Quantum Computing

Benjamin Maier
"Models of Computation" - Department of Philosophy

12 June 2012

Table of Contents

Origins of QC and Necessary Basics

Quantum Computing
Definition of Terms
Reversibility
Actual Computation
Quantum parallelism

Connection to Classical Models of Computation
Turing Machines
Semi-Thue Systems

Table of Contents

Origins of QC and Necessary Basics

Quantum Computing
Definition of Terms
Reversibility
Actual Computation
Quantum parallelism

Connection to Classical Models of Computation
Turing Machines
Semi-Thue Systems

Origins

- problems for classical computers: electronical elements get smaller
\Rightarrow QM effects
- computation possible despite QM effects?
- even use these effects?

- R. Feynman (1982): classically acting computer, solely based on QM (picture: wikipedia.org)

- D. Deutsch (1985): QC is hypothetically superior to classical computation (picture: wired.com)

Dry Stuff that We Can Hopefully Skip: Quantum Theory

- in QM, we express states of systems as linear combination of complex base vectors

$$
|0\rangle=\left(\begin{array}{c}
1 \\
0 \\
0 \\
\vdots
\end{array}\right), \quad|1\rangle=\left(\begin{array}{c}
0 \\
1 \\
0 \\
\vdots
\end{array}\right), \quad|2\rangle=\left(\begin{array}{c}
0 \\
0 \\
1 \\
\vdots
\end{array}\right),
$$

- states "kets": $|\psi\rangle=\alpha_{0}|0\rangle+\alpha_{1}|1\rangle+\ldots$,
- α_{i} : probabilities
- dual space "bras"

$$
\langle 0|=(1,0, \ldots)^{*}, \quad\langle 1|=(0,1, \ldots)^{*},
$$

obtained by hermitian conjugation: $\langle\psi|=|\psi\rangle^{\dagger}$ (speak: dagger)

- scalar products: "bra-kets" (brackets) $\langle\psi \mid \phi\rangle$, probability amplitude of measuring ϕ to be ψ
- states represent probability \Rightarrow normed to $1,\langle\psi \mid \psi\rangle=1$, states form an orthonormal base, $\langle m \mid n\rangle=\delta_{m n}$
- operators (matrices): $|\psi\rangle\langle\phi|$

Table of Contents

Origins of QC and Necessary Basics

Quantum Computing
Definition of Terms
Reversibility
Actual Computation
Quantum parallelism

Connection to Classical Models of Computation
Turing Machines
Semi－Thue Systems

Storage of a QC

- classical computers: bits, 0 and 1
- use two-state systems:

$$
|0\rangle=\binom{1}{0} \quad|1\rangle=\binom{0}{1}
$$

- a "qubit" $|q\rangle$ can be $|0\rangle,|1\rangle$ or a superposition of both, e.g. $|q\rangle=\frac{1}{\sqrt{2}}\binom{1}{1}$
- storage of n bits: n-body system of two-state systems in interaction, living in sites

$$
|\psi\rangle=\left|q_{1}\right\rangle \otimes\left|q_{2}\right\rangle \otimes \ldots \otimes\left|q_{n}\right\rangle=\left|q_{1}\right\rangle\left|q_{2}\right\rangle \ldots\left|q_{n}\right\rangle=\left|q_{1} q_{2} q_{3} \ldots q_{n}\right\rangle
$$

Storage of a QC

spin quantum storage

Schrödinger's quantum storage

Operations on a Storage

- operators necessary \Rightarrow represented by matrices
- obtained by creation and annihilation operators

$$
\begin{array}{rlrl}
\text { creation: } a^{\dagger}=|1\rangle\langle 0| & a^{\dagger}|0\rangle & =|1\rangle\langle 0 \mid 0\rangle=|1\rangle, & \\
\text { annihilation: } a=|0\rangle\langle 1| & a|1\rangle=|0\rangle\langle 1 \mid 1\rangle=|0\rangle, & a|0\rangle=0,
\end{array}
$$

\Rightarrow everything we need, e.g.

$$
\begin{aligned}
\text { NOT } & =a+a^{\dagger}=|1\rangle\langle 0|+|0\rangle\langle 1|, \\
\operatorname{NOT}(a|0\rangle+b|1\rangle) & =(|1\rangle\langle 0|+|0\rangle\langle 1|)(a|0\rangle+b|1\rangle) \\
& =a|1\rangle \underbrace{\langle 0 \mid 0\rangle}_{=1}+a|0\rangle \underbrace{\langle 1 \mid 0\rangle}_{=0}+b|1\rangle \underbrace{\langle 0 \mid 1\rangle}_{=0}+b|0\rangle \underbrace{\langle 1 \mid 1\rangle}_{=1} \\
& =a|1\rangle+b|0\rangle \\
\text { PROJECTION } & =a a^{\dagger}=I F_{0} \\
1 & =I F_{0}+I F_{1}
\end{aligned}
$$

