Simulations of Dyon Configurations in SU(2) Yang-Mills Theory

Benjamin Maier

in collaboration with

Falk Bruckmann, Simon Dinter, Ernst-Michael Ilgenfritz, Michael Müller-Preußker, Marc Wagner

> Physics Department Humboldt-University of Berlin

> > March 28, 2011

HUMBOLDT-UNIVERSITÄT ZU BERLIN

・ロト ・日本・ ・ ヨト・

SU(2) Yang-Mills Theory

- describes gluons (and infinitely heavy quarks)
- rough approximation of QCD
- defined by action

$$\begin{split} S[A] &= \frac{1}{4g^2} \int d^4x \ F^a_{\mu\nu} \ F^a_{\mu\nu}, \\ F^a_{\mu\nu} &= \partial_\mu A^a_\nu - \partial_\nu A^a_\mu + \varepsilon^{abc} A^b_\mu A^c_\nu \end{split}$$

 \bullet calculation of observable O with path integral

$$\begin{split} \langle O \rangle &= \frac{1}{Z} \int DA \ O[A] \exp\left(-S[A]\right) \\ Z &= \int DA \ \exp\left(-S[A]\right) \end{split}$$

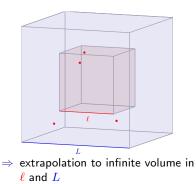
 \Rightarrow obtain qualitative unterstanding of YM theory and confinement

- dyons: approximative classical solutions with small action
- gauge field is superposition of Coulombic gauge field
- Diakonov, et al.: "Confining ensemble of dyons" (Phys. Rev. D 76, 056001) attempt to treat dyon ensembles analytically
- first numerical attempt: "Cautionary remarks on the moduli space metric for multi-dyon simulations" by other members of collaboration (arXiv:0903.3075v1)

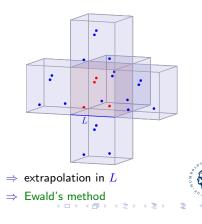
Problems with Long-range Dyon Fields

problem long-range potential $q/r \Rightarrow$ rather large volume is needed \Rightarrow two possible solutions

Isimulating a cubic spatial volume of length *L*, but evaluate observables within a spatial volume of length ℓ<*L*



Copy the cubic volume of length L infinitely often in all directions



4/15

Ewald's Method

- pedagogical introduction: "Ewald Summation for Coulombic Interactions in a Periodic Supercell" by H. Lee & W. Cai
- split potential into short-range part and long-range part

$$A_0(\mathbf{r}) = A_0^{\mathsf{Short}}(\mathbf{r}) + A_0^{\mathsf{Long}}(\mathbf{r})$$

• A_0^{Short} converges exponentially

$$A_0^{\mathsf{Short}}(\mathbf{r}) = \sum_{\mathbf{n} \in \mathbb{Z}^3} \sum_{j=1}^{n_D} \frac{q_j}{|\mathbf{r} - \mathbf{r}_j - \mathbf{n}L|} \, \operatorname{erfc}\left(\frac{|\mathbf{r} - \mathbf{r}_j - \mathbf{n}L|}{\sqrt{2}\lambda}\right)$$

• A_0^{Long} converges exponentially in Fourier space (with momenta $\mathbf{k} = \frac{2\pi}{L} \mathbf{n}$)

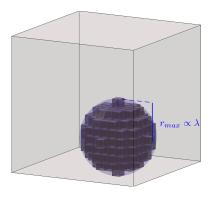
$$A_0^{\mathrm{Long}}(\mathbf{r}) = \frac{4\pi}{L^3} \sum_{\mathbf{k}\neq 0} \sum_{j=1}^{n_D} \mathbf{q}_j e^{i\mathbf{k}(\mathbf{r}-\mathbf{r}_j)} \frac{e^{-\lambda^2 \mathbf{k}^2/2}}{\mathbf{k}^2}$$

• divergencies cancel in case of neutral box

Ewald's Method more in Detail

Short-range

$$A_0^{\text{Short}}(\mathbf{r}) = \sum_{\mathbf{n} \in \mathbb{Z}^3} \sum_j \frac{q_j}{|\mathbf{r} - \mathbf{r}_j - \mathbf{n}L|} \operatorname{erfc}\left(\frac{|\mathbf{r} - \mathbf{r}_j - \mathbf{n}L|}{\sqrt{2}\lambda}\right)$$



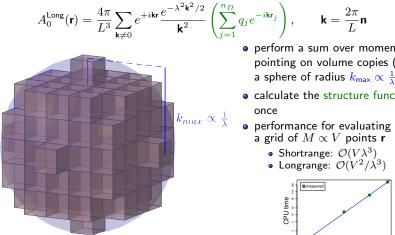
- λ : arbitrary parameter which controls the tradeoff between A_0^{Short} and A_0^{Long}
- due to exponential convergence of $A_0^{\rm Short}$, evaluation can be restricted to dyons within a sphere of radius $r_{\rm max} \propto \lambda$

< ロ > < 同 > < 回 > < 回 >

Problems with Long-range Dvon Fields Ewald's Method Numerical Results

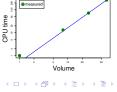
Ewald's Method more in Detail

Long-range



 \Rightarrow choose $\lambda^3 \propto \sqrt{V}$ for scaling of $\mathcal{O}(V^{3/2})$

- perform a sum over momenta pointing on volume copies (within a sphere of radius $k_{\rm max} \propto \frac{1}{3}$)
- calculate the structure functions
- performance for evaluating A_0 on



