Application of Ewald's Method for Efficient Summation of Dyon Long-Range Potentials

Benjamin Maier
Physics Department - Humboldt-University Berlin
Co-Authors:
Falk Bruckmann, Simon Dinter, Ernst-Michael Ilgenfritz, Michael Müller-Preussker, Marc Wagner

October 9, 2012

Motivation / Dyons in SU(2) YM Theory

- aim: understand quark-antiquark interaction for finite temperature $T<T_{c}$ (related talk: Müller-Preussker)
- evaluation of observable O with path integral

$$
\begin{aligned}
\langle O\rangle & =\frac{1}{Z} \int \mathcal{D} A O[A] \exp \left(-S_{\mathrm{YM}}[A]\right) \quad \text { Euclidean action } S_{\mathrm{YM}}[A] \\
Z & =\int \mathcal{D} A \exp \left(-S_{\mathrm{YM}}[A]\right)
\end{aligned}
$$

- approach to solve path integral: semi-classical approximation \Rightarrow fields with small action
\Rightarrow modular space integration

$$
\int \mathcal{D} A \rightarrow \prod_{j=1}^{n_{D}} \int d^{3} \mathbf{r}_{j}
$$

- KvBLL calorons, (anti) selfdual classical solutions of YM equations for $T>0$, periodic instantons with non-trivial holonomy, Kraan, van Baal ('98), Lee, Lu ('98)
- consider calorons to be dissolved in their constituents \Rightarrow dyon gas
- dyons: magnetic monopoles, splitting up the calorons topological charge

Procedure of Observable Evaluation

- calculate free energy between a static quark antiquark pair at separation $d=\left|\mathbf{r}-\mathbf{r}^{\prime}\right|$ from

$$
F_{Q \bar{Q}}(d)=-T \log \left\langle P(\mathbf{r}) P^{\dagger}\left(\mathbf{r}^{\prime}\right)\right\rangle
$$

- choose dyon density ρ, temperature T
- consider dyons to be located in a volume at positions $\left\{\mathbf{r}_{k}\right\}$
- Polyakov-loop correlator $\left\langle P(\mathbf{r}) P^{\dagger}\left(\mathbf{r}^{\prime}\right)\right\rangle$ via

$$
P(\mathbf{r})=-\sin \left(\frac{1}{2 T} \Phi(\mathbf{r})\right)
$$

- gauge field (superposition of relevant component of the dyon gauge field in Abelian limit with magnetic charges $q= \pm 1$)

$$
\Phi(\mathbf{r})=\sum_{i=1}^{n_{D}} \frac{q_{i}}{\left|\mathbf{r}_{i}-\mathbf{r}\right|}
$$

\Rightarrow investigate behavior of free energy for growing quark separation

Problems with Long-range Dyon Fields

problem long-range potential $q / r \Rightarrow$ rather large volume is needed
\Rightarrow two possible solutions
(1) simulating a cubic spatial volume of length L, but evaluate observables within a spatial volume of length $\ell<L$

- slow convergence expected
\Rightarrow extrapolation to infinite volume in ℓ and L
(2) copy the cubic volume of length L infinitely often in all directions

\Rightarrow extrapolation in L

Naive periodic summation

$1^{\text {st }}$ idea: sum all $1 / r$ contributions in original volume and copies within radius $r_{\text {max }}$

sum over copies of volume

$$
\underbrace{\sum_{j=1}^{j<n_{D},\left|\mathbf{r}-\mathbf{r}_{j}-\mathbf{n} L\right|<r_{\text {max }}}}_{\text {sum over dyons within sphere }} \frac{\boldsymbol{q}_{j}}{\left|\mathbf{r}-\mathbf{r}_{j}+\mathbf{n} L\right|}
$$

\Rightarrow Better:
Ewald's method

Ewald's Method

- Ewald '21: split superposition of dyon potentials into short range part and long range part

$$
\Phi(\mathbf{r})=\sum_{\mathbf{n} \in \mathbb{Z}^{3}} \sum_{j=1}^{n_{D}} \frac{q_{j}}{\left|\mathbf{r}-\mathbf{r}_{j}-\mathbf{n} L\right|}=\Phi^{\text {Short }}(\mathbf{r})+\Phi^{\text {Long }}(\mathbf{r})
$$

- $\Phi^{\text {Short }}$ converges exponentially

$$
\Phi^{\text {Short }}(\mathbf{r})=\sum_{\mathbf{n} \in \mathbb{Z}^{3}} \sum_{j=1}^{n_{D}} \frac{q_{j}}{\left|\mathbf{r}-\mathbf{r}_{j}-\mathbf{n} L\right|} \operatorname{erfc}\left(\frac{\left|\mathbf{r}-\mathbf{r}_{j}-\mathbf{n} L\right|}{\sqrt{2} \lambda}\right)
$$

- $\Phi^{\text {Long }}$ converges exponentially in Fourier space (with momenta $\mathbf{k}=\frac{2 \pi}{L} \mathbf{n}$)

$$
\Phi^{\text {Long }}(\mathbf{r})=\frac{4 \pi}{L^{3}} \sum_{\mathbf{k} \neq 0} \sum_{j=1}^{n_{D}} q_{j} e^{i \mathbf{k}\left(\mathbf{r}-\mathbf{r}_{j}\right)} \frac{e^{-\lambda^{2} \mathbf{k}^{2} / 2}}{\mathbf{k}^{2}}
$$

- divergences cancel in case of neutrally charged volume
- pedagogical introduction: "Ewald Summation for Coulombic Interactions in a Periodic Supercell', Lee, Cai ('09)

Ewald's Method more in Detail

Short-range

$$
\Phi^{\text {Short }}(\mathbf{r})=\sum_{\mathbf{n} \in \mathbb{Z}^{3}} \sum_{j} \frac{q_{j}}{\left|\mathbf{r}-\mathbf{r}_{j}-\mathbf{n} L\right|} \operatorname{erfc}\left(\frac{\left|\mathbf{r}-\mathbf{r}_{j}-\mathbf{n} L\right|}{\sqrt{2} \lambda}\right)
$$

- λ : arbitrary parameter which controls the tradeoff between $\Phi^{\text {Short }}$ and $\Phi^{\text {Long }}$
- due to exponential convergence of $\Phi^{\text {Short }}$, evaluation can be restricted to dyons within a sphere of radius $r_{\max } \propto \lambda$

Ewald's Method more in Detail

Long-range

$$
\Phi^{\text {Long }}(\mathbf{r})=\frac{4 \pi}{L^{3}} \sum_{\mathbf{k} \neq 0} e^{+i \mathbf{k} \mathbf{r}} \frac{e^{-\lambda^{2} \mathbf{k}^{2} / 2}}{\mathbf{k}^{2}}\left(\sum_{j=1}^{n_{D}} q_{j} e^{-i \mathbf{k} \mathbf{r}_{j}}\right), \quad \mathbf{k}=\frac{2 \pi}{L} \mathbf{n}
$$

- perform a sum over momenta

Numerical Results - Ewald's method

Setup and method of computation

- choose dyon density ρ and temperature T
- put dyons on random positions in a cubic spatial volume for 30 to 800 configurations
- vary dyon number (between 1000 and 125000) at fixed density to make extrapolation possible
- evaluate $\Phi(\mathbf{r})$ at various points \mathbf{r} (analytical and Ewald's method)
- evaluate Polyakov-loop correlator and free energy from Φ

