# Quantum Computing

### Benjamin Maier

"Models of Computation" - Department of Philosophy

12 June 2012



### Table of Contents

Origins of QC and Necessary Basics

#### Quantum Computing

Definition of Terms Reversibility Actual Computation Quantum parallelism

#### Connection to Classical Models of Computation

Turing Machines Semi-Thue Systems

Universiteit Utrecht



## Table of Contents

#### Origins of QC and Necessary Basics

#### Quantum Computing

Definition of Terms Reversibility Actual Computation Quantum parallelism

#### Connection to Classical Models of Computation

Turing Machines Semi-Thue Systems



# Origins

- ▶ problems for classical computers: electronical elements get smaller
- $\Rightarrow$  QM effects
  - computation possible despite QM effects?
  - even use these effects?







 D. Deutsch (1985): QC is hypothetically superior to classical computation (picture: wired.com)



## Dry Stuff that We Can Hopefully Skip: Quantum Theory

 in QM, we express states of systems as linear combination of complex base vectors

$$|0
angle = \begin{pmatrix} 1\\0\\0\\\vdots \end{pmatrix}, \qquad |1
angle = \begin{pmatrix} 0\\1\\0\\\vdots \end{pmatrix}, \qquad |2
angle = \begin{pmatrix} 0\\0\\1\\\vdots \end{pmatrix}, \qquad .$$

• states "kets": 
$$|\psi\rangle = \alpha_0 |0\rangle + \alpha_1 |1\rangle + ...,$$

- α<sub>i</sub>: probabilities
- dual space "bras"

$$\langle 0| = (1, 0, ...)^*, \qquad \langle 1| = (0, 1, ...)^*,$$

obtained by hermitian conjugation:  $\langle \psi | = |\psi \rangle^{\dagger}$  (speak: dagger)

- scalar products: "bra-kets" (brackets)  $\langle\psi|\phi\rangle$ , probability amplitude of measuring  $\phi$  to be  $\psi$
- ► states represent probability  $\Rightarrow$  normed to 1,  $\langle \psi | \psi \rangle = 1$ , states form an orthonormal base,  $\langle m | n \rangle = \delta_{mn}$
- operators (matrices):  $|\psi\rangle\langle\phi|$

**Universiteit Utrecht** 

. .



## Table of Contents

Origins of QC and Necessary Basics

#### Quantum Computing

Definition of Terms Reversibility Actual Computation Quantum parallelism

#### Connection to Classical Models of Computation

Turing Machines Semi-Thue Systems

Universiteit Utrecht



## Storage of a $\mathsf{QC}$

- classical computers: bits, 0 and 1
- use two-state systems:

$$|0
angle = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \qquad |1
angle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

- ▶ a "qubit"  $|q\rangle$  can be  $|0\rangle,|1\rangle$  or a superposition of both, e.g.  $|q\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\ 1 \end{pmatrix}$
- storage of n bits: n-body system of two-state systems in interaction, living in sites

$$|\psi\rangle = |q_1\rangle \otimes |q_2\rangle \otimes ... \otimes |q_n\rangle = |q_1\rangle |q_2\rangle ... |q_n\rangle = |q_1q_2q_3...q_n\rangle$$



## Storage of a QC

spin quantum storage



Schrödinger's quantum storage



#### actual computation?

<□> <□> <□> <Ξ> <Ξ> <Ξ> <□</p>



### Operations on a Storage

- operators necessary  $\Rightarrow$  represented by matrices
- obtained by creation and annihilation operators

 $\begin{array}{ll} \text{creation:} \ a^{\dagger} = |1\rangle\langle 0| & a^{\dagger}|0\rangle = |1\rangle\langle 0|0\rangle = |1\rangle, & a^{\dagger}|1\rangle = 0, \\ \text{annihilation:} \ a = |0\rangle\langle 1| & a \ |1\rangle = |0\rangle\langle 1|1\rangle = |0\rangle, & a \ |0\rangle = 0, \end{array}$ 

 $\Rightarrow$  everything we need, e.g.