Reversibility

- solves a lot of problems
- minimizes needed energy (hypothetically to zero \Leftarrow entropy change is zero)
- easier formulation of operators in terms of common physics
- handy for computations (phase shift)
- more in "Reversible Computing"
- operator A is reversible, if there exists A^{-1}
- easiest operators to achieve this: unitary $U^{-1}=U^{\dagger}$
- NOT is unitary and reversible (NOT twice yields initial state)
- IF is not unitary and not reversible

You still have not shown an actual computation!!

Bit Addition à la Feynman

suppose input states $|\alpha \beta\rangle$ and $|\alpha \beta \gamma\rangle$
necessary reversible gates:

Controlled Not

Controlled Controlled Not

CCNOT $_{\alpha \beta, \gamma}=1+\left(\operatorname{NOT}^{(\gamma)}-1\right) I F_{1}^{(\alpha)} I F_{1}^{(\beta)}$

Adder

$$
\operatorname{CNOT}_{\alpha, \beta}=\mathbf{1}+\left(N O T^{(\beta)}-\mathbf{1}\right) I F_{1}^{(\alpha)}
$$

$$
\begin{aligned}
\text { CNOT }_{\alpha, \beta} \text { CCNOT }_{\alpha \beta, \gamma}=(& \left.1+\left(b+b^{\dagger}-\mathbf{1}\right) a^{\dagger} a\right) \\
& \times\left(\mathbf{1}+\left(c+c^{\dagger}-\mathbf{1}\right) a^{\dagger} a b^{\dagger} b\right)
\end{aligned}
$$

Advantages of QC

- until now: take state $|\alpha \beta 0\rangle$, perform the bit addition - done - nothing new!
- but wait why don't we just perform everything at once?
- Hadamard transformation

$$
\begin{aligned}
& |0\rangle \rightarrow \frac{1}{\sqrt{2}}(|0\rangle+|1\rangle) \\
& |1\rangle \rightarrow \frac{1}{\sqrt{2}}(|0\rangle-|1\rangle)
\end{aligned}
$$

- get superposition in initial state - what does that mean?

Schrödinger's quantum storage after Hadamard application

Quantum parallelism

- initial state: |000〉
- Hadamard transformation on first two qubits

$$
|\psi\rangle=\frac{1}{2}|000\rangle+\frac{1}{2}|010\rangle+\frac{1}{2}|100\rangle+\frac{1}{2}|110\rangle
$$

- performing bit addition of first two qubits, yielding

$$
\text { CNOT }_{\alpha, \beta} \text { CCNOT }_{\alpha \beta, \gamma}|\psi\rangle=\frac{1}{2}|000\rangle+\frac{1}{2}|010\rangle+\frac{1}{2}|110\rangle+\frac{1}{2}|101\rangle
$$

- all possible results at once!
- but wait again! How do we read the results?
- measurements only with projections \rightarrow destroying the state
- copying states first and then perform measurements? No-Cloning Theorem
- what can we do?

Deutsch's Problem - I

- take function $f:\{0,1\} \rightarrow\{0,1\}$ - question: is f balanced $(f(0) \neq f(1))$ or constant $(f(0)=f(1))$?
- classical: calculation of input bit 0 , then on 1 , takes 24 h per Bit $\rightarrow 48 \mathrm{~h}$
- QC: prepare a two-bit state and use a unitary transformation

$$
\left.U_{f}|x\rangle|y\rangle=|x\rangle \mid y \text { xor } f(x)\right\rangle
$$

- set $|y\rangle=|1\rangle$ and perform Hadamard transformation - initial state

$$
\begin{aligned}
\frac{1}{\sqrt{2}} U_{f}|x\rangle(|0\rangle-|1\rangle) & \left.=\frac{1}{\sqrt{2}}|x\rangle(|f(x)\rangle-\mid 1 \text { xor } f(x)\rangle\right) \\
& =\frac{1}{\sqrt{2}}(-1)^{f(x)}|x\rangle(|0\rangle-|1\rangle)
\end{aligned}
$$

