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Chapter 1

Genetic Algorithms

1.1 Introduction

The subject of artificial intelligence has become a highly important research field during the last decades. Not only is
it important for science and mathematics, but also for the solution of problems which are related to everyday life, for
example finding the shortest route between two points, the recognition of faces for security devices or design [1, 2]. Over
the years it became clear that adapting nature in its way of solving problems is a good approach to help “machines learn”
[3]. A class of algorithms which provides a natural method of solving problems is the one of “Genetic Algorithms” (GAs).
A GA is designed to find a population which fits best to its environment. It achieves that goal by adapting evolutionary
mechanisms. Since this sounds rather abstract, let us define the approach more clearly. For simplicity, we can reduce
a living being on its genes, which can then be simplified to a string containing information. The domain of all possible
information strings is set to be D. The probability of a string x ∈ D surviving in its environment depends on how the
information connects to this environment. We can simplify this to a fitness function f , which maps a gene string x to a
value in the so-called “fitness landscape” [4].
Now, the evolutionary principles can be applied. Let us consider a population of gene strings consisting of members of
D. Basic principles are selection, reproduction and mutation. A selection procedure chooses genes from the population
for the next generation, which means that it chooses members after their fitness and/or let them reproduce with other
members of high fitness to choose their children for the next generation. Since we are not able to reproduce the complex
procedures of natural selection, we will have to stick with random numbers to determine this step. Another important
drive for evolution is mutation. In mutation the strings are randomly slightly modified.
Applying these procedures iteratively, producing generations of higher fitness than their ancestors, we will obtain an
adaption of genes to a fitness landscape. One can apply this approach to extremal problems, which are basically problems
of a domain member being adapted to a fitness function, as well.
In the following, we will explain the basic principles of genetic algorithms with the help of “bit strings” as a simple
example for genes within a GA.

1.2 Bit Strings as Simple Genes

One of the easiest gene strings to imagine is a bit string. A bit string of length l ∈ N consists of a combination of l
zeros and ones. Therefore the domain consists of 2l values. An easy interpretation of bit strings can be the decimal
representation of the strings, which would be the numbers [0,2l−1]⊂ N. As a decimal number, there are plenty of ways
to map the bit strings indirectly to another domain, e.g. to a list of domain members which is accessed by the decimal
value. However, there are other interpretations, such as the route through a binary tree.
In all cases, one needs a function to connect the domain to the fitness landscape. We call this the “objective value function”
f .

Mathematical Problem Formulation

With these bit strings representing possible members of a domain D and the objective value function f , we want to solve
the problem maxx∈D f (x) or minx∈D f (x) = maxx∈D(− f (x)). We will do this with a population of n members, always
living in the current generation G .
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Evaluating the Fitness in a Generation

The objective value function f yields a fitness value which makes it possible to compare members within the whole
domain. However, it is useful to judge members only according to their fitness within the current generation. Therefore
we will map the objective values of the i-th member of a generation to their generation fitness Fi. For this procedure we
have to map into a fitness interval [m−,m+]⊂R, where we have to know the generation’s maximal objective value f+, as
well as the minimal objective value f−. With this information, the current objective value of a member f (xi) is mapped
to its generation fitness according to

Fi = m−+(m+−m−)
f (xi)− f−
f+− f−

, (1.1)

where we will work with m− = 1 and m+ = 90 throughout the whole paper.

Selection and Reproduction

The selection probability of a population’s member should be proportional to its generation fitness. To achieve that, we
start with adding up all current fitnesses to the total fitness F . Afterwards we draw a random number S in [0,F ] and start
adding all fitnesses. Once we end up exceeding S with the sum, we count the fitnesses we added up and take that count
as the number of the selected member. Since this procedure has parallels to its representation in the carnival, it is called
“rolling wheel selection”.
Then, with a probability of pc, the member is chosen to be a parent for reproduction, which is also called “crossover”.
Once we have two chosen parents, we perform the crossover as described in the following. Given two parents p1 and p2,
select a bit position. Then swap the bits of p1 which lay right to that position with the bits of p2 which lay right to that
position. Save the new created bit strings as new members of the next generation.
This procedure is expected to do the optimization. As in nature, we expect two “fit” genes to produce children with a
high fitness, as well. Since the swap of bits is restricted to the “right” part of the bit string, a crossover changes the
decimal representation of a bit string rather locally. The more “right” the bits lay, the less is their effect on their decimal
representation.

Mutation

After selecting and reproducing members for the next generation, the bit strings will mutate. The mutation procedure goes
through every bit of a bit string and draws a random number R ∈ [0,1). If R is smaller than a set mutation probability pm,
the bit will flip (from zero to one or vice versa). Mutation is said to be the drive of diversity within a population and also
responsible for a convergence of the procedure [5]. Furthermore, mutation can lead a population out of a local extremum
to another extremum [4].

Convergence

Speaking of convergence - there are different criteria on how to decide if the current population will not drastically change
anymore within the next generations. One is called the “hamming distance” for which one computes the difference
between the generation’s chromosomes. As soon as the distance is lower than a certain value, the algorithm is said to be
converged. Another one is the behavior of the generation’s fittest member. One may define a convergence threshold. As
soon as a the fittest member has stayed the same for the convergence threshold number of generations, the algorithm is
declared to be converged. In this paper, we will stick with this definition.

Elitism

Since there is the possibility of temporarily fit members being destroyed by mutation, we can think of a way to protect
them. Once you have members with large fitness, you can save them as elite members. Elite members will only mutate if
their mutation leads to a higher objective value than their former one. Furthermore, elite members are always chosen to
be parents in the selection procedure.

Gray Codes

A flip of a bit during mutation may lead to a drastical change within the decimal representation of the bit string, because
depending on where the bit is located, it may be responsible for a large part of its decimal value. Thus, one can apply
the use of gray codes. With gray codes, one changes the bit representation to another decimal value, s.t. a change in one
single bit does not yield a large change in the decimal value [4, 6]
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Local Search

A very sophisticated method to improve the convergence of the genetic algorithm is to search locally for an improvement.
That means, take member xi, and search for members in the neighborhood of xi which have a better objective value.
However, this search highly depends on the problem – for the definition of “neighborhood” as well as for the search itself.
Usually, the local search is only applied on elite members to keep the order of the algorithm fixed.

Summary

With these procedures we can set up a genetic algorithm as the following. Randomly select n members of the domain D
(if they are bit strings, choose the gray code approach). Evaluate their objective values, their fitnesses and set ne of them
to be elite, according to their fitnesses. Select the members of the next generation and perform crossovers (use the elite
members to be parents). Afterwards, mutate the new generation. Then perform a local search within the elite members.
In the end, evaluate the objective values, the fitnesses and the elite members again. Repeat as long as the member with
the highest objective value does not change within the generation number convergence threshold.

Genetic Algorithms 7





Chapter 2

Finding the Minimum of an Arbitrary
Function

2.1 General Setting for Genetic Algorithms

An easy problem to investigate the behavior of GAs is to find a global minimum of a function f on a domain D⊂R, since
the objective value function is given by f itself. Because D is one-dimensional in this case, we can easily use bit strings
as members of a population and map their decimal representation to the interval [a,b], where a = minD and b = maxD.
Let d be the decimal representation of a bit string of length l. Its value in D is then

x = a+(b−a)
d

2l−1
. (2.1)

We cannot map to all values in D, therefore it is useful to decide for a relative precision p of the values and adjust the bit
length l to achieve a satisfying result.
Using a bit string of length l, the difference between two neighbors is

∆ =
b−a
2l−2

. (2.2)

To achieve a relative precision of p, one can consider a “general” relative distance between the neighbors ∆/(b−a) and
set it equal to p, yielding

p =
1

2l−2
(2.3)

⇒ l =
⌈

ln(p−1 +2)
ln2

⌉
, (2.4)

where the ceil function de was used to assure the demanded precision.
To assign a value x∈R to a member of our population, we first have to check if it is a member of D. If not, the assignment
is x = a for x < a, respectively x = b for x > b. Then, we can map x to a decimal value in [0,2l−1] according to

d = round
[

x−a
b−a

(
2l−1

)]
(2.5)

and compute the corresponding bit string.

2.2 Specification of GA Procedures

Because of the use of bit strings representing the domain, we can take advantage of the procedures of selection, mutation
and crossover introduced in the last chapter. Furthermore we will use elitism and gray codes, which should assure a faster
convergence respectively a mutation in the neighborhood of a bit string. However, we have to think of a sophisticated
method to perform a local search. As proposed in [4], there are two well-known solutions for a local optimization of a
member x of the population.
The first is to search iteratively in a neighborhood of x for a new value x̃ with f (x) < f (x̃). One has to think of how to
limit the members to be investigated in the neighborhood to guarantee a fast search.
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The second is called “the method of steepest descent” and needs the existence of the first derivative of f on D, called f ′.
Starting from x, one computes f ′(x). If f ′(x)> 0, one decrements x by a chosen δ. If f ′(x)< 0, one increments x by the
chosen δ. Now one repeats this with the new x for a certain amount of iterations. To obtain a fast local search, we would
have to determine an optimal δ for the problem and the optimal number of iterations.
Since these two methods are of constant order to search for a local minimum, we propose a new method. The method
of steepest descent equals a search for zeros of f ′, which can easily be done with Newton’s method. This method uses
the second derivative f ′′, which has to exist on D without singularities. Given a member x0 = x of D, one can find an
extremum by computing

