXiv submission of this Letter.
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where Pµ⌫
i := ⌘µ⌫

�vµ
i v⌫

i is a projector into the rest frame
of the i’th body, |b| = �

p
bµbµ (the impact parameter is

spacelike) and
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q

�b̃µPµ⌫
1,2 b̃⌫ =

q
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2,1 (21)

are the lengths of the shifted impact parameter b̃µ (16)
in the two rest frames. The second integral in eq. (18) is

4⇡

Z

q
��(q · v1)

e�iq·b̃

q2

qµq⌫

q · v2 q · ⇢

=
Kµ⌫

1 v2 · K1 · ⇢ � 2(v2 · K1)(µ(⇢ · K1)⌫)

(�2 � 1) (⇢ · v1)2 |b|2 |b̃|2 |b̃|1

,

(22)

where we have introduced the symmetric tensor

Kµ⌫
i := Pµ⌫

i |b̃|
2
i + (Pi · b̃)µ(Pi · b̃)⌫ , (23)

with the property that Kµ⌫
i vi,⌫ = Kµ⌫

i b̃⌫ = 0. Both
integrals are derived in the Supplementary Material; one
generalizes to higher powers of qµ in the numerators by
taking derivatives with respect to b̃µ.

Results. — The 2PM waveform takes the schematic
form
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#
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where the coe�cients ↵(s)
i , �(s)

i , provided in the ancillary
file, are associated with the N - and M-type contribu-
tions in Eq. (18) respectively; they are functions of ui,
bµ, vµ

i , ⇢µ, and S
µ⌫
i and bi-linear in ✏µ. The waveform f

is invariant under the SUSY transformations in Eq. (8)
to quadratic order in spin regardless of the values of CE,i.
To see this we expand the waveform at all PM orders in
powers of spin:

f = f0+
2X

i=1

Si,µ⌫fµ⌫
i +

2X

i,j=1

Si,µ⌫Sj,⇢�fµ⌫;⇢�
ij + O(S3) ,

(25)

4

where the non-spinning result involves only Nµ and Mµ⌫ .
We present full expressions for N and M in the ancillary
file attached to the arXiv submission of this Letter.
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where Pµ⌫
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are the lengths of the shifted impact parameter b̃µ (16)
in the two rest frames. The second integral in eq. (18) is
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where we have introduced the symmetric tensor

Kµ⌫
i := Pµ⌫

i |b̃|
2
i + (Pi · b̃)µ(Pi · b̃)⌫ , (23)

with the property that Kµ⌫
i vi,⌫ = Kµ⌫

i b̃⌫ = 0. Both inte-
grals are derived in the Supplementary Material; versions
with higher powers of qµ in the numerators are derived
by taking derivatives with respect to b̃µ.

Results. — The 2PM waveform takes the schematic
form

f (2)

m1m2
=
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s=0

1

|b̃|
2s+1
1
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where the coe�cients ↵(s)
i , �(s)

i are associated with the
N - and M-type contributions in Eq. (18) respectively;
they are functions of b, ui, vi, ⇢ and Si and bi-linear
in ✏. In the Kerr-BH case (CE,i = 0) the waveform f
is invariant under the SUSY transformations in Eq. (8):
For this we expand the waveform at any PM order in
powers of spin

f = f0+
2X

i=1

Si,µ⌫fµ⌫
i +

2X

i,j=1

Si,µ⌫Sj,⇢� + O(S3) (25)

where SUSY links higher-spin terms to lower ones

1

2

@f0

@bi,⌫
= vi,µ f [µ⌫]

i ,
1

4

@fµ⌫
i

@bj,⇢
= vj,� fµ⌫;[⇢�]

ij . (26)

To illustrate the waveform we consider the gravita-
tional wave memory �f(x̂) := f(+1, x̂) � f(�1, x̂).
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FIG. 2. Total radiated angular momenta for the scattering of
two Kerr-BHs with v = 0.2 as a function of the angle between
the total initial spins a3 = a1 + a2 and b (with ai · vi =
0) for a range of ratios |a3|/|b|. We show the normalized
ratio of angular momenta emitted orthogonal to the b,v plane
(left plot) and in the b direction (right plot), normalization
is w.r.t. angular momentum emitted in the spin-less.

The constant spin tensors are decomposed in terms of
the Pauli-Lubanski vectors aµ

i as S
µ⌫
i = ✏µ⌫

⇢�v⇢
i a�

i ; they
satisfy ai · vi = 0. In the aligned-spin case where
ai · b = ai · vj = 0, i.e. the spin vectors are orthogo-

nal to the plane of scattering. Writing li =
p

�a2
i the

wave memory is proportional to the non-spinning result:

�f (2) =
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2vl3
b(1 + v2)

+
l23
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�

2X

i=1

CE,il2i
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�f (2)

S=0,

�f (2)
S=0

m1m2
=

4(2�2
� 1)✏ · v1(2b · ✏ ⇢ · v1 � b · ⇢ ✏ · v1)

b2
p

�2 � 1(⇢ · v1)2

+ (1 $ 2) , (27)

where we have introduced aµ
3 = aµ

1 + aµ
2 with length

|a3|. For two Kerr black holes (CE,i = 0) with equal-
and-opposite spins (aµ

1 = �aµ
2 ) the result is the same as

the non-spinning; we observe this also when the spins are
mis-aligned to the plane of scattering.