Numerical Results

Setup and method of computation

- choose density
- put dyons on random positions in a cubic spatial volume for 30 to 800 configurations (non-interacting dyon model)
- vary dyon number (between 1 000 and 125 000) at fixed density to extrapolate to infinite volume
- evaluate $A_0(\mathbf{r})$ at various points \mathbf{r} using Ewald's method
- the Polyakov-loop correlator $\left< P({\bf r})P^{\dagger}({\bf r}')\right>$ can directly be obtained from $A_0({\bf r})$ using

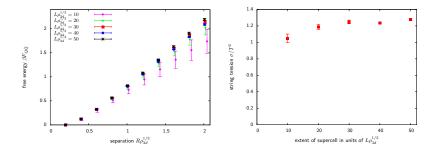
$$P(\mathbf{r}) = \sin\left(\frac{1}{2T}A_0(\mathbf{r})\right)$$

• calculate free energy between a static quark antiquark pair at separation $R=|{\bf r}-{\bf r}'|$ from

$$F_{Q\bar{Q}}(R) = -T \ln \left\langle P(\mathbf{r})P^{\dagger}(\mathbf{r}')\right\rangle$$

Free Energy and String Tension

Free energy $F_{Q\bar{Q}}$ for non-interacting dyons from Polyakov-loop correlators obtained with Ewald's method



Results for non-interacting dyons

- $F_{Q\bar{Q}}$ linear in quark antiquark separation \Rightarrow confinement
- $\bullet\,$ converging string tension with increasing volume $\Rightarrow\,$ controlled extrapolation to infinite volume

• • *N*₁/₁/₁, strained</sub>

Summary & Outlook

Summary

- Ewald's method: efficient algorithm for superposition of long-range objects in field theories
- controlled extrapolation of observables to infinite volume (e.g. string tension)
- dyon model (even without interactions) generates confinement

Ongoing Projects / Future Plans

- simulate an interacting dyon model by expanding an "effective action" $S_{\text{eff}} = \frac{1}{2} \sum_{j} \sum_{i} \ln \left(1 - \frac{2q_i q_j}{\pi |\mathbf{r}_i - \mathbf{r}_j|} \right) \text{ (based on the moduli space metric of calorons) in inverse powers of } r \text{ using Ewald's method}$
- understand effects of interacting/non-interacting dyon model on string tension

Backup Slides

Ewald's Method for $1/r^p$

• using the gamma function $\Gamma(x)$ one is able to find Ewald sums for all potentials $\Phi(\mathbf{r}) = \frac{1}{r^p}, p \in \mathbb{R} | p \ge 1$

$$\begin{split} \Phi^{\text{Short}}(\mathbf{r}) &= \sum_{\mathbf{n}} \sum_{j=1}^{n_D} \frac{q_j}{|\mathbf{r} - \mathbf{r}_j + \mathbf{n}L|^p} \ g_p\left(\frac{|\mathbf{r} - \mathbf{r}_j + \mathbf{n}L|}{\sqrt{2\lambda}}\right) \\ \Phi^{\text{Long}}(\mathbf{r}) &= \frac{\pi^{3/2}}{V \left(\sqrt{2\lambda}\right)^{p-3}} \sum_j \sum_{\mathbf{k}} q_j \ \exp\left(i \,\mathbf{k}(\mathbf{r} - \mathbf{r}_j)\right) f_p\left(\frac{k\lambda}{\sqrt{2}}\right) \end{split}$$

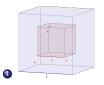
with the decay functions

$$g_p(x) = \frac{2}{\Gamma(p/2)} \int_x^\infty s^{p-1} \exp\left(-s^2\right) \, ds,$$

$$f_p(x) = \frac{2x^{p-3}}{\Gamma(p/2)} \int_x^\infty s^{2-p} \exp\left(-s^2\right) \, ds.$$

 \Rightarrow long-range potentials can be evaluated in powers of 1/r for an efficient algorithm

Finite Volume Effects



- small $\ell \Rightarrow$ small finite volume effects
- reduces dyon number which can be treated numerically
- increased statistical errors
- extrapolation to infinite volume difficult (controlling two parameters ℓ and L)
- when considering interacting dyons they tend to accumulate at boundaries

- easier extrapolation to infinite volume (only one parameter *L*)
- homogenous configurations considering interacting dyons
- divergencies in case of non-neutral box
- performing the infinite sum yields to dielectric effects in case of naive 1/r-summation
- \Rightarrow Ewald's method

Dyon Gauge Field

• gauge field of single dyon (for our preliminary computations relevant: a_0)

$$a_0^3(\mathbf{r};q) = rac{q}{r}; \qquad a_1^3(\mathbf{r};q) = -rac{qy}{r(r-z)}; \ a_2^3(\mathbf{r};q) = +rac{qx}{r(r-z)}; \qquad a_3^3(\mathbf{r};q) = 0$$

 $\Rightarrow\,$ electric and magnetic charges with $q=\pm 1$ and ${\bf E}=\pm {\bf B}$

• gauge field of a superposition of dyons

$$A_{\mu}(\mathbf{r}) = \sum_{j} a_{\mu}(\mathbf{r} - \mathbf{r}_{j}; q_{j})$$

Effective Action S_{eff}

coordinate transformation

$$\int DA \to \prod_{j=1}^{n_D} \int d^3 \mathbf{r}_j$$

• from determinant of moduli space metric

$$S_{\text{eff}} = \frac{1}{2} \sum_{j} \sum_{i} \ln \left(1 - \frac{2q_i q_j}{\pi \left| \mathbf{r}_i - \mathbf{r}_j \right|} \right)$$

• series expansion at $r_0 = \infty$

$$S_{\rm eff} = -\frac{2q_iq_j}{\pi r} - \frac{2}{\pi^2 r^2} - \frac{8q_iq_j}{3\pi^3 r^3}$$

⇒ Treatable with Ewald's method!