$$NOT = a + a^{\dagger} = |1\rangle\langle 0| + |0\rangle\langle 1|,$$
  

$$NOT(a|0\rangle + b|1\rangle) = (|1\rangle\langle 0| + |0\rangle\langle 1|) (a|0\rangle + b|1\rangle)$$
  

$$= a|1\rangle \underbrace{\langle 0|0\rangle}_{=1} + a|0\rangle \underbrace{\langle 1|0\rangle}_{=0} + b|1\rangle \underbrace{\langle 0|1\rangle}_{=0} + b|0\rangle \underbrace{\langle 1|1\rangle}_{=1}$$
  

$$= a|1\rangle + b|0\rangle$$
  

$$PROJECTION_{0} = aa^{\dagger} = IF_{0}$$
  

$$\mathbf{1} = IF_{0} + IF_{1}$$

**Universiteit Utrecht** 



◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 = ∽ へ ⊙

## Reversibility

- solves a lot of problems
  - minimizes needed energy (hypothetically to zero <= entropy change is zero)
  - · easier formulation of operators in terms of common physics
  - handy for computations (phase shift)
- more in "Reversible Computing"
- operator A is reversible, if there exists A<sup>-1</sup>
- easiest operators to achieve this: unitary  $U^{-1} = U^{\dagger}$
- ▶ NOT is unitary and reversible (NOT twice yields initial state)
- ► *IF* is not unitary and not reversible

You still have not shown an actual computation!!



### Bit Addition à la Feynman

suppose input states  $|\alpha\beta\rangle$  and  $|\alpha\beta\gamma\rangle$ 

necessary reversible gates:

#### Controlled Not **Controlled Controlled Not** $\begin{array}{c|c} |\alpha\rangle & & & \\ |\beta\rangle & & & \\ \hline \end{array} \begin{vmatrix} \alpha & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$ $|\alpha\rangle$ — $\alpha$ $|\beta\rangle \longrightarrow |\beta\rangle$ $|\gamma\rangle = - + |\alpha \text{ and } \beta| \text{ xor } \gamma \rangle$ $CCNOT_{\alpha\beta,\gamma} = 1 + (NOT^{(\gamma)} - 1)IF_1^{(\alpha)}IF_1^{(\beta)}$ $CNOT_{\alpha,\beta} = 1 + (NOT^{(\beta)} - 1)IF_{1}^{(\alpha)}$ Adder $- - \mathbf{c} - \mathbf{c} = \left(\mathbf{1} + (b + b^{\dagger} - \mathbf{1})a^{\dagger}a\right)$ $|\alpha\rangle$ --¥---- SUM $\times \left(\mathbf{1} + (c + c^{\dagger} - \mathbf{1})a^{\dagger}ab^{\dagger}b\right)$ —— CARRY



## Advantages of QC

- until now: take state  $|\alpha\beta0\rangle$ , perform the bit addition done nothing new!
- but wait why don't we just perform everything at once?
- Hadamard transformation

$$egin{aligned} |0
angle &
ightarrow rac{1}{\sqrt{2}} \Big( |0
angle + |1
angle \Big) \ |1
angle &
ightarrow rac{1}{\sqrt{2}} \Big( |0
angle - |1
angle \Big) \end{aligned}$$

get superposition in initial state - what does that mean?

Schrödinger's quantum storage after Hadamard application



### Quantum parallelism

- initial state:  $|000\rangle$
- Hadamard transformation on first two qubits

$$|\psi\rangle=\frac{1}{2}|000\rangle+\frac{1}{2}|010\rangle+\frac{1}{2}|100\rangle+\frac{1}{2}|110\rangle$$

performing bit addition of first two qubits, yielding

$${\cal CNOT}_{lpha,eta}{\cal CCNOT}_{lphaeta,\gamma}|\psi
angle=rac{1}{2}|000
angle+rac{1}{2}|010
angle+rac{1}{2}|110
angle+rac{1}{2}|101
angle$$

- all possible results at once!
- but wait again! How do we read the results?
- $\blacktriangleright$  measurements only with projections  $\rightarrow$  destroying the state
- ► copying states first and then perform measurements? No-Cloning Theorem
- what can we do?



### Deutsch's Problem - I

- ► take function  $f : \{0, 1\} \rightarrow \{0, 1\}$  question: is f balanced  $(f(0) \neq f(1))$ or constant (f(0) = f(1))?
- $\blacktriangleright$  classical: calculation of input bit 0, then on 1, takes 24h per Bit  $\rightarrow$  48h
- QC: prepare a two-bit state and use a unitary transformation

 $U_f|x\rangle|y\rangle = |x\rangle|y$  xor  $f(x)\rangle$ 

• set  $|y\rangle = |1\rangle$  and perform Hadamard transformation – initial state

$$\frac{1}{\sqrt{2}}U_f |x\rangle (|0\rangle - |1\rangle) = \frac{1}{\sqrt{2}}|x\rangle (|f(x)\rangle - |1 \text{ xor } f(x)\rangle)$$
$$= \frac{1}{\sqrt{2}}(-1)^{f(x)}|x\rangle (|0\rangle - |1\rangle)$$

