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Particle Physics: Paradigmatic experiment is Scattering in Colliders

Theory: Relativistic Quantum Field Theory (QFT)
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Gravity: Gravitational wave emission in Black Hole and Neutron Star
encounters now routinely measured in LIGO-Virgo-Karga GW detectors
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Theory: Need for high-precision solution of classical gravitational two-body
problem. Here: Apply perturbative QFT techniques in classical limit!



GRAVITATIONAL WAVES: A NEW OBSERVATIONAL ERA
Masses In the Stellar Graveyard

LIGO-Virgo-KAGRA Black Holes LIGO-Virgo-KAGRA Neutron Stars EM Neutron Stars
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Following GW150914: To date 90 binary mergers detected by LIGO-Virgo-Karga
Collaboration




GRAVITATIONAL WAVES: A NEW OBSERVATIONAL ERA

Binary mergers of black
holes (BHs) and
neutron stars (NS)
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PHYSICS CASES

Astrophysics: * Black hole formation & evolution

* Neutron star properties: Equation of state, strong
interacting matter

* Multi-messenger astronomy

* New astrophysical sources of GW

Fundamental physics: *Precision tests of (strong field) GR

* New physics signals? Modifications of GR,

Higher curvature terms, Dark Matter...

* Black hole properties

*3rd generation of GW observatories (Einstein Telescope; Advanced
LIGO, LISA) to start in 2030’s. Highly increase of sensitivity.

* Need for high precision theory predictions




THE GENERAL RELATIVISTIC 2-BODY PROBLEM

As in Newtonian case has either bound or unbound orbits.

- Inspiral of 2 BHs or NSs:

S Virial-thm: GM 2 (c=1)

")
/‘\/ "o ) ) )) /) post-Newtonian (PN) expansion

Weak field expansion: Guv = Nuv + Ky K = \/327er

Newton’s constant

Scattering of 2 BHs or NSs:

Weak field (G), but exact in v

Ua, J))
) /) post-Minkowskian (PM) expansion



THE POST NEWTONIAN EXPANSION

| 2 1PN:
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Partial results at 6PN...



POST-NEWTONIAN VS POST-MINKOWSKIAN EXPANSIONS

Integration
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THE POST-MINKOWSKIAN EXPANSION




THE GENERAL REALTIVISTIC TWO BODY PRUBLEM IN PM
TRADITIONAL APPROACH

2
S=— Z/dn\/gw,j:f(n)jzz’/
=1 Point particle approximation Bulk gravity & gauge fixing
1 2
1) Equations of motion: R, — 5 9mr = gTw N 4+ Iwyvaxp — 0
Einstein’s egs. Geodesic eqs.

2) Solve iteratively in G

o =+ G M) a(0) =0 o 1+ 3G

—1 emitted radiation straight line: ,in“ state n=1 deflections

3) Construct observables
f,uy( T ) 90) 1

Far field waveform: — 1m /., = . +0(3)

T=-+00
— mi/deééL(T)

T=—00

,impulse” (change in momentum):  Ap} = m,;&!




USE OF QUANTUM FIELD THEORY TECHNIQUES FOR CLASSICAL 2-BODY PROBLEM

[Kéllin,Porto,Dlapa] [Mougiakos,Riva, Vernizzi]

1) Effective world-line field theory:

Construct effective action:  e#ettl®il = /[Dhuu] i (Spp (@i, hy]+56 [y

5Seff[xi]
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Solve e.oms for (1) : —0

[Bern,Cheung,Roiban,Solon,Parra-Martinex,Ruf,Zeng,Luna,..][Bjerrum-

2) Scatte” ng am DI ItUdeS Bohr,Damgaard,Vanhove,Cristofoli] [DiVecchia,Heissenberg,Russo,Venneziano]
[Kosower,Maybee,O’Connell,Vines].

Scalar fields as avatars of BHs & NSs: A = I

+ Modern on-shell techniques:
. W ST

- Non-trivial classical limit
- Opaque relation to observables M=GMOD L 22pmMD L

3) World line quantum field theory: Best of 1) & 2)  Uakobsen,Mogull jpSteinhoff]

Philosophy: Focus on observables (here one-point functions @ tree-level

Use 1) but also path integrate over zi(7)! 1



THE BASIC IDEA: USE OF QFT TO SOLVE CLASSICAL EOM
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WORLDLINE.EEFECTIVE FIELD THEORY

[Goldberger,Rothstein] [Porto,Kallin] [Foffa,Sturani]
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WORLDLINE QFT: FLUCTUATE WORLDLINE & GRAVITON

HRIecuUue FDCUS OO D&BGQUA&LES 2 [Jakobsen,Mogull,JP,Steinhoff]
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THE IN-IN (SCHWINGER-KELDYSH)
FORMALISM FOR WQFT
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OBSERVABLES OF WQFT: ONE POINT FUNCTIONS . o
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1) Impulse (change of momentum)

Ap; = mz<375>

T o / dr(# (7)) = m; / de—;<z£‘ (7)) = —miw*(2] (W)

T=—00

Fourier trans.