There is also a 1PM (non-radiating) contribution to
the waveform consisting of single-graviton emission from
either massive body:

f (1)(x̂) =
2m1

⇢ · v1
(✏ · v1)

2 +
2m2

⇢ · v2
(✏ · v2)

2 . (28)

At 1PM order there is manifestly no dependence on either
the spins S

µ⌫
i or impact parameters bµ

i , so the SUSY
identities in Eq. (26) are trivially satisfied.

Finally, the wave memory and 1PM part of the wave-
form contribute to the total radiated angular momentum
J rad

ij . Using three-dimensional Cartesian basis vectors êi,
we choose a frame of reference with the initial velocities
vµ

i restricted to the t–x plane; b = b ê2 is orthogonal to
these. Then we find two non-zero components of J rad

ij :

FIG. 2. Total radiated angular momenta for the scattering of
two Kerr-BHs with v = 0.2 as a function of the angle between
the total initial spins a3 = a1 + a2 and b (with ai · vi =
0) for a range of ratios |a3|/|b|. We show the normalized
ratio of angular momenta emitted orthogonal to the b,v plane
(left plot) and in the b direction (right plot), normalization
is w.r.t. angular momentum emitted in the spinless case.

where fµ⌫
i and fµ⌫;⇢�

ij are defined modulo terms that van-
ish on support of vi,µS

µ⌫
i = 0. The SUSY links higher-

spin to lower-spin terms:

1

2

@f0

@bi,µ
= vi,⌫ f [µ⌫]

i ,
1

4

@fµ⌫
i

@bj,⇢
= vj,� fµ⌫;[⇢�]

ij , (26)

and these identities are satisfied by the waveform (24).
To illustrate the waveform we consider the gravita-

tional wave memory �f(x̂) := f(+1, x̂) � f(�1, x̂).
The constant spin tensors are decomposed in terms of
the Pauli-Lubanski vectors aµ

i as S
µ⌫
i = ✏µ⌫

⇢�v⇢
i a�

i , the
latter satisfying ai · vi = 0. In the aligned-spin case
ai · b = ai · vj = 0, i.e. the spin vectors are orthogo-

nal to the plane of scattering. Writing |ai| =
p

�a2
i the

wave memory is then proportional to the non-spinning
result:
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where aµ
3 = aµ

1 +aµ
2 . For two Kerr black holes (CE,i = 0)

with equal-and-opposite spins (aµ
1 = �aµ

2 ) we see that

�f (2) = �f (2)
S=0, which we observe also when the spins

are mis-aligned to the plane of scattering.
There is also a 1PM (non-radiating) contribution to

the waveform consisting of single-graviton emission from
either massive body:

f (1)(x̂) =
2m1

⇢ · v1
(✏ · v1)

2 +
2m2

⇢ · v2
(✏ · v2)

2 . (28)

At 1PM order there is manifestly no dependence on either
the spins S

µ⌫
i or impact parameters bµ

i , so the SUSY
identities in Eq. (26) are trivially satisfied.

Finally, the wave memory and 1PM part of the wave-
form contribute to the total radiated angular momentum

Using Pauli-Lubanski vector:

4

N (q) and M(q) have a uniform power counting in q for
each spin order:

N (q) = Nµqµ + Nµ⌫qµq⌫ + Nµ⌫⇢q
µq⌫q⇢ , (19)

M(q) = Mµ⌫qµq⌫ + Mµ⌫⇢q
µq⌫q⇢ + Mµ⌫⇢�qµq⌫q⇢q� ,

and the non-spinning result involves only Nµ and Mµ⌫ .
We present full expressions for N and M in the ancillary
file attached to the arXiv submission of this Letter.

To lowest order in qµ, the first integral in eq. (18) is
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where Pµ⌫
i := ⌘µ⌫

�vµ
i v⌫

i is a projector into the rest frame
of the i’th body, |b| = �

p
bµbµ (the impact parameter is

spacelike) and

|b̃|1,2 :=
q

�b̃µPµ⌫
1,2 b̃⌫ =
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are the lengths of the shifted impact parameter b̃µ (16)
in the two rest frames. The second integral in eq. (18) is
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where we have introduced the symmetric tensor

Kµ⌫
i := Pµ⌫

i |b̃|
2
i + (Pi · b̃)µ(Pi · b̃)⌫ , (23)

with the property that Kµ⌫
i vi,⌫ = Kµ⌫

i b̃⌫ = 0. Both
integrals are derived in the Supplementary Material; one
generalizes to higher powers of qµ in the numerators by
taking derivatives with respect to b̃µ.