 $\Rightarrow$  isolation in sign factor



### Deutsch's Problem - II

▶ is  $f : \{0,1\} \to \{0,1\}$  balanced  $(f(0) \neq f(1))$  or constant (f(0) = f(1))?

prepare first state as well

$$\begin{split} |\phi\rangle &= \frac{1}{2} U_f \left( |0\rangle + |1\rangle \right) \left( |0\rangle - |1\rangle \right) = \frac{1}{2} \left[ (-1)^{f(0)} |0\rangle \left( |0\rangle - |1\rangle \right) + \\ & (-1)^{f(1)} |1\rangle \left( |0\rangle - |1\rangle \right) \right] \\ |\phi\rangle &= \begin{cases} \frac{\pm 1}{2} \left[ |0\rangle + |1\rangle \\ \frac{\pm 1}{2} \left[ |0\rangle - |1\rangle \right] \left( |0\rangle - |1\rangle \right) \\ (|0\rangle - |1\rangle \right) \end{cases} \end{split}$$

• measurement or projection of first bit in basis  $|\pm\rangle = \frac{1}{\sqrt{2}} \left[ |0\rangle \pm |1\rangle \right]$ 

Success! Same result as classical computer in half of time!



## Other Quantum Algorithms

Shor's algorithm

- · prime number factorization in polynomial time
- · probabilistic nature: gives right answer with certain probability
- has been successfully performed on a 7-qubit system (2001)

- Gover-Iteration: search in unsorted list
  - classical: O(n)
  - Gover:  $\mathcal{O}(\sqrt{n})$
  - "rotates" solution in list in hyperplane, s.t. probability amplitude increases
  - · probabilistic nature: gives right answer with certain probability



## Table of Contents

Origins of QC and Necessary Basics

#### Quantum Computing

Definition of Terms Reversibility Actual Computation Quantum parallelism

#### Connection to Classical Models of Computation

Turing Machines Semi-Thue Systems



## **Turing Machines**

- shown to be equivalent by D. Deutsch (1985)
- finite "processor" state

 $|n\rangle = |n_0 n_1 n_2 \dots n_{\max}\rangle$ 

infinite "memory" state

 $|m\rangle = |...m_{-1}m_0m_1m_2....\rangle$ 

- m's and n's are two-state systems
- head label  $|x\rangle$  with  $x \in \mathbf{Z}$ , marking current position
- full state  $|\psi\rangle = |x; n; m\rangle$
- unitary transition matrix U, determining whether x-- or x++, depending on current n<sub>x</sub> and m<sub>x</sub>
- QC cannot halt, condition: a special state has been marked



### Semi-Thue Systems - I

- ► recap: Given alphabet  $\Sigma$ , words  $w, v \in \Sigma^*$  and substitution rules  $S : \Sigma^* \times \Sigma^*$ , is there a way that v is derivable from w in S?
- ▶ First direction: quantum computing ⇒ semi-Thue
- recode every alphabet  $\Sigma = \{a, b, c, d, ...\}$  to  $\Sigma_2 = \{0, 1\}$ 
  - $egin{array}{c} a
    ightarrow 01\ b
    ightarrow 0011, & ext{ and so forth} \end{array}$
- prepare initial state from initial word
- How to implement substitution?
- easy, in principle
  - take input qubits  $|i_1...i_n\rangle$  and output qubits  $|o_1...o_m\rangle$
  - choose rule
  - input fits to rule?
  - if yes, flip certain bits in output

$$CNOT_{i_1...i_n,o_1...o_m} = \mathbf{1} + \left(\bigotimes_{q \in \text{bits to be flipped}} NOT^{(o_q)} - \mathbf{1}\right) IF_{S_1^1}^{(i_1)} ... IF_{S_1^n}^{(i_n)}$$

· use permutation to exchange input and output



< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- substitution is reversible
- possible to perform? Infinitely many substitution rules!
- possible to use QC more advanced? Maybe applying all rules at once!
- However: How to determine whether it has stopped?





20

### Semi-Thue Systems - III

- I thought I would have something, but yesterday I discovered that I don't – suggestions?





- QC is theoretically possible (experimentally on small scales)
- ▶ is in some cases superior to classical computing ("natural" parallelism)
- possible to connect to classical models and to compare them





Backup 1 – Complexity Classes



Universiteit Utrecht



▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで