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Axel Thue (1863-1922)

I Norwegian mathematician

I studied long time in Germany,
became professor in Norway

I worked mostly on Diophantine
equations and number theory
(→ Hilbert’s 10th problem)

I formulated the word problems,
which later became subject of
→ Combinatory Logic

Axel Thue
http://commons.wikimedia.org/wiki/File:Axel Thue.jpg
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(Semi-)Thue Systems

I a semi-Thue system is a 2-tupel T := (Σ, S)

I Σ - alphabet

I S ⊆ Σ∗ × Σ∗ is a set of pairs of words (binary relations)

S = {(a1, b1), (a2, b2), ...}

called the rewriting rules

I let u, v , x , y be words, s.t. u, v , x , y ∈ Σ∗

(note that the empty word ε may be part of Σ∗)

I a string uxv may be rewritten

uxv −→S uyv

if and only if (x , y) ∈ S (uxv denotes the concatenation of the words u, x and v)

I a word y is called derivable from x in S or (x
∗−→S y) if there exists a

sequence of words

uxv −→S uw1v −→S ... −→S uwnv −→S uyv

I original Thue systems: pair (x , y) meant uxv ←→S uyv
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Example

instance semi-Thue system T = (Σ,S), with Σ = {a, b, c},
S = {(a, c), (aa, b)}

question Is the word y = cbbbc derivable from the word x = abaabc in
S (x

∗−→S y) ?

I from abaabc we can derive abbbc in a single step

I from abbbc we can derive cbbbc in a single step

I therefore the word y is derivable from x
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Semi-Thue Systems as a Model of Computation - Easy examples

I indications for semi-Thue systems performing computations

I successor/predecessor functions in unary representation

Σ = {1}, S = {(ε, 1), (1, ε)}

I constant functions or identity in any representation

Σ = {σ1, ..., σn}, S = {(σ1, σ1), ..., (σn, σn)}

I recursion is possible through derivations

I Is it possible to show equivalence to other models of computation?
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Equivalence to Turing Machines

I semi-Thue systems can be shown to be isomorphic to unrestricted
grammars

I unrestricted grammars: have additional terminal letters which may not be
removed during derivation and always start with a symbol S

I Theorem: the languages of unrestricted grammars are the recursively
enumerable languages

I sketch of proof for an unrestricted grammar G to construct a Turing
machine M

1. construct a two tape non-deterministic Turing machine M
2. tape 1 holds the input
3. tape 2 holds the state of the current derivation, starting with the starting

symbol S
4. at each step, M chooses nondeterministically a rule from G , applies it to

tape 2
5. if the tapes are same, the input is accepted. if not, the machine chooses

another rule to apply

I idea of proof for a Turing machine M to construct an unrestricted
grammar G

1. choose Turing machine to halt in empty state
2. construct G , s.t. it analyses the behavior of M backwards
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Word Problems
Given a semi-Thue system T = (Σ, S)

The accessibility problem

instance two arbitrary words
v1, v2 ∈ Σ∗

question v1
∗−→S v2?

in S

The common descendant problem

instance two arbitrary words
v1, v2 ∈ Σ∗

question Is there a v ∈ Σ∗, s.t.

v1
∗−→S w and

v2
∗−→S w?

in S in S

The termination problem

instance an arbitrary word v ∈ Σ∗

question Is every derivation
starting from v possible
to do in a finite number
of steps?
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The Accessibility Problem - Proof Sketch

Given a semi-Thue system T = (Σ, S)

The accessibility problem

instance two arbitrary words
v1, v2 ∈ Σ∗

question v1
∗−→S v2?

in S

Theorem
The accessibility problem is unsolvable over an arbitrary finite alphabet.

Proof
following Z. Manna, first proof by E. Post (1947)

1. choose an alphabet Σ, binary relations S , an arbitrary word x ∈ Σ∗ and the word
y = ε

2. construct a Turing or Post machine which halts if and only if x
∗−→S y

3. this means that the problem is reduced to the halting problem of Post/Turing
machines

4. halting problem is unsolvable ⇒ accessibility problem is unsolvable
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The Accessibility Problem is undecidable - Proof

I take Σ = {B0, ...,Bm,`,a, a, b}
I out of these, construct a Post machine with m test/assignment states

B1, ...,Bm the starting state is B0

I the Post machine is a machine of alphabet Σ′ = {a, b}
I the input word for the machine is supposed to be w = σ1σ2...σn

I for the semi-Thue system take the words

x = B0 ` σ1σ2...σn a
y = ε

I x is supposed to be the initial configuration of the machine, where the B’s
can be interpreted as the “head”

I the current word w ′ of the machine is always in between ` and a
I next: constructing S connected to the behavior of the Post machine
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The Accessibility Problem is undecidable - Proof
S is made of the following rules

1. Start → (B0,B1)

2. read first letter and statement transition

(Bi ` a,Bj `)
(Bi ` b,Bk `)
(Bi `a, ε)

    read and go 
to next statement

read and halt / grammar
yields empty wordor

important! only possibility to halt: head reads the empty word between ` and a

3. add a letter in the end and state transition

(a Bi , σ
′ ` Bj )

σ′ ∈ {a, b}
    add and go 
to next statement

4. Cycling (thus enabling the head to move between the beginning and the
end of the current word w ′)

(σBi ,Biσ)
(Biσ, σBi )
σ ∈ {`,a, a, b}

cycle 
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The Accessibility Problem is undecidable - Proof Summed Up

I we have Σ = {B0, ...,Bm,`,a, a, b},
parallel a Post machine with Σ′ = {a, b}

I we constructed S and connected transitions for the machine

I we choose an arbitrary word w ∈ Σ′∗ and construct a word for the
semi-Thue system

x = B0 ` w a
y = ε

I every move of the rules in S is connected to a certain move of the machine

I the only halt statement is given for the head to read ε, yielding y

I thus, the machine halts if and only if y is derivable from x

But it is undecidable to determine whether the machine halts or not.

Hence, the accessibility problem is undecidable.

Q.E.D.
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Summary

We

I introduced semi-Thue systems as string rewriting systems

I indicated: semi-Thue systems are equivalent to model of Turing machines
⇔ are a model of computation

I introduced three word problems — indicated that two are undecidable —
proved that the third is undecidable, too

I will probably hear more in: Lindenmayer systems, Combinatory Logic,
Markov Algorithms, Correspondence Problem
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