Results. — The 2PM waveform takes the schematic
form
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where the coe�cients ↵(s)
i , �(s)

i , provided in the ancillary
file, are associated with the N - and M-type contribu-
tions in Eq. (18) respectively; they are functions of ui,
bµ, vµ

i , ⇢µ, and S
µ⌫
i and bi-linear in ✏µ. The waveform f

is invariant under the SUSY transformations in Eq. (8)
to quadratic order in spin regardless of the values of CE,i.
To see this we expand the waveform at all PM orders in
powers of spin:
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where the non-spinning result involves only Nµ and Mµ⌫ .
We present full expressions for N and M in the ancillary
file attached to the arXiv submission of this Letter.
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where we have introduced the symmetric tensor

Kµ⌫
i := Pµ⌫
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i + (Pi · b̃)µ(Pi · b̃)⌫ , (23)

with the property that Kµ⌫
i vi,⌫ = Kµ⌫

i b̃⌫ = 0. Both inte-
grals are derived in the Supplementary Material; versions
with higher powers of qµ in the numerators are derived
by taking derivatives with respect to b̃µ.

Results. — The 2PM waveform takes the schematic
form
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where the coe�cients ↵(s)
i , �(s)

i are associated with the
N - and M-type contributions in Eq. (18) respectively;
they are functions of b, ui, vi, ⇢ and Si and bi-linear
in ✏. In the Kerr-BH case (CE,i = 0) the waveform f
is invariant under the SUSY transformations in Eq. (8):
For this we expand the waveform at any PM order in
powers of spin

f = f0+
2X

i=1

Si,µ⌫fµ⌫
i +
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Si,µ⌫Sj,⇢� + O(S3) (25)

where SUSY links higher-spin terms to lower ones
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To illustrate the waveform we consider the gravita-
tional wave memory �f(x̂) := f(+1, x̂) � f(�1, x̂).
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FIG. 2. Total radiated angular momenta for the scattering of
two Kerr-BHs with v = 0.2 as a function of the angle between
the total initial spins a3 = a1 + a2 and b (with ai · vi =
0) for a range of ratios |a3|/|b|. We show the normalized
ratio of angular momenta emitted orthogonal to the b,v plane
(left plot) and in the b direction (right plot), normalization
is w.r.t. angular momentum emitted in the spin-less.
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where we have introduced aµ
3 = aµ

1 + aµ
2 with length

|a3|. For two Kerr black holes (CE,i = 0) with equal-
and-opposite spins (aµ

1 = �aµ
2 ) the result is the same as

the non-spinning; we observe this also when the spins are
mis-aligned to the plane of scattering.

There is also a 1PM (non-radiating) contribution to
the waveform consisting of single-graviton emission from
either massive body:

f (1)(x̂) =
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⇢ · v1
(✏ · v1)

2 +
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At 1PM order there is manifestly no dependence on either
the spins S

µ⌫
i or impact parameters bµ

i , so the SUSY
identities in Eq. (26) are trivially satisfied.

Finally, the wave memory and 1PM part of the wave-
form contribute to the total radiated angular momentum
J rad

ij . Using three-dimensional Cartesian basis vectors êi,
we choose a frame of reference with the initial velocities
vµ

i restricted to the t–x plane; b = b ê2 is orthogonal to
these. Then we find two non-zero components of J rad

ij :
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two Kerr-BHs with v = 0.2 as a function of the angle between
the total initial spins a3 = a1 + a2 and b (with ai · vi =
0) for a range of ratios |a3|/|b|. We show the normalized
ratio of angular momenta emitted orthogonal to the b,v plane
(left plot) and in the b direction (right plot), normalization
is w.r.t. angular momentum emitted in the spinless case.

where fµ⌫
i and fµ⌫;⇢�

ij are defined modulo terms that van-
ish on support of vi,µS

µ⌫
i = 0. The SUSY links higher-

spin to lower-spin terms:

1

2

@f0

@bi,µ
= vi,⌫ f [µ⌫]

i ,
1

4

@fµ⌫
i

@bj,⇢
= vj,� fµ⌫;[⇢�]

ij , (26)

and these identities are satisfied by the waveform (24).
To illustrate the waveform we consider the gravita-

tional wave memory �f(x̂) := f(+1, x̂) � f(�1, x̂).
The constant spin tensors are decomposed in terms of
the Pauli-Lubanski vectors aµ

i as S
µ⌫
i = ✏µ⌫

⇢�v⇢
i a�

i , the
latter satisfying ai · vi = 0. In the aligned-spin case
ai · b = ai · vj = 0, i.e. the spin vectors are orthogo-

nal to the plane of scattering. Writing |ai| =
p

�a2
i the

wave memory is then proportional to the non-spinning
result:

�f (2) =

 
1 +

2v|a3|

b(1 + v2)
+

|a3|
2

|b|2
�

2X

i=1

CE,i|ai|
2

|b|2

!
�f (2)

S=0,

�f (2)
S=0

m1m2
=

4(2�2
� 1)✏ · v1(2b · ✏ ⇢ · v1 � b · ⇢ ✏ · v1)

|b|2
p

�2 � 1(⇢ · v1)2

+ (1 $ 2) , (27)

where aµ
3 = aµ

1 +aµ
2 . For two Kerr black holes (CE,i = 0)

with equal-and-opposite spins (aµ
1 = �aµ

2 ) we see that

�f (2) = �f (2)
S=0, which we observe also when the spins

are mis-aligned to the plane of scattering.
There is also a 1PM (non-radiating) contribution to

the waveform consisting of single-graviton emission from
either massive body:

f (1)(x̂) =
2m1

⇢ · v1
(✏ · v1)

2 +
2m2

⇢ · v2
(✏ · v2)

2 . (28)

At 1PM order there is manifestly no dependence on either
the spins S

µ⌫
i or impact parameters bµ

i , so the SUSY
identities in Eq. (26) are trivially satisfied.

Finally, the wave memory and 1PM part of the wave-
form contribute to the total radiated angular momentum

4

N (q) and M(q) have a uniform power counting in q for
each spin order:

N (q) = Nµqµ + Nµ⌫qµq⌫ + Nµ⌫⇢q
µq⌫q⇢ , (19)

M(q) = Mµ⌫qµq⌫ + Mµ⌫⇢q
µq⌫q⇢ + Mµ⌫⇢�qµq⌫q⇢q� ,

and the non-spinning result involves only Nµ and Mµ⌫ .
We present full expressions for N and M in the ancillary
file attached to the arXiv submission of this Letter.

To lowest order in qµ, the first integral in eq. (18) is

4⇡

Z

q
��(q · v1)

e�iq·b̃

q2

qµ

q · v2 + i✏

=
Pµ⌫

1 v2,⌫

(�2 � 1)|b̃|1

�
bµ

|b|2

 
1p

�2 � 1
+

u2

|b̃|1

!
,

(20)

where Pµ⌫
i := ⌘µ⌫

�vµ
i v⌫

i is a projector into the rest frame
of the i’th body, |b| = �

p
bµbµ (the impact parameter is

spacelike) and

|b̃|1,2 :=
q

�b̃µPµ⌫
1,2 b̃⌫ =

q
|b|2 + (�2 � 1)u2

2,1 (21)

are the lengths of the shifted impact parameter b̃µ (16)
in the two rest frames. The second integral in eq. (18) is

4⇡

Z

q
��(q · v1)

e�iq·b̃

q2

qµq⌫

q · v2 q · ⇢

=
Kµ⌫

1 v2 · K1 · ⇢ � 2(v2 · K1)(µ(⇢ · K1)⌫)

(�2 � 1) (⇢ · v1)2 |b|2 |b̃|2 |b̃|1

,

(22)

where we have introduced the symmetric tensor

Kµ⌫
i := Pµ⌫

i |b̃|
2
i + (Pi · b̃)µ(Pi · b̃)⌫ , (23)

with the property that Kµ⌫
i vi,⌫ = Kµ⌫

i b̃⌫ = 0. Both
integrals are derived in the Supplementary Material; one
generalizes to higher powers of qµ in the numerators by
taking derivatives with respect to b̃µ.

Results. — The 2PM waveform takes the schematic
form

f (2)

m1m2
=

2X

s=0

1

|b̃|
2s+1
1

"
↵(s)

1 +
�(s)

1

|b̃|2s+2

#
+ (1 $ 2) , (24)

where the coe�cients ↵(s)
i , �(s)

i , provided in the ancillary
file, are associated with the N - and M-type contribu-
tions in Eq. (18) respectively; they are functions of ui,
bµ, vµ

i , ⇢µ, and S
µ⌫
i and bi-linear in ✏µ. The waveform f

is invariant under the SUSY transformations in Eq. (8)
to quadratic order in spin regardless of the values of CE,i.
To see this we expand the waveform at all PM orders in
powers of spin:

f = f0+
2X

i=1

Si,µ⌫fµ⌫
i +

2X

i,j=1

Si,µ⌫Sj,⇢�fµ⌫;⇢�
ij + O(S3) ,

(25)
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where the non-spinning result involves only Nµ and Mµ⌫ .
We present full expressions for N and M in the ancillary
file attached to the arXiv submission of this Letter.
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where Pµ⌫
i := ⌘µ⌫

� vµ
i v⌫

i is a projector into the rest
frame of the i’th body; b2 = |b|2 = �bµbµ (the impact
parameter is spacelike) and

|b̃|1,2 :=
q

�b̃µPµ⌫
1,2 b̃⌫ =

q
b2 + (�2 � 1)u2

2,1 (21)

are the lengths of the shifted impact parameter b̃µ (16)
in the two rest frames. The second integral in eq. (18) is
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where we have introduced the symmetric tensor

Kµ⌫
i := Pµ⌫

i |b̃|
2
i + (Pi · b̃)µ(Pi · b̃)⌫ , (23)

with the property that Kµ⌫
i vi,⌫ = Kµ⌫

i b̃⌫ = 0. Both inte-
grals are derived in the Supplementary Material; versions
with higher powers of qµ in the numerators are derived
by taking derivatives with respect to b̃µ.

Results. — The 2PM waveform takes the schematic
form
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=
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�(s)

1

|b̃|2s+2

#
+ (1 $ 2) , (24)

where the coe�cients ↵(s)
i , �(s)

i are associated with the
N - and M-type contributions in Eq. (18) respectively;
they are functions of b, ui, vi, ⇢ and Si and bi-linear
in ✏. In the Kerr-BH case (CE,i = 0) the waveform f
is invariant under the SUSY transformations in Eq. (8):
For this we expand the waveform at any PM order in
powers of spin

f = f0+
2X

i=1

Si,µ⌫fµ⌫
i +

2X

i,j=1

Si,µ⌫Sj,⇢� + O(S3) (25)

where SUSY links higher-spin terms to lower ones

1

2

@f0

@bi,⌫
= vi,µ f [µ⌫]

i ,
1

4

@fµ⌫
i

@bj,⇢
= vj,� fµ⌫;[⇢�]

ij . (26)

To illustrate the waveform we consider the gravita-
tional wave memory �f(x̂) := f(+1, x̂) � f(�1, x̂).
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FIG. 2. Total radiated angular momenta for the scattering of
two Kerr-BHs with v = 0.2 as a function of the angle between
the total initial spins a3 = a1 + a2 and b (with ai · vi =
0) for a range of ratios |a3|/|b|. We show the normalized
ratio of angular momenta emitted orthogonal to the b,v plane
(left plot) and in the b direction (right plot), normalization
is w.r.t. angular momentum emitted in the spin-less.

The constant spin tensors are decomposed in terms of
the Pauli-Lubanski vectors aµ

i as S
µ⌫
i = ✏µ⌫

⇢�v⇢
i a�

i ; they
satisfy ai · vi = 0. In the aligned-spin case where
ai · b = ai · vj = 0, i.e. the spin vectors are orthogo-

nal to the plane of scattering. Writing li =
p

�a2
i the

wave memory is proportional to the non-spinning result:
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b2
p

�2 � 1(⇢ · v1)2

+ (1 $ 2) , (27)

where we have introduced aµ
3 = aµ

1 + aµ
2 with length

|a3|. For two Kerr black holes (CE,i = 0) with equal-
and-opposite spins (aµ

1 = �aµ
2 ) the result is the same as

the non-spinning; we observe this also when the spins are
mis-aligned to the plane of scattering.

There is also a 1PM (non-radiating) contribution to
the waveform consisting of single-graviton emission from
either massive body:

f (1)(x̂) =
2m1

⇢ · v1
(✏ · v1)

2 +
2m2

⇢ · v2
(✏ · v2)

2 . (28)

At 1PM order there is manifestly no dependence on either
the spins S

µ⌫
i or impact parameters bµ

i , so the SUSY
identities in Eq. (26) are trivially satisfied.

Finally, the wave memory and 1PM part of the wave-
form contribute to the total radiated angular momentum
J rad

ij . Using three-dimensional Cartesian basis vectors êi,
we choose a frame of reference with the initial velocities
vµ

i restricted to the t–x plane; b = b ê2 is orthogonal to
these. Then we find two non-zero components of J rad

ij :

FIG. 2. Total radiated angular momenta for the scattering of
two Kerr-BHs with v = 0.2 as a function of the angle between
the total initial spins a3 = a1 + a2 and b (with ai · vi =
0) for a range of ratios |a3|/|b|. We show the normalized
ratio of angular momenta emitted orthogonal to the b,v plane
(left plot) and in the b direction (right plot), normalization
is w.r.t. angular momentum emitted in the spinless case.

where fµ⌫
i and fµ⌫;⇢�

ij are defined modulo terms that van-
ish on support of vi,µS
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and these identities are satisfied by the waveform (24).
To illustrate the waveform we consider the gravita-

tional wave memory �f(x̂) := f(+1, x̂) � f(�1, x̂).
The constant spin tensors are decomposed in terms of
the Pauli-Lubanski vectors aµ

i as S
µ⌫
i = ✏µ⌫

⇢�v⇢
i a�

i , the
latter satisfying ai · vi = 0. In the aligned-spin case
ai · b = ai · vj = 0, i.e. the spin vectors are orthogo-

nal to the plane of scattering. Writing |ai| =
p

�a2
i the

wave memory is then proportional to the non-spinning
result:

�f (2) =

 
1 +

2v|a3|
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+
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�2 � 1(⇢ · v1)2

+ (1 $ 2) , (27)

where aµ
3 = aµ

1 +aµ
2 . For two Kerr black holes (CE,i = 0)

with equal-and-opposite spins (aµ
1 = �aµ

2 ) we see that

�f (2) = �f (2)
S=0, which we observe also when the spins

are mis-aligned to the plane of scattering.
There is also a 1PM (non-radiating) contribution to

the waveform consisting of single-graviton emission from
either massive body:

f (1)(x̂) =
2m1

⇢ · v1
(✏ · v1)

2 +
2m2

⇢ · v2
(✏ · v2)

2 . (28)

At 1PM order there is manifestly no dependence on either
the spins S

µ⌫
i or impact parameters bµ

i , so the SUSY
identities in Eq. (26) are trivially satisfied.

Finally, the wave memory and 1PM part of the wave-
form contribute to the total radiated angular momentum

(Aligned spin case)

Radiated angular momentum in COM:

5

J rad
ij . Using three-dimensional Cartesian basis vectors êi,

we choose a frame of reference with the initial velocities
vµ

i restricted to the t–x plane; b = |b| ê2 is orthogonal to
these. Then we find two non-zero components of J rad

ij :

J rad
xy and J rad

zx , which are conveniently arranged into

J rad
xy + iJ rad

zx

J init
xy

��
S=0

=
4G2m1m2

|b|2
(2�2

� 1)p
�2 � 1

I(v)

⇥

 
1 �

2iv a3 · l

|b|(1 + v2)
�

(a3 · l)2

|b|2
+

2X

i=1

CE,i

|b|2
(ai · l)2

!

+ O(G3) .
(29)

We normalize with respect to J init
xy

��
S=0

, the initial angu-

lar momentum in the non-spinning case. The spin vec-
tors a1 and a2 are taken in the rest frame of each massive
body; a3 = a1 + a2, l = ê2 + iê3, and

I(v) = �
8

3
+

1

v2
+

(3v2
� 1)

v3
arctanh(v) (30)

is a universal prefactor. Eq. (29) holds in the rest frame
of either body or the center-of-mass (c.o.m.) frame; see
Fig. 2 for plots. For a derivation we refer the reader
to the Supplementary Material. There we also compute
the total radiated energy in the c.o.m. frame. Due to
the multi-scale nature of the waveform it is di�cult to
perform the necessary time and solid angle-integrals, so
we performed a low velocity expansion. For terms up to
O(v2) we find

Erad,LO
CoM =

vG3m2
1m

2
2⇡

|b|3


37

15
+

v(65m1 + 69m2)(a1·ê3)

10|b|(m1 + m2)
+

1503(a1·ê1)(a2·ê1) � 3559(a1·ê2)(a2·ê2) + 1816(a1·ê3)(a2·ê3)

320|b|2

+
9(185 � 176CE,1)(a1·ê1)2 � (3385 � 3472CE,1)(a1·ê2)2 + 8(245 � 236CE,1)(a1·ê3)2

320|b|2
+ (1 $ 2) + O

�
v2
� �

, (31)

where the swap (1 $ 2) does not a↵ect the basis vectors
êi or the constant term 37

15 . It is straighforward to extend
this result to higher orders in v.

Conclusions. — In this Letter we extended the
WQFT to describe spinning compact bodies to quadratic
order in spin, and calculated the leading-PM order wave-
form for highly eccentric (scattering) orbits. Our accom-
panying work [33] presents an application to further ob-
servables such as the spin kick and deflection [26, 29] at
2PM order and gives details on the approximate SUSY
and its relation to the SSC. The radiated energy (31)
should also be particularly useful for future studies. In
Refs. [37, 38] the O(G3) energy loss from a scattering
of non-spinning black holes was recently computed to all
orders in velocity using the KMOC formalism [39] (see
also Ref. [40]); a similar result could conceivably be ob-
tained at O(S2), and then checked against Eq. (31) in
the low-velocity limit. Similarly, the remarkably simple
result for radiated angular momentum (29) at 2PM order
is intriguing; it may be important for understanding the
high-energy limit, see Ref. [41, 42] for the non-spinning
case.

The application of modern on-shell and integration
techniques to compute scattering amplitudes [37, 43–47]
holds great promise for pushing calculations to higher
PM orders. This is demonstrated by the impressive cal-
culation of the 4PM conservative dynamics in the po-
tential region [47, 48] — see also Refs. [41, 42, 45, 49–
53]. The connection between amplitudes and classical
physics was studied in Refs. [39, 40, 54], and Refs. [27, 54]
discussed the connection to bound orbits. Our WQFT
framework [16, 17] provides an e�cient, rather intuitive
way to connect amplitude and (classical) worldline EFT
calculations. It may therefore benefit from modern am-
plitude techniques at higher PM orders in future work,
building on the compact Lorentz-covariant master inte-
grals provided here.