Needs sum of all graphs with outgoing z-line:
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OBSERVABLES OF WQFT: ONE POINT FUNCTIONS

[Jakobsen,Mogull,]BSteinhoff]

2) Emitted Waveform (Gravitational Bremsstrahlung)
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Deflechions
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MOMENTUM DEFLECTION (IMPULSE) @ 3PM ORDER:

[Jakobsen,Mogull,JBSauer]

A 2-loop
Integral family (with retarded propagators!) computation!
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RESULT IMPULSE @ 3PM ORDER: ool s
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FAR FIELD WAVEFORM @ NLO e ogul ot

For time-domain waveform needs to integrate over outgoing energy {):

f—l—,X(t_T?}A() 4G

(A T

/dQe =T (R (k= Q(1, %))

where unit vector X points towards the observer

3
The waveform has two polarizations , K' %
> ¢ N
; 9 bl & i
f-|—,><(, — T, 7@57/07 ’ ’>m17m2)
U X

retarded time
28



INTEGRATED WAVEFORM @ NLO ool St

Our NLO result reproduces  [KovacsThome’75]  obtained with traditional
GR techniques in 4 long papers
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SUSY IN THE SKY WITH
GRAVITONS




PUTTING SPIN ON THE WORLD-LINE
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SUSY IN THE SKY WITH GRAVITONS
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KERR BH AND FINITE SIZE TERMS
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T Spiv iudued - _w_® o
q“'a'lﬂfu()c;(o \M.ou,o\‘L-' I_'T.',IJ < rRr“QP 0\ T\-/W\,Q ‘gct‘ 886'-— T\g'ﬁg/ﬁ;i
KeR-B U lhos C g =0 vo Bt ol oreler S fenns .,
2 . -
D Up b S - nlvoctuny Kerr BYU 2 =2 SD@M%%

g Con w\céwh Ce o W Gwr S'Ptvlnlu% WAEFT: Add

. TV o—oa b ~
>es o gdl Rupse XX ¥ 4Py

PRESERUES  Sovk  APPROXIUATELY (op to S des V
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SPINNING WORLDLINE QUANTUM FIELD THEQRY

The spinning WQFT action (with exact N=2 SUSY for Kerr-BH)

1
SWQFT — Z/dT — —g,uum _|_ ’L?ﬁw 7'¢ + 2m abcd¢ ¢ ¢ ¢

Cg ; .
o Ron U U Peatl | Do = 0 0, ity
Y =1 + iy
S
Scattering scenario: -~ - Qﬁ— - mm- o o _
1 -
~ ~ ! -
~ -
: . > 0
M M - )\
X):JC‘Z) = B; + v T F 2-( (<) A}
a o Yl *
NS R A ab TR . .
"t AL ) Sy =~ ¢t ;'L_Cg Initial spins
of BHs/NSs
Integrate out Zf : w;a, w;a perturbatively! [Jakobsen,Mogull,JBSteinhoff]

Captures spin-orbit and spin-spin interactions up to order S;, S5, 5155 y



PHYSICAL INTERPRETATION OF SUSY

Sc¥¥
& Traditional approach: A C% TR 4
oomeo ® o’ K(‘t)
)
Spin tensor S; () & co-moving frame AZ#(7)
. Dp 1 i Dsw .
Eoms: - + §‘SV'MpR/~b/OVf<GQj =0 DT + 2;5[“]9 )= 0 [Matthisson-Papapetrou-Dixon]

Freedom of imposing a Spin-Supplementary pu S =0
Condition (SSC):

& Our approach: Spinning super-particle Si = —2@'@“1&;’]

Asymptotic SUSY 0b; = €Wy +ieWy, v =0, OV} = —ev)
transformations: = dSI = vl' §bY — vy 6!

Are a symmetry of all observables.
] Interpretation of SUSY.  |SUSY = Freedom of picking a SSC.
Covariant SSC: v, V; =0 = U@MS?;W =0
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SPINNING WAVEFORM @ NLO

retarded time in ith rest frame

Updates Kovacs-Thorne with spin.