x j+1 = x j−
f ′(x j)

f ′′(x j)
, j ∈ N∪{0} (2.6)

iteratively, until a certain relative precision r is reached by the relative deviation ‖xn+1− xn‖/(b− a) of two iterations.
This precision r should not be smaller than the precision p, which is limited by the bit string length. Furthermore it should
not be smaller than 10−12 to guarantee a numerically stable evaluation and prevent errors from the machine epsilon and
be limited by a maximum number jmax of iterations.
However, Newton’s method does not guarantee to find an extremum which is a minimum, but may also find a maximum.
It is therefore appropriate to perform a hybrid local search consisting of the method of steepest descent and Newton’s
method.
First, one checks the second derivative at x. If f ′′(x) > 0, perform Newton’s method, since it is more likely to converge
to a local minimum of f . If f ′′(x)< 0, Newton’s method would rather converge to a local maximum, therefore we apply
the method of steepest descent according to the value of the first derivative until the second derivative is greater than zero
or a certain amount of iterations is reached. If f ′′(x) = 0, check x± δ and decide for the side with f ′′(x) > 0 to perform
Newton’s method starting from there. This method is shown in Alg. 1.

Algorithm 1 Local improvement of a population member x ∈ D

Require: Let f be the function to be minimized, f ′ its derivative and f ′′ its second derivative
Require: Let p be the smallest relative precision given by the bit string length

k← 0
s =−sign( f ′(x))
while ( f ′′(x)≤ 0)∧ (k < kmax)∧ (a < x < b) do

x← x+ sδ

k← k+1
end while
if f ′′(x)> 0 then

j← 0
x0← x
repeat

j← j+1
x j← x j−1− f ′(x j−1)

f ′′(x j−1)

until
( ‖x j−x j−1‖

b−a < p
)
∨
( ‖x j−x j−1‖

b−a < 10−12
)
∨ ( j > jmax)∨ (x j ≤ a)∨ (x j ≥ b)

x← x j
end if

Of course, this algorithm can only be used for functions with existing first and second derivative. For functions where
only the first derivative is known, one can use the steepest descent method, while for functions with unknown derivative,
one would have to use the naive iterative local search comparing the values of f .

2.3 Tests and Numerical Results

The method described above was implemented and tested. One population consisted of 11 bit strings, the number of elite
members was chosen to be 2, the demanded precision was set to p = 10−6. A sequence of generations was chosen to
be converged when the maximum objective value did not change in 200 generations within the demanded precision. The
function to minimize was chosen to be

f (x) = x2 +200 sin(x), (2.7)

on the interval D = [−20,30]⊂ R. Its global minimum is found at x≈−1.55524.
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2.3.1 Local Search

The first interest of investigation is the test of the different local searches. We set the population size to 11 and the number
of elite members to two. Mutation probability was set to 0.45, crossover probability was set to 0.3. The parameter δ of
the steepest descent was set to 0.5% of the interval length. The algorithm was said to be converged when the population’s
fittest member did not change in 200 iterations. For every local search, we run the algorithm 2000 times and sorted the
generation number nG where the probable optimum was found in a histogram of Nk = 15 classes with corresponding
means nG

i and frequencies fi. Mean and standard deviation were computed according to

n̄G =
1
N

√√√√ Nk

∑
i=1

nG
i fi (2.8)

σ =

√
∑

Nk
i=1

(
n̄G−nG

i
)2 fi

N−1
. (2.9)

Furthermore we computed the failure percentage, which represents the percentage of results which did not equal the real
optimum, to make a fair comparison possible.
The result can be seen in Fig. 2.1. As one can see, Newton’s method converges drastically faster than the method of the
steepest descent. However, there is not really a difference between the hybrid Newton and the conservative Newton. But as
described in the previous section, we would recommend the hybrid method, since for a worse setting of mutation/crossover
probabilities, the hybrid method is expected to be more effective.
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Figure 2.1: Convergence behavior of the algorithm with the three different local optimization methods. The x-axis shows the number of the generation
in which the probable optimum was found. The y-axis shows the relative frequency. Furthermore one can see the generation mean and in brackets the
standard deviation, computed with Eq. (2.8-2.9)