Acknowledgments. — We would like to thank
F. Bautista, R. Bonezzi, A. Buonanno, P. Pichini and
J. Vines for very helpful discussions. We are also grate-
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3. Insertion of master integrals. — We now provide expressions for the master integrals, beginning with the simpler
I
(1;±) families to all orders in ✏ = 2� D

2
:

I
(1;±)

0,0,1,1,1,0,0 = �(4⇡)�3+2✏�
3( 1

2
� ✏)�(2✏)

�( 3
2
� 3✏)

, (A8a)

I
(1;±)

1,0,1,1,1,0,0 = (4⇡)�
5

2
+2✏ i

2
p

�2 � 1

�( 1
2
� 2✏)�2( 1

2
� ✏)�(�✏)�( 1

2
+ 2✏)

�( 1
2
� 3✏)�(1� 2✏)

, (A8b)

I
(1;+)

1,1,1,1,1,0,0 = 2I(1;�)

1,1,1,1,1,0,0 = (4⇡)�2+2✏ �
3(�✏)�(1 + 2✏)

3(�2 � 1)�(�3✏)
, (A8c)

where we have set |q| = 1. As promised the dependence on � and ✏ factorizes. These results are well-established, and
may be found in e.g. Ref. [132]. The I

(2;±) master integrals do not factorize, and we provide them only up to the
order in ✏ to which they are required. For n1 + n2 even:

I
(2;±)

0,0,0,1,1,0,1 = 0 , (A9a)

I
(2;±)

0,0,1,1,0,1,1 = (4⇡)�3+2✏�
4( 1

2
� ✏)�2( 1

2
+ ✏)

�2(1� 2✏)
, (A9b)

I
(2;±)

0,0,1,1,1,0,0 = �(4⇡)�2+2✏e�2✏�E
arccosh�

4✏
p
�2 � 1

+O(✏0) , (A9c)

I
(2;±)

0,0,2,1,1,0,0 = �(4⇡)�2+2✏e�2✏�E
(1� 2✏)�

p
�2 � 1 + 2✏(�2

� 1)arccosh�

2
p

�2 � 1
+O(✏2) , (A9d)

I
(2;±)

0,0,1,1,2,0,0 = �(4⇡)�2+2✏e�2✏�E
arccosh�

2
p
�2 � 1

+O(✏) , (A9e)

I
(2;±)

0,0,1,1,1,1,1 = (4⇡)�2+2✏e�2✏�E
arccosh� + ✏(arccosh2� + Li2)

2✏
p

�2 � 1
+O(✏) , (A9f)

I
(2;±)

0,0,1,1,2,1,1 = (4⇡)�2+2✏e�2✏�E
(1 + 5✏)�

p
�2 � 1� (1 + ✏+ 2�2✏)arccosh� � ✏(arccosh2� + Li2)

2
p

�2 � 1
+O(✏2) , (A9g)

I
(2;+)

1,1,1,1,1,0,0 =
1

2
I
(2;�)

1,1,1,1,1,0,0 = (4⇡)�2+2✏e�2✏�E
1

2✏2(�2 � 1)
+O(✏�1) , (A9h)

where the first two are known to all orders in ✏— the integral (A9b) is a product of one-loop integrals. The dilogarithm
appearing in the integrals (A9f) and (A9g) is Li2(2�2�2+2�

p
�2 � 1): this dilogarithm and arccosh2� cancel from all

of our final results between these two integrals. In the non-spinning part of �p(3)µ
1

(B1) these eight master integrals
are associated with terms proportional to the impact parameter bµ. For n1 + n2 odd:

I
(2;±)

1,0,1,0,1,1,0 = 0 , (A10a)

I
(2;±)

1,0,0,1,1,0,1 = (2⇡)�1+2✏e�2✏�E
i

32✏
p

�2 � 1
+O(✏0) , (A10b)

I
(2;±)

1,0,1,1,1,0,0 = �(2⇡)�1+2✏e�2✏�E
i

32✏
p
�2 � 1

+O(✏0) , (A10c)

I
(2;±)

1,0,1,1,2,0,0 = (2⇡)�1+2✏e�2✏�E
i(1 + 4✏� 8✏2)

16
p
�2 � 1

+O(✏3) , (A10d)

I
(2;±)

1,0,1,1,1,1,1 = 4�1�3✏⇡�1+2✏e�2✏�E
i(�1 + 6✏)