The spinning wave memory:  Af? = f&(u=+o00) — f&(u = —o0)

Wwlas|  |as]? <= Cr.ilas|? ) . .
f < T ron T e ;:1 2 Afs2, (Aligned spin case)

Using Pauli-Lubanski vector: ~ &; = € ,viaf at = a¥ +ah

Jrad + iJrad . 4G2m1m2 (2’}/2 — 1)

lnlt’S . - |b|2 m

Radiated angular momentum in COM: (

Z(v)

21V as l 3.3 1 C(E z
b (1 + v?) b Z [b]2

1 1
- ._p-(gj—bi) — (1%
|b 1,2 = \/|b‘2 + (72 o ]‘)u%,l e = P U; p < ’X) mié//‘l%l/ q i
k

[Jakobsen,Mogull,JP,Steinhoff]
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INTEGRATION TECHNOLOGY

(2;%) _
10,0,0,1,1,0,1 =0,

. I‘4(l —6)F2(l—|—e)
24+ _349¢
Ié,0,1?1,0,1,1 = (47) o 2 2

I'2(1 — 2¢) ’
2;+ 919 _9ey. arccoshry
Toiaano = ~(m) e Toms +O(),
: 1—2e)y/72 —1+2e(r? -1 h
18,26,321,1,0,0 = —(4m) 22200 ( €)YV + 2¢(y )arccosh-y L o),

2./7% — 1
I(()Z;j:) —(47r)_2+2€e_257E arccosh-y L0,

,0,1,1,2,0,0 —
27?2 —1

24 919¢ 9~ arccoshy 4 e(arccosh27 + Lis)
((),0,1?1,1,1,1 = (4m) "2 F2ee 2 5 + O(e),
2e\/vc — 1

(2;4) o426 —2emy (L +5)Y/ 7 —1— (1 +e+ 272€)arccoshy — e(arccosh®y + Lis)

10,0,1,1,2,1,1 = (4m) € 5
2¢/v4 —1
. 1 (0. 1

21+ 27 — € _—4Z€ —

15,1,131,1,0,0 = 5%,1,1?1,1,0,0 = (4m) " HH2ee2m +0(e™),

2207 — 1)

+0(e%),



WORKFLOW WITH RETARDED INTEGRALS e oS

[ G h ] Berends-Giele recursion
enerate grapns (tree-level!) f (u ;%)
po Jpr\W
- 5@ f% Ap;
} 5 AS"

Form script

[Insert Feynman I”UICS] (4PM: 5g vertex) / Method of regions
1€

(potential & radiation

l gravitons)
Fix boundary conditions

Tensor reduction to - . S
: / " 505 in static limit (PN) v —1
scalar integrals i i

Vi€ o T

Fire/Litered/Kira
IBPs: Basis of Master | Reduced symmetries | Solve masters by Diff. | Single scale
due to retarded prop. : integrals
Integral 1 O TCHATEEe Pop Eq. technique _ a
[ = =l €¢— —¢ r=7y—1"2 -1

\_/'

Find same set of Master integrals for spin and tidal effects@ 3PM

—
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Method of Regions
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POST-MINKOWSKIAN SCATTERING PRECISSION RACE

Worldline effective theory Al Scattering amplitudes Heavy BH effective theory
[Killin,Porto,Dlapa,Cho,Liu,..] [Bfarn,Roiban,Shen,Parra—Martinez,Ruf,..] [Aoude,Haddad,Helset]
[Riva,Vernizzi,Mougiakakos..] [B]'er ! um-'B ohr, Damgaard,Yanhove, -] [Brandhuber, Travaglini,Chen]
[Di Vecchia,Veneziano,Heissenberg,Russo]
[Solon,Cheung,..][Huang,..][Guevera,Ochirov,Vines,...]
[Johansson,Pichini[Kosower,Q’Connell,Maybee,Cristofoli,
Gonzo...] :
deflection & spin kick waveform
. . . . . . . Integration
plain g spin?2 g spin2 | tidal | plain | spin2 | tidal Comilexity
WQFT WQFT 5 5 g
1PM X trivial @ trivial | trivial ~ tree-level
o m | = |
0 R Y g wewwow
2PM ~ 1-loop
Amps! | m m (m )
spm  |NE ] wort ' WQFT
~ 2-loop
w/o r-r | é(m)
3pm | NSkl ROLl () WQFT
r-r | ~ 2-loop
WEFT §
4PM -
: ~ 3-]
w/0 r-r oop

r-r: Radiation-reaction (---) : partial results



SUMMARY

WQFT: Highly efficient technology for classical scattering in GR

e ,Quantize“ world-line degrees of freedom & focus on observables
(=one-point functions)

* Only compute tree-level diagrams (=classical theory). No ,,super-
classical“ contributions

* IN-IN Formalism: Take all propagators retarded.

* Include spin degrees of freedom through Grallmann odd vectors on the
world-line (spinning particle)

* Hidden Supersymmetry = Spin Supplementary Condition
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OUTLOOK

WQFT still needs to be extended:

* Higher precision (4PM)
e Higher spin (beyond Spin squared)
* Bound orbits? Relation to EOB

* Relation to self force expansion

Thank you for your attention!
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T?olaL eéfec% (z)

To compule AP, simmilar diagqrocs to spinning colculation :
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