2.3.2 Mutation and Probability

The second aspect to be investigated is the behavior of the algorithm in dependence of the probabilities for mutation and
crossover. We chose 10 different probabilities for each mutation and crossover and performed N = 200 runs for every
combination. For every combination, the threshold 200 was subtracted from the numbers of generations nG to obtain the
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generation numbers which firstly included the probable optimum. The results have been classified in a histogram with
Nk = 20 classes, computing mean and standard deviation afterwards, as well as the computation of a failure percentage
for a better comparison.
The results are shown in Fig. 2.2-2.3 respectively in Tab. 2.1-2.2. As one can see in the figures, the convergence behavior
is highly connected to the mutation probability. For small crossover probabilities, one can see that the main drive for the
evolution is the mutation, as it provides the diversity in the population [5]. For small mutation probabilities, the chance of
escaping from local minima is rather low, therefore the failure percentages and the convergence generation nG increase.
As the mutation probability grows, the failure percentages decrease and the steps to reach convergence decrease, as well.
However, with growing crossover probability, the effects of both, crossover and mutation, seem to lead to an increasing
convergence step number as well as higher failure percentages. A possible explanation would be that improvements made
by selection are destroyed by crossover and too aggressive mutation, as the elitism only prevents members from mutation
which were elite before. The best area of probability combination seems to be in the neighborhood of p = 0.3 for mutation
and p = 0.6 for crossover.

Mutation Probability

C
ro
ss
o
v
er

P
ro
b
a
b
il
it
y

Average Step Number to Find Optimum

4.66

4.88

4.88

5.09

5.09

5.31

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6
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Figure 2.2: Contour plot of the average number of steps to reach the optimum depending on the probability of a mutation and the probability of a
crossover

2.3.3 Testing another function

A second function to test is

f (x) =
sin(x)

x
(2.10)

on the interval D = [0.1,30]⊂R. The global minimum can be found to x≈ 4.49341. The procedure to test is the same as
for the function above. The only change in the setting is that for this function, the algorithm has been run 500 times. The
results are shown in Fig. 2.4-2.5 respectively in Tab. 2.3-2.4.
As one can see, the convergence behavior does not depend on crossover, but only on mutation in this case. Furthermore,
the failure percentage does not really depend on the crossover probability, as well.
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Figure 2.3: Surface plot of the average number of steps to reach the optimum depending on the probability of a mutation and the probability of a
crossover

Steps until Crossover Probability
optimum 0.001 0.010 0.050 0.100 0.200 0.300 0.450 0.600 0.750 0.900

M
ut

at
io

n
Pr

ob
ab

ili
ty

0.001 42(64) 35(50) 7(9) 5(5) 4(4) 5(8) 6(10) 10(20) 22(41) 30(50)
0.010 27(37) 20(25) 18(23) 15(23) 12(19) 17(27) 17(23) 23(34) 23(39) 24(36)
0.050 9(11) 8(9) 8(8) 7(7) 8(8) 8(9) 7(8) 8(9) 9(11) 8(9)
0.100 7(7) 7(7) 7(6) 6(5) 6(6) 7(6) 7(6) 6(6) 6(5) 7(5)
0.200 5(5) 6(4) 6(4) 6(5) 6(4) 5(4) 5(5) 5(4) 6(5) 5(4)
0.300 5(4) 5(4) 5(4) 5(4) 5(4) 5(4) 5(4) 5(4) 5(4) 5(4)
0.450 5(3) 5(4) 4(4) 5(4) 6(5) 5(4) 5(4) 6(5) 5(5) 6(5)
0.600 5(4) 5(4) 5(3) 5(5) 6(4) 6(5) 6(6) 7(6) 7(6) 6(7)
0.750 4(4) 5(3) 5(4) 6(5) 6(5) 7(6) 7(7) 7(7) 7(8) 7(8)
0.900 5(4) 6(6) 6(5) 7(6) 8(8) 9(10) 10(10) 13(14) 13(14) 14(14)

Table 2.1: Average number of steps to reach the probable optimum depending on the probability of a mutation and the probability of a crossover. For
each combination of probabilities, the algorithm has been run 200 times until it converged (with a convergence threshold of 200). The number of steps
has been decremented by the threshold. Average and standard deviation σ have been calculated with sorting the values in a histogram of N = 15 classes.

Fails in Crossover Probability
% 0.001 0.010 0.050 0.100 0.200 0.300 0.450 0.600 0.750 0.900

M
ut

at
io

n
Pr

ob
ab

ili
ty

0.001 26.00 19.00 36.50 32.50 44.50 47.00 56.50 50.50 33.50 35.50
0.010 0.50 0.00 2.50 4.50 14.00 14.50 9.50 9.50 7.50 12.00
0.050 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.100 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.200 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.300 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.450 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.600 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.750 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.900 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 2.2: Percentage of failures in finding the real optimum depending on the probability of a mutation and the probability of a crossover (convergence
threshold was set to 200)
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Figure 2.4: Contour plot of the average number of steps to reach the optimum depending on the probability of a mutation and the probability of a
crossover

Steps until Crossover Probability
optimum 0.001 0.010 0.050 0.100 0.200 0.300 0.450 0.600 0.750 0.900

M
ut

at
io

n
Pr

ob
ab

ili
ty

0.001 25(55) 23(47) 16(36) 15(35) 18(38) 18(39) 22(43) 25(50) 22(45) 17(39)
0.010 19(33) 18(31) 16(28) 15(31) 13(26) 14(32) 11(26) 14(31) 13(30) 13(29)
0.050 6(9) 6(6) 6(7) 6(6) 6(8) 6(10) 8(16) 7(12) 7(14) 9(17)
0.100 4(4) 5(4) 5(4) 5(4) 5(4) 4(4) 5(6) 5(5) 4(5) 5(5)
0.200 4(3) 4(2) 4(3) 4(3) 4(3) 4(3) 4(3) 4(3) 4(3) 4(3)
0.300 3(2) 3(2) 3(2) 4(3) 3(2) 4(2) 4(3) 4(3) 4(2) 4(2)
0.450 3(2) 3(2) 3(2) 3(2) 3(2) 4(2) 4(2) 3(2) 4(2) 4(2)
0.600 3(2) 3(2) 3(2) 3(2) 3(2) 3(2) 4(2) 3(2) 4(2) 3(2)
0.750 3(2) 3(2) 3(2) 3(2) 3(2) 3(2) 4(2) 3(2) 3(2) 4(2)
0.900 3(2) 3(2) 3(2) 4(2) 3(2) 4(3) 4(3) 4(2) 4(3) 4(3)

Table 2.3: Average number of steps to reach the probable optimum depending on the probability of a mutation and the probability of a crossover. For
each combination of probabilities, the algorithm has been run 500 times until it converged (with a convergence threshold of 200). The number of steps
has been decremented by the threshold. Average and standard deviation σ have been calculated with sorting the values in a histogram of N = 15 classes.
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Figure 2.5: Surface plot of the average number of steps to reach the optimum depending on the probability of a mutation and the probability of a
crossover

Fails in Crossover Probability
% 0.001 0.010 0.050 0.100 0.200 0.300 0.450 0.600 0.750 0.900

M
ut

at
io

n
Pr

ob
ab

ili
ty

0.001 19.60 12.80 15.00 19.20 15.40 23.20 24.00 25.40 20.80 26.60
0.010 0.40 0.00 0.80 2.40 5.80 9.40 9.60 13.00 12.00 13.80
0.050 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.100 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.200 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.300 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.450 0.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.600 0.00 0.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.750 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.900 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 2.4: Percentage of failures in finding the real optimum depending on the probability of a mutation and the probability of a crossover (convergence
threshold was set to 200)
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Chapter 3

The Traveling Salesman Problem

3.1 Specification of the Problem

The “Traveling Salesman Problem” (TSP) was first introduced as a mathematical problem in the 1930s and has become
an important problem in mathematics and computer science over time . The problem is formulated such that one has to
find the shortest closed route connecting all cities of a certain set. An index set I = {0, ...,n− 1}, with n ∈ N labels all
cities a traveling salesman has to visit. The cities are located at the coordinates z0, ...,zn−1 with zi = (xi,yi) ∈ R2. He
visits every city only once and returns to his starting point at the end of the journey.
The domain of the TSP is the set of all possible permutations of the index set D = {σ : σ ∈ Sn}, where Sn is the symmetric
group of order n. On this domain, we want to minimize the route length function

f (σ) = d(zσ(0),zσ(n−1))+
n−1

∑
i=1

d(zσ(i−1),zσ(i)), (3.1)

where σ(i) means the index on the i-th position of the permutation σ and the distance is measured as

d(zi,z j) =
√
(xi− x j)2 +(yi− y j)2 (3.2)

and can be saved in a symmetric matrix D with Di j = D ji = d(zi,z j).

