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Origins

I problems for classical computers: electronical elements get smaller

⇒ QM effects

I computation possible despite QM effects?

I even use these effects?

I R. Feynman (1982): classically
acting computer, solely based
on QM (picture: wikipedia.org)

I D. Deutsch (1985): QC is hypothetically
superior to classical computation (picture: wired.com)
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Dry Stuff that We Can Hopefully Skip: Quantum Theory

I in QM, we express states of systems as linear combination of complex base
vectors

|0〉 =


1
0
0
...

 , |1〉 =


0
1
0
...

 , |2〉 =


0
0
1
...

 , . . .

I states “kets”: |ψ〉 = α0|0〉 + α1|1〉 + ...,

I αi : probabilities

I dual space “bras”

〈0| = (1, 0, ...)∗, 〈1| = (0, 1, ...)∗,

obtained by hermitian conjugation: 〈ψ| = |ψ〉† (speak: dagger)

I scalar products: “bra-kets” (brackets) 〈ψ|φ〉, probability amplitude of
measuring φ to be ψ

I states represent probability ⇒ normed to 1, 〈ψ|ψ〉 = 1, states form an
orthonormal base, 〈m|n〉 = δmn

I operators (matrices): |ψ〉〈φ|
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Storage of a QC

I classical computers: bits, 0 and 1

I use two-state systems:

|0〉 =

(
1
0

)
|1〉 =

(
0
1

)
I a “qubit” |q〉 can be |0〉,|1〉 or a superposition of both, e.g.

|q〉 = 1√
2

(
1
1

)
I storage of n bits: n-body system of two-state systems in interaction, living

in sites

|ψ〉 = |q1〉⊗ |q2〉⊗ ...⊗ |qn〉 = |q1〉|q2〉...|qn〉 = |q1q2q3...qn〉
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Storage of a QC
spin quantum storage

SITE 1 SITE 2 SITE 3

Schrödinger's quantum storage

SITE 1 SITE 2 SITE 3

actual computation?
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Operations on a Storage

I operators necessary ⇒ represented by matrices

I obtained by creation and annihilation operators

creation: a† = |1〉〈0| a†|0〉 = |1〉 〈0|0〉 = |1〉, a†|1〉 = 0,

annihilation: a = |0〉〈1| a |1〉 = |0〉 〈1|1〉 = |0〉, a |0〉 = 0,

⇒ everything we need, e.g.

NOT = a + a† = |1〉〈0| + |0〉〈1|,

NOT (a|0〉 + b|1〉) =
(
|1〉〈0| + |0〉〈1|

) (
a|0〉 + b|1〉

)
= a|1〉 〈0|0〉︸ ︷︷ ︸

=1

+a|0〉 〈1|0〉︸ ︷︷ ︸
=0

+b|1〉 〈0|1〉︸ ︷︷ ︸
=0

+b|0〉 〈1|1〉︸ ︷︷ ︸
=1

= a|1〉 + b|0〉

PROJECTION0 = aa† = IF0

1 = IF0 + IF1
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Reversibility

I solves a lot of problems
• minimizes needed energy (hypothetically to zero ⇐ entropy change is zero)
• easier formulation of operators in terms of common physics
• handy for computations (phase shift)

I more in “Reversible Computing”

I operator A is reversible, if there exists A−1

I easiest operators to achieve this: unitary U−1 = U†

I NOT is unitary and reversible (NOT twice yields initial state)

I IF is not unitary and not reversible

You still have not shown an actual computation!!
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Bit Addition à la Feynman

suppose input states |αβ〉 and |αβγ〉

necessary reversible gates:

Controlled Not

xor

CNOTα,β = 1+ (NOT (β)− 1)IF
(α)
1

Controlled Controlled Not

xor and

CCNOTαβ,γ = 1+(NOT (γ)−1)IF
(α)
1 IF

(β)
1

Adder

0
SUM
CARRY

CNOTα,β CCNOTαβ,γ =
(
1 + (b + b† − 1)a†a

)
×
(
1 + (c + c† − 1)a†ab†b

)
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Advantages of QC

I until now: take state |αβ0〉, perform the bit addition - done - nothing new!

I but wait why don’t we just perform everything at once?

I Hadamard transformation

|0〉→ 1√
2

(
|0〉 + |1〉

)
|1〉→ 1√

2

(
|0〉− |1〉

)
I get superposition in initial state - what does that mean?

Schrödinger's quantum storage after Hadamard application

SITE 1 SITE 2 SITE 3
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Quantum parallelism

I initial state: |000〉
I Hadamard transformation on first two qubits

|ψ〉 =
1

2
|000〉 +

1

2
|010〉 +

1

2
|100〉 +

1

2
|110〉

I performing bit addition of first two qubits, yielding

CNOTα,βCCNOTαβ,γ |ψ〉 =
1

2
|000〉 +

1

2
|010〉 +

1

2
|110〉 +

1

2
|101〉

I all possible results at once!

I but wait again! How do we read the results?

I measurements only with projections → destroying the state

I copying states first and then perform measurements? No-Cloning Theorem

I what can we do?
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Deutsch’s Problem - I

I take function f : {0, 1} → {0, 1} - question: is f balanced (f (0) 6= f (1))
or constant (f (0) = f (1))?

I classical: calculation of input bit 0, then on 1, takes 24h per Bit → 48h

I QC: prepare a two-bit state and use a unitary transformation

Uf |x〉|y〉 = |x〉|y xor f (x)〉

I set |y〉 = |1〉 and perform Hadamard transformation – initial state

1√
2
Uf |x〉

(
|0〉− |1〉

)
=

1√
2
|x〉

(
|f (x)〉− |1 xor f (x)〉

)
=

1√
2

(−1)f (x)|x〉
(
|0〉− |1〉

)
⇒ isolation in sign factor
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Deutsch’s Problem - II

I is f : {0, 1} → {0, 1} balanced (f (0) 6= f (1)) or constant (f (0) = f (1))?

I prepare first state as well

|φ〉 =
1

2
Uf

(
|0〉 + |1〉

) (
|0〉− |1〉

)
=

1

2

[
(−1)f (0)|0〉

(
|0〉− |1〉

)
+

(−1)f (1)|1〉
(
|0〉− |1〉

)]

|φ〉 =


±1
2

[
|0〉 + |1〉

] (
|0〉− |1〉

)
±1
2

[
|0〉− |1〉

] (
|0〉− |1〉

)
I measurement or projection of first bit in basis |±〉 = 1√

2

[
|0〉± |1〉

]
I Success! Same result as classical computer in half of time!
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Other Quantum Algorithms

I Shor’s algorithm
• prime number factorization in polynomial time
• probabilistic nature: gives right answer with certain probability
• has been successfully performed on a 7-qubit system (2001)

I Gover-Iteration: search in unsorted list
• classical: O(n)
• Gover: O(

√
n)

• “rotates” solution in list in hyperplane, s.t. probability amplitude increases
• probabilistic nature: gives right answer with certain probability
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Turing Machines

I shown to be equivalent by D. Deutsch (1985)

I finite “processor” state

|n〉 = |n0n1n2...nmax〉

I infinite “memory” state

|m〉 = |...m−1m0m1m2....〉

I m’s and n’s are two-state systems

I head label |x〉 with x ∈ Z, marking current position

I full state |ψ〉 = |x ; n;m〉
I unitary transition matrix U, determining whether x- - or x++, depending

on current nx and mx

I QC cannot halt, condition: a special state has been marked
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Semi-Thue Systems - I

I recap: Given alphabet Σ, words w , v ∈ Σ∗ and substitution rules
S : Σ∗ × Σ∗, is there a way that v is derivable from w in S?

I First direction: quantum computing ⇒ semi-Thue

I recode every alphabet Σ = {a, b, c, d , ...} to Σ2 = {0, 1}

a→ 01

b → 0011, and so forth

I prepare initial state from initial word

I How to implement substitution?
I easy, in principle

• take input qubits |i1...in〉 and output qubits |o1...om〉
• choose rule
• input fits to rule?
• if yes, flip certain bits in output

CNOTi1...in,o1...om = 1 +

( ⊗
q∈bits to be flipped

NOT (oq) − 1

)
IF

(i1)

S1
1

...IF
(in)
Sn

1

• use permutation to exchange input and output
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Semi-Thue Systems - II

I substitution is reversible

I possible to perform? Infinitely many substitution rules!

I possible to use QC more advanced? Maybe applying all rules at once!

I However: How to determine whether it has stopped?
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Semi-Thue Systems - III

I quantum computing ⇐ semi-Thue

I I thought I would have something, but yesterday I discovered that I don’t
– suggestions?
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Summary

I QC is theoretically possible (experimentally on small scales)

I is in some cases superior to classical computing (“natural” parallelism)

I possible to connect to classical models and to compare them
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Backup 1 – Complexity Classes

NP Problems

P Problems

NP Complete

PSPACE problems

BQP
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