Numerical Results - Ewald's method

F. Bruckmann, S. Dinter, E.-M. Ilgenfritz, B. Maier, M. Müller-Preussker, M. Wagner, (2012), arXiv:1111.3158v2 [hep-ph]

Numerical Results - Ewald's method

F. Bruckmann, S. Dinter, E.-M. Ilgenfritz, B. Maier, M. Müller-Preussker, M. Wagner, (2012), arXiv:1111.3158v2 [hep-ph]

Numerical Results - Ewald's method

F. Bruckmann, S. Dinter, E.-M. Ilgenfritz, B. Maier, M. Müller-Preussker, M. Wagner, (2012), arXiv:1111.3158v2 [hep-ph]

Numerical Results - Ewald's method

F. Bruckmann, S. Dinter, E.-M. Ilgenfritz, B. Maier, M. Müller-Preussker, M. Wagner, (2012), arXiv:1111.3158v2 [hep-ph]

Numerical Results - Ewald's method

F. Bruckmann, S. Dinter, E.-M. Ilgenfritz, B. Maier, M. Müller-Preussker, M. Wagner, (2012), arXiv:1111.3158v2 [hep-ph]

Result

- Ewald's method: controlled extrapolation to infinite volume - equal results to analytical calculations

Long-range Objects of Other Kind

- evaluate long-range potentials in powers of inverse distance

$$
\Phi(\mathbf{r})=\frac{\#}{r}+\frac{\#}{r^{2}}+\frac{\#}{r^{3}}+\ldots
$$

- use general Ewald's method for power $p \geq 1$ - (Essmann, et. al. '95)

$$
\begin{aligned}
\Phi_{p}^{\text {Short }}(\mathbf{r}) & =\sum_{\mathbf{n}} \sum_{j=1}^{n_{D}} \frac{q_{j}}{\left|\mathbf{r}-\mathbf{r}_{j}+\mathbf{n} L\right|^{p}} g_{p}\left(\frac{\left|\mathbf{r}-\mathbf{r}_{j}+\mathbf{n} L\right|}{\sqrt{2} \lambda}\right) \\
\Phi_{p}^{\text {Long }}(\mathbf{r}) & =\frac{\pi^{3 / 2}}{V(\sqrt{2} \lambda)^{p-3}} \sum_{j} \sum_{\mathbf{k}} q_{j} \exp \left(i \mathbf{k}\left(\mathbf{r}-\mathbf{r}_{j}\right)\right) f_{p}\left(\frac{k \lambda}{\sqrt{2}}\right)
\end{aligned}
$$

- with decay functions

$$
\begin{aligned}
g_{p}(x) & =\frac{2}{\Gamma(p / 2)} \int_{x}^{\infty} s^{p-1} \exp \left(-s^{2}\right) d s \\
f_{p}(x) & =\frac{2 x^{p-3}}{\Gamma(p / 2)} \int_{x}^{\infty} s^{2-p} \exp \left(-s^{2}\right) d s
\end{aligned}
$$

\Rightarrow long-range potentials can be evaluated in powers of $1 / r$ for an efficient algorithm

Summary \& Outlook

Summary

- Ewald's method: controlled extrapolation to infinite volume for long-range objects
- nice agreement with infinite volume analytical results for dyon model
- potential power to treat any long-range objects

Possibilities for Dyon Model

- simulate an interacting dyon model by expanding an "effective action" $S_{\text {eff }}=\frac{1}{2} \sum_{j} \sum_{i} \log \left(1-\frac{2 q_{i} q_{j}}{\pi\left|r_{i}-r_{j}\right|}\right)$ (based on the moduli space metric) in inverse powers of r using Ewald's method
- understand effects of interacting/non-interacting dyon model on the free energy

SU(2) YM Action

$$
\begin{aligned}
S[A] & =\frac{1}{4 g^{2}} \int d^{4} \times F_{\mu \nu}^{a} F_{\mu \nu}^{a}, \\
F_{\mu \nu}^{a} & =\partial_{\mu} A_{\nu}^{a}-\partial_{\nu} A_{\mu}^{a}+\varepsilon^{a b c} A_{\mu}^{b} A_{\nu}^{c}
\end{aligned}
$$