3.2 Specification of GA Procedures

Bit strings do not seem to be very handy as representation for chromosomes for this problem. The decimal representation
of a bit string could be mapped to a list of permutations of the cities. However, we would need such a list, which is a
problem of O(n!) and therefore not affordable. Furthermore, a local search with bit strings would be rather complicated.
Therefore, we decide to introduce a new class of chromosomes. One chromosome is a permutation of the city indices.
Using this setting we have to adapt some of the GA procedures. The objective value function is − f and has to be
maximized. For elitism and selection we use the standard procedures, however, we have to adapt crossover, mutation and
local search.

3.2.1 Mutation and Crossover

Elite members will mutate but only be changed when the mutation actually improved the objective value (to keep current
optima in the population). A mutation of a non-elite chromosome is performed when a random number in [0,1) is lower
than the mutation probability pm. Here, mutating a chromosome means to switch two random cities in the route. An
effective way to choose two random cities without choosing a certain city twice is described in the following. Select a
random city c1 ∈ [0,n− 1] ⊂]N. Then select a random city c2 ∈ [c1 + 1,c1 + n− 1] and perform c2 ← c2 mod n. With
this method, we do not have to check the second city to be identical with the first city.
An effective crossover procedure is described in detail in [4] and roughly works as described in the following. Given
two parent chromosomes p1 and p2, choose a random city c, add it to the child and look for its position in the parent
permutations. Then save the city N1, respectively N2 which is following c in the permutations of the parents. If both N1
and N2 are already members of the child, add a non-selected city to the child. If N2 is already a member of the child but N1
is not, select N1 as the next member in the child’s permutation. If N1 is already a member of the child but N2 is not, select
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N2 as the next member in the child’s permutation. If both cities are not a member of the child’s permutation, compare the
distances between c and N1 and c and N2, select the N which is nearer to c. Repeat this until the child’s permutation is
filled.
With this method, we obtain a child route which takes the locally shorter routes of two parent’s routes. Because we get
only one child from two parents, we have to perform the crossover twice.

3.2.2 Local Search

There exist different approaches for performing a local search in a permutation chromosome.

Permute one City

The first one is to select a random city in the permutation and shift it through all possible positions. Then compare the
objective values of all permutations and select the one with the smallest route length.

Permute a Sublist

The second one refers to find a local minimum in a sublist of length l in the route permutation. One evaluates a list of
permutations for l using Alg. 2. Afterwards, choose a random city in the route and permute it with the l−1 following cities
in the route. Compare the objective values of all the permutations and choose the one with minimum length. Note that
this method is O(l!). Therefore we should use a small l, e.g. l = 3 or l = 4. An efficient implementation of this method
only computes the route difference between the permuted cities and their neighbors in the route, rather than computing
the objective value of the whole routes.

Algorithm 2 function getPermutation(I)

Require: I is a set containing the elements to be permutated
Require: p is a list containing lists of permutations of I
Require: a is a list containing lists of permutations of I \ I(i)

if |I|= 1 then
return I

else
for i = 1→ |I| do

a← getPermutation(I \ I(i))
for j = 1→ |I|−1 do

append I(i) at the end of a( j)
append a( j) at the end of p

end for
end for
return p

end if

Permute within Nearest Neighbors

A third method refers to a local search by actually creating a sublist of nearest neighbors for all cities and compare the
objective values of permutations of this sublist. Again, we can use Alg. 2 for creating a list of permutations for l < n
cities. We then need an efficient procedure to find the nearest neighbors of every city. That can be done in the beginning
of the program, saving the index of cities’ neighbors in an n×n-matrix E, where every column j stands for one city and
every i-th row for its i-th nearest neighbor. To fill the matrix, create a list e j for every city c j, which contains all cities and
their distance to c. Sort that list after the distances and set the corresponding city list as the j-th column in E.
As in the case with the sublist, an efficient implementation of this method only computes the route difference between the
permuted cities and their neighbors in the route.

3.3 Tests and Numerical Results

For testing the algorithms, we used the problems from the TSPLIB, specified in [7], especially the problem of 29 cities in
Bavaria, Germany (bays29). The optimal route of this problem has a length of 2020.
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Figure 3.1: Histograms of the convergence behavior of the algorithm for the different approaches of local optimization. The x-axis corresponds to the
number nG of the generation, in which the probable optimum was found. The y-axis shows the corresponding relative frequency. Furthermore the mean
was computed according to Eq. (2.8) and displayed with the corresponding standard deviation in brackets, computed using Eq. (2.9). Additionally, we
computed the failure percentage (percentage of results not being the real optimum) and the mean route length with its standard deviation in brackets.

3.3.1 Local Search Influence

First, we checked the influence of the different local search algorithms on the convergence behavior. We chose six
different kinds of local search algorithms, containing of the three methods described above and variations/combinations
of them. The mutation and crossover probability was set to 0.3. The population consisted of 100 members, where the
number of elite members was set to be ne = 10. Convergence was defined as having no change in the best member for
100 generations. The length of the sublist for the nearest neighbor and sublist approach was chosen to be 4. For every
local search approach, we run the algorithm N = 1000 times and sorted the number nG of the generation in which the
probable optimum was found in a histogram of Nc = 15 classes (Nc = 30 classes for the sublist approach) with class means
nG

i and class frequencies fi. Afterwards we computed the mean and the standard deviation σ according to Eq. (2.8-2.9).
Furthermore we computed the percentage of routes which are not the optimum and mean length with standard deviation
of these routes.
The results of this test are shown in Fig. 3.1.
The names of the approaches are chosen after the order in which they have been used and in which chromosomes we
looked for a local optimum. As one can see, the fastest convergence in generations is achieved by permuting one city and
by looking in all chromosomes. However, looking in all chromosomes is a problem of O(n), while the other algorithms
only scale with O(ne), where ne is the number of elite members. Therefore, the evaluation of this method grows with an
increasing dimension of the problem, while the order of the other approaches is constant.
The next best algorithm is the combination of permuting one city and the search in a sublist of nearest neighbors, both
only for the elite members. However, the failure percentage of finding the real optimum is rather high with nearly 50%.
Therefore, the best algorithm for a local optimization seems to be the combination of permuting one city and the search in
a sublist, both only for the elite members. Furthermore, the failure percentage seems to be one of the smallest compared
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with the other approaches. Additionally, the deviation of the route length seems to be small and stable as well.
The histograms seem to follow the prediction of an exponential decrease of convergence probability with increasing step
number nG, as described in [5]. However, this is just an impression and would be needed to confirmed in a deeper
investigation.

3.3.2 Crossover and Mutation Probability

The second important test of the algorithm is to find the optimum for the crossover and mutation probabilities. The
influence of these have been tested with the local search of permuting one city, afterwards permuting a sublist of length
l = 4. The population size was 100 with 10 elite members. The convergence threshold was set to 100. The algorithm
has been run 200 times for each probability combination. For every run we sorted the number nG of the generation in
which the probable optimum was found in a histogram of Nc = 12 classes with class means nG

i and class frequencies fi.
Afterwards we computed the mean and the standard deviation σ according to Eq. (2.8-2.9). Furthermore we computed
the percentage of routes which are not the optimum and mean length with standard deviation of these routes. The results
are shown in Fig. 3.2-3.3, respectively Tab. 3.1-3.2.
As one can see in both figures, the influence of the crossover increased. A small crossover probability seems to lead to an
increased failure percentage, as well as it increases the convergence step number. That may be explained by the hypothesis
that a TSP crossover is more responsible for an optimization than a bit string representing a decimal value.
Mutation increases the time for the algorithm to converge, but delivers a more stable result of the optimum. It possibly
provides a good way to lead the current members out of a local optimum.
If one wants to choose a certain crossover/mutation probability, one has to decide if it is satisfying to get a fast result
rather than a stable optimum and may decide after the corresponding values in the shown figures or tables.
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Figure 3.2: Contour plot of the average number of steps to reach the probable optimum depending on the probability of a mutation and the probability
of a crossover

3.3.3 Further Tests

Further tests have been done with the problems “berlin52” and “ch130”. While the algorithm converges to the optimum
for berlin52, it does not find the optimum for the latter. The optimum would be 6110, but the algorithm mostly stops at
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Figure 3.3: Surface plot of the average number of steps to reach the probable optimum depending on the probability of a mutation and the probability
of a crossover

route length ≈ 6500. A possible problem could be premature convergence due to mutation [5] or local search.

Steps until Crossover Probability
optimum 0.010 0.050 0.100 0.200 0.300 0.500 0.700 0.900

M
ut

at
io

n
Pr

ob
ab

ili
ty 0.010 124(53) 87(43) 72(45) 65(51) 74(60) 78(74) 85(83) 157(182)

0.050 126(61) 88(47) 74(45) 73(51) 73(50) 75(45) 83(61) 88(62)
0.100 129(61) 90(48) 78(49) 76(64) 82(66) 83(66) 94(80) 91(68)
0.200 147(78) 87(44) 90(57) 73(44) 75(49) 89(62) 100(71) 115(91)
0.300 146(75) 99(55) 87(49) 87(58) 84(58) 96(76) 99(68) 106(81)
0.500 177(99) 123(67) 111(66) 112(79) 105(67) 125(84) 112(85) 115(74)
0.700 224(130) 163(103) 131(79) 123(82) 127(98) 140(109) 128(95) 136(111)
0.900 230(142) 221(146) 158(93) 147(103) 129(84) 154(115) 137(93) 138(94)

Table 3.1: Average number of steps and its standard deviation to reach the probable optimum depending on the probability of a mutation and the
probability of a crossover. For each combination of probabilities, the algorithm has been run 200 times until it converged (with a convergence threshold
of 100). The number of steps has been decremented by the threshold.
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Crossover Probability
0.010 0.050 0.100 0.200 0.300 0.500 0.700 0.900

M
ut

at
io

n
Pr

ob
ab

ili
ty

0.010 22.50% 19.00% 23.50% 24.50% 19.50% 19.00% 18.50% 17.50%
2033.5(14.9) 2043.8(16.1) 2048.4(20.2) 2045.1(16.0) 2043.1(15.1) 2042.0(20.8) 2035.4(12.1) 2040.3(16.5)

0.050 26.50% 15.00% 18.00% 17.50% 20.50% 11.50% 18.00% 18.50%
2034.2(11.7) 2043.9(16.8) 2043.8(21.8) 2049.4(24.7) 2040.1(18.4) 2035.3(12.6) 2038.9(14.3) 2039.2(14.1)

0.100 23.50% 21.50% 20.50% 13.50% 17.50% 20.00% 14.00% 11.50%
2038.0(18.2) 2040.7(16.1) 2041.2(17.1) 2040.2(16.0) 2041.7(16.3) 2037.5(15.8) 2040.0(17.9) 2039.0(15.7)

0.200 32.00% 27.00% 18.50% 19.50% 16.50% 14.00% 10.00% 11.00%
2037.2(14.9) 2042.5(17.3) 2039.2(15.4) 2040.6(16.1) 2038.3(12.8) 2040.4(14.6) 2035.5(14.7) 2048.9(24.9)

0.300 38.50% 22.50% 13.00% 16.00% 14.50% 13.00% 10.50% 12.50%
2038.9(15.2) 2045.0(15.0) 2040.1(17.6) 2035.5(14.3) 2042.1(20.0) 2039.5(17.3) 2041.0(13.8) 2044.3(14.3)

0.500 47.00% 25.00% 18.50% 13.00% 15.00% 13.00% 13.00% 8.50%
2038.1(14.8) 2045.1(15.8) 2039.5(15.3) 2043.1(15.1) 2039.1(16.8) 2037.7(13.2) 2043.2(23.1) 2035.0(11.5)

0.700 38.00% 21.00% 15.00% 13.50% 19.50% 11.00% 13.00% 14.50%
2038.8(18.9) 2040.0(16.4) 2043.3(15.7) 2048.7(16.1) 2044.7(18.3) 2040.7(12.1) 2040.0(11.2) 2044.9(18.9)

0.900 44.00% 29.00% 20.00% 14.50% 18.00% 16.50% 10.00% 10.50%
2039.7(19.0) 2039.0(16.4) 2044.0(12.3) 2042.3(11.9) 2043.3(19.6) 2043.2(16.7) 2049.7(10.6) 2041.5(14.6)

Table 3.2: Percentage of failures in finding the probable optimum, as well as mean and standard deviation of the length of failed routes, depending on
the probability of a mutation and the probability of a crossover. The convergence threshold was set to 100.



Chapter 4

Summary

GAs seem to provide a promising approach for the heuristic solution of optimization problems.
We applied the bit string approach to search for a minimum of functions. Furthermore we present a GA for a heuristic
solution of the TSP. For both, we concentrated on sophisticated methods for a local optimization, with the success to
find satisfying procedures for both problems. Furthermore we studied the convergence behavior of the different methods
depending on the local search, crossover and mutation probability.
While it was nearly always possible to find the optimum for minimizing a function, there were more problems with the
solution of the TSP. The results of the latter were not as stable. Furthermore the algorithm fails in finding the optimum
for larger problems. However, one could think of some other approaches of local search, which include shifting a sublist
of cities through a permutation or organizing nearest neighbors in lists of being neighbors in the permutation, as well. For
a deeper insight in this problem, these approaches could be implemented and studied.
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