8
p
�2 � 1

+O(✏2) , (A10e)

which are associated with terms proportional to the velocities vµi .
To derive these expressions for the master integrals we set up systems of di↵erential equations (DEs). Using publicly

available tools such as Fuchsia [144] and epsilon [145] one may find linear transformations to canonical bases ~F (x, ✏)
of master integrals that obey

d~F

dx
= ✏M(x)~F , (A11)
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Find same set of Master integrals for spin and tidal effects@ 3PM
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Figure B2.3.: Project plan, time-line and personnel. Acronyms: PM (post-Minkowskian), LO (Leading order), NLO (Next-
to-leading order), EOB (E�ective-one-body formalism), PhD HU (Humboldt University funded student).

scattering of Kerr-BHs. WP3 is devoted to the resummation of non-spinning WQFT into Schwarzschild vertices.
First the next-to-leading order (NLO) self-force calculation will be addressed, then the NNLO. Depending on
the progress spin will be included in the second phase of WP3. The PM results of WP1 and the resummed
results of WP3 will be fed into the e�ective-one-body construction in the first phase of WP4. The final phase of
WP4 will be devoted to a derivation of the e�ective-one-body formalism from a first principles worldline QFT
analysis.

b.2. Methodology of the individual work-packages

WP1 Radiative e�ects: Retarded WQFT including spin, tidal and finite size e�ects

In WP1 we will include spin degrees of freedom of the BHs or NSs via the anti-commuting world-line vectors
 a
i (⌧) that expresses the spin tensor as a composite operator Sµ⌫ = eµae⌫b ̄

a
i  

b
i . Up to spin-squared terms this

augments the world-line action (B2.1) by the spin-terms

S(i)
spin = �mi

π
d⌧


i ̄i,a

D a
i

D⌧
+

1
2

Rabcd ̄
a
i  

b
i  ̄

c
i  

d
i + CE,iRaµb⌫ €x

µ
i €x⌫i  ̄

a
i  

b
i  ̄i ·  i

�
+ . . . , (B2.5)

where CE,i is a finite-size Wilson coe�cient that vanishes in the Kerr-BH case. The linear in curvature finite size
e�ects in (B2.1) may be removed via a field redefinition. The leading order tidal-e�ects appear quadratically in
the Riemann tensor and are given by

S(i)
tidal =

π
d⌧

⇥
CE2,iEµ⌫Eµ⌫ + CB2,iBµ⌫Bµ⌫

⇤
+ . . . , Eµ⌫ = Rµ↵⌫� €x

µ
i €x⌫i , Bµ⌫ = R⇤

µ↵⌫� €x
µ
i €x⌫i (B2.6)

with the tidal Wilson coe�cients (related to the so-called Love numbers) CE2/B2 . They parametrize the neutron
star’s tidal response to an external gravitational field. These additional terms yield new Feynman vertices
augmenting the ones sketched in figure B2.1. The observables of the unbound system of the momentum
deflection, spin kick and gravitational wave are given by the Feynman diagrams sketched in figure B2.1
augmented by the new contributions of these additional terms. In order to evaluate them the following pipeline
will be used. (1) Generate the graphs: We use a recursive Berends-Giele type procedure pictorially expressed
as (here the spin-less and tidal free case) with o�-shell open legswhich is implicitly symmetrized on (µ1, �1) and (µ2, �2).
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In ref. [?] (the non-spinning case) the first relationship was generalized
to n points:
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In words: a vertex with (n + 1) external zµ particles, and �n+1 = 0, is
given by a derivative with respect to the impact parameter bµ of the cor-
responding n-point vertex. We claim this continues to hold when spin is
included, and that eq. (1.1) generalizes similarly, regardless of what other
external lines are present on the vertex. In the non-spinning case we con-
firmed this recursive property using an analytic expression for the worldline
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INTEGRATION TECHNOLOGY @ 3PM
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POST-MINKOWSKIAN SCATTERING PRECISSION RACE

deflection & spin kick waveform

plain spin2 spin>2 tidal plain spin2 tidal

1PM X trivial trivial trivial

2PM

3PM 
w/o r-r

3PM 
r-r

4PM 
w/o r-r

~ tree-level 

~ 1-loop

~ 2-loop

~ 3-loop

Integration 
complexity

~ 2-loop
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SUMMARY
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•„Quantize“ world-line degrees of freedom & focus on observables 
(=one-point functions) 


•Only compute tree-level diagrams (=classical theory). No „super-
classical“ contributions


•IN-IN Formalism: Take all propagators retarded.


•Include spin degrees of freedom through Graßmann odd vectors on the 
world-line (spinning particle)


•Hidden Supersymmetry = Spin Supplementary Condition

WQFT: Highly efficient technology for classical scattering in GR



OUTLOOK
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•Higher precision (4PM)


•Higher spin (beyond Spin squared)


•Bound orbits? Relation to EOB


•Relation to self force expansion


WQFT still needs to be extended:

Thank you for your attention!



Tidal effects - work with Benjamin Sauer

Considera simple extension to the non- Spinning theory
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Tidal effects (z )
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