\Rightarrow isolation in sign factor

Deutsch's Problem - II

- is $f:\{0,1\} \rightarrow\{0,1\}$ balanced $(f(0) \neq f(1))$ or constant $(f(0)=f(1))$?
- prepare first state as well

$$
\begin{array}{r}
|\phi\rangle=\frac{1}{2} U_{f}(|0\rangle+|1\rangle)(|0\rangle-|1\rangle)=\frac{1}{2}\left[(-1)^{f(0)}|0\rangle(|0\rangle-|1\rangle)+\right. \\
\left.(-1)^{f(1)}|1\rangle(|0\rangle-|1\rangle)\right] \\
|\phi\rangle=\left\{\begin{array}{c}
\frac{ \pm 1}{2}[|0\rangle+|1\rangle](|0\rangle-|1\rangle) \\
\frac{ \pm 1}{2}|0\rangle-|1\rangle
\end{array}\right.
\end{array}
$$

- measurement or projection of first bit in basis $| \pm\rangle=\frac{1}{\sqrt{2}}[|0\rangle \pm|1\rangle]$
- Success! Same result as classical computer in half of time!

Other Quantum Algorithms

- Shor's algorithm
- prime number factorization in polynomial time
- probabilistic nature: gives right answer with certain probability
- has been successfully performed on a 7-qubit system (2001)
- Gover-Iteration: search in unsorted list
- classical: $\mathcal{O}(n)$
- Gover: $\mathcal{O}(\sqrt{n})$
- "rotates" solution in list in hyperplane, s.t. probability amplitude increases
- probabilistic nature: gives right answer with certain probability

Table of Contents

Origins of QC and Necessary Basics

Quantum Computing
 Definition of Terms
 Reversibility
 Actual Computation
 Quantum parallelism

Connection to Classical Models of Computation
Turing Machines
Semi－Thue Systems

Turing Machines

- shown to be equivalent by D. Deutsch (1985)
- finite "processor" state

$$
|n\rangle=\left|n_{0} n_{1} n_{2} \ldots n_{\max }\right\rangle
$$

- infinite "memory" state

$$
|m\rangle=\left|\ldots m_{-1} m_{0} m_{1} m_{2} \ldots\right\rangle
$$

- m's and n's are two-state systems
- head label $|x\rangle$ with $x \in \mathbf{Z}$, marking current position
- full state $|\psi\rangle=|x ; n ; m\rangle$
- unitary transition matrix U, determining whether x-- or $x++$, depending on current n_{x} and m_{x}
- QC cannot halt, condition: a special state has been marked

Semi-Thue Systems - I

- recap: Given alphabet Σ, words $w, v \in \Sigma^{*}$ and substitution rules $S: \Sigma^{*} \times \Sigma^{*}$, is there a way that v is derivable from w in S ?
- First direction: quantum computing \Rightarrow semi-Thue
- recode every alphabet $\Sigma=\{a, b, c, d, \ldots\}$ to $\Sigma_{2}=\{0,1\}$
$a \rightarrow 01$
$b \rightarrow 0011, \quad$ and so forth
- prepare initial state from initial word
- How to implement substitution?
- easy, in principle
- take input qubits $\left|i_{1} \ldots i_{n}\right\rangle$ and output qubits $\left|o_{1} \ldots o_{m}\right\rangle$
- choose rule
- input fits to rule?
- if yes, flip certain bits in output

$$
C N O T_{i_{1} \ldots i_{n}, o_{1} \ldots o_{m}}=1+\left(\bigotimes_{q \in \text { bits to be flipped }} N O T^{\left(o_{q}\right)}-\mathbf{1}\right) I F_{S_{1}^{1}}^{\left(i_{1}\right)} \ldots I F_{S_{1}^{n}}^{\left(i_{n}\right)}
$$

- use permutation to exchange input and output

Semi－Thue Systems－II

－substitution is reversible
－possible to perform？Infinitely many substitution rules！
－possible to use QC more advanced？Maybe applying all rules at once！
－However：How to determine whether it has stopped？

Semi－Thue Systems－III

－quantum computing \Leftarrow semi－Thue
－I thought I would have something，but yesterday I discovered that I don＇t －suggestions？

Summary

－QC is theoretically possible（experimentally on small scales）
－is in some cases superior to classical computing（＂natural＂parallelism）
－possible to connect to classical models and to compare them

Backup 1 - Complexity Classes

PSPACE problems

NP Problems

NP Complete

Universiteit Utrecht

